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Abstract

DNA damage blocks the progression of the replicetayk. In order to circumvent
the damaged bases, cells employ specialised lavgstrcy DNA polymerases, which
are able to carry out translesion synthesis (TS} different types of damage. The
five polymerases used in TLS in human cells haffer@int substrate specificities,
enabling them to deal with many different typeslafmaged bases. PCNA plays a
central role in recruiting the TLS polymerases afifdcting the polymerase switch
from replicative to TLS polymerase. When the farlblocked PCNA gets
ubiquitinated. This increases its affinity for theST'polymerases, which all have
novel ubiquitin-binding motifs, thereby facilitagrtheir engagement at the stalled

fork to effect TLS.



I ntroduction

The ability of all organisms to replicate their gares is a pre-requisite for life. In
order to accomplish this with maximum efficiencyddidelity, organisms have
evolved superbly tailored replication machines. t&dto these machines are
replicative DNA polymerases, which are able toicgé DNA at high speed, with
high processivity and with a very low error-rategiifidelity is achieved by the
active sites of these polymerases having stringentirements, matching the
incoming nucleotide to the template base by the@p@te Watson-Crick base-
pairing. In addition the 3’-5’ exonucleases asdedavith replicative polymerases
remove any base that might, on rare occasions,deserted. DNA is however
subject to continual damage from both endogenodsa&ogenous sources, and
although most types of damage are removed by thdaraepair machinery, these
processes are often slow and incomplete. Damaga oftnains in the DNA during
replication and the price paid for the efficieneydaccuracy of replicative
polymerases is that many types of damage block pinegress. An important
mechanism for overcoming these blocks, particuleripammalian cells, entails the
use of specialised DNA polymerases to carry oumsiesion synthesis (TLS) past the
damaged sites. Most of these polymerases belotig tg-family [1], and in contrast
to the replicative polymerases, they operate atdpeed, low processivity and with
low fidelity. However because their active sitesida much more open structure
than replicative polymerases, they are less stninged can accommodate altered
bases in their active sites (eg see [2]). TherdveweY-family polymerases in
Escherichia coli (Polymerases IV and V), two Baccharomyces cerevisiae (Poh and

Revl) and four in mammalian cells (Pgls, k and Revl). In addition, the B-family

DNA polymerasé€ also plays an important role in TLS in eukaryofdse conserved



active site structure of the Y-family polymerasesisually located in the N-terminal
two-thirds of the protein. The C-terminal third istitonserved between the different
Y-family polymerases and is involved with localisat recruitment and protein-

protein interactions (see below).

TL S polymer ases

Poln was discovered in mammalian cells as the protefitiént in the variant form of
the skin cancer-prone genetic disorder xerodermgpa@ntosum (XP) [3, 4]. Most XP
patients are deficient in the ability to remove Potoproducts from their DNA by
nucleotide excision repair (NER), but about 20 ®@ormal in this respect and have
problems in replicating their DNA after UV-irradian [5]. The gene defective in
these XP variants encodesmpoln vitro poh is able to replicate past a cyclobutane
dimer (CPD), the major UV photoproduct, as effithgmas past undamaged bases,
and in the majority of cases the “correct” basesiaserted [6, 7]. Because of its poor
processivity, paj is likely to dissociate relatively soon after #shbypassed the
damage [7]- an important requirement because @iutgidelity on undamaged

DNA. XP variant cells have an elevated UV-inducedtation frequency [8],
indicating that in normal cells pplplays an important role in maintaining mutations
at a low level on exposure to UV light. In its afbse, it is likely that TLS is carried
out by one of the other TLS polymerases, or maae ttime acting in combination.
They are less effective than pdh carrying out this task, resulting in an elevate
mutation frequency in pgldefective XP variants. The nature of this backsugress
has been the subject of speculation, based omti&go properties of the
polymerases (eg poand pol acting in concert), but convincing evidence ikiag

at present. Pglis likely to have evolved to carry out TLS pastiCphotoproducts



generated by exposure to sunlight. It can alsg/aart TLS past some other lesions in
vitro (eg see [6]) with reduced efficiency, but e it also does so in vivo is

uncertain (eg see [9])

The other major UV lesion, the pyrimidine (6-4) pyidone photoproduct, generates
a much greater distortion in DNA than the CPD aawinot be bypassed by pol
Studies in yeast and human cells have indicateédothié and Rev1l are required for

TLS past this lesion [10, 11], but the mechanismoisyet understood.

Our understanding of the roles of the other TLSp@&rases in vivo is much less
advanced. Many in vitro studies have been carngdising different damaged DNA
substrates, and it has been concluded that sothe pblymerases are more effective
at inserting nucleotides across from damaged bdagese unable to extend from the
inserted nucleotide (eg phlwhereas others are less efficient at this irmestep but
can extend from a nucleotide inserted by anothbmperase opposite a damaged
base. Both in vivo and in vitro studies have shdwat pok can carry out TLS past

DNA containing benzo[a]pyrene —guanine adducts B2,

Pol( is a heterodimer containing the Rev3 catalyticusittand the Rev7 regulatory
subunit [14]. Revl, Rev3 and Rev7 were originallgritified inS. cerevisae as being
required for mutations induced by most DNA damagiggnts [15]. A similar

requirement has also been found in human cells 26 This implies that they are

involved in TLS, often inserting the “wrong” bases.



Revl is an enigmatic protein. It is not a polymerdmit a dCMP transferase, inserting
a dCMP residue in a template-directed manner [h8he crystal structure, the
incoming dCTP pairs with an arginine in the acsite [19]. However there is
convincing evidence that this catalytic activitynist required for UV mutagenesis
[20], although it is required for bypass past oflesions. The properties oévl, rev3
andrev7 mutants are in most cases identical, suggestatgthf, and Revl act in

concert.

