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Abstract 

Visual motion causes mislocalisation phenomena in a variety of experimental 

paradigms. For many displays objects are perceived as displaced ‘forward’ in the 

direction of motion. However, in some cases involving the abrupt stopping or reversal 

of motion the forward displacements are not observed. We propose that the transient 

neural signals at the offset of a moving object play a crucial role in accurate 

localisation. In the present study we eliminated the transient signals at motion offset 

by gradually reducing the luminance of the moving object. Our results show that the 

‘disappearance threshold’ for a moving object is lower than the detection threshold 

for the same object without a motion history. In units of time this manipulation led to 

a forward displacement of the disappearance point by 175 ms. We propose an 

explanation of our results in terms of two processes: Forward displacements are 

caused by internal models predicting positions of moving objects. The usually 

observed correct localisation of stopping positions, however, is based on transient 

inputs that retroactively attenuate errors that internal models might otherwise cause. 

Both processes are geared to reducing localisation errors for moving objects. 
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Introduction 

Visual motion can influence the perceived position of objects as shown in various 

experimental paradigms. In representational momentum observers perceive the final 

position of a moving object as shifted in the direction of motion (Freyd & Finke, 

1984; Hubbard, 1995). In the Fröhlich effect the position of the sudden onset of a 

moving object is misperceived; the object seems to appear at a later point of the 

trajectory (Fröhlich, 1923; Kirschfeld & Kammer, 1999). When observers view 

moving elements contained within the boundaries of static windows, a motion-

induced positional bias is observed such that the windows appear displaced in the 

direction of motion (De Valois & De Valois, 1991; Ramachandran & Anstis, 1990). 

Flashes can be mislocalised in the direction of motion when they are presented near a 

moving object (Whitney & Cavanagh, 2000). In the flash-lag effect a moving object 

is perceived to be ahead of a flashed stationary object, although both are physically 

aligned in space (Hazelhoff & Wiersma, 1924; Nijhawan, 1994). A common feature 

in all these studies is that motion causes a mislocalisation in the ‘forward’ direction; 

i.e. the displacement occurs in the direction of future positions of the moving object. 

 

Given these findings it is surprising to find some displays in which this expected 

forward shift is not observed. These displays involve unpredictable events such as 

moving objects abruptly stopping, changing direction and/or speed. When a moving 

object unpredictably stops, it does not appear to overshoot its final position. This has 

been observed in experiments using flashes for the relative judgement of the stopping 

position (Eagleman & Sejnowski, 2000; Nijhawan, 1992), using pointing movements 
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(Kerzel, 2000) and static probe stimuli (Kerzel, Jordan, & Müsseler, 2001). When a 

moving object abruptly changes direction, then the perceived position at which the 

object reverses is not displaced forward (Whitney & Murakami, 1998). However, 

recently some conditions have been found, in which similar stimuli do produce 

‘overshoots’. If abruptly stopped moving objects are blurred (Fu, Shen, & Dan, 2001) 

or presented in the retinal periphery (Kanai, Sheth, & Shimojo, 2004) a forward 

displacement is reported. 

 

Why is the forward displacement of abruptly stopped moving objects sometimes not 

observed? We suggest that whether a given stimulus will produce the forward 

displacement or not depends on the relative operational strength of two opposing 

mechanisms. The first mechanism uses information from the earlier part of the 

moving object’s trajectory to accurately predict its position, possibly to compensate 

for the spatial lag in position that would otherwise be expected due to delays in the 

neural processing between the photoreceptors and higher visual areas. However, when 

abrupt events cause transient neural signals, strongly stimulating the visual system, a 

second mechanism is engaged that acts like a ‘correction’ overriding the output of the 

first mechanism. 

 

Our thesis is based on well known psychophysical and physiological facts. Events 

occurring later in time can change the perception of earlier events (Breitmeyer, 1984; 

Dennett & Kinsbourne, 1995; Kolers, 1972; Libet, 1981; Ross, 1972; van der Waals 

& Roelofs, 1931). For example, in backward masking a briefly presented visual 

stimulus can be rendered invisible, if it is followed by another stimulus nearby 
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(Alpern, 1953; Breitmeyer, 1984). More importantly for the present experiments, 

stimulus offsets per se can reduce the visibility of a previously presented target 

(Breitmeyer & Kersey, 1981). Temporal transients like stimulus onsets and offsets 

elicit strong neural responses, both excitatory and inhibitory, that can suppress the 

perception of other stimuli (Macknik, Martinez-Conde, & Haglund, 2000). Here we 

explore the possibility that the strong transient neural signal associated with the 

disappearance of a moving stimulus provides the visual system with a cue that allows 

for the localisation of the vanishing position without a forward displacement. 

