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Abstract  

We examine the evolution and maintenance of defence and conspicuousness in prey species 

using a game theoretic model. In contrast to previous works, predators can raise as well as 

lower their attack probabilities as a consequence of encountering moderately defended prey. 

Our model predicts four distinct possibilities for ESSs featuring maximum crypsis. Namely 

that such a solution can exist with (1) zero toxicity, (2) a non-zero but non-aversive level of 

toxicity, (3) a high, aversive level of toxicity or (4) that no such maximally cryptic solution 

exists. Maximally cryptic prey may still invest in toxins, because of the increased chance of 

surviving an attack (should they be discovered) that comes from having toxins. The toxin 

load of maximally cryptic prey may be sufficiently strong that the predators will find them 

aversive, and seek to avoid similar looking prey in future. However, this aversiveness does 

not always necessarily trigger aposematic signalling, and highly toxic prey can still be 

maximally cryptic, because the increased initial rate of attack from becoming more 

conspicuous is not necessarily always compensated for by increased avoidance of aversive 

prey by predators. In other circumstances, the optimal toxin load may be insufficient to 

generate aversion but still be non-zero (because it increases survival), and in yet other 

circumstances, it is optimal to make no investment in toxins at all. The model also predicts 

ESSs where the prey are highly defended and aversive and where this defence is advertised 

at a cost of increased conspicuousness to predators. In many circumstances there is an 

infinite array of these aposematic ESSs, where the precise appearance is unimportant as long 

as it is highly visible and shared by all members of the population. Yet another class of 

solutions is possible where there is strong between-individual variation in appearance 

between conspicuous, poorly defended prey.  
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Introduction 

There is a very well-developed body of theory pertaining to understanding the prevalences 

of induced and static constitutive defences against attackers: (e.g. Irie & Iwasa, 2005; Shudo 

& Iwasa, 2004; Shudo & Iwasa, 2002; Adler et al., 2001; Shudo & Iwasa, 2001; Iwasa et al., 

1996; Karban & Adler, 1996; VanDam et al., 1996). In such models induced defences have 

the advantage of saving costs associated with the maintenance of constitutive defences but 

the disadvantage that the attacks can flourish until such times as the induced defences kick 

in. Thus, induced defences may be an attractive option when attacks occur over a longer 

timescale of hours or days (examples of this might be attacks on plants by browsing 

herbivores or on animals by viral deseases). In this paper, we are interested in attacks that 

happen on a shorter timescale and which are potentially lethal to attacked individuals (the 

classic example of this being predation). Defences generally cannot be induced fast enough 

to give protection against such rapid attacks, and so potential prey focus on either primary 

defences aimed at reducing the rate of attack (for example, by camouflaging the potential 

prey from predators) or secondary defences that aim to reduce the likelihood that detection 

by a predator results in death.  

 

Secondary defences increase the inclusive fitness of a prey animal by increasing the 

likelihood that it escapes from a predator without serious injury and/or by decreasing the 

probability that the same predator will attack the prey and its relatives in the future. Though 

diverse in form, components of secondary defences can be broadly classified into locomotor 

(rapid escape, protean evasive flight), morphological (spines, tough integuments etc.) and 

chemical (toxins, venoms, noxious secretions etc.) classes. In some cases defences may be 

visually detectable before an attack is launched and function as their own reliable signal to 

predators; the existence of numerous sharp spines or the mode of locomotion of an animal 

may present predators with reliable and detectable cues as to the unprofitability of specific 

prey types.  

 

In many other cases, and especially in examples of chemical defences, the threat posed by 

secondary defences are not easily evaluated by potential predators using external cues in 

prey; here defended prey “require some signal or danger flag which shall serve as a 

warning to would-be enemies not to attack them, and they have usually obtained this in the 
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form of conspicuous or brilliant coloration, very distinct from the protective tints of the 

defenceless animals allied to them” (p. 232, Wallace, 1889). 

 

Thus many, but not all, prey with effective secondary defences possess danger flags in the 

form of more or less conspicuous (“aposematic”) warning displays that help predators 

distinguish edible from unprofitable and dangerous species.  

 

Given that defended prey can vary their degree of conspicuousness, a pertinent question is 

how conspicuous (or how cryptic) should a particular prey be? Conspicuousness is, in many 

prey, directly traded-off against crypsis, such that the benefits that accrue from 

conspicuousness (reduced recognition errors, enhanced wariness, accelerated learning and 

decelerated forgetting processes in predators) are gained at the expense of increased rates of 

detection by predators. Should we expect optimal conspicuousness to increase continuously 

with the strength of a prey animal’s defence, as has recently been suggested (Summers & 

Clough, 2001), or can we expect a more complex relationship between defence and 

conspicuousness? A second, related and important question is; whether (and when) should 

defended prey show between-individual variation in their appearance.   

Defences themselves may be costly and therefore be traded-off against other components of 

fitness. There is a growing body of empirical literature that demonstrates that many chemical 

defences incur fitness costs, either through the costs of biosynthesis or acquisition (via 

sequestration or symbiosis) and storage. Such costs are often seen in reductions in growth, in 

adult size, in fecundity or have been directly measured in energetic terms (Cohen, 1985; 

Zalucki et al., 2001;Bowers & Collinge, 1992; Camara, 1997; Bjorkman & Larsson, 

1991;Rowell-Rahier & Pasteels, 1986; Dobler & Rowell-Rahier, 1994; Grill & Moore, 

1998), although we note that in some circumstances costs have not been detected (Bowers, 

1988; Kearsley & Whitham,1992). Another pertinent question is therefore “how much 

should any given prey invest in its defences?” 

