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ABSTRACT 

The efficacy of the Hedges and colleagues’, Rosenthal-Rubin, and Hunter-Schmidt 

methods for combining correlation coefficients were tested when population effect-

sizes were both fixed and variable. After a brief tutorial on these meta-analytic 

methods the author presents two Monte Carlo simulations that compare these 

methods when the number of studies in the meta-analysis and the average sample 

size of studies were varied. In the fixed case the methods produced comparable 

estimates of the average effect-size; however, the Hunter-Schmidt method failed to 

control the Type I error rate for the associated significance tests. In the variable case, 

for both Hedges and colleagues’ and Hunter-Schmidt methods: (1) Type I error rates 

were not controlled for meta-analyses including 15 or less studies; and (2) the 

probability of detecting small effects was less than 0.3. Some practical 

recommendations are made about the use of meta-analysis. 
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META-ANALYSIS OF CORRELATION 
COEFFICIENTS: A MONTE CARLO COMPARISON 

OF FIXED- AND RANDOM-EFFECTS METHODS 

INTRODUCTION 

Meta-analysis is a statistical technique by which information from independent 

studies is assimilated. Traditionally, social science literatures were assimilated 

through discursive reviews. However, such reviews are subjective and prone to 

‘reviewer-biases’ such as the selective inclusion of studies, selective weighting of 

certain studies, and misrepresentation of findings (see Wolf, 1986). The inability of 

the human mind to provide accurate, unbiased, reliable and valid summaries of 

research (Glass, McGaw and Smith, 1981) created the need to develop more objective 

methods. Meta-analysis arguably provides the first step to such objectivity (see 

Schmidt, 1992), although it too relies on subjective judgements regarding study 

inclusion (and so is still problematic because of biased selections of studies, and the 

omission of unpublished data—the file drawer problem—see Rosenthal & Rubin, 

1988). Since the seminal contributions of Glass (1976), Hedges and Olkin (1985), 

Rosenthal and Rubin (1978) and Hunter, Schmidt and Jackson (1982) there has been a 

meteoric increase in the use of meta-analysis. A quick search of a social science 

database1 revealed over 2200 published articles using or discussing meta-analysis 

published between 1981 and 2000. Of these, over 1400 have been published since 
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1995 and over 400 in the past year. Clearly, the use of meta-analysis is still 

accelerating and consequently the question of which technique is best has arisen.  

Methods of Meta-Analysis for Correlation Coefficients 

Basic Principles 

To summarise, an effect-size refers to the magnitude of effect observed in a study, be 

that the size of a relationship between variables or the degree of difference between 

group means. There are many different metrics that can be used to measure effect 

size: the Pearson product-moment correlation coefficient, r; the effect-size index, d; as 

well as odds ratios, risk rates, and risk differences. Of these, the correlation 

coefficient is used most often (Law, Schmidt & Hunter, 1994) and so is the focus of 

this study. Although various theorists have proposed variations on these metrics (for 

example, Glass’s ∆, Cohen’s d, and Hedges’s g are all estimates of δ), conceptually 

each metric represents the same thing: a standardized form of the size of the 

observed effect. Whether correlation coefficients or measures of differences are 

calculated is irrelevant because either metric can be converted into the other, and 

statistical analysis procedures for different metrics differ only in how the standard 

errors and bias corrections are calculated (Hedges, 1992). 

In meta-analysis, the basic principle is to calculate effect sizes for individual 

studies, convert them to a common metric, and then combine them to obtain an 

average effect size. Studies in a meta-analysis are typically weighted by the accuracy 

of the effect size they provide (i.e. the sampling precision), which is achieved by 

using the sample size (or a function of it) as a weight. Once the mean effect size has 
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been calculated it can be expressed in terms of standard normal deviations (a Z 

score) by dividing by the standard error of the mean. A significance value (i.e. the 

probability, p, of obtaining a Z score of such magnitude by chance) can then be 

computed. Alternatively, the significance of the average effect size can be inferred 

from the boundaries of a confidence interval constructed around the mean effect size. 

Johnson, Mullen and Salas (1995) point out that meta-analysis is typically used to 

address three general issues: central tendency, variability and prediction. Central 

tendency relates to the need to find the expected magnitude of effect across many 

studies (from which the population effect size can be inferred). This need is met by 

using some variation on the average effect size, the significance of this average or the 

confidence interval around the average. The issue of variability pertains to the 

difference between effect sizes across studies and is generally addressed using tests 

of the homogeneity of effect sizes. The question of prediction relates to the need to 

explain the variability in effect sizes across studies in terms of moderator variables. 