Analogously to backward masking this transient might influence perception 

retroactively and facilitate the perception of the correct vanishing position (Nijhawan, 

2002).  

 

In this study we test our thesis by manipulating the transient at the offset of a moving 

object. We employed a gradually fading moving object that initially appeared bright 

and then disappeared for the observer without a strong transient. Does this object 

disappear at the position in its trajectory where its luminance is at detection threshold, 

or does it overshoot this point and will be visible in positions where retinal input per 

se can no longer sustain perception of the object? 

 

Experiment 1 

The purpose of this experiment was to measure the luminance at which a fading 

moving object is seen as disappearing by the observer, and determine whether this 

luminance is above or below detection threshold for the same moving object without 
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the same motion history. We used two conditions: In the ‘long-trajectory motion’ 

condition a small dot moved on a circular trajectory while continuously becoming 

dimmer. Observers judged whether the dot disappeared before or after a radial 

reference line presented adjacent to the moving dot (Fig. 1C). In the ‘short-segment 

motion’ condition the same dot was presented moving for only a short trajectory at 

different luminances. The observers reported whether they perceived the dot or not. 

We predicted that the long-trajectory dot would perceptually disappear in a forward-

displaced position, i.e. at luminance levels where the short-segment dot was not 

detectable. 

Methods 

Participants 

Eight observers participated in the experiment. Two observers (including author GM) 

were informed, while six were naïve about the hypothesis. All had normal or 

corrected to normal visual acuity. 

 

Apparatus and Stimuli 

The stimuli were shown in a dimly lit room on a CRT computer monitor (Sony CPD-

E500) at 1280 x 1024 pixel resolution and 85 Hz refresh rate. Stimuli were generated 

using Matlab and the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 

1997). The observer viewed the screen from a distance of 80 cm with the head 

stabilised by a chin rest. The stimulus consisted of a small white dot (3 x 3 pixels, 
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0.06° x 0.06°) moving counter-clockwise on a circle (radius 2.8°). Analogue fading of 

the dot was achieved by hardware: a variable neutral density filter (Edmund Optics 

Inc.; range of neutral density 0 – 4; range of transmission 1 – 0.0001; see Fig. 1A) 

was mounted between the observer and the screen. In this experiment the filter was 

fixed in the position shown in Fig. 1A. A fixation LED was presented at the centre of 

the circular trajectory using a beam splitter (Fig. 1B). To the observers the dot 

appeared to fade as it moved (see Fig. 1C). Using this physical setup rather than 

changing the dot’s luminance in the software had several advantages. In software 

luminance can only be changed in steps of finite size. This confines experimenters’ 

control over stimuli, especially for luminance contrasts close to the detection 

threshold1. This method also makes correction for non-linearities in the monitor’s 

luminance function unnecessary.  

 

[Figure 1 here] 

Procedure 

This experiment consisted of two conditions. In the ‘short-segment motion’ condition 

we measured the dot luminance, at which observers were able to detect the dot’s 

presence with 50% probability. In the ‘long-trajectory motion’ condition we measured 

the luminance at which the same fading moving dot was seen as disappearing. Note 

                                                

1 The ability to rotate the filter with a micro stepper motor (see Experiment 2) also 

enables us to change the luminance of a moving object with any continuous function. 
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that different luminances of the dot were achieved by presenting the dot behind 

different regions of the filter, therefore larger angular positions directly correspond to 

lower luminances. All the analysis was carried out in terms of positions. 