 

Aposematic signals are necessarily co-evolved with the defences that they advertise. These 

signals make the prey more visible to predators (reducing their primary defence of avoiding 

encounters with predators), but have the potential to compensate for this by enhancing 

predator’s learned aversion to defended prey (thereby enhancing secondary defences). To 

date the co-evolution and optimisation of constitutive defences in prey animals and signals 

of those defences have received surprisingly little theoretical attention compared to the 
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economics of induced defences. The model of Leimar et al. (1986) is, however, particularly 

important. This model includes: (1) components of an individual predator’s psychology and 

behaviour (varied learning rates and sensory generalisation in order to calculate attack 

probabilities); (2) the properties of individual prey(continuous variation in effectiveness of 

unprofitability in terms of individual survival and effects on predators’ learning rates, costs 

of a defence, and degree of conspicuousness) and (3) structuring of prey populations(size 

and degree of clustering of prey as a proxy for kin selection). Leimar et al. combine these 

components into a model that determined evolutionarily stable strategies (ESSs) for the 

continuously-varying parameters of conspicuousness and unprofitability. Their model 

predicts that there can be a single monotypic ESS for some nontrivial level of defence for a 

prey of given conspicuousness. Increases in optimal levels of defence would be caused by: 

(i) increases in survival rates of individuals combined with (ii) a positive relationship 

between learning rate and prey unprofitability provided that there was a capacity for 

predators to confer the benefit of avoidance learning on the same individuals (through 

repeated attacks) or through kin grouping.  

 

Furthermore, Leimar et al. (1986) found that kin grouping, perhaps combined with an 

increase in predation threat, could destabilise crypsis in favour of aposematism, but that, 

once evolved, kin grouping was not necessary for the maintenance of aposematism. When 

aposematism already exists, it could be stabilised by (i) a positive relationship between 

conspicuousness and learning and (ii) a supernormal (or peak-shift-like) response, in which 

the strongest levels of avoidance are conferred on phenotypes that are more conspicuous 

than those generally encountered. The game theoretic approach developed by Leimar et al. 

represents a seminal work in the theory of prey defences and warning signals, providing a 

framework in which the evolution of both traits can be analysed. However we note a number 

of areas that in our view warrant further attention and development.  

 

The model of Leimar et al. (1986) considers a set of naïve predators (initially one individual) 

that start out with an initial “excitatory” attack tendency described as e(x), its generalisation 

gradient due to the “predator’s experience of cryptic and profitable prey of other species”. 

When these naïve predators now meet unprofitable prey, generalised attack probabilities are 

reduced according to an inhibitory gradient h(x,x1,y1) , where x1 is the conspicuousness and 

y1 the unprofitability of the encountered prey individual. Hence, in this model, attack 
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probabilities for a range of prey appearances are determined by a generalisation function of 

the form 

 

G(x)= e(x)[1- h(x,x1,y1)]
n where n is the number of previous encounters between predator 

and prey.  

 

Although now close to 20 years old, the model of Leimar remains the dominant work on the 

coevolution of defences and signals of those defences (see Ch. 8 of Ruxton et al. 2004). No 

other published models in aposematism theory consider the joint evolution of primary and 

secondary defences (though see recent and related models in: Speed & Ruxton, 2005; 

Merilaita & Tullberg, 2005); other models focus specifically on the evolution of aposematic 

displays ignoring the fact that aposematism contains an ensemble of primary and secondary 

defences.  Since the model of Leimar et al. (1986) was constructed to explicitly examine the 

effects of individual predator psychology on aposematic evolution, their formulation is 

entirely reasonable. However, the implication of this component of the model is that the 

predator can reduce its range of generalised attack probabilities, because of repeated 

inhibitory effects, but it cannot ever raise it. Whichever prey gets attacked, whatever their 

appearance and toxicity, whatever the outcome, the aversion of the predator increases for 

every further prey individual encountered, or at least cannot decrease. However, this is 

clearly not an appropriate long-term strategy for a predator, as it must necessarily  

lead to ever decreasing uptake rates.  In addition, we argue in this paper that the generality of 

the results described in Leimar et al. (1986) can in some cases be hard to evaluate, as they 

select specific functional forms at the outset. A more general model of predation may 

provide a more flexible framework for evaluation.  

 

In this paper we therefore examine the evolution of conspicuousness and defence in 

defended species with a complementary model to that of Leimar et al. (1986). We assume 

that the secondary defence is a form of toxicity (though it can clearly be extended beyond 

this) and present a model that we strive to make as general as possible whilst still being 

capable of making useful specific predictions. Thus, rather than describe the effects of 

learning in individual predators, a set of predators is modelled here as a group in equilibrium 

for states of learning, hunger etc.   
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Furthermore, in the model described here, predators can both lower and raise their attack 

probabilities with prey that contain modest quantities of toxins (Sherratt et al., 2004). We 

use the model to investigate (1) the relationship between defence and the appearance of a 

prey when the levels of mortality from causes other than predation and the degree of kin 

grouping varies; (2) the optimal level of conspicuousness for a range of toxicity levels; and 

(3) the extent to which optimal toxicity can be affected by the appearance of an animal and 

the degree of kin grouping within the population.  

 

Model Description 

We consider a single population of individuals that are potentially prey to a predator. Each 

prey individual i is described by three parameters {ti, r i, θi}. The parameter ti describes the 

toxicity (or, more generally, investment in anti-predatory defence) of individual i, with 

increasing values indicating increasing toxicity, and ti = 0 indicating minimal investment in 

toxicity. The parameter r i describes the conspicuousness of individual i (or more generally 

the probability of detection upon encounter with a predator is an increasing function of r i). 

Increasing values of r i indicate increasing conspicuousness, with r = 0 indicating maximum 

crypsis. The final parameter θi also describes the appearance of the individual, but such that 

changes in θ affect the appearance of the individual without affecting its conspicuousness. 

