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The impacts of plant-based factors on the population dynamics of mammalian herbivores has 

been the subject of much debate in ecology, but the role of antiherbivore defences in grasses has  

received relatively little attention. Silica has been proposed as the primary defence in grasses and 

is thought to lead to increased abrasiveness of foliage so deterring feeding, as well as reducing 

foliage digestibility and herbivore performance. However, at present there is little direct 

experimental evidence to support these ideas. In this study, we tested the effects of manipulating 

silica levels on the abrasiveness of grasses and on the feeding preference and growth performance 

of field voles, specialist grass-feeding herbivores. Elevated silica levels did increase the 

abrasiveness of grasses and deterred feeding by voles. We also demonstrated, for the first time, 

that silica reduced the growth rates of both juvenile and mature female voles by reducing the 

nitrogen they could absorb from the foliage. Furthermore, we found that vole feeding leads to 

increased levels of silica in leaves suggesting a dynamic feedback between grasses and their 

herbivores. We propose that silica induction due to vole grazing reduces vole performance and 

hence could contribute to cyclic dynamics in vole populations.  

 

Keywords: 

plant defence, population cycles, Microtus agrestis, feeding preference, herbivore performance, 

induction 
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Grasses dominate many terrestrial ecosystems and are of great ecological and economic 

importance, as are the grazing mammals associated with them. Although co-evolution between 

grasses and grazers has received a great deal of attention (Stebbins 1981; McNaughton 1984; 

Jernvall & Fortelius 2002; Prasad et al. 2005), the ecological mechanisms by which grasses 

defend themselves against herbivores remain poorly understood (O’Regain & Mentis 1989; 

Vicari & Bazely 1993). The silica content of grasses can be considerably higher than in many 

other plants and has been proposed as an antiherbivore defence strategy (McNaughton et al. 

1985; Gali-Muhtasib et al. 1992; Vicari & Bazely 1993). Silica is deposited as phytoliths in 

leaves. These are harder than tooth enamel (Baker et al. 1959), so they could potentially increase 

the abrasiveness of leaves and deter feeding (Vicari & Bazely 1993). However, currently the 

evidence supporting the effects of silica on the palatability of grasses to vertebrate herbivores is 

limited: there have been relatively few experimental studies and none which manipulate silica 

content and measure the subsequent changes in abrasiveness of leaves. For example, Gali-

Muhtasib et al. (1992) found prairie voles (Microtus ochrogaster) preferred leaves of grasses 

with lower silica content when comparing cut leaves of two Bromus species, but the effect of 

silica on abrasiveness was not tested. It has been also proposed that phytoliths may disrupt 

microbial action in the gut of herbivores, reducing the digestibility of grasses (Vicari & Bazely 

1993), but almost nothing is known about the effects of silica on either grass leaf digestibility or 

herbivore performance. 

 

Many small mammalian herbivores show strong selectivity in feeding preference, both within and 

between plant species. In voles, these preferences have previously been shown to relate to both 

the nutrient content (e.g. nitrogen) of their food plants and the levels of physical and chemical 

antiherbivore defences (Batzli & Cole 1979; Marquis & Batzli 1989; Hartley et al. 1995; Hjalten 
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et al. 1996). Despite this evidence of the importance of food quality for vole behaviour, the 

effects of silica, the principle defence in grasses have not been fully investigated. 
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For small, fast growing and short lived mammalian herbivores such as voles, food quality is 

particularly significant because of their relatively high metabolic rates (Demment & Van Soest 

1985), and because they have a limited capacity to increase rates of food consumption to 

compensate for poor quality diets (Zynel & Wunder 2002). In addition, the growth rates early in 

development are highly dependant upon nutrient intake. Therefore in voles, food quality has the 

potential to dictate the time taken to reach sexual maturity and the onset of breeding each year 

(Krebs & Myers 1974; Ergon et al. 2001). There has been considerable interest in the factors 

influencing the growth rates and reproductive output in voles because of the impact these 

parameters have on individual fitness and potentially on vole population dynamics (Argell et al. 

1995; Klemola et al. 2000a; Ergon et al. 2001; Turchin & Batzli 2001; Ergon et al. 2004). 