 

The stimulus in the short-segment motion condition consisted of five screen refresh 

frames (58.8 ms at 85 Hz refresh rate), during which the dot rotated for about 12°  

(arc distance 0.6° visual angle) at an angular velocity of 204°s-1 (tangential velocity 

10.4°s-1 visual angle). During this motion the dot’s luminance decreased by a factor2 

of 0.7. To achieve different intensity levels the stimulus was presented at one of ten 

different positions behind the filter. A radial line (length 1.6°) presented adjacent to 

the filter precued the starting position of the dot. At the starting position of each trial 

the dot appeared brightest, so this position and luminance were used to work out the 

actual detection performance.  Trials were structured as follows: First the cue line 

appeared, 400 ms later the stimulus was presented for 58.8 ms. After another 300 ms 

the cue line was turned off and the observer was prompted to press one of two keys to 

report whether they saw the stimulus or not. To counteract observers simply learning 

the position where the stimulus was visible, on 20% of the trials the cue line was 

presented, but was not followed by the stimulus. Observers were not informed about 

the presence of these ‘catch’ trials. 

 

                                                

2 

! 

factor =
luminance in last frame

luminance in first frame
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In the long-trajectory motion condition the dot started moving from the 6 o’clock 

position (0°), where the filter’s transmission was 1, and moved counterclockwise into 

the darker parts of the filter. The dot’s velocity was the same as in the short-trajectory 

motion (204°s-1; 10.4°s-1 visual angle). Although the dot on the screen completed a 

whole circular trajectory, it was typically perceived to disappear at about 220° (Fig. 

1C). While the dot was moving a radial reference line was shown adjacent to the 

filter, randomly at one of ten different positions. Observers pressed one of two keys, 

indicating whether they saw the dot disappear ‘ahead of’ or ‘before’ the line. On 20% 

of the trials the dot actually vanished from the screen at a position where it was still 

clearly visible, 10° (angular position) before the line. These trials prevented observers 

from learning about the vanishing positions.  

 

An initial experimental session was used to a) familiarise observers with the stimuli, 

and b) select the ten positions where the short-segment motion would be presented to 

each observer because of individual differences in absolute thresholds. Following this 

each observer performed a block of 250 trials of the short-segment motion condition 

and 250 trials of the long-trajectory motion condition. Twenty measurements were 

made for each data point in both conditions (20 trials x 10 data points + 50 catchtrials 

= 250 trials). In three short breaks the main room lights were turned on to avoid dark 

adaptation of the observers. Psychometric functions were fitted to the data using 

probit analysis (Finney, 1971; McKee, Klein, & Teller, 1985) to obtain 50%-

thresholds. Confidence intervals for these thresholds were computed using a bootstrap 

method (Foster & Bischof, 1991). Responses on the catch trials in both conditions 
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were used to measure ‘false alarm’ rates and to compute a bias measure (Macmillan 

& Creelman, 1991). Observers that showed a response bias in their decisions on the 

catch trials of more than one standard deviation unit in either direction were excluded 

from the analysis. 

 

Results 

[Figure 2 here] 

 

All observers reliably reported that the moving dot in the long-trajectory motion 

condition was visible at luminances, at which they were unable to detect the short-

segment motion dot. However, two observers were excluded from the analysis 

because of large biases in their responses on the catch trials. These observers were 

unable to reliably detect the disappearance of the dot even at relatively high 

luminances. For the remaining six observers biases were smaller than one standard 

deviation.  

 

The difference between the two thresholds in every single remaining observer was at 

least four times the size of the 95%-confidence intervals for the thresholds. The raw 

data and fitted psychometric functions for one naïve observer are shown in Fig. 2. The 

average rotation angle between thresholds across all observers was 35.8° (sd = 6.3°; 

arc distance 1.8° visual angle, sd = 0.3°). The distance measure was translated into a 

time measure, describing for how long the dot was visible after it passed the detection 

threshold measured in the short-segment motion condition. On average this time was 
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175.4 ms (sd = 30.8 ms). Fig. 3 shows the threshold differences for all six observers 

and the group mean. The slopes of all psychometric functions were similar and 

showed no significant differences between conditions (dependent test: t(5) = 2.32, p = 

0.068; data not shown). 

[Figure 3 here] 

Discussion 

All observers showed a robust difference between the thresholds for the long-

trajectory motion and the short-segment motion conditions. Observers were unable to 

detect the short-segment dot at luminance levels (and positions) at which they still 

reliably saw the long-trajectory dot. We interpret this as a forward displacement of the 

dot’s vanishing position in the long-trajectory condition. In this condition the dot 

disappears without providing a strong transient signalling its offset. Therefore the 

proposed correction mechanism for the perceived final position is not operational, and 

the dot is visible in positions at which retinal input alone is insufficient to reliably 

yield a percept, as in the short-segment motion condition. 