Thus two prey types can be equal in conspicuousness against the background (have identical 

r values) but be very different in appearance from each other (have different θ values. For 

example two brightly coloured butterfly species can be equally easy to detect against the 

background foliage but can still be identified as distinct species. The most common 

definition for crypsis is due to Endler (1978): “a colour pattern is cryptic if it resembles a 

random sample from the background…”. As Endler himself pointed out, a key consequence 

of the concept of random samples is that two different patterns (being to different random 

samples of the background) can be equally easily detectable.  This suggests that two 

individuals can look different (i.e. have different t values in our model) but have the same 

likelihood of detection (identical r values): see Ruxton et al. pp 13 (2004) for further 

discussion.  Thus r and θ are orthogonal axes that together describe the parameter space of 

possible appearance. Without loss of generality, we assume that these axes are polar rather 

than Cartesian, θ taking values in (0,2π). We are interested in finding the evolutionarily 

stable values of {ti, r i, θi}.  
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A key assumption of the model is that toxin production is expensive. We describe this by 

assuming that the fecundity of an individual F is a decreasing function of ti. However, there 

is also a direct benefit to toxicity in that increasing investment in toxicity increases the 

likelihood of surviving a predatory attack. Specifically, we assume that if the predator 

attacks a prey item then the probability that the prey is captured (K) is a declining function 

of t.  

 

There is another way that toxicity can affect survivorship and this is by influencing the 

probability that upon encountering an individual prey item, the predator decides to attack 

that particular prey individual. This probability (denoted by Q) declines with the 

aversiveness of the experiences that the predator is likely to have previously had (and 

subsequently remembered) on attacking similar looking prey items. Let us consider a 

predator attacking individual i. We first of all need to define “similar looking” individuals to 

individual i. We do this with a function S(r i,θi, rj, θj), which is a measure of the visual 

similarity between individuals i and j.  S increases as the points { ri,θi} and { r j,θj}  get closer 

together; in particular in this paper we treat S as a univariate function of the Euclidian 

distance between the two species (see Appendix 1). We also have to describe the 

aversiveness of an experience with a prey item, which we do with function H. Specifically 

H(tj) is the aversiveness of attacking individual j. Positive values of H indicate an aversive 

experience; the higher the toxicity, the more positive H is and so the more aversive the 

experience. However, if an individual’s investment in toxins is low then the experience of 

attacking it may not be aversive at all, indeed the predator may treat it as a beneficial 

experience. We describe such situations by a negative value of H. We define the critical 

value of toxicity (tc) as that which produces a neutrally aversive response: 

 

( ) 0=ctH          (1) 

 

This non-zero value of tc represents the phenomenon that prey may have to invest non-

trivially in defence to become sufficiently aversive as to be unattractive to predators. That is, 

predators may be prepared to still consume prey with some mild aversive features, because 

the rewards of nutritional content are worth this small cost. We also need to describe 

encounter rates between the predator and prey, and the ease with which they are 

subsequently remembered. We assume that the rate that an individual of conspicuousness r 
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is detected by a predator (i.e. the rate that it is encountered by a predator multiplied by the 

probability it is detected when it encounters it) is D, where D is an increasing function of r 

but even maximally cryptic prey have some chance of being detected (i.e. when r=0, 

D(r)>0) . The rate at which such encounters occur and are later recalled by the predator is L, 

where L too is an increasing function of r. If the predator has perfect recollection of all 

encounters then L = D. Drawing all this together, on encountering individual i, then the 

available information to the predators (scaled by the total number of predators) on the 

attractiveness or aversiveness of that prey item (denoted I i) can be calculated as follows 

 

( ) ( ) ( )jjiij

N

ijj
ji rrStHrL

n
I θθ ,,,

1

,1
∑

≠=

=        (2) 

 

where N is the number of prey items in the population and n is the number of predators. We 

shall take this as our measure of the information that an average predator has about 

individual i. When this individual meets a predator, we assume that it is equally likely to be 

any of the n available, so that the predator will on average have this information about its 

aversiveness. It shall be further assumed that the population is in equilibrium, and its size is 

sufficiently large, so that any individual encounter has no effect on the population size. We 

assume that on encountering individual i, the probability of the predator  mounting an attack 

is Q(I i) and Q declines with increasing I i. Note that the larger the prey population, the more 

encounters each predator is likely to have and so the more information it has. This in turn 

means that a predator’s preference will be more clearly defined, and for a large population I 

will tend to be a large positive or large negative value so that Q willbe closer to 0 or 1. 

  

We must now describe the fitness of individual i. We assume that there is a background 

mortality rate λ. From our arguments above, the rate of predator-induced mortality on this 

individual is D(r i)K(ti)Q(I i), and so the fitness of individual i can be described by  

 

 

)()()(
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It is this fitness function that we use in our ESS calculations, where we consider inclusive 

fitness assuming that the average relatedness between individuals is a. Note, since we are 

only interested in situations where the population is at equilibrium, this fitness description is 

equivalent to the alternative per capita rate of increase. Our key results are presented in the 

next section, with some of the ESS calculations outlined in Appendix 1. It should be noted at 

this point that a strategy which can be attained through small, selectively advantageous steps 

is called convergence stable. We only demonstrate when strategies in our model  are 

resistant to such changes, and do not show that strategies are convergence stable.  

 

Results  

We begin by considering the payoff function derived in the previous section and how it can 

be used to find ESSs. 

 
Relative payoffs   

We represent the average relatedness of individuals in the “local” area by a. We assume that 

the population in this area consists of a proportion of identical individuals a which plays the 

strategy t,r,θ, the remaining members of the population being unrelated to this group and 

playing 111 ,, θrt . 111 ,, θrt  is an ESS if and only if the reward to a 111 ,, θrt -individual in such 

a population is greater than the reward to a t,r,θ-individual, for any possible set of alternative 

parameters t,r,θ. We shall consider local ESSs only, where it is assumed that alternative 

strategies are mutations which are very close to the original values.  

