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The way in which cells are able to replicate DNA templates containing altered bases 

(sometimes referred to as postreplication repair- PRR) has been a topic of intense 

current interest in recent years. This was stimulated by the discovery in 1999 of the Y-

family of DNA polymerases, which are able to carry out translesion synthesis (TLS) 

past damaged bases. However the first experiments giving insights into how damaged 

DNA is replicated predate the discovery of the Y-family polymerases by three 

decades [1]. The model proposed in this early work suggested that the replication 

forks proceed past the damage, leaving behind gaps that are subsequently repaired, 

whereas most currently proposed models envisage TLS taking place at the fork. Two 

recent papers provide support for the older models [2,3]. “Rediscovering old models” 

may sound like an inappropriate title for a Hot Topic, so pedantic readers may prefer 

to consider this as a “Reheated Topic”. 

 

In their classic paper of 1968, Rupp and Howard-Flanders [1] showed that in uvrA 

strains of Escherichia coli (deficient in nucleotide excision repair), newly synthesised 

DNA strands in UV-irradiated cells were initially smaller than those in untreated 

controls. These small DNA pieces were subsequently converted into high molecular 

weight DNA. These results were interpreted as showing that the new strands 

contained gaps, which were presumed to be opposite the UV photoproducts (Figure 

1A). These gaps were subsequently sealed, and a later paper by the same authors [4] 

showed that in the majority of cases this gap-filling process involved sister-strand 

recombinational exchanges. By this means the genetic information lost from the 

damage/gap site in one daughter duplex is regained from the sister duplex, which 

would be unlikely to be damaged at the same site. This mechanism, in today’s 

parlance, would fall into the category of damage avoidance. An important aspect of 
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this model is that the damage/gap is dealt with after the replication fork has moved 

away, and this gave rise to the term postreplication repair. In E. coli such a 

recombinational exchange process is the way in which the cell deals with the majority 

of UV lesions during replication. In a minority of cases, the lesion is replicated by 

TLS, requiring the UmuD,C-encoded DNA polymerase V.  

 

Interpretation of the data in E. coli was relatively straightforward because the E. coli 

chromosome is replicated from only two replication forks diverging from a single 

origin. Interpretation of similar results from mammalian cells was much more difficult 

because the mammalian genome is replicated from multiple origins. This led to a 

great deal of controversy in the 1970’s about the mechanism by which cells replicate 

damaged DNA. Little evidence could be obtained for sister strand exchanges as found 

in E. coli (eg  [5]) and it was suggested that, although gaps may be left opposite 

damage in the lagging strands, this was unlikely to be the case for the leading strands 

(eg see [6]). Leading strands are normally considered to be synthesised continuously 

(in both prokaryotes and eukaryotes), and if gaps were left in the leading strands, this 

would entail replication restart beyond the lesions, which was considered unlikely. 

The way in which the fork overcame the blocks on the leading strand remained 

unresolved, and in fact there was little further research in this area for almost twenty 

years until the discovery of the TLS polymerases. The excitement generated by these 

polymerases and the new avenues of research that were opened by their discovery 

gave rise to new models, almost all of which envisaged the handover from replicative 

to TLS polymerase at the site where the fork was blocked, followed by handing back 

to the replicative polymerase once the block had been bypassed (Figure 1B). These 

models imply or assume that TLS occurs at the replication forks. 
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Two new papers have provided evidence that gaps are left in the daughter strands of 

UV-irradiated Saccharomyces cerevisiae in vivo[2], and that replication restart can 

indeed take place on the leading strand, using E. coli replication proteins in vitro[3]. 

Lopes et al used a NER-deficient rad14 strain of S. cerevisiae, and employed electron 

microscopy to detect single-stranded regions of DNA (ssDNA) in replicating DNA 

molecules in UV-irradiated cells. They observed long single-stranded regions of DNA 

on one of the replicated strands immediately behind the replication fork. In some 

cases, they were able to identify whole replication bubbles and detected long regions 

of ssDNA on both arms of the bubble on opposite strands (Figure 2A). These findings 

were consistent with a model in which DNA damage stalled the progress of the 

leading strand, which became uncoupled from the lagging strand synthesis. Pages and 

Fuchs had reached similar conclusions previously from studies on E. coli [7]. Lopes et 

al also observed short ssDNA patches of up to 400 bp well behind the replication 

forks, up to 20 kb away (Figure 2). These discontinuities were found on both strands 

of the replicated DNA molecules, suggesting that synthesis not only of the lagging 

strand, but also of the blocked leading strand was reinitiated beyond the blocked site. 

These findings are completely consistent with the Rupp and Howard-Flanders model. 

However it should be noted that evidence that these discontinuities were indeed 

located opposite UV photoproducts was not provided. Lopes et al next examined 

replication structures in cells mutated in all the TLS polymerase genes rad30, rev3 

and rev1, or in a crucial recombination gene rad52. These mutations had minimal 

effect on ssDNA regions at the replication fork, but caused an increase in the 

frequency of discontinuities away from the fork. In the TLS mutant cells, more gaps 

were found relatively close to the fork (<5 kb), whereas in the rad52 mutant, more 



 5 

discontinuities were found along the length of the replicated strands. These findings 

suggest that gaps are left opposite the damage and the cell first attempts to seal them 

using TLS, but if for some reason this is not successful, they remain for longer 

periods and are subsequently sealed by recombination. 