 

Two factors unrelated to our hypothesis could have contributed to the results. The 

visibility of the dot in the short-segment motion condition could be diminished as the 

dot was presented at different locations. Although the position of the dot was cued, it 

might be argued that the spatial uncertainty is greater in the short-segment motion 

condition than in the long-trajectory motion condition. This could allow observers to 

deploy attention to ‘track’ the long-trajectory dot, leading to better detection 

performance. In addition, probability summation might contribute to the better 



12 

 

 

visibility of the long-trajectory stimulus. The short-segment dot is presented for only 

five refresh frames, whereas the long-trajectory is presented for longer after it passes 

the reference line. Because more frames are presented in the long-trajectory condition 

(although in each frame the dot will be dimmer than in the previous one), probability 

summation predicts better detection of the dot that is presented for more discrete 

frames. Experiment 2 addresses these attention and probability summation 

hypotheses. 

Experiment 2 

This experiment measures the detection threshold for the short-segment motion dot in 

a different way. Again the dot’s luminance was changed from trial to trial, but it was 

now presented in one position. Furthermore, the stimulus was presented repeatedly 

until the observer gave her response. In a second condition the length of the trajectory 

was approximately doubled to check if more discrete presentation frames increased 

the dot’s detectability. If the higher detection threshold for the short-segment dot in 

Experiment 1 is based on observers’ uncertainty about its presentation position or 

attentional disadvantages over the long-trajectory dot, it is expected that these 

modifications will eliminate the difference in thresholds. Furthermore, if the 

difference in thresholds in Experiment 1 depended on the longer presentation of the 

long-trajectory dot at sub-threshold luminances, the extension of the trajectory length 

in this experiment is expected to lead to significant differences in detection 

thresholds. 
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Methods 

Participants 

Four observers from Experiment 1 took part in this study. Three observers were naïve 

about the purpose of this experiment. 

 

Apparatus and stimuli 

Most of the apparatus was the same as in Experiment 1. A micro stepper motor 

(Parker Hannifin Corp.) controlled by the experimental software was used to rotate 

the filter disk. Now the dot was always presented in the 12 o’clock position, 2.8° 

above the fixation point. Rotation of the filter changed the dot’s luminance. In an 

additional condition the trajectory length of the stimulus was increased from 12° to 

26.4° (arc distance 1.3° visual angle; 11 refresh frames, i.e. 129.4 ms at 85 Hz refresh 

rate). On the extended trajectory the dot’s luminance decreased by a factor of 0.45.  

 

Procedure 

To alert the observer an acoustic beep signalled the start of a trial. The stimulus was 

repeatedly presented until the observer made a response. Again the response was a 

key press, indicating whether the observer saw the stimulus or not. After the response 

the screen turned black and the motor moved the filter to the next position. For each 

of the two segment lengths there were 120 trials, ten trials at twelve different 
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luminance levels. The trial order was randomised for each observer for a total of 240 

trials. 

Results  

The thresholds measured for the two motion segment lengths did not differ 

significantly from each other, as confidence intervals for both thresholds overlap for 

every single observer. Fig. 4 shows the data of Experiment 1 and Experiment 2. The 

detection performance improved for three observers compared to the short-segment 

condition of Experiment 1. However, all four observers still showed a large difference 

between the new detection thresholds and the disappearance threshold for the dot in 

the long-trajectory condition of Experiment 1. 

 

[Figure 4 here] 

Discussion 

Probability summation would predict that increasing the trajectory length of the short-

segment dot would lead to its greater detectability. Experiment 2 shows that the 

longer short-segment stimulus is not detected significantly better than the original 

stimulus. It can be concluded that probability summation cannot be the sole 

contributor to the difference in thresholds measured in Experiment 1.  

 

Experiment 2 eliminated spatial uncertainty for the short-segment stimulus by 

presenting it repeatedly in the same position. These manipulations did improve 

detection performance in three out of four observers. Nonetheless there remains a 
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wide gap between the thresholds for short-segment motion (of Experiments 1 and 2) 

and long-trajectory motion (Experiment 1). We interpret this difference as a forward 

displacement due to the dot’s motion history. 

 

General Discussion 

Close examination of the studies that do not show a forward displacement for moving 

objects (Eagleman & Sejnowski, 2000; Kerzel, 2000; Nijhawan, 1992; Whitney & 

Murakami, 1998) points to one potential common denominator for correct object 

localisation: a strong transient signalling an abrupt change in the moving object. We 

hypothesised that this transient carries accurate positional information, which is used 

by the visual system to enable the perception of the correct position (Nijhawan, 2002). 