 
The payoff to an individual playing a mutant strategy is given by  
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The payoff to a resident (averaged over a much larger area) is 
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I  is the toxicity information for the mutant in the local area, and 1I  is the toxicity 

information for the resident over the larger area (essentially unaffected by the mutant). To 

obtain the inclusive fitness for both mutant and resident the payoffs should be multiplied by 

the term (1+a(N-1)); we leave this term out as it has no effect on our results.  

 

We explore the different types of ESS possible in our model in this section. We break this 

down by considering the different types of conspicuousness (r1) in turn.  

 

Optimal toxicity 

 

The ESS value of t can be found by solving the following equation at 111 ,, θθ === rrtt . 
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We can thus use this condition to check stability for any particular situation, although it is 

not possible to verify that such solutions are always stable. 

 

Note that it is also possible for 1t =0 to be stable, which occurs if  

 

0)0,( 11 <rg                                   (4c) 

 

For the sake of simplicity we shall assume that there is precisely one value of 1t  which 

satisfies condition (4a), or alternatively (4c) for any given 1r  (a reasonable assumption for 

well behaved functional forms).  We show in Appendix 1 that whenever 1I >0 (t> ct ), the 

(unique) optimal value of t increases as r increases, so if optimal toxicity is aversive for any 

value of 1r , it is for all larger values of r, under reasonable assumptions.  Thus for each such 

appearance there is an equilibrium level of toxicity (t1) given by equation (4a), provided that 

this yields a non-zero toxicity, where the information of toxicity is given by  
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since N is large.  

 

i) ESS featuring maximal crypsis (i.e. r = 0)  

Appendix 1 demonstrates that there will be an ESS with r = 0, if and only if we satisfy the 

condition: 
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where we represent the average relatedness of individuals in the “local” area by a, 
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= , and t1 is the ESS level of toxicity, which is found by 

substituting r1 =0 in equation (4a).                      

  

 

Note that it is also possible for 1t =0 to be stable, which occurs if  

 

0)0,0(1 <g                                         (7) 

 

This set of equations can only be solved iteratively once specific functional forms for all the 

functions and all parameter values have been specified. But the results in Appendix 1 do 

allow us to draw general conclusions about the type of maximally cryptic ESSs that are 

possible. Specifically, there is an ESS with maximum crypsis and minimal investment in 

toxins (i.e.  r= 0, t = 0) provided that inequalities (6) and (7) are satisfied.  

 

However, it is also possible for the ESS to involve significant investment in toxins without 

this triggering a change from maximally cryptic appearance. That is, there is an ESS with (r1 

= 0 and t1 > 0), if equation (4a) and inequality (6) are satisfied. 

 

 

ii) ESS with warning colouration ( i.e. r > 0)  

One result from Appendix 1 is that individuals will never give up on maximal crypsis unless 

there is investment in toxins. That is, there is never an ESS with r1 > 0 and t1 = 0. In fact, 

there is no ESS with r1> 0, unless the associated toxin investment is sufficiently strong to be 

aversive (i.e. t1> tc). However an ESS with r1> 0 can exist providing that equation (4a) is 

satisfied, together with 
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However, an interesting aspect to this case, is that we demonstrate in Appendix 1 that when 

an ESS with warning colouration is possible, then there is no unique ESS, indeed, there is an 

infinite number of ESSs. Specifically, under reasonable conditions on the parameters, there 

will be a lower critical value of r (denoted R), and all values r > R, have a unique value of t 

such that {r,t(r)}is an ESS. This critical value of R is given by  
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The value of t(r) (obtained from equation (4a)) always increases with increasing r, and so we 

predict a strong correlation between investment in toxicity and conspicuousness of 

aposematic signals.  

 

iii) ESSs where there is heterogeneity in appearance between individuals.  

For the ESSs that have been discussed so far, the value of θ has been irrelevant. For 

maximally cryptic solutions with r = 0, it is easy to see that there is no selection pressure on 

the value of θ. For the ESSs with aversive prey (t1 > tc) and warning colouration (r > 0), it is 

clear there is now strong selection pressure on θ, but this selection pressure drives the 

population towards homogeneity in this parameter, the final parameter value settled upon is 

irrelevant providing all individuals adopt the same value (i.e. all individuals look alike).  

 

However, in Appendix 1 we demonstrate that there are situations where the prey contains no 

toxins or some moderate level of toxin but is not aversive in the sense that predators increase 

their willingness to attack similar looking prey in future (t1 < tc) where the solution is more 

complicated. Here, the evolutionarily stable appearance is not full crypsis (i.e. r1 > 0). This 

is due to the fact that looking very similar to other non-toxic cryptic individuals outweighs 

the benefit of the extra crypsis. Some “aposematic distinctiveness” (in the sense of A.R. 

Wallace’s original formulation) from more edible prey types is therefore optimal, even 

though the prey is not outrightly aversive. Such a solution will only occur when a small 
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decrease in crypsis (a small increase in r) does not cause a large increase in encounter rate 

(D(r)). 

 

Discussion 

 

We first consider the general classes of possible ESS solution and subsequently consider 

how variation in the value of key variables determines which solution(s) is most likely. 

Finally we compare the model described in this paper with the original model in Leimar et 

al.(1986). 

 

Evolutionary stable outcomes 

 

Our model predicts four distinct possibilities for a solution with maximum crypsis (r=0). 