This issue is usually addressed by comparing study outcomes as a function of 

differences in characteristics that vary over all studies. As an example, differences in 

effect sizes could be moderated by the fact that some studies were carried out in the 

USA whereas others were conducted in the UK.  

Fixed versus Random Effects Models 

So far, we have seen that meta-analysis is used as a way of trying to ascertain the true 

effect sizes (i.e. the effect sizes in a population) by combining effect sizes from 

individual studies. There are two ways to conceptualise this process: fixed effects and 
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random effects models2. Hedges (1992) and Hedges and Vevea (1998) explain the 

distinction between these models wonderfully. In essence, in the fixed effect 

conceptualisation, the effect sizes in the population are fixed but unknown constants. 

As such, the effect size in the population is assumed to be the same for all studies 

included in a meta-analysis (Hunter & Schmidt, in press). This situation is called the 

homogenous case. The alternative possibility is that the population effect sizes vary 

randomly from study to study. In this case each study in a meta-analysis comes from 

a population that is likely to have a different effect size to any other study in the 

meta-analysis. So, population effect sizes can be thought of as being sampled from a 

universe of possible effects — a ‘superpopulation’ (Hedges, 1992, Becker, 1996). This 

situation is called the heterogeneous case. To summarise, in the random effects 

model studies in the meta-analysis are assumed to be only a sample of all possible 

studies that could be done on a given topic whereas in the fixed effect model the 

studies in the meta-analysis are assumed to constitute the entire universe of studies 

(Hunter & Schmidt, in press). 

In statistical terms the main difference between these models is in the calculation 

of standard errors associated with the combined effect size. Fixed effects models use 

only within-study variability in their error term because all other ‘unknowns’ in the 

model are assumed not to affect the effect size (see Hedges, 1992; Hedges & Vevea, 

1998). However, in random effects models it is necessary to account for the errors 

associated with sampling from populations that themselves have been sampled from 

a superpopulation. As such the error term contains two components: within-study 

variability and variability arising from differences between studies (see Hedges & 
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Vevea, 1998). The result is that standard errors in the random-effects model are 

typically much larger than in the fixed case if effect sizes are heterogeneous and, 

therefore, significance tests of combined effects are more conservative. 

In reality the random effects model is probably more realistic than the fixed effects 

model on the majority of occasions (especially when the researcher wishes to make 

general conclusions about the research domain as a whole and not restrict their 

findings to the studies included in the meta-analysis). Despite this fact, the National 

Research Council (1992) reports that fixed effects models are the rule rather than the 

exception. Osburn and Callender (1992) have also noted that real-world data are 

likely to have heterogeneous population effect sizes even in the absence of known 

moderator variables (see also Schmidt and Hunter, 1999). Despite these observations, 

Hunter and Schmidt (in press) reviewed the meta-analytic studies reported in 

Psychological Bulletin (a major review journal in psychology) and found 21 studies 

reporting fixed-effects meta-analyses but none using random effects models. 

Although fixed-effect models have attracted considerable attention  (Hedges, 1992, 

1994a,b), as Hedges and Vevea (1998) point out, the choice of model depends largely 

on the type of inferences that the researcher wishes to make: fixed-effect models are 

appropriate only for conditional inferences (i.e. inferences that extend only to the 

studies included in the meta-analysis) whereas random-effects models facilitate 

unconditional inferences (i.e. inferences that generalise beyond the studies included 

in the meta-analysis). For real-world data in the social sciences researchers typically 

wish to make unconditional inferences and so random-effects models are often more 

appropriate.  
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Over the last 20 years three methods of meta-analysis have remained popular (see 

Johnson, Mullen & Salas, 1995): the methods devised by Hedges, Olkin and 

colleagues, Rosenthal and Rubin (see Rosenthal, 1991), and Hunter and Schmidt 

(1990)3. Hedges and colleagues (Hedges & Olkin, 1985; Hedges, 1992; Hedges & 

Vevea, 1998) have developed both fixed- and random-effects models for combining 

effect sizes, whereas Rosenthal (1991) presents only a fixed-effects model, and 

Hunter and Schmidt present what they have labelled a random-effects model (see 

Schmidt & Hunter, 1999). Although Johnson et al. (1995) overview these three meta-

analytic techniques, they did not use the methods for correlation advocated by 

Hedges and colleagues (or use the random-effects versions) and Schmidt and Hunter 

(1999) have made subsequent observations about the correct use of their method. 