Although this transient arrives at relevant cortical areas after a significant delay 

following retinal stimulation, the transient is able to influence the perceived position 

of the object in a retroactive manner. Similar retroactive effects are evident in 

backward masking and other phenomena (Breitmeyer, 1984; Dennett & Kinsbourne, 

1995; Kolers, 1972; Libet, 1981; Ross, 1972; van der Waals & Roelofs, 1931). 

 

In the present experiments we tested this hypothesis by removing the retinal transient 

elicited by the moving object’s offset. This was achieved by using a gradually fading 

object (Experiment 1). We expected that a fading moving object that does not provide 

a transient signal would show a forward displacement; i.e. it would be visible at 

luminances lower than the detection threshold for motion over short segments. 

Experiment 1 confirmed this expectation. In Experiment 2 we confirmed that this 
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result cannot be attributed solely to probability summation depending on the length of 

the motion sample or to greater deployment of spatial attention in the long-trajectory 

motion condition.  

 

Our results are particularly noteworthy as similar non-fading stimuli, where a 

transient does signal the abrupt offset, have previously been shown to be localised 

correctly or mislocalised in the opposite direction (Kerzel, 2000; Stork & Müsseler, 

2004). Kanai, Sheth, and Shimojo (2004) described a set of conditions where an 

overshoot of the moving object can be found with abrupt offsets. One of these 

conditions used a very low-contrast moving object. The off-transient of a low-contrast 

object is weaker than of a high-contrast object. Our interpretation of their finding 

would be that the weak transient signal is not able to trigger the correction mechanism 

described here; therefore the moving object is perceived to overshoot. 

 

The present study manipulated the transient related to the offset of a moving object. 

To apply to experimental paradigms where there is an abrupt change in the direction 

of motion (Whitney & Murakami, 1998) our findings have to be extended to 

transients related to direction changes. It is known that the visual system responds 

strongly to such unpredictable events. For example, EEG studies have shown event-

related potentials in response to the onset of motion and changes in the direction of 

motion (Clarke, 1972; Hoffmann, Unsold, & Bach, 2001; Pazo-Alvarez, Amenedo, & 

Cadaveira, 2004). These signals seem to originate from higher visual areas, and may 

signal the change of the direction of motion to areas coding for object position, 

contributing to the accurate perception of the position of such events. This would 
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extend our hypothesis to explain the lack of a perceptual overshoot in paradigms 

where moving objects stop without disappearing (Eagleman & Sejnowski, 2000) or 

abruptly change direction (Whitney & Murakami, 1998). 

 

Our interpretation of the forward displacement for moving objects found in the 

present study and in the various other paradigms is as follows. There are non-trivial 

neural delays in the transduction, transmission and processing of information within 

the nervous system. It has been suggested that there are mechanisms to compensate 

for these delays, otherwise it would not be possible to successfully interact with a 

dynamic environment (De Valois & De Valois, 1991; Ghez & Krakauer, 2000; 

Lacquaniti & Maioli, 1989; Nijhawan, 1994; Wolpert, Ghahramani, & Jordan, 1995). 

Especially the interaction with moving objects would pose a severe problem, because 

the position information available to the system would always lag behind the position 

the object presently occupies. Possible neural mechanisms for the anticipation of 

moving objects in the visual system have been identified, including local lateral 

interactions in the retina (Berry, Brivanlou, Jordan, & Meister, 1999) and later levels 

(Baldo & Caticha, 2005; Jancke, Erlhagen, Schoner, & Dinse, 2004; Kanai et al., 

2004; Kirschfeld & Kammer, 1999), and/or internal models that facilitate 

extrapolation by top-down influences on early cortical representations. Internal 

forward models have been proposed previously to account for forward displacements 

found in experiments involving limb movements (Miall & Wolpert, 1996; Wolpert et 

al., 1995). The visual nervous system might generate an analogous internal model for 

the processing of moving visual stimuli (Erlhagen, 2003; Miall & Wolpert, 1996; 

Nijhawan & Kirschfeld, 2003).  
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On this view, our present findings suggest that neural processes underlying the 

perception of a moving object can be maintained with weaker neural activity due to 

an internal model. The perceived position is to some degree independent from 

bottom-up stimulation. Motion in the model cannot be stopped instantaneously. 