Namely that (1) such a solution exists with zero toxicity (t=0),(2) it exists with a non-zero 

but non-aversive level of toxicity (0<t<tc), (3) it exists with a high, aversive level of toxicity 

(t>tc) or (4) that no such maximally cryptic solution exists. That is, under some, but not all 

circumstances, an ESS involving the prey all minimising the rate at which they are detected 

by predators occurs. Interestingly, maximally cryptic prey may still invest in toxins, because 

of the increased chance of surviving an attack that comes from having toxins. The toxin load 

of maximally cryptic prey may be sufficiently strong that the predators will find them 

aversive, and seek to avoid similar looking prey in future. However, this aversiveness does 

not necessarily trigger aposematic signalling, and highly toxic prey can still be maximally 

cryptic, because the increase in rate of attack from becoming more conspicuous is not 

necessarily always compensated for by increased avoidance of aversive prey by predators. In 

other circumstances, the optimal toxin load may be insufficient to generate aversion but still 

be non-zero (because it increases survival), and in yet other circumstances, it is optimal to 

make no investment in toxins at all.  

 

Each of these four possibilities may (for some combinations of parameter values) exist as the 

only ESS (which we label as situation a). However there are also combinations of parameter 

values where each type of maximally cryptic ESS exists alongside a range of non-cryptic 

ESSs, which involve aversive levels of toxins (we label such situations b).   Any such non-

cryptic solution is more stable the larger the information of the toxicity of that appearance 
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(thus conditions are often given in terms of 1I  is greater than some value). Under reasonable 

conditions the solution pair r,t(r) are stable for values of r above a given threshold R, so that 

multiple (infinite) solutions exist in many circumstances. Effectively, if an animal is 

conspicuous enough to be easily seen and this indicates high toxicity so that predators avoid 

it, it does not matter exactly which level of conspicuousness the prey individuals choose as 

long as everyone looks the same.  

Any animal that changes its appearance will suffer, so all levels of conspicuousness above a 

certain threshold are stable.  

 

Higher levels of conspicuousness are generally associated with higher levels of toxicity. 

Thus there are eight distinct scenarios (1-4,a-b), between each of which we can specify 

(admittedly complex) boundary conditions in terms of the values given to parameter values.  

 

Note that it is possible that there is no solution either with r=0 or r>0, where all individuals 

are identical in toxicity and appearance. In this case, the solution will have the population of 

prey individuals uniformly spread across all θ values. They need not all have identical r 

values, and in general will not. Generally we expect a critical maximum value of r, below 

which all prey select values. Again increasing r will be associated with increasing (or at least 

non-decreasing) toxicity. Such non-point solutions occur when prey seek to be different 

from others, to disrupt associative learning. In our model increased between-individual 

separation in appearance is associated with increased conspicuousness (and so increased 

attack rates). It is this trade-off between minimising attack rates and maximising visual 

difference from other prey that generates this heterogeneous-appearance ESS.  

 

Whilst we have found the (local) ESSs for each scenario, we have not considered the 

convergence stability of each solution. It is likely that when there is a unique cryptic ESS 

then this will be globally stable, and we have discussed the case where there is no pure 

solution above. When there are aposematic ESSs, there are an infinite number of them, and 

the situation will be much more complicated. It is not clear that all the ESSs will be able to 

be reached by repeated localised mutations. It is possible that starting from crypsis, the 

lowest value of r which can be stable, the lower bound R, will always be attained. It is also 

possible that there will be a non-point solution as well as the aposematic point solutions, so 

that none of these aposematic  ESSs can be reached from crypsis. It is unclear what dynamic 
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behaviour will occur from a starting point where r>0 . One thing that we can say is that close 

to any point solution evolution in the direction of r is likely to be stronger than that in the 

direction of t because of the discontinuity in the derivative in this direction so that although 

analysis is likely to be complicated, it may effectively reduce to the one dimensional case, 

and depend crucially on expressions (4a-c). Also there can be a single cryptic solution as 

well as many aposematic solutions, and the behaviour here may again be different. We have 

not even begun to address these interesting dynamic questions, which will be reserved for 

later work.  

 

Key parameters and the nature of the ESS  

 

Rather than solve our equations for specific cases of functional responses and parameter 

values, we can make general statements about the influence of our various parameters on 

which solutions are likely to occur. For any particular value of r there is a unique optimal 

value of toxicity t. In general for r>0 the higher t is in conjunction with r, the more likely it 

is to be stable against changes in appearance (higher t means higher1I , see (5) and (6)). 

Increasing the level of deaths from other causes λ reduces the value of t for a given r, and so 

reduces the likelihood of the solution being stable, and reduces the stable range of non-

cryptic solutions. This makes sense since, as the influence of predation declines, the value of 

deterrence declines relative to the decreased fecundity of higher toxicity. Increasing the level 

of relatedness a increases the toxicity level that is optimal for any given r, and makes that 

solution more likely to be stable. In general increasing relatedness increases the range of 

non-cryptic stable solutions. The higher the relatedness, the closer the individual best 

strategy is to the group optimum, which tends to be higher toxicity and conspicuousness. 

The strategy is less liable to cheating (copying appearance with less toxicity), since, if you 

cheat, you harm your relatives whilst helping yourself.  

 

If we substitute some plausible functional forms for the general functions used in the model, 

then we gain some further insights. Specifically Appendix 2 demonstrates that high toxicity 

tends to occur when the population of prey is large, the relatedness in the population is large, 

detection probability is large (even when maximally cryptic), learning occurs quickly, 

fecundity declines slowly with toxicity, the probability of attack declines quickly with 

information of toxicity and the level of toxicity needed to be aversive is large.  
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Note that when death can only occur through predation (i.e. λ = 0) and relatedness has no 

effect (a = 0), there is an optimal toxicity independent of appearance. This can be explained 

by the fact that each individual just finds its best level (any population using some trade-off 

between toxicity and appearance is invaded by an individual with identical appearance and 

optimal toxicity). When other mortality factors and/or relatedness feature, then there is an 

optimal level of toxicity for any appearance. 