Changes in food quality, if they have significant effects on vole growth and reproduction, may 

play a role in these population processes. 

 

Here, for the first time, we test both the proposed mechanisms by which silica acts as a defence, 

namely its ability to increase abrasion and its effect on foliage digestibility and herbivore 

performance. We measure the effects of silica on the feeding preference and growth rates of field 

voles (Microtus agrestis L.). We focus on the effects of silica on the growth of female field voles 

as their reproductive performance, which is linked to their growth, is crucial to population growth 

and they are more likely to be affected by changes in food quality than males (Ostfeld 1985; 

Agrell et al. 1995). By manipulating the levels of silica in two species of grass we tested whether 

silica is an effective defence against voles. We hypothesized that silica will: i) increase the 

abrasiveness of grass leaves reducing feeding by of voles; ii) reduce the digestibility of grasses to 

voles resulting in reduced growth rates of both juvenile and adult voles. We also tested whether 
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vole feeding would induce silica defences by measuring the effect of vole damage on silica 

levels. 

 

2. METHODS 

Study species and plant growth conditions 

Short-tailed field voles (Microtus agrestis L.) are abundant in grasslands across Europe (Corbet 

& Harris 1991) and feed selectively on a range of grass species. We selected two grass species 

(Festuca ovina L. and Lolium perenne L.) found abundantly in European grasslands, which vary 

in their natural levels of foliar silica, nutrients and palatability to voles (table 1). Leaf samples of 

each grass species were collected from 10 replicate plants in 10 sites around East Sussex in 

August 2005, selected to represent a range of soil types and habitats, to confirm that our 

manipulated silica levels were within the range occurring in natural communities (table 1). 

 

Grasses were grown in inert growth media (perlite), under glasshouse conditions for 12–28 weeks 

(15–25 °C, 16/8 h L/D). Plants for preference trials were grown individually into 5×5×5 cm 

plugs, while plants for vole growth performance trials and leaf digestibility experiments were 

grown in sward trays (20×30×5 cm). Grasses were watered every 3 days with 25 ml (individual 

plants) or 300 ml (sward trays) of Hoagland’s solution. To half of the plants, 150mg l-1 of soluble 

silica was added as NaSiO3.9H2O to the Hoagland’s solution (Cid et al. 1990). 

 

Feeding preference 

Voles used in feeding trials were all non-lactating adults from a captive bred colony fed on a 

standard dried diet (N = 2.97%, C:N = 16.4, SiO2 = 2.64% dry matter: rabbit maintenance diet, 

B&K Feeds Universal) and fresh leaves of Triticum avenae daily. Voles were limited to water and 

a dried diet for 24 h prior to the trials. 
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Intraspecific feeding preference trials (n =10) with captive-bred, non-lactating adult voles used 

three individual grass plants (12 weeks old) per silica treatment per trial (F. ovina and L. 

perenne). The leaf area of each plant was measured before and after each trial (AM-200 leaf area 

meter, ADC BioScientific). Plants were randomly arranged in a 2×3 grid, placed in a vole cage 

with sawdust to the base of grasses. A single vole was added to each cage until approximately 

50% leaf area was eaten.  
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Growth of juvenile voles 

Twenty-four newly weaned (between 7 – 11 g), captive-bred, female voles were randomly 

assigned to a specific diet treatment (F. ovina or L. perenne; low or high silica). Voles were 

caged individually in glass tanks (45×30×30 cm, containing sawdust, cotton wool bedding, water 

and a standard dried diet) and 12 g of fresh grass from the particular treatment added daily. Voles 

were weighed every 3 – 4 days over a 2 month period. Faecal samples were collected after 1 

month, dried and analyzed for total nitrogen content (see below). 

 

Growth of mature voles 

Ten adult female voles (between 20 – 24 g) were caught from a field site close to the University 

of Sussex and kept for 2 months prior to digestion efficiency trials. Voles were kept individually 

(as above) and assigned sequentially to each diet treatment (F. ovina or L. perenne; low or high 

silica) for 7 days in a random order. Voles were given 15 g of fresh grass leaves daily. At the end 

of each diet treatment, voles were weighed and samples of faeces removed from each cage, dried 

and analyzed for nitrogen content (see below). 