Therefore, an overview of the techniques used in the current study, with reference to 

the original sources, is included as a pedagogical source for readers unfamiliar with 

meta-analysis of correlation coefficients. 

Hedges-Olkin and Rosenthal-Rubin Method 

For combining correlation coefficients, Hedges & Olkin (1985), Hedges and Vevea 

(1998) and Rosenthal and Rubin (see Rosenthal, 1991) are in agreement about the 

method used. However, there are two differences between the treatments that 

Hedges and colleagues and Rosenthal and Rubin have given to the meta-analysis of 

correlations. First, Rosenthal (1991) does not present a random effects version of the 

model. Second, to estimate the overall significance of the mean effect size, Rosenthal 
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and Rubin generally advocate that the probabilities of each effect size occurring by 

chance are combined (see Rosenthal, 1991; Rosenthal & Rubin, 1982).  

Fixed-Effects Model 

When correlation coefficients are used as the effect-size measure, Hedges and Olkin 

and Rosenthal and Rubin both advocate converting these effect sizes into a standard 

normal metric (using Fisher’s r-to-Z transformation) and then calculating a weighted 

average of these transformed scores. Fisher’s r-to-Z transformation (and the 

conversion back to r) is described in equation (1). The first step, therefore, is to use 

this equation to convert each correlation coefficient into its corresponding Z value 

(see Field, 1999 for an example). 
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The transformed effect sizes are then used to calculate an average in which each 

effect size is weighted. Equation (2) shows that the transformed effect size of the ith 

study is weighted by a weight for that particular study (wi). 
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Hedges and Vevea (1998) note that effect sizes based on large samples will be 

more precise than those based on small samples and so the weights should reflect the 

increased precision of large studies. In fact, the optimal weights that minimise the 

variance are the inverse variances of each study (see Hedges & Vevea, 1998, equation 
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2), and for correlation coefficients the individual variance is the inverse of the sample 

size minus three (see Hedges & Olkin, 1985, p. 227 and p. 231). 

iviw 1=  3
1
−=

iniv  3−=∴ ii nw  

As such, the general equation for the average effect size given in equation (2) 

becomes equation (3) for correlation coefficients (this is equation 4.16 in Rosenthal, 

1991, p. 74). 

( )∑

∑
=

=

=

−

−

k

i
i

k

i
iri

n

zn

rz

1

1

3

)3(

 (3) 

The sampling variance of this average effect size is simply the reciprocal of the 

sum of weights (Hedges and Vevea, 1998, equation 4) and the standard error of this 

average effect size is simply the square root of the sampling variance. So, in its 

general form the standard error is: 
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Given that for correlation coefficients the weights are simply n – 3, the standard 

error becomes: 
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Hedges and colleagues recommend that a z-score of the mean effect size be 

calculated by simply dividing the mean effect size by its standard error (see equation 



 

12 

(6)). The probability of obtaining that value of Z can then be calculated using the 

standard normal distribution (e.g. Field, 2000, p. 471).  However, Rosenthal and 

Rubin recommend that the probability of obtaining the average effect size be 

calculated by combining the individual probability values of each correlation 

coefficient (see Rosenthal, 1991, p. 85-86, equation 4.31). This is the only respect in 

which the Rosenthal-Rubin and Hedges-Olkin fixed-effects methods differ. 

( )r

r

zSE
zZ =  (6) 

Finally, to test the homogeneity of effect sizes across studies, the squared 

difference between the observed transformed r and the mean transformed r is used. 

To create a chi-square statistic some account has to be taken of the variance of each 

study and as before, for correlation coefficients the variance is just the sample size 

minus 3 (see Hedges & Vevea, 1998, equation 7). This gives us the statistic Q in 

Equation (7), which has a chi-square distribution (Rosenthal, 1991, equation 4.15, p. 

74; Hedges & Olkin, 1985, equation 16, p. 235; Hedges & Vevea, 1998, equation 7, p. 

490). 
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Random –effects model 

Rosenthal (1991) does not present a random effects version of the model 

previously described. However, Hedges and Olkin (1985) and Hedges and Vevea 

(1998) clearly elaborate on how a random-effects model can be calculated. The main 

difference in the random effects model is that the weights are calculated using a 
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variance component that incorporated between-study variance in addition to the 

within-study variance used in the fixed-effect model. This between-study variance is 

denoted by τ2 and is simply added to the within-study variance. As such the weights 

for the random-effects model ( )*
iw  are (see Hedges & Vevea, 1998, equation 13): 

2
1*

τ+
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iviw  3
1
−=

iniv  ( ) 12
3
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These new weights can simply be used in the same way as for the fixed-effects 

model to calculate the mean effect-size, its standard error and the z-score associated 

with it (by replacing the old weights with the new weights in equations 2, 4 and 6). 