 

The present model compared to that of Leimar et al. (1986) 

 

The key difference between the model of Leimar et al. and ours is the assumptions about the 

predator population. In their model, there are essentially a group of new predators emerging 

at the start of a season and then continuing to learn over time, so that learning causes 

changes in the predation pressure over time. This is, in our view, eminently reasonable in a 

study that aims to examine the initial origins of aposematism, in which all predators were 

initially naïve. Here, by contrast, we consider an equilibrium situation, where there is no 

change in predation pressure over time. The equilibrium level may have been reached by 

learning, or genetic inheritance or a combination of the two. However the equilibrium is 

maintained essentially because there is always a balanced mix of young and old individuals 

in overlapping generations. After the initial evolution of aposematism, the Leimar et al. 

model might thus correspond ecologically to seasonal predators such as wasps, and ours to 

more long-lived predators, such as birds and lizards. 

 

Note that in Leimar et al’s model solution (2) – where there is non-zero investment in toxins 

but not sufficient to cause aversion -  is not possible as (in their model) all non-zero t are 

aversive, and learning can never make a predator more likely to eat something, so as time 

goes on all prey individuals are in less and less danger. Leimar et al’s solutions can include a 

maximally cryptic ESS with either no investment in defences (solution 1) or with defences 

sufficient to cause aversion (solution 3) with a single ESS r>0, as opposed to the range of 

solutions r>R that we generate.  

 

It should be noted that Leimar’s solutions are not true co-evolutionary ESSs, in the sense 

that they fix one parameter (e.g. t)and then find the optimal solution with the other. If we did 
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this, our model would also yield (at most) one stable solution r>0. Conversely if both of 

their parameters were allowed to vary simultaneously it is possible that solutions similar to 

ours would be generated. Indeed it seems logical that a range of r values would be stable. 

The non-cryptic solutions rely on predators recognising the prey and avoiding them. Thus 

any appearance that is sufficiently visible may suffice, as long as all individuals of the 

species look the same. 

 

Leimar et al’s model always yields at least one point solution (i.e. where all individuals have 

identical appearance). Ours yields no point solution under some circumstances. In this case 

the benefits of crypsis are outweighed by the similarity of appearance to other edible forms, 

and a spread of appearances to dilute the information the predator receives about the 

attractiveness of this type of prey is optimal.  

 

One of Leimar et al’s key predictions was that a non-cryptic ESS could only occur if 

predators are reluctant to attack prey that are more conspicuous than those so far 

encountered, or that faster learning occurred with the more conspicuous individuals. This is 

not necessary in our model, which has ESSs where there is no greater tendency to avoid the 

more conspicuous individuals, unless there is evidence that they are toxic; indeed the precise 

mechanisms of learning are not central to our model as they are to Leimar et al’s (although 

they indirectly affect it through the functions H(t) and L(r)) , as explained above). Leimar 

concludes that an increased level of survival of attacks with t>0 is important to allow ESSs 

featuring non-zero investment in defence to exist, and we are in full agreement with this 

conclusion. 

  

Conclusions 

 

There has been recent speculation (Summers & Clough,2001),that there may be a positive 

relationship between the conspicuousness of aposematic signals and the strength of the 

defence that they advertise. Here we present the first explicit mathematical model that can 

explore this suggestion, and our model predictions support this conjecture. These predictions 

rest to some extent upon an assumption, which we consider reasonable, about how our 

functions manifest themselves in nature (see some discussion on this in Appendix 1).    
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Our model makes the novel prediction that if conditions support the evolution of a 

sufficiently strong defence that the prey are aversive and advertise that defence in a 

conspicuous appearance, then a broad range of alternate ESSs are possible. The specific ESS 

reached depends on the history of a particular local prey population. Hence, the model 

suggests that the great diversity of levels of defence and appearance of aposematic prey does 

not necessarily require special explanation but is an emergent consequence of the co-

evolution of defence and signal of that defence.  

 

The theoretical literature in relation to secondary defences is currently unclear about whether 

or how much we can expect cryptic prey to be defended. Leimar et al. (1986) and also Speed 

& Ruxton (2004) both suggest that when the threat from predators is small cryptic prey 

should not invest in secondary defences. However, many other authors assume that cryptic 

prey can in fact be highly defended (e.g. Harvey et al., 1982; Yachi &Higashi, 1998; 

Servedio, 2000; Speed, 2001; Brodie & Agrawal, 2001). In this work, we predict that in 

some cases (with high costs and/ or low predation risk) maximally cryptic prey will be 

undefended. In other cases such as when there is a higher risk of predation they will be 

defended but only moderately: sufficiently to enhance individual survivial but not 

sufficiently to make them aversive to predators. In still other cases prey will be sufficiently 

defended to be aversive but still choose not to signal this if the costs of conspicuousness are 

too great. One important consequence is that aposematic coloration is not necessarily the 

optimal state for prey that possess substantial defences. Many of the results in this paper rest 

on the assumptions of stability and uniqueness of the optimal toxicity for any given 

appearance. The general nature of the model, and the complexity of the payoff function, has 

meant that we were unable to prove this is always true. Indeed, there will certainly be 

functional forms where this uniqueness will not occur, although we maintain that these are 

biologically unlikely. There may be cases where the assumption of stability is untrue, which 

could lead to polymorphism within the population, although we have not been able to find 

this. Such solutions, if they exist, would inevitably be more complex and would probably 

require significant simplification of the model to investigate. Our model also makes the 

novel prediction of a stable prey strategy that involves very high levels of variability in 

appearance in prey, combined with moderate and variable levels of defence. At present 

expectation in many theoretical models is that pro-apostatic selection favours diversity in 

edible, undefended prey populations but that as soon as there is any level of defence 

selection becomes anti-apostatic, favouring uniformity (Mallet & Joron, 1999). However we 
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indicate here that one class of stable evolutionary result is a combination of some moderate 

investment in secondary defence with high levels of diversity in the prey appearance.  
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Appendix 1: Derivation of ESS solutions   

 

Optimal toxicity for a given level of conspicuousness 

 

),( 111 trg  is increasing with 1r  provided that 1I >0, )(/)()( / iQiiQiV −=  is increasing with 

positive i at the critical value  1r  and )()( 11 IQrD increases with 1r  (or at least does not 

decrease sufficiently quickly) at this value. Increasing conspicuousness (r1)will certainly 

increase the rate at which prey are detected by predators (D). However, increasing r1 will 

increase I1, which in turn will decrease the probability that that detection leads to attack (Q). 

