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There is currently considerable interest among computational linguists in grammatical for-
malisms with highly restricted generative power.
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Abstract

There is currently considerable interest among computational linguists in grammat-
ical formalisms with highly restricted generative power. This paper concerns the rela-
tionship between the class of string languages generated by several such formalisms viz.
Combinatory Categorial Grammars, Head Grammars, Linear Indexed Grammars and
Tree Adjoining Grammars. Each of these formalisms is known to generate a larger class
of languages than Context-Free Grammars. The four formalisms under consideration
were developed independently and appear superficially to be quite different from one
another. The result presented in this paper is that all four of the formalisms under
consideration generate exactly the same class of string languages.

Introduction
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This is based on the argument that a
grammar formalism should not merely be viewed as a notation, but as part of the linguistic
theory [6]. It should make predictions about the structure of natural language and its value is
lessened to the extent that it supports both good and bad analyses. In order for a grammar



formalism to have such predictive power its generative capacity must be constrained. This
has led to interest in the use of context-free grammars (cfg) [16, 6] as a notation with which to
express linguistic theories. However, it is now generally accepted that cfg lack the generative
power needed for this purpose [19, 3]. As a result there is substantial interest in the develop-
ment and study of constrained grammar formalisms whose generative power exceeds cfg. This
paper concerns the relationship between several of the most widely studied such formalisms.

We compare the class of languages that are generated by combinatory categorial gram-
mars, head grammars, linear indexed grammars and tree adjoining grammars. Fach of these
formalisms is known to generate a larger class of languages than cfg. Furthermore, this class
includes the non-context-free languages that have been used as the basis for the most widely
accepted arguments that generative power greater than that of cfg is needed to generate
certain natural languages [19, 3].

The four formalisms under consideration were developed independently and superficially
differ considerably from one another. Informally, differences between the formalism can be
explained in terms of the way in which they can be seen to extend cfg. For example, in addition
to string concatenation, head grammars involve a wrapping operation with which one pair of
strings can be wrapped around a second pair. In other respects head grammars are identical
to cfg since the derivation process involves context-free rewriting of members of a finite set of
nonterminal symbols. Both combinatory categorial grammars and linear indexed grammars,
on the other hand, involve only string concatenation. However, they differ from cfg in that
their derivation process involves rewriting of unbounded stack-like structures. The status of
tree adjoining grammars, a tree manipulating system, is ambiguous since it is possible to
interpret tree adjoining grammars as extending cfg in either of these ways.

Despite these differences, evidence existed suggesting that the weak generative capac-
ity of these formalisms may be closely related. It appeared that while each of these for-
malisms had greater power than cfg, this extra power was very limited. In addition each
formalism was apparently limited to a similar extent. This evidence involved the lack of
an example of a language that could be generated by one formalism and not another. The
languages { ww | w € {a,b}" }, {w'wR'wwR | w € {a, b}*} Dand {a"b"c"d" | n > 0} are ex-
amples of languages that were known to be generated by all four formalisms, whereas, the
languages { www |w € {a,b}"} and {a™b"c"d"e™ |n > 0} are not generated by any of the
formalisms [17, 22].

The result presented in this paper is that all four of the formalisms under consideration
generate exactly the same class of string languages. Preliminary versions of some of these
results have appeared in [25, 28]. In Section 2 we define each of the formalisms and give the
equivalence proofs in Section 3.

Lw® is the reverse of w.



2 Definitions of Formalisms

Three of the four formalisms (tree adjoining grammars, head grammars, and combinatory
categorial grammars) have been used as the notation underlying various linguistic theories
and linear indexed grammars have been discussed in [5] in connection with the relevance of
indexed grammars to natural language. We will not discuss these theories here, however, as
we define each formalism we will refer to relevant linguistic work.

2.1 Head Grammars

Head grammars (hg) were introduced in [15] where their linguistic relevance was investigated.
Some of their formal properties were studied in [17]. They can be viewed as a generalization
of cfg in which a wrapping operation is used in addition to concatenation. The nonterminals
of a cfg derive strings of terminals. The nonterminals of a hg derive headed strings or pairs
of terminal strings (u,v) that we denote uqv. In Pollard’s original (equivalent) definition [15],
headed strings involved the additional specification that either the last terminal symbol in u
or the first terminal symbol in v was the head. We find it mathematically cleaner to view a
headed string simply as a pair since in Pollard’s notation the empty headed string was rather
problematic since it contained no head.

Definition 2.1 A hg is a four tuple G = (Vn, Vp, S, P) where
Vi is a finite set of nonterminal symbols,
Vr is a finite set of terminal symbols,
S € Vi 1s the start symbol and
P is a finite set of productions of the form A — f(oy,...,0,)
where Ae Vy,n> 1, fe{W,C1,,Comny...Coun}y o1y 00 € Vv U (VE X V],
and if f =W then n = 2.

Cin (VFEX VI — (VF x V) is a concatenation operation where
Cin(U1101, o UiV, -y UnUn) = ULVT . Uiy V5 - - Ug
W (Vi x Vi) — (Vi x V) is the wrapping operation where

W (111, uz102) = Uqtia vy
Given a hg, G = (Vn,Vp, S, P), = is defined as follows.
o upp == wp for all wyv € Vi x V7.
o If A— f(o1,...,0,) € P then
A % flurqvr, ..o unqvy)
where o; % ugvi (1 <i<n)and k =1+ 3¢, ki.
The string language L((G) generated by a hg, G = (Vy, Vr, S, P) is defined as

L(G) = {uv EVE|S = up }

k
where == U0 =



Example 2.1 The hg G = ({S,T},{a,b,e,d},S, P) generates the language
{a"b"c*d" | n > 0} where P is as follows. Note that ¢ denotes the empty string.

P= { S — Cra(ee), S — Cys(are, T, dye), T — W(S,bc) }

Consider the following derivation of the string aabbcedd.

1
S = Cra(ere) = g€
2
hence T = W (ere, bre) = bye
3
hence S = Css(are, bye, dre) = abyed
hence T == W (abyed, bye) = abbyced
G
5
hence S = Css(are, abbyeed, dye) = aabbcedd

2.2 Tree Adjoining Grammars

Tree adjoining grammars (tag) were introduced in [8] and their formal properties investigated
in [7, 22]. The linguistic use of tag is discussed in [12, 13, 10, 11, 18, 14].

Let Ny denote the set of positive integers. D is a tree domain if it is a nonempty finite
subset of N_I*_ such that if d € D and d = dyd, then dy € D and if di € D where i € N, then
dj € D forall 1 <j <i. A tree v is denoted by a partial function v : N7 — ¥ where dom (v)
is a tree domain and X is the set of node labels (and dom (v) is the, usual, tree domain 7).
We say that the elements of a tree domain are addresses of the nodes of the tree and v(d) is
the label of the node with address d. Note that € is the address of the root node of the tree.
If d € dom () for some tree v then 7/d, the subtree rooted at d in v is defined such that for
all d' € N} ~v/d(d') = ~(dd").

Tree adjoining grammars manipulate trees whose nodes are labelled either by terminal
symbols or by triples of the form (A,sa,oa) where A is a nonterminal symbol, sa is a set
of tree labels (that determines which of the trees of the grammar can be adjoined at that
node) and oa is either true (indicating that adjunction is obligatory) or false (indicating that
adjunction is optional). We call sa and oa the adjunction constraints at that node. A node at
which the value of oa is true is said to have an OA constraint. A node at which the value of
sa = () is said to have an NA constraint.

Let Vi be a set of nonterminal symbols, V7 a set of terminal symbols, V7 a set of tree

labels and Vi = Vp U {e}

Initial Trees For each A € Vy, init (Vy, Vp, Vi, A) is the set of trees a : D, — ViU (Vy X
2VL x {true, false }) where D, is a tree domain and the following hold.
e The root of « is labelled (A, sa,o0a) for some sa C Vj, and oa € { true, false }.

e All internal nodes of « are labelled (B,sa,oa) for some B € Vy, sa C Vj, and
oa € { true,false }.

o All leaf nodes of « are labelled by some u € V.

Auxiliary Trees For each A € Vy, aux (Vy,Vp, Vi, A) is the set of trees 5 : Dy — ViU
(Vy x 2Y2 x {true, false }) where Dj is a tree domain and the following hold.



e The root of 3 is labelled (A, sa,0a) for some sa C V;, and oa € { true,false }.

e All internal nodes of  are labelled (B,sa,0a) for some B € Vy, sa C Vj, and
oa € { true,false }.

e All leaf nodes of 3 except one are labelled by some v € V;. The remaining leaf
node is called the foot node and is labelled (A, sa,0a) for some sa C V;, and oa €

{true, false }. The address of the foot node of 3 is denoted ft (/).
Let aux (Viv, Vi, Vi) = Uaev, auz (Vv, Vo, Vi, A).
Elementary Trees elem (Vy, Vp, Vi, A) = init (Vn, Vp, Vi, A) U auz (Vn, Vi, Vi).