The question arises of how the between-study variance might best be estimated. 

Hedges and Vevea (1998) provide equations for estimating the between-study 

variance based on the weighted sum of squared errors, Q (see equation (7)), the 

number of studies in the meta-analysis, k, and a constant, c (see equation (9)). 
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The constant is calculated using the weights from the fixed effects model: 
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When combining correlation coefficients the weights are just n – 3 and the 

constant, therefore, becomes: 
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If, however, the estimate of between-study variance, τ2, yields a negative value 

then it is set at zero (because the variance between-studies cannot be negative). 

Finally, the estimate of homogeneity of study effect sizes is calculated in the same 

way as for the fixed-effect model. In short, the only difference in the random-effects 

models is that the weights used to calculate the average and its associated standard 

error now include a between-study component that is estimated using equation (8). 

Hunter and Schmidt Method 

Hunter and Schmidt advocate a single method (a random-effects method) based on 

their belief that fixed-effects models are inappropriate for real-world data and the 

type of inferences that researchers usually want to make (Hunter & Schmidt, in 

press)4. Hunter and Schmidt’s method is thoroughly described by Hunter, Schmidt & 

Jackson (1982) and Hunter and Schmidt (1990). In its fullest form, this method 

emphasises the need to isolate and correct for sources of error such as sampling error 

and reliability of measurement variables. Although there is rarely enough 

information reported in a study to use the full Hunter and Schmidt technique, even 

in its simplest form it still differs from the method advocated by Hedges and 

colleagues and Rosenthal and Rubin. The main difference is in the use of 

untransformed effect-size estimates in calculating the weighted mean effect size. As 

such, central tendency is measured using the average correlation coefficient in which 

untransformed correlations are weighted by the sample size on which they are based.  

Equation (11) shows how the mean effect size is estimated and it differs from 
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equations (2) and (3) in that the weights used are simply the sample sizes on which 

each effect size is based, and each correlation coefficient is not transformed. 
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Like Hedges and colleagues’ method, the significance of the mean effect size is 

obtained by calculating a Z score by dividing the mean by its standard error.  

However, the estimate of the standard error is different in Hunter and Schmidt’s 

method and there has been some confusion in the literature about how the standard 

error is calculated.  Johnson et al. (1995) reported the equation of the variance across 

studies (the frequency weighted average squared error reported by Hunter and 

Schmidt 1990, p. 100). The square root of this value should then be used to estimate 

the standard deviation (as in Equation (12)). The best estimate of the standard error is 

to divide this standard deviation of the observed correlation coefficients by the 

square root of the number of studies being compared (Osburn & Callender, 1992; 

Schmidt et al., 1988). Therefore, as Schmidt and Hunter (1999) have subsequently 

noted, the equation of the standard deviation used by Johnson et al. should be 

further divided by the square root of the number of studies being assimilated. 

Equations (12) and (13) show the correct version (according to Schmidt & Hunter, 

1999) of the standard deviation of the mean and the calculation of the standard error. 

The Z score is calculated simply by dividing the mean effect size by the standard 

error of that mean (Equation (14)). 
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In terms of homogeneity of effect sizes, again a chi-square statistic is calculated 

based on the sum of squared errors of the mean effect size (see p. 110-112 of Hunter 

and Schmidt, 1990). Equation (15) shows how the chi-square statistic is calculated 

from the sample size on which the correlation is based (n), the squared errors 

between each effect size and the mean, and the variance. 
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Comparison of the Methods 

There are two major differences between the methods described. The first 

difference is the use of transformed or untransformed correlation coefficients. The 

Fisher transformation is typically used to eliminate a slight bias in the untransformed 

correlation coefficient: the transformation corrects for a skew in the sampling 

distribution of rs that occurs as the population value of r becomes further from zero 

(see Fisher, 1928). Despite the theoretical basis for this transformation Hunter and 

Schmidt (1990) have long advocated the use of untransformed correlation coefficients 

using theoretical arguments to demonstrate biases arising from Fisher’s 
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transformation (see Hunter, Schmidt & Coggin, 1996). Hunter and Schmidt (1990) 

note that ‘the Fisher Z replaces a small underestimation or negative bias by a 

typically small overestimation, or positive bias, a bias that is always greater in 

absolute value than the bias in the untransformed correlation’ (p. 102, see also 

Hunter et al., 1996; Schmidt, Gast-Rosenberg and Hunter, 1980; Schmidt, Hunter & 

Raju, 1988; Field, 1999). 