       

To complement their electron microscopic studies, Lopes et al also analysed 

replication structures using 2-d gel electrophoresis to analyse fork progression [8]. 

Consistent with their electron microscopic studies they found that the forks could 

travel long distances past many UV lesions, albeit at a somewhat slower speed than in 

undamaged cells. In cells deficient in the TLS polymerases, replication fork 

progression was indistinguishable from that in cells capable of TLS. These data 

confirm that TLS is not necessary for progression of the fork, and by implication, that 

it occurs behind the fork. 

 

One currently popular model for bypassing lesions involves regression of the stalled 

replication fork to allow annealing of the two daughter strands to form a so-called 

chicken-foot structure. This model was originally designated template strand 

switching, when it was first proposed [9]. The stalled daughter strand can then use its 

partner daughter strand as template to continue synthesis. Reversal of this structure 

will re-establish the replication forks with the damage having been bypassed in a 

damage avoidance process that does not involve physical exchanges [10]. Although 

found in hydroxyurea-treated rad53 mutants in S. cerevisiae [11], there has been little 

evidence for these structures in UV-irradiated eukaryotic cells, and indeed Lopes et al 

only detected four reversed fork structures in 2100 forks examined [2]. These may 

have been pathological rather than productive structures. 
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The concept of gaps in the lagging strand opposite lesions has been readily acceptable 

because the lagging strand is in any case synthesised discontinuously with Okazaki 

fragments, so no major mechanistic change needs to be invoked to accommodate this 

concept. However gaps in the leading strand had been considered somewhat heretical, 

as they would require re-establishment of the replication machinery, a process that is 

normally thought to take place on the leading strand only at replication origins. 

 

Using an in vitro approach with purified E. coli proteins, the work by Heller and 

Marians addresses the issue of restarting DNA synthesis downstream of a blocked 

nascent leading strand [3]. Recent in vivo investigations in E. coli have revealed that 

leading and lagging strand synthesis can be uncoupled by a single blocking lesion 

placed in either strand of a plasmid [7]. The size of the gap generated with the leading 

strand block was estimated to be > 1 kb, but the small size of the plasmid precluded 

the detection of any potential downstream repriming events. During normal DNA 

synthesis, lagging strand repriming occurs at every Okazaki fragment, via the DnaG 

primase that is recruited by the DnaB helicase moving along the lagging strand. In 

contrast, no mechanism for leading strand repriming has so far been proposed. In their 

paper, Heller and Marians used a 6.9 kb linear forked template and a leading strand 

primer that was blocked with 2’3’dideoxyCMP at its 3’ end. As expected, this primer 

could not be extended. However in the presence of DnaG primase, leading strand 

synthesis was achieved. The data suggested that the single DnaB replication fork 

helicase loaded on the lagging strand could recruit DnaG primase molecules to 

reprime not only on the lagging strand but also on the leading strand (Figure 2B). The 

recent finding that multiple primase monomers can bind a DnaB hexamer [12] 
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supports the idea that a single helicase can mediate the recruitment of more than one 

DnaG molecule, thus possibly mediating both lagging and leading strand priming 

events.  

 

These data provide a mechanism for restarting DNA synthesis beyond a lesion on the 

leading strand. However they may also have implications for DNA replication in 

undamaged cells. It was initially proposed from results involving alkaline sucrose 

gradient centrifugation of nascent DNA fragments labelled in vivo by short pulse-

labeling, that both nascent lagging and leading strands were made discontinuously 

[13-15]. However reconstitution of replication forks clearly showed that leading 

strand synthesis is continuous in vitro and this has now become accepted dogma [16]. 

This issue has recently been re-addressed by Amado and Kuzminov, who, using a 

temperature-sensitive ligase mutant of E. coli, showed that essentially all newly 

synthesised DNA was synthesised in small pieces [17]. This strongly suggests that 

both leading and lagging strands can be synthesised discontinuously in vivo, contrary 

to accepted dogma, but supporting the original model [13]. 1968 was a year of 

widespread revolution in the political arena. It seems that in the same year, 

revolutionary models based on findings in the area of DNA replication, may, almost 

four decades later, be proven correct. 
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Figure Legends 

Figure 1: Models for replication of damaged DNA. The arrows indicate the fork 

direction. For simplicity only the replication of the leading strand is shown. 

A: Gaps behind the fork. Newly replicated DNA (thin line) is made discontinuously, 

gaps being left opposite lesions in the parental strand (thick line). The gap-filling 

reaction (orange patches), which involves specialized and replicative DNA 

polymerases or sister-strand exchanges, occurs behind the advancing replication fork. 

B: TLS at the fork: In this model, the fork stalls at each lesion, specialized DNA 

polymerases synthesize a short TLS patch (orange patch), replication resumes, the 

same process occurs at the next lesion. 

 

Figure 2: Gaps in leading and lagging strands 

A: Schematic drawing of replication intermediates in UV-irradiated S. cerevisiae 

cells, as observed by EM (Lopes et.al., 2006). The grey arrows show gaps observed in 

both the leading and lagging strands, possibly opposite UV lesions. The dashed 

arrows indicate the positions of the forks. B: A single replicative DnaB helicase (red 

hexamer) opens the double helix by sliding along the lagging strand. It can recruit two 

DnaG primases (green crescent) that mediate priming of both the lagging strand (as in 

normal DNA synthesis) and occasionally the leading strand when a gap is formed as a 

consequence of a template leading strand block (according to Heller and Marians, 

2006). 
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