 

Silica induction 

F. ovina and L. perenne plants were grown in compost under standard greenhouse conditions for 

3 months. Plants were then randomly assigned to damaged or undamaged treatments (n = 10). For 
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the vole damage treatment, plants were placed in a cage with a single vole until they were eaten 

to approximately 5 cm above ground level which took approximately 5 hours. The damage 

treatment was repeated every 3 weeks for 12 months. Plants were then left to regrow for 6 weeks 

before collecting leaf samples for silica analysis. 

 

Chemical and physical analyses  

Foliar silica content (n = 10) was determined by fusing oven dried leaf samples (approximately 

0.2 g) in sodium hydroxide followed by analysis using the colorimetric silicomolybdate technique 

(Allen 1989). Total foliar phenolic content of dried leaf samples (n = 10) was determined using 

the Folin-Ciocalteau method (Massey et al. 2005), using a tannic acid standard. Foliar and faecal 

nitrogen (n = 10) was analyzed using flash combustion of dried leaf samples (approximately 2.5 

mg) followed by gas chromatographic separation (Elemental Combustion System; Costech 

Instruments) calibrated against a standard of composition C26H26N2O2S. Specific leaf area (= dry 

leaf mass per unit area) and leaf water content was measured for each species and silica treatment 

(n = 10). Abrasiveness of grass samples (n = 10) was determined using a development of the 

method described by Hammond and Ennos (2000). Fixed areas of grass leaves were ground 

against a Perspex plate using a modified Martindale abrasion and pilling tester (Model 404, 

James H. Heal, Halifax). The degree of abrasion by phytoliths on the Perspex was quantified 

using a laser perthometer to measure the depth of grooves scratched in the surface. 

 

Statistical analysis 

Grass leaf characteristics (leaf abrasiveness, silica, nitrogen and phenolic contents) were 

compared between species and silica treatments using two-way ANOVAs. Feeding preference 

was calculated as the mean leaf area removed per treatment as a proportion of the total leaf area 

removed per trial. These data were then transformed using arcsine square-root to achieve 

normality, before being compared across silica treatments using paired t-tests. Growth rates of 
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juvenile voles (derived from the slope of linear regressions lines: r2 = 73.9 – 96.8 %) were 

compared between grass species and silica treatments using 2-way ANCOVA, with initial vole 

weight as covariate. The proportion of nitrogen absorbed from grass (grass N – fecal N/ grass N) 

was compared between species and silica treatments using 2-way ANOVA. For adult voles, 

growth rates relative to initial weight and the proportion of nitrogen absorbed from grass were 

compared between species and silica treatments using 2-way ANOVAs with vole as a random 

blocking term. For the induction experiment, the silica content of grasses after 16 months were 

compared between species and damage treatments using a 2-way ANOVA. 
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3. RESULTS 

Leaf abrasiveness and feeding preference 

The presence of silica in grass leaves led to increases of 29% and 42% in leaf abrasiveness in F. 

ovina and L. perenne (figure 1a), resulting in a reduction of 75% and 63% in feeding by field 

voles on the two grass species respectively (figure 1b). 

 

Vole growth performance and leaf digestibility 

Juvenile female voles reared for two months on leaves of F. ovina and L. perenne containing high 

silica levels had 41% and 35% lower growth rates respectively than voles reared on low silica 

leaves (figure 2a, ANCOVA: initial weight (cov) F1,19 = 0.03 and p = 0.872, species F1,19 = 11.07 

and p = 0.004, silica F1,19 = 35.42 and p < 0.001, and species × silica F1,19 = 0.05 and p = 0.831). 

The same trend was evident in mature female voles, where silica reduced their growth rate by 

over 50% during a period of only seven days of exposure (figure 2b, ANOVA: vole F9,27= 0.41 

and p = 0.917, silica F1,27 = 4.51 and p = 0.043). Over the 7 day period there was no difference in 

the response on different grass species (vole F9,27 = 0.41 and p = 0.917, species F1,27 = 1.68 and p 

= 0.206). 