However, when motion in the outside world is stopped with a strong transient this 

generates a strong neural response, which carries accurate position information. This 

transient overrides the neural activity that is otherwise maintained by the internal 

model. When the transient input is weakened (for example due to gradual fading) the 

internal model runs unhampered for longer. 

 

It seems to be necessary that the correcting transient stems from the moving object 

itself and not from neighbouring objects. Other transients (like flashes nearby) do not 

usually reset the predicted position of a moving object, but lead to a spatial offset 

between moving object and flashes (the flash-lag effect). However, recently 

conditions have been found, in which flashes can lead to a reconstruction of the 

veridical position of the moving object. Kanai and Verstraten (2006) observed that, 

additionally to the forward displaced position of a moving object, a second instance of 

the same object in its veridical position can be seen when flashes are positioned 

suitably to trigger filling-in processes. 

 

In contrast to our view described above, Eagleman and Sejnowski (2000) proposed 

that in the flash-lag effect “the flash resets motion integration”, and later the newly 

integrated position of the moving object is “postdicted to the time of the flash”. The 
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general principle of a subsequent event influencing the perceived position is 

compatible with our proposed retroactive correction mechanism. However, Eagleman 

and Sejnowski claimed that the flash-lag effect is caused exclusively by retroactive 

(or ‘postdictive’) mechanisms. Our interpretation of the flash-lag effect would be 

different: The position of the moving object is constantly predicted by an internal 

model to compensate for delays in the neural pathways (Nijhawan, 1994). The flash 

does not interfere with this prediction, therefore an offset between the moving object 

and the flash is perceived in standard flash-lag displays. In the case of the abrupt 

stopping of motion (e.g. the flash-terminated flash-lag display) the transient signal 

associated with this abrupt event does interfere with ongoing motion processing and 

retroactively influences the perceived position of the moving object. We use both 

predictive and retroactive mechanisms in this explanation, which might at first seem 

unparsimonious. However, we assume that whenever the brain can use predictive 

mechanisms, it will do so to benefit from a more ‘up to date’ world model. 

Confronted with unpredictable, sudden events, the brain will employ retroactive 

mechanisms to come up with the most reasonable interpretation of the sensory input. 

This interaction of two opposing mechanisms is advantageous to an animal because it 

maximally reduces localisation errors of moving objects. 
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Figure 1   A) The variable neutral density filter that was mounted between observers 

and the screen. B) The apparatus: In front of the computer screen (a) the neutral 

density filter was mounted on a rod (a micro stepper motor in Experiment 2; b). A 

beam splitter (c) was used to present a fixation LED (d) in the plane of the screen. C) 

Stimulus in the ‘long-trajectory motion’ condition: observers viewed a white dot 

moving behind the filter on a counterclockwise trajectory starting at 0° (6 o’clock 

position). The dot appeared to fade as it moved until it disappeared at around 220°. 

The dotted line depicts the outline of the filter disk in front of the screen. A grey 

radial line was presented at different positions. 

 

Figure 2   Raw data and fitted psychometric functions from Experiment 1 for naïve 

observer ZH. The abscissa denotes the angular position of the reference line where the 

dot was presented (short-segment motion) or where observers made the decision (‘dot 

disappeared ahead of/before the line’). Higher angular positions correspond to lower 

stimulus luminances. The ordinate denotes percent ‘yes’ responses (short-segment 

motion) and percent ‘ahead’ responses (long-trajectory motion). The horizontal error 

bars represent 95%-confidence intervals for the 50%-thresholds.  

  

 

Figure 3 Difference (in units of time and rotation) between the thresholds for the 

long-trajectory motion and the short-segment motion conditions for each of the 6 

observers and the group average (with standard deviation). 
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Figure 4   Absolute thresholds from Experiments 1 and 2 for four observers who 

participated in both experiments (including author GM). Bigger angular position 

denotes lower luminance of the stimuli. The white bar represents the detection 

threshold for the short-segment stimulus from Experiment 1; the two grey bars depict 

thresholds for the two short-segment stimuli in Experiment 2; the black bar shows the 

disappearance threshold of the long-trajectory stimulus from Experiment 1. Errorbars 

show 95%-confidence intervals for each threshold.  
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