US

UNIVERSITY
OF SUSSEX

Sussex Research

Linear iterated pushdowns

David Weir

Publication date
01-11-1994

Licence
This work is made available under the Copyright not evaluated licence and should only be used in accordance
with that licence. For more information on the specific terms, consult the repository record for this item.

Citation for this work (American Psychological Association 7th edition)
Weir, D. (1994). Linear iterated pushdowns (Version 1). University of Sussex.
https://hdl.handle.net/10779/uos.23310599.v1

Published in
Computational Intelligence

Link to external publisher version
https://doi.org/10.1111/j.1467-8640.1994.tb00007 .x

Copyright and reuse:

This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy
and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the
version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For
more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk.
Discover more of the University’s research at https://sussex.figshare.com/

https://rightsstatements.org/page/CNE/1.0/?language=en
https://doi.org/10.1111/j.1467-8640.1994.tb00007.x
mailto:sro@sussex.ac.uk
https://sussex.figshare.com/

Sussex Research Online

Linear iterated pushdowns

Article (Unspecified)

Citation:

Weir, David (1994) Linear iterated pushdowns. Computational Intelligence, 10 (4). pp. 431-439.
ISSN 0824-7935

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/498/

This document is made available in accordance with publisher policies and may differ from the
published version or from the version of record. If you wish to cite this item you are advised to
consult the publisher’s version. Please see the URL above for details on accessing the published
version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable, the material
made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third
parties in any format or medium for personal research or study, educational, or not-for-profit
purposes without prior permission or charge, provided that the authors, title and full bibliographic
details are credited, a hyperlink and/or URL is given for the original metadata page and the
content is not changed in any way.

http://sro.sussex.ac.uk

http://sro.sussex.ac.uk/

LINEAR ITERATED PUSHDOWNS*

David J. Weir
School of Cognitive and Computing Sciences
University of Sussex
Brighton, BN1 9QH
(444 273) 678294

*Thanks to Joost Engelfriet for bringing work on iterated pushdown to the author’s attention. Thanks also to

Aravind Joshi, Bernard Lang and K. Vijay-Shanker for helpful comments.

Abstract

This paper discusses variants of nondeterministic one-way S-automata and context-free S-grammars
where S is a storage type. The framework that these systems provide can be used to give alterna-
tive formulations of embedded pushdown automata and linear indexed grammars. The embedded
pushdown automata is obtained by means of a linear version of a class of storage types called
iterated pushdowns. Linear indexed grammar is obtained by using the pushdown storage type and

restricting the way in which the grammar uses its storage.

Key Words

Grammar formalisms, string automata, mathematical linguistics, formal language theory.

1 Introduction

This paper concerns the problem using string automata to describe the class of tree adjoining
languages (tal). Providing an automaton-theoretic characterization of a grammar formalism leads
to insights into the parsing problem for that formalism. For example, in the case of context-free
grammars, Lang (1991) describes a framework that can be used to compare a variety of parsing
algorithms in which the pushdown automata (pda) plays a central role. Automata are also used
to characterize deterministic subclasses of grammar formalisms. Vijay-Shanker (1987) gives an
automaton model for tal in the form of the embedded pushdown automata (epda) and a bottom-up
version of this automaton was used to investigate deterministic tree adjoining languages (Schabes

& Vijay-Shanker, 1990).

Justification, (given by Vijay-Shanker, 1987), for the attraction of the epda was that, apart from
its use of an embedded pushdown, it is identical to the pda; and furthermore, that the embedded
pushdown is a natural generalization of the pushdown. Additional support for this argument comes
from the characterization of an infinite progression of automata models having pda and epda as its
first two members (Weir, 1992). The goal of this paper is to back this up formally with support

for the following two claims.

Claim 1: the pda and epda can be seen as different instantiations of the same general automata

model.

Claim 2: the embedded pushdown can be obtained from the pushdown by use of an operation on

forms of storage.

The close relationship between pda and epda is not unique. Many string automaton models share
various characteristics: they are nondeterministic; they are one-way; and they include a finite state
control. Just as in the case of epda and pda it is the nature of the additional storage that varies
from machine to machine. In light of this, the notion of a nondeterministic one-way S-automaton
for storage type S was defined (Engelfriet, 1982, 1983). This was intended to provide a general
framework within which all such automata can be described (following Scott, 1967). A particular
class of automata is obtained with suitable instantiation of the storage type 5. For example, in the
case where S is a standard pushdown we get automata that are a trivial variant of pda. We give

support to Claim 1 above by identifying a storage type that gives rise to epda.