L ocalisation

All the Y-family polymerases are localised in thecleus, and during S phase, ipal
and Revl relocate to replication factories, visdsebright fluorescent foci if the
polymerases are tagged with green fluorescentipr@eg [21]). Here they colocalise
with the polymerase sliding clamp PCNA, and othetgins involved in or
associated with DNA replication. Thus during regtion, they are present in the
environment where replication is taking place, preably “on stand-by” in case they
are required. It is often suggested that this pasgasnger to the cell, which might
recruit one of these low fidelity polymerases tplieate the DNA. However, under
normal circumstances, because of its high prociégsivs unlikely that the

replicative polymerase will be displaced by oné¢hef other polymerases [22].

Recruitment to thereplication fork

We can then pose the opposite question, namelyanewhe TLS polymerases
recruited to the replication fork when the replicatmachinery is blocked? This
replacement of replicative with TLS polymerasedsignated the “polymerase

switch”. A seminal paper by Jentsch and co-workdgstified the central role of



PCNA in the polymerase switch [23]. They showed th&. cerevisiae, when the
replication fork was blocked, in this case by daenauflicted by methyl
methanesulfonate, PCNA became modified by ubicatitom on lysine-164. This
ubiquitination was effected by the products of gewkich had long been known to
be involved in replication of damaged DNA, but wlasle had up till then not been
understood. The mono-ubiquitination of PCNA wasiedrout by the E2 ubiquitin-
conjugating enzyme Rad6 and the E3 ubiquitin ligaad18. Further ubiquitin
molecules were added in a lysine-63 linkage byEhdeterodimer Mms2-Ubc13 and
the E3 Rad>5. It was proposed that mono-ubiquitmathannelled the damage
through an error-prone TLS pathway, whereas polguitination channelled into an
error-free pathway of damage avoidance [23, 24is HEiter pathway has been
postulated to involve a copy choice type of recarabon involving template

switching, but it is poorly understood and will o discussed further.

How might ubiquitination of PCNA channel eventsiat TLS pathway? In
mammalian cells mono-ubiquitination of PCNA is éadetected after a variety of
treatments which block the progression of the oapilon fork, and this is dependent
on the orthologs of Rad6 and Rad18 [25, 26]. Pdlignuitination of PCNA has been
very hard to detect. A further interesting featof¢he regulation of PCNA
ubiquitination following exposure to DNA damagingdtment is its association with
the degradation of the de-ubiquitinating enzyme BDUSP1 [27], which is able to
remove mono-ubiquitin from PCNA. Thus DNA damagireatments result in both
the activation of proteins that ubiquitinate PCNRafl6 and Rad18) and the

degradation of the protein that de-ubiquitinatdt/BP1).



Polymerases, | andk all have classical PCNA-binding “PIP” motifs, anave been
shown to bind PCNA in vitro (eg see [28, 29]), bat m vivo. This suggests that the
interactions are weak. Mono-ubiquitination of PCM&reased its affinity for pq|,

so that their interaction could be detected in eefiacts [25, 26]. It was shown
subsequently that not only pplbut also pal Revl and pa&l have novel ubiquitin-
binding domains (UBDSs), and that at least in theeaaf pol) and pal (and likely for
polk and Revl also), the polymerases were able totbin@iquitin [30]. Thus, the
combination of binding to ubiquitinated PCNA viathdhe PIP motif and the UBDs
strengthens the interactions between the polyme@sg PCNA, facilitating their

recruitment to the stalled fork and facilitating tholymerase switch.

In vitro replication assays have shown that ubigatton of PCNA did not alter its
properties as a processivity factor for the repileapold or pok, or for poh on an
undamaged template. However when the template ioeatan abasic site,
ubiquitination of PCNA substantially increased #figciency of TLS by paj and

Revl [31].

Weak interactions have also been identified betvieempolymerases themselves.
Polsn andi interact directly with each other, and this intdi@n facilitates the
localisation of palinto replication factories [21]. Rev1l interactglwpoh, 1, k and
Rev7, in all cases via the same domain containéd @-terminal 150 aa [32-34]. It
should also be borne in mind that PCNA is a hommrj and the available evidence
suggests that ubiquitination is an all or nothingcess, ie that all three monomers
become ubiquitinated in one trimer [25, 31]. Eaadmomer may therefore be able to

interact with a different polymerase, providingtadibelt” of different polymerases



that can attempt to deal with the blocked fork [F&fure 1A). Thus a medley of
weak interactions occurs at the stalled fork emgiiihe polymerases to bind and
attempt to carry out TLS (summarised in Figure 1B}Yhe case of a blocking CPD,
poln will do the job. With other lesions other polymsea will be able to effect TLS.
In the case of a fork stalled by hydroxyurea, whigsults in depletion of
deoxynucleotides, PCNA is ubiquitinated, but nohthe polymerases will be able to

relieve the situation significantly because of theklof their crucial substrate.

Concluding remarks

Mammalian cells have evolved a variety of speataipolymerases in order to carry
out TLS, either singly or in combination, past rent types of DNA damage. Their
recruitment to stalled replication forks requires modification of PCNA by
ubiquitination and is regulated by a series of wietdractions between the each

polymerase and ubiquitinated PCNA and between thgnerases themselves.
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Figure Legend

Figure 1 Interactions between polymerases and PCNA

A, A PCNA trimer at a fork stalled by a lesion (thkarectangle). All three monomers
are ubiquitinated and are shown interacting witfedent polymerases. B, Summary

of interactions, indicated by double-headed arrows.
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