Some empirical evidence does suggest that transforming the correlation coefficient 

can be beneficial. Silver and Dunlap (1987) claimed that meta-analysis based on 

Fisher transformed correlations is always less biased than when untransformed 

correlations are used. However, Strube (1988) noted that Silver and Dunlap had 

incorrectly ignored the effect of the number of studies in the analysis and so had 

based their findings on only a small number of studies. Strube (1988) showed that as 

the number of studies increased the overestimation of effect sizes based on Fisher 

transformed correlations was almost exactly equal in absolute terms to the 

underestimation of effect sizes found when untransformed rs were used. Strube’s 

data indicated that the bias in effect size estimates based on transformed correlations 

was less than the bias in those based on untransformed correlations only when 3 or 

less studies were included in the meta-analysis (and even then only when these 

studies had sample sizes of 20 or less). It would be the exception that actual meta-

analytic reviews would be based on such a small number of studies. As a final point, 

Hunter et al. (1996) have argued that when population correlations are the same for 

studies in the meta-analysis (the homogenous case) then results based on 
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transformed correlations should be within rounding error of those based on 

untransformed values. 

The second difference is in the equations used to estimate the standard error. If we 

compare the random-effects model described by Hedges and Vevea (1998) to Hunter 

and Schmidt’s, the estimates of standard error are quite different. Hedges and Vevea 

(1998) have suggested that Hunter and Schmidt ‘advocate the use of suboptimal 

weights that correspond to the fixed-effects weights, presumably because they 

assume that τ2 [the between-study variance] is small’ (p. 493, parentheses added). 

Therefore, if the between-study variance is not small, the Hunter and Schmidt 

method will underestimate the standard error and hence overestimate the z-score 

associated with the mean (Hedges & Vevea, 1998). However, Hedges and Vevea’s 

(1998) estimate of the between-study variance is truncated (because negative values 

lead to the assumption that τ2 = 0), and so when there are only a small number of 

studies in the meta-analysis the estimate of between-study variance will be biased 

and the weights used to calculate the average effect size (and its significance) will be 

biased also. 

Johnson et al. (1995) used a single database to compare the Hedges-Olkin (fixed-

effect), Rosenthal-Rubin and Hunter-Schmidt meta-analytic methods. By 

manipulating the characteristics of this database Johnson et al. looked at the effects of 

the number of studies compared, the mean effect size of studies, the mean number of 

participants per study and the range of effect sizes within the database. In terms of 

the outcomes of each meta-analysis, they looked at the resulting mean effect size, the 

significance of this effect size, homogeneity of effect sizes, and prediction of effect 
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sizes by a moderator variable. Their results showed convergence of the methods in 

terms of the mean effect size and estimates of the heterogeneity of effect sizes. 

However, the significance of the mean effect size differed substantially across meta-

analytic methods. Specifically, the Hunter and Schmidt method seemed to reach 

more conservative estimates of significance (and hence wider confidence intervals) 

than the other two methods. Johnson et al. concluded that Hunter and Schmidt’s 

method should be used only with caution. 

Johnson et al.’s study provides some of the only comparative evidence to suggest 

that some meta-analytic methods for combining correlations should be preferred 

over others (although Overton, 1998, has investigated moderator variable effects 

across methods); however, although their study clearly provided an excellent 

starting point at which to compare methods, there were some limitations. First, 

Schmidt and Hunter (1999) have criticised Johnson et al.’s work at a theoretical level 

claiming that the wrong estimate of the standard error of the mean effect size was 

used in their calculation of its significance. Schmidt and Hunter went on to show that 

when a corrected estimate was used, estimates of the significance of the mean effect 

size should be comparable to the Hedges and Olkin and Rosenthal and Rubin 

methods. Therefore, theoretically the methods should yield comparable results. 