The embedded pushdown storage type is obtained by the iteration of operators on storage
types (Greibach, 1970; Maslov, 1976; Engelfriet, 1982, 1983). Iteration of a pushdown operator
gives rise to a progression of automata that characterize the OI-(string) language hierarchy (Damm
& Goerdt, 1986). Vogler (1986) it is shown that iteration of a one-turn pushdown operator gives
a characterization of the hierarchy described by Khabbaz (1974). We satisfy Claim 2 by giving a

new operator that gives the embedded pushdown storage type from the pushdown storage type.

The paper is organized as follows. In order to make the paper self-contained, in Section 2
we present the original definition of the epda given by Vijay-Shanker (1987). In Section 3 we
define storage types, S-automata and the pushdown operator P on storage types (Greibach, 1970;
Engelfriet, 1982, 1983). Then, in Section 4, we present a new operator on storage types called the
linear pushdown operator. When this operator is applied to a pushdown it gives a reformulation of

the embedded pushdown of epda and when it is iterated it gives a reformulation of the hierarchy

described by Weir (1992).

The notion of storage types is not only useful in defining classes of automata but has also
been applied to grammars that use storage. In Section 5, we present the notion of a context-
free S-grammar (Engelfriet, 1982; Engelfriet & Vogler, 1986) and show how linear indexed gram-
mars (lig) (Gazdar, 1988) can be expressed within this framework by defining context-free linear
S-grammars. Lig! are known to be weakly equivalent to tag (Vijay-Shanker & Weir, in press) and

are very similar to epda.

2 Embedded Pushdown Automata

The definition of the epda given here is based on that given by Vijay-Shanker (1987). Given a
set of pushdown symbols I', pushdowns are members of I'* and are denoted o, ...0; where each
o; is a pushdown symbol (0 < ¢ < n) and o, is the top pushdown symbol of this pushdown. The
embedded pushdown that contains the m > 1 non-empty pushdowns o, 4 ...Opm1, ... O2py ... 021

)

and 044, ...011, (with 014, ...01 1 on top) is denoted

io-m,km - Om1-- 'iUZ,kz ...02 i O1k;---01,1

)

!The name linear indexed grammars has been used by Duske and Parchmann (1984) to name a different restriction

of indexed grammars in which only one nonterminal can appear on the right of production.

where 1 is a special symbol not in I' that marks the beginning of each embedded pushdown and
each k; > 1 (1 < ¢ < m). Thus, embedded pushdowns are members of ({I't)*. We use the symbol
T (with or without subscripts) to denote members of (iI'"), thus the above embedded pushdown

can be denoted Y,,...7T;.

Definition 2.1 An epda is a seven tuple M = (Q,%,1,6, gy, Qr,00) where
@ is a finite set of states,
3 is a finite set of input symbols,
I' is a finite set of pushdown symbols,
qo € () is the start state,
@r C @ is the set of final states,
0 is the initial pushdown symbol and

6 is the transition function.

The transition function ¢ is a mapping from @ x ¥ xI" to finite subsets of @ x (1I't)* xI'* x (iI't)*

where A is the empty string, ¥, = X U{ A} and I ¢ T.

A configuration of M is a member of @ x (iI't)* x X* x ¥* where (¢, T, ... T, wy, w,) indicates
that M is in state ¢ with embedded pushdown T,, ... T, having consumed the initial part w; of

the input w;ws,.
The computation relation F,, is defined such that

<(]7Tm---T2101,k---01,201,17w175w2>
/ / 7 " 1"
'_M <q ,Tm .. 'TQTm’ .. 'Tl i O1k++0120p .. -Ule// .. .Tl,w157w2>
if and only if

(¢, Y. Yy,00...00, Y0, ... T]) €6(q,e,001)

Note that if n = 0 and k£ = 1 then the top of the old pushdown has been emptied and is no longer

present in the new embedded pushdown.

The above component of § indicates that M can make the following move: change state from
q to ¢'; consume the (possibly empty) input symbol ¢; insert m’ new pushdowns Y/ ,...T! below
the top pushdown of the old embedded pushdown; insert m” new pushdowns Y7/, ... Y7 above the
top pushdown of the old embedded pushdown; and modify the top pushdown of the old embedded
pushdown by replacing its top symbol with the possibily empty string of new pushdown symbols

Op...01.