 

 8



Comparisons of foliar and faecal nitrogen levels between silica treatments revealed that juvenile 

voles reared on high silica diets absorbed proportionally less nitrogen than voles reared on low 

silica diets (figure 2c ANOVA: species F
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1,20 = 125.43 and p < 0.001, silica F1,20 = 8.64 and p = 

0.008, species × silica F1,20 = 0.24 and p = 0.63). For mature voles, high silica diets resulted in 

38% and 19% less nitrogen absorbed from F. ovina and L. perenne leaves respectively (figure 2d 

ANOVA: vole F9,27 = 6.83 and p < 0.001, species F1,27 = 67.41 and p < 0.001, silica F1,27 = 52.97 

and p < 0.001, species × silica F9,27 = 4.36 and p = 0.046). As the silica treatments had no 

detectable effects on either leaf nitrogen or phenolic contents (table 1), these results suggest that 

it was the presence of silica that led to the reduced digestibility of grass leaves. 

 

Silica induction 

Feeding by voles led to an increase in foliar silica content of over 400% in both F. ovina and L. 

perenne compared with undamaged plants (figure 3, ANOVA: species F1,36= 12.88 and p < 

0.001, damage F1,36= 134.47 and p < 0.001, species × damage F1,36= 5.22 and p = 0.028). 

 

4. DISCUSSION 

We have demonstrated that higher silica levels in grass leaves resulted in both increased 

abrasiveness of leaves and reduced feeding by voles. These results suggest that the elevated 

abrasiveness due to silica is an effective feeding deterrent to vertebrate herbivores and support the 

suggestion that silica may have played a significant role in driving the evolution of dental 

adaptations found in mammalian grazers (Janis & Fortelius 1988; Jernvall & Fortelius 2002; 

Prasad et al. 2005). Silica levels in natural grassland systems display intraspecific spatio-temporal 

variation, reflecting variation in biotic factors, such as grazing levels (McNaughton & Tarrants 

1983; Brizuela et al. 1986), and abiotic factors, such as pH and soil type (O’Reagain & Mentis 

1989). Hence, in addition to interspecific variation in silica content, there is potentially a large 

degree of intraspecific variation in silica between environments. We propose that voles can detect 
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and respond to these variations in silica content between plants and, in combination with the 

highly selective nature of vole feeding, this could ultimately result in changes in plant species 

abundance and hence the composition of plant communities (Moen et al. 1993; Howe & Brown 

1999; Clay 2001; Howe & Lane 2004). 

 

We have also demonstrated, for the first time, that silica in grass leaves can reduce the growth 

performance of voles, and our results strongly suggest that the mechanism by which this occurs is 

a reduction in the amount of nitrogen voles can absorb from grasses. Despite the nitrogen levels, 

phenolic concentration and water content of grass species being unaffected by the silica 

treatments, mature voles absorbed 38% and 17% less nitrogen when fed on high silica plants of 

F. ovina and L. perenne respectively. The presence of silica reduced the nitrogen available to 

voles in food where nitrogen is already limiting for a herbivore with a small body mass, a high 

metabolic rate and a low capacity to increase consumption in the face of declining food quality 

(Zynel & Wunder 2002). 

 

The substantial reductions in the growth rates of juvenile voles we observed could have 

implications for the time taken to reach sexual maturity, and hence for population growth. 

Similarly, despite the relatively short time scale of the feeding trials with mature voles, we still 

found evidence that silica in grasses significantly affected body mass and hence, potentially 

reproductive output. It is well established that female body mass and growth rate are prime 

determinants of both the number of litters and their size in voles as well as adult survival (Krebs 

& Myers 1974; Cole & Batzli 1979; Ergon et al. 2001; Ylonen & Eccard 2004). For example, 

when studying the factors affecting body mass of voles in a reciprocal transplant experiment 

between populations of varying body masses, Ergon et al. (2001) found that the immediate 

environment was the major predictor of vole condition. The factors in the immediate environment 
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responsible were not identified, but we have shown that food quality, specifically the silica 

content of grasses, is worthy of further investigation as a potential mechanism for these effects. 