For each 3 € aux (Vy, Vp, V1) let spine (8) = {d ‘ft (B) = dd' for some d' € N }, i.e., spine (3)
are the addresses on the spine of 3 which is the path from the root to the foot node of 3.

We now define the tree adjunction operation
Vielem (Vy, Vp, Vi, A) x auz (V, Vi, Vi) X N_I*_ — elem (Vy, Vp, Vi, A)

for every A € Viy. For v € elem (Vy,Vp, Vi, A), B € aux (Vy,Vr, V1), d € dom (y) we have
v =V (v, 3,d) where for all d' € N5

B(d") if d =dd" and d" € dom (f3)

i

y(d') if d is not a prefix of d
! !
7(d) =
y(dd") it d = ddsd" such that d” # e and dy = ft (3)

The adjunction operation is shown in Figure 1.

Figure 1: Adjunction

Definition 2.2 A tag is a seven tuple G = (Vy, Vi, V1, 5,7, A, -) where
Vi is a finite set of nonterminals,
Vr is a finite set of terminals,
Vi is a finite set of tree labels,
S € Vn is a distinguished nonterminal,
7 is a finite subset of init (Vn, Vy, Vi, 5),
A is a finite subset of auz (Vy, Vr, V) and

-+ A — Vi is a bijection, the auxiliary tree labelling function.

5



We use 3 to denote the result of applying - to 3.
Given a tag G = (Vy, Vr, V1, 5,7, A, -) = is defined as follows.

If v € elem (Vy,Vr, Vi, A), v(d) = (B,sa,oa), 3 € AN auzx (Vy,Vr, Vi, B), and 3 € sa
then
v = V(v,8,d)

Note that the same nonterminal, B, must label the adjunction node and the root and foot
of the adjoined tree. Note that for all v € elem (Vn,Vr, Vi, A), B1, 52 € aux (Vy, Vr, V1),
dy € dom (v), and dy € dom (1)

\4 (V (77 131a dl) a/627 dld?) =V (77 \Y% (:31, /627 dQ) 7d1)

Thus, for all v € elem (Vn, Vi, Vi, A), 1,82 € aux (Vy,Vp, V1) and d € dom (v) if v —
V (v, F,d) and 4 % B2 then ~ %> V (v, B2, d) where %> is the reflexive, transitive

closure of =

A tree v has no OA nodes if for all d € dom (vy) either v(d) = (A, sa, false) for some A and
sa or v(d) = u for some u € Vj.

The tree language T'(G) generated by G = (Vn, Vp, Vi, S, Z, A, -) is defined as

T(G)= {’y ‘a % ~ for some a € Z and 7 has no OA nodes }

In defining yield (), the yield of a tree v, we consider only symbols in V7 and Vy, i.e., we
do not give the SA or OA constraints of nodes involving nonterminals. For a tree v

e if v consists of a single node then if v(¢) = u for some u € Vj then the yield (v) = u
and if y(e) = (A, sa, 0a) for some A, sa and oa then the yield () = A.

e Otherwise if the root of v has k children (k > 0) then
yield (v) = yield (v/1) ... yield (v/k)

The string language, L((G), generated by G, is defined as

L(G) = { yield () |y € T(G) }

When displaying a tree graphically we use several conventions. The nonterminal or terminal
component of a node label is always shown. The adjunction constraints for a node labelled
(A,sa,0a) are specified as follows. When sa is the empty set the node is annotated NA.
The case in which sa includes the labels of all auxiliary trees in the grammar that are in
auz (Vy, Vp, Vi, A) (note that A is the same) is the default so no annotation is used. Otherwise,
the set sa is given in full. The case in which oa is false is the default and no annotation is
used. When oa is true the node is annotated OA.

Example 2.2 The tag
G:({5}7{a>bvcvd}7{3}757{a}7{ﬂ}7_)

generates the language {a"b"c"d” | n > 0}. The trees a and 3 and a derivation
of the string aabbeedd are given in Figure 2.
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Figure 2: Example of a tag

2.3 Linear Indexed Grammars

Linear indexed grammars (lig) where first discussed, though not named, in [5]?.

strings are derived from nonterminals with an associated stack denoted A[l;...[,] where A is
a nonterminal, each [; is a stack symbol for 1 < i < n, and [, is the top of the stack. Al
denotes the nonterminal A associated with the empty stack. Since, during a derivation, stacks
can grow to be of unbounded size we need some way of partially specifying unbounded stacks
in lig productions. We use Afoolil;...[,] to denote the nonterminal A associated with any
stack n those top n symbols are [1, {5, ..., [, where n > 0. We denote the set of all nonterminals
in Vv associated with stacks whose symbols come from V; by the expression Vy[V[].

In a lig

Definition 2.3 A lig is a five tuple G = (Vy, Vp, V1, S, P) where

Vi is a finite set of nonterminals,

2In [4] the name linear indexed grammars was also used to name a different restriction of indexed gram-
mars [1] in which only one nonterminal can appear on the right of production.



Vr is a finite set of terminals,

Vi is a finite set of indices (stack symbols),

S € Vi 1s the start symbol and

P is a finite set of productions, having one of the following two forms.

Aloon] = pAToon " Alp] — ¥
where A, A" € Vn, n,n' € Vi, 0" € (Vn[V]]U Vi)™
Given a lig G = (Vn, Vp, V1, S, P) = is defined as follows.
o If Afoon] — Y A'[oon’]tp" € P then for all ¢1,1e € (Vn[V]]U Vp)* and 5" € V;° we have
1Al e = Lo A'n"n" 1"

In this derivation step we say that the occurrence of A’[n”n’] shown on the right is the
distinguished successor of the occurrence of A[n"n] shown on the left.

o If Aln] — v € P then for all ¢1,¢y € (VN[V/]U Vp)*

PiAl: = Y1y

Let distinguished descendent be the reflexive, transitive closure of distinguished successor.

The language, L((G), generated by G is

{'wEVf

S = w |

* . . .«
where — Is the reflexive, transitive closure of =

Example 2.3 The lig, G = ({S,T},{a,b,c,d},{l},S,P), generates the lan-
guage { a"b"c"d" | n > 0} where P is as follows.
P Sloo] — aS[ool]d, Sloo] — Too],
| Tlool] — bT[oc]e, T — e

The following is a derivation of the string aabbeedd.

Sl = aSid
= aaS[ll]dd
= aaT'[ll]dd
= aabl'[l]edd
= aabbl[ccdd
= aabbeedd



2.4 Combinatory Categorial Grammars

Combinatory categorial grammars (ccg) are an extension of classical categorial grammars [2]
in which function composition is used in addition to application. The version of ccg that we
consider was developed by Steedman [21, 20].

The objects that derive terminals in a ccg are categories. The set of categories, cat (Vi ),
over the alphabet Vy, is the smallest set such that:

e Vn C cat (Vy) (members of Vi are the atomic categories) and

e if ¢; and ¢y are categories in cat (Vi) then (¢1/ca) and (¢1\cz) are in cat (V).

Intuitively, values having the categories (¢;1/¢z) and ¢;\ ¢y are functions that can combine
with a value of category ¢y at their right and left, respectively, to give a value having
the category ¢;.

For each category ¢ € cat (V) we define its target category, target (¢) € Vy, argument
categories args (¢) C cat (Vi) and arity arity (c¢) € N.
e For c € Vi target (¢) = ¢, args (¢) = ¢ and arity (¢) = 0.
e For categories (¢1/¢z) and (¢1\e2)
— target ((c1/¢2)) = target ((c1\c2)) = target (¢1),
— args ((c1/e2)) = args ((e1\c2)) = args (c1) U { ez } and
— arity ((c1/e2)) = arity ((e1\c2)) = 1 + arity (¢1).

For example,

A
£,(C/D), B}

target ((((A/B)\(C/D))\E))
args ((((A/B)\(C/D)\E)) =
arity (((A/B)\(C/D)\E)) =3
target ((((S\NP)/NP)/PP)) = §
args (S\NP)/NP)[PP)) = { PP,NP }
arity ((((S\NP)/NP)/PP)) =3

~ |l

An object of category ¢ can combined with arity (¢) objects (whose categories are in args (c))
to give an object having the atomic category target (c).