The language accepted by the epda M = (Q,%,I',6,q0,Qr,00) by final state is defined as
follows
L(M)= {w]| {(q,io0, A, w)F3 (g5, ... T, w, A)for some g; € Qp

and some embedded pushdown T,,...T; where m > 0}

3 Storage Types, S-Automata and Pushdowns of S

There are many ways of extending finite automata with the addition of some form of “unbounded”
memory. What varies from model to model is the nature of this memory, in particular, the opera-
tions that can be performed on it in a computation step. Storage types are intended to formalize
the different kinds of memory that automata can use, without reference to particular automaton

models. The notation and definitions in this section are taken from Vogler (1986).

Definition 3.1 A storage type is a five tuple S = (C, Cy, P, F, m) where
C' is the set of configurations,
Co C C is the set of initial configurations,
P is a set of predicates,
Fis a set of instructions and
m is the meaning function such that
m(p) : C — { TRUE, FALSE } for each predicate p € P and

m(f):C — C for each instruction f € ' (m(f) may be partial).

Predicates test configurations and are used in automata to determine if a move should be made.
Instructions are functions from “old” configurations to “new” configurations, e.g., to push or po
9 bl

symbols from a pushdown.

We now define S-automata for a storage type S = (C,Cq, P, F,m).

Definition 3.2 A S-automaton is a six tuple M = (Q, %, 4, qo, CO,@) where
@ is a finite set of states,
3 is the input alphabet,
¢o € @ is the initial state,
¢y € (Y is the initial configuration, Q C Q is the set of final states and

6 is the transition function where

60 C; @ X X5 XBE(P) x @ x F where
C; denotes finite subset and

BE(P) is the set of boolean expressions over P.

A global configuration of M is a member of () x ¥* X C' such that if M is in configuration
(¢, w,c) then M is in state ¢, the string w remains on input tape and the configuration of storage

is c.
The computation relation -, is defined such that

(qlv'rwvcl) l_M (q2vw762) 1ff (Q17$77T7Q27f) € 67

m(7)(¢;) = TRUE and

m(f)(e1) = ¢

The language accepted by M is

L(M)={weX| (g,w,co) i (g5,)¢)
for some ¢; € C:) and c € C'}

We now define P, a pushdown operator that produces one storage type given another. Given a
storage type S = (C, Cy, P, I, m) the storage type P(5)is called the pushdown of S. A configuration
of P(5)is a string (71,¢1)...(Ya,¢,) where n > 0 and for each 7 € {1,...,n} 7; is a pushdown
symbol and ¢; € C is a S-configuration. The predicates of P(.5) test the top element (7y,¢;) either
by testing ¢; with predicates in P or by checking the identity of 7;. The instructions of P(5)
produce new configurations of P(.9) either by applying an instruction from F to ¢; or by pushing

or poping new elements.

Given a storage type S = (C,Cy, P, F, m) the pushdown of S is defined as follows.

Definition 3.3 The pushdown of S is a five tuple P(5) = (C',C}, P', F', m’) where
C’" = (T x C)* where T is a fixed, infinite set of pushdown symbols,
Co=A{(7,c0) |y €T and ¢ € Cp },
P'={tor =7 [y €T }U{TEST(p) [P € P},
F'={rusu(y,f)|y€T and f € F}u{propr}U{sTay(y) |y €Tl }U{sTaY } and
foreacho,7€l',ceC,pe(I'xC),pe Pand feF
m/(rop = 7)((0,¢)8) = (o = 7),
m/(TesT(p)) (0, ¢)B8) = m(p)(¢),

The pushdown operator P is iterated by letting P°(S) = S and for every k > 0, PF+1(5) =
P(P*(S)). An infinite progression of storage types is defined as follows. First define the trivial
storage type: So = ({¢},{c},0,{id},m) where ¢ is arbitrary object and m(id)(¢) = ¢. The kth

storage type in the progression, denoted P*, is defined as P* = P*(S,).

It is known that P*-automaton give a strict hierarchy, that P°-automaton accept the class of
regular languages, that P!-automaton accept the class of context-free languages and that the pro-
gression characterizes the OI-(string) language hierarchy (Damm & Goerdt, 1986). P?-automaton
are equivalent to indexed pushdown-automata of Parchmann, Duske & Specht (1980) which accept

the class of indexed languages (Aho, 1968).

Example 3.1 Consider the storage type P? = P(P(S,)) = (C”,C¢, P", F",m") where
P(So) = (C",CH P F',m')and Sy = ({c},{c},0,{id},m).