So the rate of attack (the product DQ) could in principle increase, decrease, or in the limiting 

case stay the same as conspicuousness (r1) increases. Indeed it would be possible to pick 

functional forms to achieve all these possible effects. However we consider that for the 

overwhelming majority of biologically plausible formulations D will increase faster with 

r1than Q decreases, and so the product DQ will increase with increasing r1. Our arguments 

are as follows. As the prey becomes more conspicuous (r1 increases) then the range of 

distances over which it can be detected will increase. Since almost all prey live in habitats 

where predator-prey interactions occur in two or three dimensions, a small increase in 

detection distance can lead to a large increase in encounter rate (D), because of the 

geometric effect. Although increasing conspicuousness will reduce the likelihood of an 

encounter leading to an attack, this probability will not be affected by geometry in the same 

way, so we would not expect this probability (Q) to decrease quickly enough with increasing 

r to compensate for the dramatic increase in D with increasing conspicuousness. Further, we 

would expect Q to be a saturating function of conspicuousness r1 (see discussions of 

learning and discrimination in Pearce & Bouton, 2001; Servedio, 2000; Roper &Redston, 

1987; Gamberale-Stille, 2001). The mechanism that causes the predator to attack 

conspicuous defended prey is confusing them with other prey types that are defended and 

cryptic, once conspicuous has increased sufficiently that such confusion is unlikely, further 

increases in conspicuousness will have little effect on Q. In contrast, there is less reason to 

expect a similar saturating effect whereby increasing conspicuousness does not lead to 

increased encounter rates without imposing special assumptions of the habitat structure of 

animal movement. So again, from this reason our expectation is that the product DQ will 

increase with increasing conspicuousness (increasing r1). 
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It should be noted here that these conditions are sufficient, but not necessary, so for instance 

if V(i) is increasing rapidly, then  )()( 11 IQrD  could be decreasing (as long as this is not too 

quickly) with the same result. In fact there is a link between these two assumptions. If 

L(r)=K D(r) for some constant K (reasonable given the relationship between these two 

functions) then )()( 11 IQrD  increasing is the same result as V( 1I )<1. We shall assume that 

these results are true. Similarly at 0),( 111 =trg , the function decreases with t under our 

assumption of a unique solution, since there is either a unique solution with 01 =t and 

0)0,( 11 <rg or 0)0,( 11 >rg and there is a unique solution with 0),( 111 =trg .  

Thus under our assumptions there is a unique solution for 1t for every 1r , which is increasing 

with 1r .   

 

So any solution must include this optimal level of toxicity. We next proceed to find the 

values of 1r  and 1θ  which can be stable in conjunction with this. Note that in the special case 

where λ=a=0, the optimal level of toxicity is independent of appearance (but not of 

aversiveness, as it affects this through H(t)). 

 

It may seem strange that optimal toxicity can be independent of appearance. However, 

natural selection acts at the level of the individual, and a stable solution is one that cannot be 

beaten by an invader. Any situation where the population does not choose the level of 

toxicity dictated by the trade-off between F and K, e.g. to be more toxic to deter predation, 

will be invaded by individuals which have the same appearance but choose the trade-off 

level.  

 

In the case where λ is non-zero (but a=0), there is a link between optimal t and appearance, 

for the sole reason that appearance affects the relative contribution of predation and other 

factors to mortality (given by λ/)()()( 111 tKIQrD ).  

There is thus a unique value of 1t  which is the optimal toxicity level for any given1r . We 

have to find which value(s) of1r , if any, give ESSs.  

 

The maximum crypsis solution (r1=0)  
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Firstly we look at the possibility of a solution with 1r =0 (note that this automatically means 

that the value of 1θ  is irrelevant).We only need to consider invasion by larger values of r, 

i.e. show that  

0),0,;,,( 1111 <
∂
∂ θθ trtP
r
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The second term is positive for some functions L(r) and S(y) (and for sufficiently small a) if 

and only if H( 1t )>0. In this case 1r  =0 is clearly stable.  

 

This means that for some functional forms being completely cryptic is always an ESS 

providing the best value of t is sufficiently toxic to be aversive, in the sense of reducing 

attacks by predators.  

 

Other point solutions (r1>0)  

 

If 01 >r  then the value of 1θ  is relevant, and we have to consider invasion by both larger 

and smaller values of r and different values of θ. Considering 1θθ =  initially, we are 

interested in the derivative  

),,;,,( 11111 θθ rtrtP
r∂

∂
 

which is discontinuous at 1rr = due to the similarity function S. The derivative becomes 

|)(|),(),(),,;,,( 111311211111 rr
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For a stable solution we need this derivative to be positive for 1rr < and negative for 1rr > . 

This is equivalent to 
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0),(),( 113112 <− trgtrg                                                       (14a) 

0),(),( 113112 >+ trgtrg                                                        (14b) 

 

Note that the discontinuity in the derivative at 1r  means that there is not a unique 

equilibrium value and the conspicuousness level 1r  is stable provided that (14) is satisfied. 

Equation(14a) is more difficult to satisfy than (14b) (unless a is unrealistically large) It is 

easy to see that it is impossible to satisfy this for H( 1t )<0 ( 1I  <0). If H( 1t )>0 then we 

require  
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Allowing 1θθ ≠  does not impose any further restrictions (invasion by such a strategy is 

easier to resist whenever H( 1t )>0).Any solution satisfying conditions (4) and (15) is thus 

stable. 