Since the size of categories derived in ccg can be unbounded we need some way of denoting
unbounded categories. We use terms of the form (... (z]121)|2®2) ... Tpno1)|n2,) where n >0,
T, x1,...,&, are variables ranging over cat (Vx) and |; € {/,\ } (1 < < n). In addition, for
each variable x and atomic category A € Vy we have the target-restricted variable z which
ranges over {c € cat (Vi) |target (¢) = A } and we say that the variable  has been target
restricted to A.

We define the set of combinatory schemata C as follows. C = J,»o(F,, U B,) where for
eachn >0

o the set of forward schemata F), consists of all

(z/y) (... (yliz)]2- - |nzn) = (o (z)121)|2 -« - |n2n)
with |; € {/,\ '}



o the set of backward schemata B,, consists of all

(- (whz)lz- - wzn) (2\y) = (. (2hz)l2 - nza)
with |; € {/,\ }.

In these schemata (z|y) and (... (y|1z1)|2. .. |n2s) are called the primary and secondary com-
ponents, respectively.

Each grammar restricts itself to the use of a finite selection of instances of schemata in C
which we call combinatory rules. For each r € C such that (z|y) and (... (y|121)|2-..|n2n) are
the primary and secondary component of r, respectively let

T(VN) = {T‘[(.I?,‘U)), (y7'w0)7 (Zlfwl)a R (Z’ﬁmwn)] | w e {:C } U {:? |A € VN }
wo € {y} U cat (Vn) and
w; €{z }Ucat(Vy) for 1 <i<n}

where r[(z1,w1), ..., (2, wy)] denotes the result of substituting w; for z; in r (1 <7 < k).

The set of combinatory rules C(Vx) is as follows.

C(Vw) = U r(Wv)

reC

We extend the terms primary and secondary components to members of C(Vy) in the obvious
way.

dcd" — " is a ground instance of r € C(Vy) if there are ¢, co,...,c, € cat (Vy) such
that (¢’ — ") = r[(w, ¢)(wo, ¢o), (w1, ¢1), ..., (wn,c,)] and the following hold.

e The primary and secondary components of r are (w|wg) and (... (woliwi)|z. .. |[nwn),
respectively.

o If wis a target restricted variable Z then target (¢) = A.

o If w; € cat (Vi) then ¢; = w; (0 <@ < n).

Definition 2.4 A ccg is a five tuple (Vy, Vr, S, f, R) where
Vn is a finite set of nonterminals (atomic categories),
Vr is a finite set of terminals (lexical items),
S is a distinguished member of Vi,
f is a function that maps elements of Vj to finite subsets of cat (Vy) and

R is a finite subset of C(Viy).

Each step in the derivations of a ccg, G = (Vn, Vr, S, f, R), involves the use of a combina-
tory rule in R. For every ¢y, ps € cat (Vy)"

p10p2 = 1¢'"ps

if there is some r € R such that ¢/¢” — ¢ is a ground instance of r. Whichever of ¢’ or ¢’
is the primary component of the rule is said to be the primary child of ¢ with respect to
this derivation. Let the primary descendent relation be the reflexive, transitive closure of
the primary child relation. Note that in defining the derivations we are applying the rules
backwards.

10



The string language, L(G), generated by G is defined as follows.

L(G)=A{wy...w,| S %> ¢ ... ¢, for some ¢q,..., ¢, € cat (Vy)
and ¢; € f(w;) where w; € Vi (1 <i<n)}

Example 2.4 The ccg, G =({S,T,A,B,D}.,{a,bc,d},S, f,R), generates the
language {a"b"c"d” |n >0} where f and R are as follows. Note that in this
example parentheses have been omitted except when needed to override the left
associativity of the two slashes.

fla)y={(A/D)y  fO)={B}  fld)={D}
fe)={(MA/T\B)}  f(e)={(5/T),T}

(2/T) (I\A/T\B) — (2\A/T\B) (rule 1)

I (A/D) g%\A) — S(% /D) (rule 2)
(z/y) y —z (rule 3)

y (z\y) - (rule 4)

The following is a derivation of a string of categories that map to the string

aabbcedd using the definition of L(G) above.

S = (S/D) D rule 3
= (A/D) (S\A) D rule 2
= (A/D) (S\A/D) D rule 3
= (A/D) (A/D) (S\A\A) D D rule 2
= (A/D) (A/D) (S\A\A/T)T D D rule 3
= (A/D) (A/D) B (S\A\A/T\B)T D D rule 4
= (A/D) (A/D) B (S\A/T) (T\A/T\B)T D D rule 1
= (A/D) (A/D) B B (S\A/T\B) (T\A/T\B)T D D rule 4
= (A/D) (A/D) B B (S/T) (T\A/T\B) (T\A/T\B)T D D rulel
Example 2.5 Figure 3 gives a derivation for the sentence John might eat apples.

Note that in the tree parentheses have only been included when needed to override
the left associativity of the slashes. The rule By is applied with (S\NP) and NP as
the primary and secondary constituents, respectively. The rule Fj is applied with
((S\NP)/NP) and NP as the primary and secondary constituents, respectively.
The rule Fy is applied with ((S\NP)/(S\NP)) and ((S\NP)/NP) as the primary
and secondary constituents, respectively. John and apples are in f(NP), eat is in

FU((S\NP)/NP)) and might is in f(((S\NP)/(S\NP))).

11
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Figure 3: Example ccg derivation

3 Proofs of Equivalence

Let the classes of languages generated by ccg, hg, lig, and tag be ccl, hl, lil, and tal, respectively.
In this section we show that they are identical by proving that ccl C lil, lil C hl, hl C tal and
tal C ccl.

3.1 cclCll

We show that only one of the variables used in the combinatory rules of a ccg ranges over an
unbounded number of categories. The use of the other variables can be viewed as merely a
convenient way of describing a finite number of alternative rules.

Lemma 3.1 Given a ccg, G = (W, V1,5, f,R), ¢,c1,...,¢, € cat(Vy), and
wy,...,w, € V5, if ¢ %> ¢1...¢p and ¢ € f(w;) (1 <@ < n) then args(c) C

args (G') where

args (G) = { ¢ | c € args (') for some ¢’ € f(w) and w € Vj }

Proof This follows by trivial induction on the length of the derivation in G. 1

Lemma 3.2 For every ccg, G = (Vw, Vr, S, f, R), there is an equivalent ccg G' =
(Vn, Vi, S, f, R') such that the rules in R’ have one of the following two forms.
(Z/c) (... (clic)]z- - |nen) = (. (Z|1e1)]2 -+ - |ncn)
(o (eie)z - Jnea) (\e) = (. (Z|1e1) ]2 - - - |ncn)

wheren >0, [; € {\,/} (1 <i<n), A€ Vyand ¢,cq,...,¢, € cat (Vy).

Proof From a ccg G = (Vn, Vi, S, f, R) we construct the ccg G' = (Vn, Vp, S, f, R') satisfying
the conditions of Lemma 3.2 such that L(G) = L(G").

For each r € R from Lemma 3.1 we know that for any ground instance of the rule r used to
derive a string in L(G) the categories substituted for variables in the secondary component of r

12



must be members of the finite set args (G). Thus, for every A € Viy and co, ..., ¢, € args (G)

include the rule r[(w,f), (wo, co), (W1, €1),. .., ('wn,cn)] in R' when the following conditions
hold.
e The primary and secondary components of r are (w|wg) and (... (woliwi)l|z. .. |[nwn),
respectively.

e w is either the variable = or the target restricted variable z

o If w; € cat (Vi) then w; =¢; (0 < < n).

Let G = (Vn, Vr, S, f, R) be a ccg satisfying the conditions of Lemma 3.2. We construct
an equivalent lig, G' = (Vi, Vo, V1, S, P) where Vi = {/,\,(,) } U Vy. The proof is straight-
forward since the rules in R can be seen as simple notational variants of lig productions.
For ¢ € cat (Vy) and | € {\,/} we call |¢ a directional category. Consider the category
(...(Alrc1) ... |ncn) where A € Vi is the target category and ci,...,c, are the arguments of
the category. This can be viewed as the atomic category A associated with n arguments |;¢;
that are directional categories (1 <7 < n). The combinatory rules of G manipulate the string
of directional categories in a stack-like way that can be imitated by the lig G'.