An example configuration in C* is:

(715 (725) (735 €)) (74, (7355 ¢))

Applying the predicates TOP = v and TEST(TOP = 7) from P” to this configuration we

get:
m"(TOP = 7) ((71, (72 €)(73 €)) (745 (75, €)))

=(v=m)

m"(TEST(TOP = 7)) ((71, (72, €)(73, €)) (74, (755 €)))
= m'(ToP =7) ((72,¢)(73,¢))
=(7="72)

Applying the instructions pusH(y, PusH(v’,id)) and PoP from F” to this configuration

we get:

m“(PUSH(77 PUSH(’/? 1d))) ((717 (727 C)(737 C))(’Y‘b (757 C)))
= (7, m'(pusH(v',id)) ((72, €)(735 €))) (715 (725 €) (735 €)) (Va5 (755 €))
= (7, (Vs) (72 €)(73, €)) (Y15 (72, €) (73, €)) (V45 (75, €))

m"(POP) (71, (72, €)(73, €)) (74, (75, €)))
= (74, (755)

4 Linear Iteration Of Pushdowns

Since P?-automata accept indexed languages and are, therefore, more powerful than epda our goal
is to find a new operator that gives the storage type of the epda. We will define a variant of the
operator P called P;, which we call the linear pushdown of 5. Py, will be defined in such a way
that PP, -automaton accept the regular languages, P} -automaton accept the context-free languages

and P} -automaton accept the tal.

In order to understand why P,-automata are more powerful than epda consider the push in-

struction of the storage type P

m/(PUsh(y, f)) ((o,¢)8) = (v, m(f)(c))(o,c)B

After the push move is complete a copy of the pushdown (o, ¢) is left behind just below the new
top pushdown (v, m(f)(¢)). It is the possibility of copying unbounded configurations (in this case
¢) that must be ruled out in the instructions of Py,. For example, we do not wish to allow the

following: m/(PUSH(7,STAY)) ((0,¢)8) = (7,¢)(0,¢)p.

Before defining the new operator Py, we need to redefine storage types to have a single initial
configuration rather than a set. Thus, a storage type is denoted (C,cq, P, F, m) where C, P, F,
and m are as before and ¢y € C' is the initial configuration. Likewise, we redefine the trivial storage
type So = ({¢},¢,0,{id } ,m). Note that having made this change there is no need to include the
fifth component, ¢y, of an S-automaton giving the initial configuration of the machine. Thus, an

S-automaton is defined as a five tuple M = (Q, %, 6, ¢, Q).

In order to define initial configurations for storage types produced by iterating Py, we designate
Yo to be a distinguished member of I' (the set of pushdown symbols) that is the initial pushdown

symbol.

Given a storage type S = (C, ¢, P, F, m) the linear pushdown of $ is defined as follows.

Definition 4.1 The linear pushdown of § is a five tuple Py, (5) = (C’, ¢y, P, F',m')
where
C’" = (T x C)* where T is a fixed, infinite set of pushdown symbols,
¢y = (70, €o) is the initial configuration,
P'={tor =7 [y €Tl }U{TEST(D) |p € P},
F' ={rusi(a, f,i) |laeT*, fe Fand 1 <i<|a] }U{PorP}U{sTaY} and
foreacho,7 €l ael't, 1<i<|a|l,ceC,Be(I'xC),pe Pand f€F
m/(Top = 7)((0,¢)8) = (0 = 7),
m/(TEST(p)) (0, ¢)B) = m(p)(e),
m/ (PUSH(Y1 ... Yi -V, [51) ((0,€)3)
= (71,¢0) - - (7i=1, €0) (i, m(S)(€)) (Vi1 €0) - - - (7n, €0) 3,
m/(poP) ((o,¢)B) = B if 8 # X and undefined otherwise,
w(5TAY) (0, €)8) = (0, 5.

In other words, the push move pPUSH(a, f, %) involves replacing the top subpushdown with |a/
new subpushdowns only the ¢th of which contains the result of applying f, the others containing
the initial pushdown of S. Note that the definition of the other instructions and of the predicates
are unchanged from the earlier definition of P. We ommitted the instruction STAY(7) since STAY(7)

corresponds to PUSH(7,STAY, 1).

The linear pushdown operator can be iterated in the same way as the pushdown operator, i.e.,

Pl]icn = Pllicn(so)'

Example 4.1 Consider P2 = Pin(Pin(50)) = (C”, ¢y, P", F",m") where Pj,(50) =
(C" ey, P/ F',m') and So = ({c},e¢,0,{id},m).