 

On the (reasonable) assumption that )(/)(/ rDrD is decreasing, then if either L(r)=K D(r)  

for some constant K or a is small, 111 ,, θrt  is a local ESS if R < 1r < ∞ for some critical value 

R (in addition to the possible crypsis 01 =r  solution). This is a sufficient condition only; this 

result may occur even if the above is not satisfied. (Similarly, the result may hold even if 

)()( 11 IQrD does not increase with 1r , and because of the discontinuity in the derivative of 

the fitness function with respect to r, the local ESSs are likely to occur for values of 1r  lying 

in an interval).  This value of R may be infinite, which would mean that no solution with 

01 >r  exists. 

 

To see this, consider the following. The criterion (15) reduces to 
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where the right-hand side of the above is positive. Given that optimal 1t does not decrease 

with 1r , then 1I increases with it so that the left-hand side of the above increases whilst the 

right-hand side decreases. Thus the critical value R is given by 
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Solution summary 

 

t=0 and r=0when 0)0,0(1 <g , 0)0,0()0,0( 32 >+ gg  

 

t>0 and r=0when 0),0( 11 =tg , 0),0(),0( 1312 >+ tgtg  

t=0 and r>0can never occur 

t>0 and r>0when 0),( 111 =trg  ( ctt >1  also needed), 

0),(),( 113112 <− trgtrg  

 

 

 

A unique ESS, multiple ESSs or no ESSs?  

 

We have an infinite set of candidate solutions given by the pair (r,t(r)), for all positive r, 

where t(r)is obtained from condition (4) and is non-decreasing with r, as soon as t(r) reaches 

ct  (recall that ct  is the value for which H(ct )= 1I =0). 

 

If t(r)< ct  for all values of r, then we know that all of these solutions are unstable, except 

possibly when r=0 . This occurs if the optimal value of t in the limit as r tends to infinity is 

not greater thanct , i.e. 

 

0),(1 <∞ ctg  

 

so that 
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if (17) is true then t(0)< ct  and so for 1r =0 we have 1I <0. Thus there is a unique ESS at 

1r =0 if (13) and (17) hold, otherwise no ESSs if (17) but not(13) holds. 

 

If (17) does not hold, there will be multiple solutions with 1r >0, as well as a solution with 

1r =0 if and only if (13) holds. 

 

 

Non-point solutions 

 

It is possible to have a solution where not all of the population look alike. In particular there 

are sets of functions where no point solution is possible. Since, for sufficiently small a, 1r =0 

is always a solution when H( 1t )>0 we shall briefly consider the situation where H( 1t )<0. 

Inthis case each individual gives information of the non-toxicity of those that it resembles, 

so that it is best to look as little like the other species members as possible. For any given 

value of 1r ,it is clear that the best distribution over θ is a uniform one on (0,2π). 

 

If a population follows this distribution of θ, then 
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In fact such a solution is unlikely to be stable, since it would be invaded by a small group 

that chooses a smaller r, and gets further in appearance from the others and reduces 

conspicuousness. A solution is likely to cover a range of values of1r .Calculation and 

checking for stability in this case will be difficult for real functions, and will probably 

require numerical solutions. Any solution will be in the form of a density function 

P(r,θ)=C(r)/2πr, i.e. dependent on r but not θ. 

It will satisfy the following two conditions: 
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(i) the payoff to all individuals in the population must be identical 

(ii) C(r) is continuous and there will be a unique point, r( mr ), where C(mr )=0 (otherwise 

individuals could change to marginally larger r with greater payoff), giving 
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Assuming that a=0, we expect a solution will be of the form  

 

1) D(w)Q( )(wI )=D(0)Q( )0(I ) for all w. 

 

2) C( mr )=0 
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so that 
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We conjecture that there will usually be a unique solution of this type.  

 

 

Appendix2: Example functions 

 

We now consider some examples of the functions described above to show the type of 

solutions which can occur. 
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Finally the information function Q is given by  
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This yields a unique value for optimal t, given by 
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This general expression works only for t> ct  (the ratio of the derivative of Q and Q is a little 

more complex for t< ct , but the principle is no different). All solutions when t< ct are 

unstable unless r=0 , as mentioned earlier. 

 

In the simplifying case where λ=a=0, we obtain 

 

)0,(1 βα −= Maxt , independently of r, which works whether ctt >1   or not. When α>β, 

inequality (4b) reduces to  
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which is clearly satisfied, confirming that the solution is stable. 

 

1r  =0 is an ESS if 
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When a=0 we obtain 
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for negative 1I   (it is trivially true for positive 1I  ). This is clearly satisfied when 1I  is near 

0 and when it is very large and negative, but possibly can be violated for intermediate 

values. Thus instability occurs in a critical range of information 1I   only, which for some 

parameters may be empty; if 1I   is large and negative then individuals are very attractive to 

predators and maximum camouflage is best, if 1I   is near zero individuals are slightly 

attractive to predators but cannot improve things much by changing appearance, so staying 

at r=0  is again best. For intermediate values individuals may be able to reduce their 

attractiveness by moving away from their current appearance, even though they will be 

discovered by predators more often. 1r  =0 is more likely to be a solution if the rate of 

decline of attacks as toxicity increases declines slowly, predators cannot identify differences 

between individuals for discriminatory purposes very well or camouflage is very effective. 

As long as a is not very large, the same pattern occurs for non-zero a. 

1r  >0 is an ESS if 
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This is only possible if 1I  >0. For a=0 we obtain 
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If further λ=0 then 
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which yields 
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so that any value of 1r   that is sufficiently large will be stable (and for some parameter 

values this will be true for all r, since R will be negative). Hence, beyond some threshold 

value of conspicuousness, any common form will be stable. 
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