We begin by defining a translation function enc : cat (Vy) — Vy[V]*] that determines how
the categories of G will be encoded in the lig G'.

o For A € Vy let enc (A) = Al
o enc((ci/cz)) = Aln/ca] and enc ((e1\ez)) = A[p\cs] where enc (¢;) = A[n).
For example, enc (((4/(B\C)\D)) = A[/(B\C)\D].
o Consider the forward rule

(2/co) (- (colicr)|z - - |ncn) = (.. (Zhe)la- .. |ncn) € R

where n > 0 and for 1 < i < n, |; € {\,/}, A € Vy and ¢, ¢c1,...,¢, € cat (Vn).
Corresponding to this rule we add the following production to P.

Aloon] — Aloo /o] Bln']
where n = |1¢1 ... |ne, and enc ((...(col1c1)|z - |ncn)) = B[]
e The corresponding backward rule is treated in a similar way.

o If ¢ € f(w) for w € Vj then let A[n] — w € P where enc (c) = A[p].

Lemma 3.3 ¢ = c¢1 ¢y if and only if enc (¢) = enc (¢1) enc (¢a)
G ol

Proof This follows trivially from the above construction. 1

Thus, S % ¢1...¢, if and only if S| % enc(cy)...enc(c,) and for each 1 < ¢ < n
enc (¢;) — w if and only if ¢; € f(w). Thus it is clear that L(G) = L(G").

13



Example 3.1 G = (W, Vi, S, f,R) is equivalent to G = (Vy,Vr, S, f,R) of
Example 2.4 satisfying the conditions of Lemma 3.2. The above construction
would convert G’ into the lig

GHZ(VN,VT,{/,\,(,)}UVN,S,P)
Note that args (G) ={ A,B,D,T }.

First, we show how the rules in R' are derived from those in R.

Rules in R Corresponding Rule(s) in R’

(z/T) (T\A/T\B) — (%\A/T\B) unchanged
(A/D) (z\A) — (z/D) uilchanged

(x/A) A =2

£ y)y -8 (¢/B) B —z

(/1) T i

A (f \A) —>5§

S\ d B (z\B) —z

y (2\y) D(%\D)—ﬁ;

T (z\T) —z

Second, we show those productions in P that are derived from f.

Components of f  Corresponding productions in P

(A/D) € [(a) A[/D] — a
B f(b) Bl b
D e f(d) D — d
(T\A/T\B) € f(c) TN\A/T\B] — ¢
(S/1) € (0 S[/T] — ¢
T € f(e) T —
Third, we show how the remaining productions in P are derived from the rules in
R.
Rules in R’ Corresponding Rules in P
(#/T) (I\A/T\B) — (z\A/T\B) S[00\A/T\B] — Sloo /T] T[\A/T\B]
(A/D) (z\A) — (z/D) Sloo /D] — A[/D] S[oo\A]
(z/A) A —z S[oo] — S[oo /A] Al
(5/B)B—>5 Sloo] — S[oo /B] BJ]
(5/D)D—>:§ Sloo] — S[oo /D] D[]
(5/T)T—>5 Sloo] — S[oo /T] T]
A (2\A) =z Sloo] — A] S[oo\A]
B (2\B) -z Sfoo] — B[] S[oo\B]
D (2\D) —z S[oo] — D[] S[oo\D]
T (2\T) —z S[oo] — T[] S[oo\T]

14



3.2 1l C hl

This proof is derived from the standard technique used in the simulation of pushdown au-
tomata by context-free grammars. In that proof nonterminals are triples (p, ¢,[) where p is
the state of the machine when the stack symbol [ is placed on top of the pushdown and ¢ is
the state of the machine at the point that [ is eventually removed. This nonterminal derives
the terminal string w if w is the string read by the machine between these two points in
the computation. In our proof nonterminals of the lig take the place of states and we have
nonterminals in the hg that are triples of the form (A, B,[). Figure 4 shows a derivation in
which B[] is the distinguished descendent of A[{] and the stack symbol [ has been popped. The
terminal yield between these two points can be expressed as a pair w;;w; and by wrapping
this around the yield of B[] (the string u), the string derived from A[l] is obtained (the string
Wiuwy).

ALl]

B[]

u

Figure 4: [ is popped from stack

Let G = (Vw, Vi, V1, S, P) be a lig where, without loss of generality, we assume that
productions in P have the following forms, where A, Ay,..., A, € Vy, [ € V7 and w € Vj.

o Afoo] = Ai[]... Aisa[]Aifoo Aia[] . . . Au[l.
o Afool] = Aif]... Ai_i[JAifoo]Aia]] . .. Au[l.
o Al = w.
We construct a hg, G = (V, Vr, S, P'), where
Vi =V U{(A1, Az, ) | A1, Ay € Vy and p € ViU {e} }
and P’ is as follows.
o If Afoo] — Ai[]... Ai1[JAi[oo (JAiza[] ... A[] € P then for all B € Vi let
(A, B,€) = Cin(Ar, ..., Ai_y,(A;, B,1), Ai1, ..., Ay) € P
o If Afool] — Ay[]... Aii[JAi[oo]Aia[]. .. Au]] € P then for all B € Viy let

(A,B,Z) — Ci7n(A1, .. '7Ai—17 (AZ',B,E),AZ'_H, . ,An) epr

o If A] - w € P then let A — Ci1(eqw) € P’

15



e For every A,B,C € Vy,and n € V; U {e} let
(4, B,n) — W((A,C,¢),(C, B,n)) € P’
(A, A ¢) = Cra(ee) € P!
A— W((A,B,¢),B) e P’
To show that L(G) = L(G') we prove Lemma 3.4.

Lemma 3.4 Both of the following two statements hold.
Part 1 Forall A, Be Vy,ne ViU{e} and wy,wy € Vi

Aln] % wy B[Jwy where BJ] is a distinguished descendent of A[n]

if and only if
(A, B,n) =7 Wi

Part 2 For all A € Vy and w € Vi A] %> w if and only if w = wyw, and

A = wijws for some w; and w;.
G

Proof We prove this by simultaneously inducting on the length of derivations in both parts
of the lemma. There are four implications to consider.

Basis:

Part 1 only if Consider the zero-step derivation Aln] = wy B[Jwy where A = B, = ¢,

and w; = wy = €. Using the production (A, A, ¢) — C11(er€) of P’ we have the desired
derivation in G.

Part 1 if The only one-step derivation of the appropriate form is (A, A,e) = ¢je which
G/
involves use of the production (A, A, €) — Cy1(€r€) € P'. Since %> is reflexive we have

Al = A].

Part 2 A[] = w if and only if w € Vf and A[] — w € P if and only if A — Cia(ejw) € P’
if and only if A = .

Inductive step:

Part 1 only if Suppose that Aln] % wy B[Jwy where B]] is a distinguished descendent of
Alnl.

o If the derivation begins with the production

Aloo] — Aq[]. .. Aisi[]Ai[oo [ Aisa]] - - - AL]]
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then it can be decomposed as follows.

Aln] Al A [JAiI A ] - - - As]
’UAAZ'[T]Z]’UA
uau; B'[n]viva

'UA'Ui'UB/B[]'UB/'Ui'UA
'wlB[]wQ

I @Hg @Hg @UF @ﬂ

where ki, ky, and k3 are less than k£ and for each 1 < j < n such that j # ¢ we

k
J
have A;[] = wy, where k; < k and ug = wy, ... wy,_, and vy = wy,,, ... wy,,

and we have the following derivations
A" Bl and Bl = upBlos
By the inductive hypothesis we have
(A;, B', 1) = Uipvi, (B, B,n) = upvp and A; = Ujyv;

for each 1 < 5 < n such that j # ¢ and Wwa; = Ujv;.
By the construction we know that the following productions are in P’.
(A, B/, 6) — Ci7n(A1, ey Ai—l, (AZ, B/, l), Ai-l—l, e ,An)
(4, B,n) = W((A, B',¢), (B, B,n))

Then we have

!
(A, B’ ¢) = Cin(urqv, ..., Ui 14Vim1, UiV, Ui 1 { Vit s - - - , Un (V)
= U1y ... ui—lvi—luiTviui—}—l'Ui—}—l I
thus, (A, B,n) = W (uqvy .. Ui 1V 1 U VU104 - - - UV, Up1UB)

= U1y ... ui_lvi_luiuB;T'vBrviuiH'viH oL Up Uy
Wy1W2

Alternatively, suppose that the derivation begins with the production
Afool] — Ay[] ... Aimq[]Aifoo ] Aiga]] - - - ALl]
In this case we know that n = [ and the derivation can be decomposed as follows.
All] = Arl] - A [JA[J A ] - - - ALl
%> ’LLAAZ'[]’UA
? uAuZ-B[]vivA
= 'wlB[]'wg
where for each 1 < j < n such that j # ¢ we have A;] % wy,; where uy =

wWa, .. wa,_, and vg = w4, ... wy,, and we have A;] % u; B[]v;. By the induc-

i1
tive hypothesis we have

(A;, B,e) = UiV and A; = Ujyv;
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for each 1 < 5 < n such that j # ¢ and Wwa; = Ujv;.