The initial configuration ¢ = (7o, (70,¢))

An example configuration in C* is:
(715 (72, €))(74; (75, €))

Applying the push move pUsH(yv'y”, PUsH(7"’,id, 1),2) of P” to this configuration we

10

get:
m“(PUSH(’)”yl";’”, PUSH(7III7 id? 1)7 2)) ((717 (727 C))("/4, (757 C)))
= (77 CO)(7/7 Jml(PUSH(Afmv idv 1)) ((727 C)))(7//7 CO)(A/‘I? (757 C))
= (77 CO)(7/7 (,.;,///’ c))("//lv CO)(A/‘I? (757 C))

PP-automata and PJ -automata both recognize the regular languages. Since the storage types
P(So) and Py,(S,) are equivalent, P'-automata and P} -automata correspond to the pda. It is

also clear that P? -automata is a reformulation of epda and that for each & > 1 P} -automata is a

reformulation of the kth automaton class in the hierarchy defined by Weir (1992).

5 Context-Free S-Grammars

The notion of storage types has also been applied to grammars (Engelfriet, 1982; Engelfriet &
Vogler, 1986) to give, for example, the context-free S-grammars in which configurations of 5 are
associated with nonterminals of the grammar. If S is a pushdown then we get a grammar formalism
that is equivalent to indexed grammars (Engelfriet, 1982; Engelfriet & Vogler, 1986). We consider
a restriction on the use of the storage type S such that only one nonterminal on the right of
productions inherits the storage associated with the nonterminal on the left. In this case we find

that instantiating S to be standard pushdowns gives us lig.

Let S = (C, ¢, P, F,m) be a storage type?

Definition 5.1 A context-free S-grammars is a four tuple G = (Vy, Vy, R, A;,) where
Vi finite set of nonterminal symbols,
Vi finite set of terminal symbols,
A;, € Vy is the start symbol and
R finite set of rules of the form A — 1¥ @ THEN a where
A € Vy,
T € BE(P),
a € (V[FlUVy)* and
Vn[F]={A[f]|A€Vyand feF}

2Note that for simplicity we continue to use the revised definition of a storage type with a single initial

configuration.

11

The set of sentential forms of G = (Vy, Vi, R, A;,,) is a subset of

(VN[CTUVp)* where Vy[C'|={A[c]|A€Vyand ce C }
The derives relation = is defined such that

P11 = ¢ iff 1 = ug A[¢ Juy for some uy,us € (Vy[C]U Vp)*,
A — IF T THEN a € R,
¢ € C such that m(7)(c) = TRUE,
(09 = Ugpuy and

¢ is produced from a by replacing each B[f] by B[m(f)(¢)]

L(G):{wEVq’f

Ainl o] %w}

Note that context-free Sy-grammars are equivalent to context-free grammars and that context-
free P(S5q)-grammars are equivalent to indexed grammars (Engelfriet, 1982; Engelfriet & Vogler,
1986). Thus, since the storage types P(So) and Pun(So) are equivalent Py, (.Sp)-grammars also
correspond to indexed grammars. In order to obtain a formalism that corresponds to lig we need to
modify the definition of S-grammars. The modifications made to context-free S-grammars mirror

the changes made to P to get Py,.

Consider storage type (C, co, P, F,m).

Definition 5.2 A context-free linear S-grammar is a four tuple G = (Vy, Vp, R, A;i,)
where
Vi finite set of nonterminal symbols,
Vi finite set of terminal symbols,
A;, € Vy is the start symbol and
R finite set of rules of the form A — 1F¥ @ THEN a where
A€ Vy,
7 € BE(P) and

a € V*Vy[FIV*UV* where V = Vp U Vy[.

In other words the right-hand-side of productions have at most one occurence of an instruction
f in the context: B[f]. All other nonterminals appear in the context B[]. Suppose that the

S-configuration ¢ is associated with the nonterminal A on the left-hand-side of the production.