 

Vole populations, as with many small mammals, are characterised by cyclical shifts in local 

population densities (Agrell et al. 1995; Klemola et al. 2000a), but the mechanisms underpinning 

these fluctuations are still a topic of debate (Agrell et al. 1995; Jaing & Shao 2003; Klemola et al. 

2000b, Stenseth et al. 2003; Hornfeldt et al. 2005). Previously, many studies have focused on 

predator-vole interactions as the prime mechanism determining vole cycles (Hansson 1987; 

Henttonen et al. 1987; Hanski et al. 1993; Klemola et al. 2000a). However, more recent evidence 

has suggested that changes in environment, including reductions in food quality, may also play a 

significant role (Agrell et al. 1995; Ergon et al. 2001; Turchin & Batzli 2001). Some aspects of 

food quality have been measured with respect to vole population growth (Agrell et al. 1995; 

Klemola et al. 2000a), but no studies have examined the effects of silica, the principle defence in 

their food plants. Although previous studies have found positive correlations between grazing 

levels and grass silica content (McNaughton & Tarrants 1983, McNaughton et al. 1985; Brizuela 

et al. 1986; Banuelos & Obeso 2000), we provide the first experimental demonstration that 

feeding by voles leads directly to dramatic increases in the levels of silica in grass leaves. Hence, 

this study highlights how silica induction due to grazing could contribute to cyclic dynamics in 

voles: in years of high population densities, high grazing pressure will lead to induction of silica 

defences and a subsequent reduction in vole body mass, reproductive outputs and survival.  

 

The role of defences in the dynamic feedbacks between woody plants and mammalian herbivores 

has been well studied (Bryant et al. 1991), but to date, no such plant-based mediation has been 

demonstrated for grasses and their herbivores. Further, no previous studies have investigated the 

effects of silica on herbivore performance, despite it being the principle defence in grasses. Our 

study demonstrates that silica is induced by 400% in response to vole grazing, and that vole 
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feeding is reduced by 75% and growth rates by 40% on diets containing silica. Effects of this  

magnitude seem likely to have significant ecological impacts on vole populations if they occur in 

the field. Silica-based defences thus have the potential to impact on both grassland community 

composition and on the population dynamics of mammalian herbivores. 
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Table 1 (i) The chemical composition of grass leaves under high and low silica treatments (% 

dry mass; mean values ± s.e.m.) and (ii) the leaf silica content of study species from field 

sites (minimum – maximum values in plants collected from 10 different natural plant 

communities). 

(i)  Silica 
treatment 

Leaf silica 
content  

Leaf nitrogen 
content  

Total phenolic 
content  

(ii)  Field silica 
levels  

Festuca ovina Low 0.52 ± 0.04 2.18 ± 0.18 1.27 ± 0.05 0.65 –3.54 
 High 2.44 ± 0.17 2.18 ± 0.18 1.25 ± 0.11  
Lolium perenne Low 0.54 ± 0.10 3.10 ± 0.10 1.39 ± 0.05 0.58 –4.52 
 High 4.68 ± 0.34 3.12 ± 0.10 1.38 ± 0.05  
      
ANOVA† species *** *** n.s.  
 silica *** n.s. n.s.  
 species × 

silica 
*** n.s. n.s.  

5 

6 

† ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 1. (a) Leaf abrasiveness (±SE) of F. ovina and L. perenne from high and low silica 

treatments. Letters above bars denote significant differences between treatments (Tukey; p < 0.05). 

(b) Vole feeding preference comparing grasses from high and low silica treatments based on trial 

means (±SE), paired t-test: *** p < 0.001. 

 

Figure 2. Growth rates (±SE) of (a) juvenile voles over two months and (b) mature voles over seven 

days on high and low silica diets of F. ovina and L. perenne. Proportion of nitrogen absorbed from 

grass leaves by (c) juvenile and (d) mature voles (nitrogen absorbed = N in grass – N in faeces/ N in 

grass). Letters above bars denote significant differences between treatments (Tukey; p < 0.05). 

 

Figure 3. Levels of silica in vole grazed and undamaged control plants of F. ovina and L. perenne. 

Values are means (±SE), bars not sharing a common letter differ significantly (Tukey’s Test p < 

0.05). 
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