By the construction we know that the following production is in P'.
(A, B, l) — Ci,n(Ah ey Ai—h (AZ, B, 6), Ai-l—h Ceey An)
Hence, we have the following derivation.

(A, B, 1) ? Cin(u1gv1, .., Unqvn) = wygws

Part 1 if Suppose that (A, B,n) LN W1 Ws.
Gl

e Suppose that n = € and this derivation begins with use of the production

(A,B, 6) — Ci7n(A1, .. -7Ai—17 (AZ',B, Z)yAi-l—h .. ,An)

and that wyjwy = wyvy ... U0 ... uzv, where (A;, B, 1) LI u; v; and for each
Gl

1 <7 < n such that 7 # ¢ we have A; G:]/> UjUj where kq, ..., k, are all less than

k.

Thus, by induction we know that for each 1 < j < n such that j # ¢ we have the
derivation A;] % ujv; and A;[l] % u; B[Jv;. By the construction we know that

P contains the following production.
Afoo] = Aq[] ... Aimi[JAi[oo [ Aiga]] - - - AL]]
Thus, we have the following derivation in G.
Al = Aq[] - A [JA D Aia[] - - - AL
%> ULV o U101 U BlJojui 1 vigy - w0y
= 'wlB[]'wg
o Alternatively, suppose that n € V; and this derivation begins with use of the
production (A, B,n) — C;.(A1,..., Ai_1,(A;, By€), Aij1, ..., Ay) and that
’U)lT’U)Q = U1V ... ’MZ'T‘UZ' LUy

where for each 1 < j < n such that j # ¢ we have A; = u;,v; and (A;, B,e) LN
G! G!

u;1v; where each k; is less than &k (1 <5 < n).

Thus, by induction we know that for each 1 < j < n such that j # ¢ we have

the derivation A;] %> u;v; as well as the derivation A;] % u; B[]v;. By the

construction we know that P contains the following production.
Afoon] — Aq]] ... Ai_q[JAs[oo |Aira[] - - - AL]
Thus, we have the following derivation in G.

Al = A A [JAlJ A An]
% U1 e Ui O AU Vi - unY,
% ULV -+ U1V U BlJojui 1 vigy - w0y

=  w BfJw;
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o Alternatively, suppose that the derivation begins with use of the production
(4, B,n) = W((A,C,¢),(C, B,n))
where n € Vi U {e}, wiyw; = ujuzvavy such that (A, Ce) % uyvy and
(C,B,n) % ugyv2 where ky and k; are less than k.

Thus, by induction we know that Al] %> u1C[Jvy and C[n] % ua B[Jva. Thus,
we have the following derivation in G.
Aln] = uy Cnloy
% uyug Bl|vguy
=  w; BfJw;

Part 2 only if Suppose that A]| % w. In this case we have the following derivation.

Al] Arl] - A [JA[D A [] - - - AL
UAAZ'[Z]’UA
’LLA’UZ'BH’UZ"UA

UAUWB ;U4

I @ug @Mg @Uﬁ @U

w
where ki, ky, and ks are less than k and in the subderivation A;[{] ];:2> u; B[Jv; B]] is a

distinguished descendent of A;[{]; furthermore B]] %—3> wpg. Thus, by induction we know
that (A;, B,1) = Ui, B = uBjvB where ugvg = wg, and that for each 1 <7 <n
such that j # ¢ we have the derivation A; ? UjUj such that wivy...u;1v,1 = ua
and w;410;41 ... UV, = v4. From the construction we have the following productions in
P,
(A,B,e) = Cin(A1, ..., Aic1, (Al By, Aiga, . Ay)
A — W((A, B,¢), B)

Hence, we have the following.

(A, B,e) — Cin(U1101, -+ o5 Ui 14 Vi1, UiV, Ui 17Vig - - - 5 UnjUn)
= U1v1 ... uz'_l’Ui_l’uZ'T‘UZ"uZ'+1‘UZ'+1 LUl Uy
thus, A = W(uqvy ... Ui Vi1 Ui VUi 1 Vi - -+ U U, UBVB)

= U1v1 ... ui_l'UZ-_luiuBTvB'vZ-uiHviH I )

= UAUUBVBV;VA

where w = U u;uBVBV;V 4.
Part 2 ¢f Suppose that A £ wywy. This derivation begins with the production A —
Gl

W((A, B,¢), B) such that wyw, = ujuggvavy, (A, B,e) LN uyvq and B LN Uz 1Vg
Gl Gl
where k; and k; are less than k.

Thus, by induction we know that

A[] %} ulB[]'vl % U1U2V2V1
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3.3 hIC tal

The wrapping operation of hg can be simulated by the adjunction operation of tag. Suppose
we have B = u1yv1, C = U102 and we have the production A — W(B,C). From

this we have A = Uitz a1 This can be simulated by a tag as follows. Assume that
corresponding to the derivations B = U1 and C = Uzjvy We have trees 3; and 3,

such that yield ($1) = uiBvy and yield (83) = uaCvy. Corresponding to the production
A — W(B,C) include a tree in the grammar in which 3; can be adjoined at the parent of a
node at which 3z can be adjoined; then we can derive a tree v such that yield (v) = uguz Avgvy.

From a hg, G = (Vn, V7, S, P), we construct a tag, G' = (V, Vr, 5, Vi, Z, A, -), such that
L(G) = L(G"). Without loss of generality, we assume that the productions in P are of the
following form where A, B,C € Vy, wy,wy € Vi and f € {C12,Co9, W }.

A — f(B, C) A — 0171(‘LU1T’U)2)

The elementary trees of G’ are given as follows.

S O0A
O =
€
A NA A NA
B oA C oA B oA C oA
case 1: case 2:
A NA € € A NA
A NA
B oA A NA
case 3: case 4: /’\
w w
C OA 1 A NA 2
A NA

Figure 5: Trees in G’

7 contains the single initial tree a shown in Figure 5. The set, A, of auxiliary trees is as
follows.

Case 1: If A — (C13(B,C) € P then include the tree shown in Figure 5 for case 1 in A
Case 2: If A — (y3(B,C) € P then include the tree shown in Figure 5 for case 2 in A
Case 3: If A — W(B,C) € P then include the tree shown in Figure 5 for case 3 in A

Case 4: If A — C’Ll('wlT'wg) € P then include the tree shown in Figure 5 for case 4 in A
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Let V7, and - be such that V}, is the set of tree labels {,3_1, . ;,B_n} where A ={f1,...,8. }.

G’ simulates derivations of GG such that whenever a production is used in G the corre-
sponding tree is used in G'. To show that L(G) = L(G') we prove the following lemma by
induction.

Lemma 3.5 For all A € Viy, wy,wy, € Vi A = wi Wy if and only if there exist

3, 3" such that % g, e AN aux (Vn,Vr, Vi, A), B has no OA nodes and
yield (') = wy Aws.

Proof The basis of the induction involves proving the above lemma for derivations in
involving the use of one production and derivations in G’ involving the adjunction of one tree.
Thus, the only relevant part of the construction is case 4 and the desired equivalence clearly

holds.

For the inductive step proving each direction of the equivalence involves consideration of
cases 1-3 in the above construction. The details are straightforward, so rather than enumer-
ating all three cases for each direction we show one case for each direction.