12

Application of the production can associate the S-configuration m(f)(c) for some f € F with at
most one of the nonterminals on the right-hand-side. All other nonterminals will be associated with

the initial configuration ¢o. Thus, the derives relation = is defined such that

P1 = @2 iff 1 = ug A ¢]uy for some uy,uy € (Va[C]U Vp)*
A — IF T THEN a € R,
¢ € C such that m(7)(c) = TRUE,
P2 = U1 PUs,
¢ is produced from a by replacing B[f] by B[m(f)(¢)] and
by replacing each B[] by B[¢]

L(G):{wEVT*

Ain[o] %> w}

Example 5.1 The Pj,-grammar G = ({A;,,B},{a,b,c,d}, R, A;,) generates the

language {a"b"c"d” |n > 0 } where R contains the productions:

A;, — IF TOP = 75 THEN aA;,[PUSH(7170,td,1)]d
A;, — IF TOP = v, THEN aA;,[PUSH(7171,td,1)]d
A;, — IF TOP = 7, OR TOP = 7; THEN B[STAY |
B — 1F TOP = 7; THEN bB[POP]c

B — IF TOP = 75 THEN A

6 Conclusions

We have used the notion of storage types and operators on storage types to reformulate two systems
that characterize the tree adjoining languages: embedded pushdown automata and linear indexed
grammars. Not only does this help to clarify the relationship between tree adjoining languages and

context-free languages, but the use of storage types has additional benefits.

Defining grammars and automata in terms of the storage type that they use has proved to
be a useful way of relating the power of different systems (e.g. see Engelfriet & Vogler, 1986).
This technique involves the notions of storage type simulation and storage type equivalence. Two
storage types are equivalent if they can simulate each other. A storage type S = (C,Cy, P, F,m)

can simulate a storage type S’ = (C',C{, P', F',m’) if there is a partial function from C to C’

13

that specifies which configurations of C' simulate configurations of C’. In addition, S must be able

to simulate each member of P’ and F” (this can be specified with a deterministic flowchart using

members of P and F').

General theorems can be established that make use of storage type equivalence to show that
different systems characterize the same class of languages (e.g. see Engelfriet & Vogler, 1986, The-
orem 4.18). In a similar way, it is possible to show that since P* can simulate P , P*-automata

are more powerful than P} -automata.

Reference
Aho, A. V. (1968). Indexed grammars — An extension to context free grammars. J. ACM, 15,
647-671.

Damm, W., & Goerdt, A. (1986). An automata-theoretic characterization of the OI-hierarchy. Inf.

Control, 71, 1-32.
Duske, J., & Parchmann, R. (1984). Linear indexed languages. Theor. Comput. Sci., 32, 47-60.
Engelfriet, J. (1982). Recursive automata. Unpublished notes.

Engelfriet, J. (1983). Iterated pushdown automata and complexity classes. In Proc. 15th STOC,

pp. 365-373.

Engelfriet, J., & Vogler, H. (1986). Pushdown machines for the macro tree transducer. Theor.
Comput. Sci., 42, 251-368.

Gazdar, G. (1988). Applicability of indexed grammars to natural languages. In Reyle, U., &
Rohrer, C. (Eds.), Natural Language Parsing and Linguistic Theories, pp. 69—94. D. Reidel,
Dordrecht, Holland.

Greibach, S. A. (1970). Full AFL’s and nested iterative substitution. Inf. Control, 16, 7-35.
Khabbaz, N. A. (1974). A geometric hierarchy of languages. J. Comput. Syst. Sci., 8, 142-157.

Lang, B. (1991). A uniform framework for parsing. In Tomita, M. (Ed.), Current Issues in Parsing

Technology, pp. 153-171. Klumer Academic Publisher.
Maslov, A. N. (1976). Multilevel stack automata. Problemy Peredachi Informatsii, 12, 55-62.

14

Parchmann, R., Duske, J., & Specht, J. (1980). On the determinsitic indexed languages. Inf.
Control, 45, 48—67.

Schabes, Y., & Vijay-Shanker, K. (1990). Deterministic left to right parsing of tree adjoining

grammars. In 28" meeting Assoc. Compul. Ling., pp. 276—283.

Scott, D. (1967). Some definitional suggestions for automata theory. J. Comput. Syst. Sci., 4,
187-212.

Vijay-Shanker, K. (1987). A Study of Tree Adjoining Grammars. Ph.D. thesis, University of

Pennsylvania, Philadelphia, PA.

Vijay-Shanker, K., & Weir, D. J. (in press). The equivalence of four extensions of context-free

grammars. Math. Syst. Theory.

Vogler, H. (1986). Iterated linear control and iterated one-turn pushdowns. Math. Syst. Theory,
19, 117-133.

Weir, D. J. (1992). A geometric hierarchy beyond context-free languages. Theor. Comput. Sci.,
104, 235-261.

15

	Linear iterated pushdowns