Suppose that A % wywy for some A € Vy involving use of the production A —

C12(B,C) and the subderivations B ];:1> uyqug and C %—2> v11v2 where k; and ky are less

than k and Cja(uiquz,v11v2) = wijws. Thus, by the induction hypothesis we know that

B; = B! for some 3 € AN auz (Vy, Vr, Vi, B) such that yield (3]) = uy Buy and 3y == f3}
al ol

for some 3y € AN aux (Vn,Vr,Vy,C) such that yield (8;) = v1Cvy. Let 3 be the tree

introduced in case 1 of the construction due to the presence of A — C2(B,C) in P. We have

/3 % \Y (V (67 ﬂ{7 1) ) 6%7 2) where yield (V (V (ﬂ7 /3{7 1) ) Bév 2)) = ur Auavyvs.
Suppose that 3 £ B for some 5 € AN auz (Vn,Vr, A). Suppose that 3 was introduced
Gl
in case 3 of the construction and that g’ = V(V (3, 52,11), 41, 1) where /3 L0 (1, for some
G/

By € AN auz (Vy,Vp, B), and % B2 for some 35 € AN aux (Vn, Vr,C) where ky and ks

are less than k. Let yield (81) = ui Buy and yield (32) = v1Cvy. Thus yield (') = uyv1 Avaus.
Thus, by induction we know that B = U1jUs and C = V1102, Since P contains the

production A — W(B,(C) we have A = W (u1quz, v11v2) = ugv11v2us. |

Example 3.2 Consider the hg, G = ({5, T,, Ty, A, B} ,{a,b},S, P), that gener-

ates the language { ww |w € {a,b}" } where P is as follows.

p_ S — Cialere), S — Ca2(AT,), S — Cua(B,Ty),
| T.— W(S,A), T, — W(S,B), A— Cii(ea), B — Cii(eb)

The following tag, G would be produced by the above construction
G'=({8,T. 1, A, B}, {Bi,.... B} {a,b},5 {a} A"

where « is as given in the construction and the trees in A are shown in Figure 6.
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B,= S NA B,= S NA B= S NA

A OA Ta OA B OA Tb OA
S NA
€ S NA € S NA
B,= T, NA Be= T, NA
BG: A NA 37: B NA
S oA S OA
€ a € b
A NA B NA
A OA B oA
T, NA T, NA

Figure 6: Auxiliary trees of G’

3.4 tal C ccl

Consider a tag derivation in which trees are adjoined at the deepest adjunction points first.
Figure 7 illustrates an adjunction at a node labelled B. Adjunctions have been completed on
the path marked with the solid line whereas adjunction at nodes on the path marked with the
broken line have yet to be made. The broken line can be viewed as a stack of nodes and the
effect of adjoining a tree can be viewed as “pushing” a new path (the spine of the adjoined tree)
onto the top of the stack. The stacking of paths seen in adjunction can be simulated by ccg

adjoin at
this point

Figure 7: Stacking of paths

composition rules. To do this we encode auxiliary trees with ccg categories. This is achieved
by arranging that the auxiliary trees are pruned. Informally, an auxiliary tree is pruned if it
is at most binary branching and siblings of nodes on the spine have OA constraints and have
a single child labelled by e. An example of such a tree is shown in Figure 8. Trees that are
pruned can be encoded by ccg categories, adjunction at the spine simulated by composition
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Figure 8: Example of a pruned tree

rules (instances of the schemata F, and B, where n > 1) and adjunction at siblings of the
spine simulated by application rules (instances of the schemata Fy and Bj).

In the proof we use a result given in Appendix A showing that an arbitrary tag can be
converted into an equivalent tag, G = (Vy, Vp, Vi, S, {a}, 41 U Ay, -), such that a is shown
in Figure 5 and the two sets that make up the auxiliary trees are as follows. A4; contains the
trees that introduce terminal symbols. Each auxiliary tree 8 € A; has the form of the tree
shown in Figure 9 where A € Viy and w € VJ.

Figure 9: Form of trees in A

Each tree § € A; has the property that (3, ft (3)) is pruned where (3,d) is pruned if and
only if the following conditions hold.

o € aux (Vn,Vr, Vi) and d € spine (3).

e d'3 & dom (f3) for each d' that is a proper prefix of d, i.e., there is at most binary
branching.

e For each d' that is a prefix of d either 5(d') = (A, (), false) for some A € Vy or B(d') =
(A, Vp,true), i.e., either adjunction is obligatory with any tree with root labelled by the
nonterminal A, or adjunction is not allowed.

e For each d' that is a proper prefix of d let 7 = 1 if d'1 is not a prefix of d, otherwise 1 = 2.
B(d't) = (A, Vi, true), B(d"t]1) = € and ((d"2) is undefined for some A € Vy, i.e., each
sibling of a node on the path from the root to address d of 3 is labelled by a member of
Vi, has an OA constraint with no restriction on which trees can be adjoined, and has a

single child labelled with e.

We make the further assumption, satisfied by the construction in Appendix A, that none of
the trees in A; can be adjoined at nodes on the spine of trees in A,.
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From this tag, G, we construct an equivalent ccg, G' = (V3,,Vr, S, f, R), where f and
R are defined below and V3 = Vy U {A |Ae Vy } First we define an encoding function
enc : auz (Vy, Vp, V) x N — cat (V) with which each (8, d) that is pruned is encoded by
a member of cat (V). Let g € aux (Vn,Vr, V1).

o If B(e) = (A, D, false) then enc (3, ¢) = A. If B(e) = (A, Vi, true) then enc (8, €) = (A/A).
e Let d be a proper prefix of ft () and enc (8,d) = ¢

—if dl € spin

enc (3,dl) =

—if d2 € spin

enc (3,d2) =

(
— Ifd2 ¢ dom (5
(¢/B) and if 3

B) and B(d2) = (C,Vp,true) then if B(dl) = (B, Vi, true) then
¢/C)/B) and if 3(dl) = (B, ,false) then enc(3,dl) = (¢/C).

(
(
(8) and B(dl) = (B, Vg, true) then if §(d2) = (C,Vy,true) then
(
)
(

—

c\B)/C’) and if 3(d2) = (C, ), false) then enc (8, d2) = (c\B).

and d1 € dom () then if 3(dl) = (B, Vy,true) then enc (8,dl) =
dl) = (B, 0,false) then enc (8,dl) = c.

The function f of G’ is defined as follows.

e For each # € A, such that §(¢) = (A, (), false) and 3(1) = w where A € Vy and w € Vi
include A in f(w).

e For each 8 € A; include ¢ and ¢ in f(e) where enc (3, ft (3)) = ¢ and ¢ is identical to ¢
with the exception of the target category®.

The tree in Figure 8 would lead to the following.
((((((A\A1)/A2)/As) [ A3)\A5) [ As) [ A7) € f(e)
(((((A\A1)/A2)/A4) [ A3)\A5) [ As) [ A7) € f(e)

We complete the construction of G' by defining the set of combinatory rules in R. Let
k = max ({ arity (¢) |c € f(w) for some w € V[ }). For each A € Vy, each 0 < ¢ < k, and
l1,...,]i € {/,\} include the following rules in R.

o (z/A)A—u
o A(z\A)— =
o (z/A) (...(Ahz)|z.. iz) = (.. (zhz1)]2- - |iz)

The combinatory rules in R permit composition (when ¢ > 0) only when the target category
of the secondary component is of the form A. This corresponds to adjunction with a tree in
A, at a node on the spine. In the above encoding of trees by categories every symbol of the
form A is preceeded by a forward slash. Therefore, we only need forward composition rules.

Before proving the equivalence of G and G we define a new derivation order for the above
tag, (. For each tree § € aux (Vn,Vr, V) we define neat (3) which gives the address at
which the next adjunction should occur. If the deepest OA node in 3 is not on the spine then
this is the next adjunction point, otherwise it is the deepest OA node on the spine. Note
that next () is not defined when there are several deepest OA nodes not on the spine. More
formally, next (8) = d if d € dom () and one or other of the following holds.

3Formally, (61762) = (¢1/c2) and (cﬁcz) = (c1\e2).
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o d & spine (), B(d) = (A, Vp,true) for some A € Vy and there is no d' € dom (/) such
that g(d') = (B, Vy,true) for some B € Vy and |d'| > |d|. We use |d| to denote the

length of the address d € N. This gives the depth of a node with that address.

o d € spine (), B(d) = (A, Vi, true) for some A € Vy and there is no d’ € dom () such
that 8(d’') = (B, Vi, true) for some B € Vi and |d'| > |d|

Let the set Ti(() include trees derived in k or fewer steps, for k > 0, as follows.

o To(G) = A UA,

e 7,(G) is the union of Typ_1(G) with the set of 8 = V (5, 8", next (') such that g’ €
Tea(G), B" € Teoa(G), B'(next (') = (A, Vi, true) for some A € Vy and when
next (3') & spine (') then 3" € aux (Vn,Vp, Vi, A) where 3" has no OA nodes. Other-
wise (when neat (3') € spine (")), 8" € Ay N auz (Vy, Vp, Vi, A).

It should be clear that 7'((G) as defined in Section 2.2 is equal to the following set.

{V(a, B, ¢) |for some k >0 8 € T,(G) N auz (Vy, Vr, Vi, S) and B has no OA nodes }

L(G) = L(G") follows from Lemma 3.6. For convenience we first define the middle of a tree.
For 5 € Ty (G) (k > 0) let middle (3) = € if 3 contains no OA nodes, otherwise middle (3) = d
where d € spine (3) and |d| = |next (3)]. In other words, the middle of a tree is the address
of the node that is the closest node on the spine to the root that is as deep as any OA node
in the tree. Note that for each tree 5 € Ti(G) for some k > 0 the entire terminal yield of the
tree is dominated by the node with address middle (3), i.e., yield (3) = yield (3 /middle (3)).
Note also that (3, middle (3)) is pruned.

Lemma 3.6 The following two statements are equivalent:

1. For all A € Vy, ¢ € cat (V}), and wy,wy € Vi, there exists § € Tp(G) N
auz (Vn, Vp, Vi, A), k > 0, such that yield (8) = w1 Aws,, and enc (5, middle (3)) =

c
p . * .
2. there exist ¢1,..., ¢, and uq, ..., u, such that ¢ ? €1...Cp...c, Where ¢, is

the primary descendent of ¢, target (¢) = A, w1 = U1 ... Up, Wy = Upy1 ... Up,
u;j € Viand ¢; € f(u;) (1 <j<n).

Proof We first prove that statement 1 implies statement 2 by induction on k. The case for
k = 0 follows directly from the construction. Suppose that for some k > 1 g € T,(G) N
auz (Vy, Vp, Vi, A), yield (B) = w1 Aws, (8, middle (3)) is pruned and enc (3, middle (3)) = c.

Let 8 = V (8, 58", next (")) for §', 5" € Tp_1(G) and f'(next (') = (B, Vi, true) for some
B e Vy.

e Suppose that next (3') & spine (') in which case " € aux (Vy,Vp, Vi, B) where "
has no OA nodes. It is either the case that next (') = d1 for some d (see case la of
Figure 10) or neat (') = d2 for some d (see case 1b of Figure 10). These two cases are
very similar so we only consider the first possibility in which the adjunction node is to
the left of the spine.
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Case la Case 1b
A A

i i
| |
| |
| |
| |
| |
| |

C C

@)

&

™ 0

&

(>m(>> o

™
oy]
™

Figure 10: Three possibilities

In this case dy = middle (') and enc (3',d2) = (c\B). There are strings vy, v9, v3 and
vy such that yield (8') = v1 Avy and yield (") = vsBuy, thus, wy = vzvav; and wy = vy.
By induction (c¢\B) %> €1...¢p...c, wWhere ¢, is the primary descendent of (c\B),
target ((c\B)) = A, v1 = Uy ...Up, V3 = Upy1...U, and ¢; € f(u;) (1 <7 < n). Since
A" has no OA nodes, middle (3") = € and enc (8",¢) = B. By induction we know that
B = ¢ ...d,, vsvg = uj...ul, and ¢ € f(u}) (1 <j < m). We are not concerned
Gl

with the primary descendent of B in this derivation. By the rules in R we have the
following derivation.

c = B(c\B) =d...c.ci...cp...c,
G! G!
where ¢, is the primary descendent of c.

Alternatively, suppose that neat (8') € spine (') (see case 2 of Figure 10) in which
case 3" € Ay N aux (Vy, Vr, Vi, B) and, therefore, 3" contains no terminal symbols and
yield (') = wiAws. Note that middle (') = neat (). By the construction we know
that ¢’ € f(€) where

enc (8", middle (8")) = enc (8", ft (B")) =" = (... (B1B1)|2-- - |mBm)

for some B; € Vi, and some m > 0. In addition, we know that (3, next (3') middle (3"))
is pruned and that enc (8’ next (3')) = (¢'/B) and

enc (3, middle (B)) = enc (B, neat (') middle (8")) = (... (|1B1)|2 - |mBm) = ¢

By induction, (c’/B) = ¢;...Cp...c, where ¢, is the primary descendent of (c’/B),
Gl

target ((c’/f?)) = A, w1 = Up...Up, Wy = Upy1... Uy, and ¢; € f(u;) (1 <3 < n). By
the combinatory rules in R we have the derivation

c= (- (hB)z. - |mBn) = (¢/B)(-..(BLiB)z-. |nBn)
= cgpeecale (BBl | Ba)
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where ¢, is the primary descendent of (...(c'|1B1)|2-..|mBm) and since

(...(BiB)|z-..|mBn) € fle)

we have the desired terminal strings w; and w; (take u,41 = €).

We prove that statement 2 implies statement 1 of the lemma by induction on the number
of derivation steps that are used in derivations in G’. The basis involves consideration of
categories in the range of f. It follows from the construction that the lemma will hold of these
categories.

Suppose that ¢ - €1...¢p...c, wWhere ¢, is the primary descendent of ¢, target (¢) = B,
Gl

Wy = Up . Up, W = Uppq ... Uy, u; € Viand ¢; € fu;) (1 < j < n).

e Suppose the combinatory rule (z/B) B — x is used in the first step of the derivation.
There are [ and p’ where p <1 < p’ < n such that

¢ = (¢/B) B

k/

? c...¢p...0 B

k’”

? Cl...Cp...CICI41 .. Cpl...Cp

where k' and k" are less than k. Thus, by induction we have for some k; > 0 a tree 3, €
Ty, (G) N auz (Vy, Vi, Vi, A) such that target (¢) = A, yield ($1) = uq ... upAtpyr ... uy,
(81, middle (1)) is pruned and enc (B, middle (31)) = (¢/B). There is some d €
dom (1) such that middle ($1) = dl, next (1) = d2 and B1(d2) = (B, Vy, true).

Also by induction we have for some ky > 0 a tree 8y € Ty, (G) N auvz (Vy, Vp, Vi, B) such
that (32, middle ([3;)) is pruned, enc (3,3, middle (83)) = B (which implies that 33 has no
OA nodes) and

yield (B2) = wig1 .. Uy Bugiyq .. uy

Thus, 8 = V (B4, 42,d2) € Ti(G) for some k where
yield (B) = uy .. upAtpir . Up€Upyr .. Uy,
Furthermore, (3, middle (3)) is pruned, and enc (3, middle (3)) = c.

e The case in which the combinatory rule B (z\B) — « is used is similar to the case just
considered.

e Suppose that for some 0 < m < arity(c) the rule

(z/B) (...(Bliz)2 - Imzm) — (- (zhz)]z - - - lmzm)

is used in the first step of the derivation and that ¢ = (... (¢'|i¢})|2- .. |mc,). Thus we
have

c= (o (hd)la ) = (¢B) (. (Bl |me}y)

Since a category whose target category is B cannot instantiate the right hand side of a
rule in R and from the construction of f, it must be the case that

(- (Bh)lz - lmey,) € f(e)
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Thus ¢, = (... (B|1c’1)|2 .o |m€.) and u, = € and

= (o (helalnch) = (€/B) (. (Bhe)le- - ln))

! A
= ey (o (Bh)la e nc)

where k' is less than k. Thus, by induction we have for some k > 0 a tree 3; €
Tw(G)Nauz (Vn, Vp, Vi, A) such that target (¢') = A, yield (81) = uy ... upAtpir .. Uy,
(B1, middle (1)) is a pruned tree and enc(f1, middle (1)) = (c’/B) We also have
next (B1) = middle (1), (i.e., the next point of adjunction into $; will be on the spine)
and fi(middle (p1)) = (B, Vi, true).

Since (... (B|1c’1)|2 oo |mc,) € f(€) there must be a tree 3 € Ay N aux (Vy, Vi, Vi, B)
such that enc (8o, ft (82)) = (... (Blic))|z2 - - - |mc,). Note yield (83) = B.

Thus, 8 = V (B4, By, middle (1)) € Trs1(G) where yield (3) = uy ... upAtppr ..y,
(B, middle (3)) is a pruned tree, and enc (3, middle (3)) =c= (... (¢|ic))]2- - |mc.,)-

Example 3.3 The tag

G:({SaA7B}7{aab}7{13_17---7:3_4}a5a{a}a-AlUA27—)

generates the language { ™" |n > 0 } where a is as shown in Figure 5, A; contains
the trees B; and (3, and A, contains the trees 33 and 3, all shown in Figure 11.

A NA B NA
/31 — /\ /32 — /\
a A NA b B NA
S NA
A OA S NA
| S OA
133 = ¢ '\ 134 =
B oA S NA
S NA |
€

Figure 11: Auxiliary trees of G

The above construction generates the ccg
G'=({S.8,4,A BB} {a,b},5 f,R)
where f is defined as follows.
flay={A} f0)={B} flo)={((S\A)/9)/B),(((5\A)/5)/B), 8,5 }

and R includes the following rules (we have only included those that can be used
in derivations of G.
R_{ (o/B) Boe, A(\A)—a, (2/5)5 }
(2/5) (\A)/5)/B) = (2\A)/5)/B), (¢/5) 5 =z
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4 Conclusions

As mentioned in the introduction, notational differences between ccg, hg, lig and tag can be
understood in terms of the way in which they extend cfg. On the one hand, hg maintain the
context-freeness of cfg while adding the operation of wrapping. On the other hand, lig and ccg
make use of unbounded stack-like structures to control the use of rules in derivations. From
the equivalence results presented in this paper, we conclude that these two, superficially very
different, approaches are equivalent extensions of cfg. Since these are independently conceived
formalisms, each intended to capture certain aspects of the structure of natural language, our
result showing their equivalence lends credence to each of the approaches.

The understanding of the relationship between these two approaches gained from the con-
structions used in the proofs given in Section 3 has led to interesting discoveries regarding
the relationship between parsing algorithms for these systems. Differences between these
formalisms gave rise to what appear to be distinct styles of parsing algorithms. The CKY
algorithm [9, 29] for cfg has been extended in two ways. In [15] a hg CKY-style parsing
algorithm is given. This algorithm resembles the cfg case in that subsets of the nonterminal
alphabet are stored in array entries. The extension over cfg involves the use of a four dimen-
sional array to encode pairs of substrings of the input string. Given the close relationship
between hg and tag established in this paper, it was possible to adapt this algorithm to give
a tag parser [22].

In [23, 24] a lig CKY-style parsing algorithm is given. This algorithm extends the cfg
case in that encodings of stacks are stored in the array entries. Given the close relationship
between lig, ccg and tag described in this paper, it was possible to adapt this algorithm to
give ccg and tag parsers [24].

Obviously, as a result of the weak equivalence of ccg, hg, lig and tag any result shown
for one formalism applies to the other three. Such results include the definition of a string
automaton for this class [22], various closure and decidability properties including the result
that it forms a AFL [22, 17], and the definition of an infinite language hierarchy extending
the progression from cfl to this class [26, 27].
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A A normal form for tag

We give a five phase conversion process to show that for every tag there is an equivalent tag
that satisfies the conditions given in Section 3.4. We do not give a detailed proof since the
conversion at each stage is straightforward.

1. Let Gi = (Vy,Vp,Vi1,5,71, A1, -) be a tag. We assume that trees in Z; U A; do not
contain any OA nodes that are also NA nodes. We also assume that for every node label
(A,sa,o0a): sa C {B | 6 € ava (VN, Vp, Vi1, A) } (71 can be converted into an equivalent
tag,

G2 = (VN U {S/},VT,VLQ,S/,{Q},Al U ./42,—)

where « is such that a(e) = (5',sag/, true) and (1) = € where sag: = {B | B € A }
For each tree o' € 77 a tree 3, is included in Ay where 3,/1 = o, Ba(€) = Bar(2) =
(S',0,false) for some new nonterminal S’. The left subtree of 8, is o' and the right
subtree is a single node that is the foot of the tree. Note that the tree V (a, 4, €)
corresponds very closely to o' as shown in Figure 12.

A A

S NA S NA
/\ /\
S S N S S N
ﬁa' = i i V(a,ﬁa/,e) = i i |
€

Figure 12: Conversion of initial trees

Vie=Vp1 U {B | B € A } Technically, we should specify different tree labelling func-
tion for each grammar. However, for each grammar the function denoted by - should be
clear from the set of tree labels of the grammar.

2. From G we construct an equivalent tag, Gz = (Vy U{S"},Vr, Vi3, 5 {a},As,-),
such that every node of a tree in Az that is labelled by a nonterminal either has a
NA constraint or an OA constraint. In other words, there will be no nodes at which
adjunction is optional. For each # € A; U Ay and D C dom () such that for all d € D
we have 3(d) = (A, sa,false) for some A € Vi and nonempty sa C V5 include §p in
As. For each d € N5

(A,sa,true) if d € D and 3(d) = (A, sa, false)
Bp(d) =13 (A,0,false) if d & D and 8(d) = (A, sa,false) for some sa
B(d)

Vis={B|B€As}.

otherwise

3. From (3 we construct an equivalent tag, Gy = (2V22,Vy, Vi 4,535, { o'}, A4, ), such
that the root and foot of each tree in A4 has an NA constraint and all other internal
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nodes have OA constraints with no restriction on which trees can be adjoined except
that the nonterminals must match. To do this we use the set of labels forming the SA
constraint at each node as its nonterminal label. We want a tree g to be adjoinable at
a node whose nonterminal label contains 3. Thus, for every set of labels sa containing
B there must be an instance of 3 with a new root and foot nodes having nonterminal

label sa.

o' is such that /(1) = ¢ and o/(¢) = (sag, V4, true) where sag: is such that a(e) =
(57, sagr, true).

For each § € Aj let 3’ be such that 5'(d) = (sa, Vi 4, true) if 3(d) = (A, sa,0a) for some
A and oa, and 3'(d) = 3(d) otherwise. For each sa C V7,3 such that 3 € sa include the
tree Bs in Ay where fsa/1 = 3/, Bsa(€) = Baa(ft (B) 1) = (sa, (), false).

Also include in A4 a tree By where By(c) = Bp(1) = (0,0, false) and ft (8y) = 1.

Via={B|B€ A}

. From G4 we describe an equivalent tag G5 = (Vi, Vi, Vis,sas,{ '}, prune(Ay),-),
where

prune(A) = | prune(3)

and prune(f) is defined below. First, note that tree substitution can be simulated
(with respect to terminal yield) by adjunction if the node at which adjunction takes
place dominates a single node labelled by €. Informally, a tree is pruned by removing
subtrees rooted at siblings of the spine and arranging that a simulated substitution of
the removed subtree can occur. The removed subtree will be turned into an auxiliary
tree with the addition of a foot node and itself be pruned. Thus, through a series of
simulated substitutions a tree corresponding closely to the original tree can be recreated.

Let 3" € prune(3) where for each d € N5

B(d) if d € spine (3)
((B,d), Vi 5,true) if d &€ spine () and d = d't where
¢ > 1 and d' € spine (B)

! —_—
B(d) = € if d & spine () and d = d'il where
i > 1,d € spine (), and d't & spine (3)
undefined otherwise

A" is produced from 3 such that every node with address d that is the sibling of a node
on the path from the root to foot of 3 is relabelled with the new nonterminal (£, d),
given an OA constraint, and, in addition, the subtree under this node is replaced by a
single node labelled e.

For each d € dom ([3) such that d & spine () and d = d'v where ¢t > 1 and d' € spine ()

(i.e., d is the sibling of a node on spine of ) trees are included in prune () as follows.

If #(d) = w for some w € Vr U{ e} then include the tree 3, in prune(3) where for each
deN;

w ifd =1

undefined otherwise

<(,37d), @,false> fd=cord =2
6w(d/) - {

Otherwise, let prune(8;) C prune () where 3y is a slight modification of the subtree
(/d that is defined as follows.
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Let 3} be such that 37/1 = 3/d and B(¢) = ((8,d), 0, false), i.e., 8} is the subtree of
[ rooted at the node with address d with the addition of a new root with nonterminal
label (3,d) and with an NA constraint. We now add a foot node to 3 to get 4. Let
d' be such that g)(d') = (A,sa,0a) for some A, sa and oa and for all d” such that
Ba(d") = (A,sa,o0a) for some A, sa and oa |d'| > |d"| (d' is the address of a deepest
nonterminal node in ). Let ¢ > 1 be such that d'(i —1) € dom (3}) and d'i & dom (f3}).
Let 84 be equal to 3 except that 34(d'7) = ((8,d), ), false).

Vis = {H | B € prune(Ay) }
The tree, 3, at the left of Figure 13 would be converted into the right four trees in the
figure.

OA

B
5= /\
a

D

A NA
OA

(on

=3
=3
=
=
™

z
&)

~—
Il

(B, 11) oA (B, 2)NA

€
(B, 11) NA

N

(B, 11) NA

o

(B,11) NA

N

(B,11) NA

[}

Figure 13: Pruned trees

5. Finally, we give a tag G = (V{,, Vp, V5,589, { &' }, A,-), equivalent to (G4, such that for
every [ in A there is at most one OA node at any level of 5 and the nodes of 3 have at
most 2 children. Let 3 be a tree in prune(A4). Note that from the above construction
only nodes on the spine of 3 can have more than 1 child. The conversion of 3 is shown
in Figure 14 in which we show how an arbitrary node on the spine of # can be stretched
out to satisfy the above condition. Every node on the spine would be treated in the
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same way. Note that where adjunction constraints remain unchanged they have been
omitted.

x>>

P
>
=z
>

A
A e
[ after
— /l\ = 1 A’{

n — >

Figure 14: Conversion to binary branching
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