Second, Johnson et al. applied Hedges and Olkin’s method for d (by first converting 

each correlation coefficient from r to d). Hedges and Olkin (and Hedges & Vevea, 

1998) provide methods for directly combining rs (without converting to d) and so 

this procedure did not represent what researchers would actually do.  Finally, the 

circumstances under which the three procedures were compared were limited to a 
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single database that was manipulated to achieve the desired changes in the 

independent variables of interest. This creates two concerns: (1) the conclusions 

drawn might be a product of the properties of the data set used (because, for 

example, adding or subtracting a fixed integer from each effect size allowed Johnson 

et al. to look at situations in which the mean effect size was higher or lower than in 

the original database; however, the relative strength of each effect size remained 

constant throughout); and (2) the data set assumed a fixed population effect size and 

so no comparisons were made between random-effects models. A follow-up study is 

needed in which Monte Carlo data simulations are used to expand Johnson et al.’s 

work. 

Rationale and Predictions 

Having reviewed the procedures to be compared, some predictions can be made 

about their relative performance. Although there has been much theoretical debate 

over the efficacy of the meta-analytic methods (see Johnson et al., 1995; Schmidt & 

Hunter, 1999; Hedges & Vevea, 1998; Hunter and Schmidt, in press), this study aims 

to test the arguments empirically. The rationale is that in meta-analysis, researchers 

combine results from different studies to try to ascertain knowledge of the effect size 

in the population. Therefore, if data are sampled from a population with a known 

effect size, we can assess the accuracy of each method by comparing the significance 

of the mean effect size from the each method against the known effect in the 

population. In the null case (population effect size, ρ = 0) we expect to find 

nonsignificant results from each meta-analysis. To be precise, with the nominal Type 
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I error rate set at α = 0.05 the expectation is that only 5% of mean effect sizes should 

be significant. With the population effect size set above zero the proportion of mean 

effect sizes that are significant represents the power of each method (assuming that 

the Type I error is controlled). 

A number of predictions can be made based on the arguments within the literature. 

1. Based on Hunter et al. (1996) and Hunter and Schmidt (1990), it is predicted 

that methods incorporating transformed effect size estimates should show an 

upward bias in their estimates of the mean effect size. This bias should be 

relatively small when population effect sizes are fixed (homogenous case) but 

larger when population effect sizes are variable (the heterogeneous case).  

2. As the population value of r becomes further from zero, the sampling 

distribution of rs becomes skewed and Fisher’s transformation is used to 

normalise this sampling distribution. Therefore, theoretically Hunter and 

Schmidt’s method should become less accurate as the effect size in the 

population increases (especially for small sample sizes). Conversely, 

techniques based on Fisher’s transformation should become more accurate 

with larger effect sizes in the population. However, Strube (1988) and Hunter 

et al. (1996) have shown equivalent but opposite biases in methods based on 

transformed and untransformed correlation coefficients when more than a few 

studies are included in the meta-analysis. It is expected that the current study 

will replicate these later findings. 

3. Contrary to Johnson et al. (1995) finding that Hunter and Schmidt’s method 

yields conservative estimates of the significance of the mean effect size, it is 
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predicted that estimates of significance will be comparable across methods 

(because this study is based on the corrected formulae reported by Schmidt 

and Hunter, 1999). 

4. The estimates of between-study variance in Hedges and colleagues’ random-

effects model are biased for small numbers of studies. As such, it is predicted 

that this method will be less accurate when only small numbers of studies are 

included in the meta-analysis. 

STUDY 1: THE HOMOGENOUS CASE 

Two Monte Carlo studies were conducted to investigate the effect of various 

factors on the average effect-size, the corresponding significance value, and the 

homogeneity of effect-sizes tests. The first study looked at the homogenous case and 

the second the heterogeneous case. In both studies the general approach was the 

same: (1) A pseudo-population was created in which the effect size was known 

(homogenous case) or in which the population effect size was sampled from a 

normal distribution of effect sizes with a known average (heterogeneous case); (2) 

samples of various sizes were taken from that population and the correlation 

coefficient calculated and stored (these samples can be thought of as studies in a 

meta-analysis); (3) when a specified number of these studies had been taken different 

meta-analytic techniques were applied (for each technique, average effect size, the Z 

value and test of homogeneity was calculated); and (4) the techniques were 

compared to see the effect of the number of studies in the meta-analysis, and the 
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relative size of those studies. Each of these steps will now be discussed in more 

detail. 

Method 

Both studies were run using GAUSS. In the homogenous case, a pseudo 

population was set up in which there was a known effect size (correlation between 

variables). This was achieved using the A matrix procedure described by Mooney 

(1997) in which the correlation between two randomly generated normally 

distributed variables is set using the Choleski decomposition of a fixed correlation 

matrix. Five different pseudo-populations were used in all: ones in which there were 

no effect (ρ = 0), a small effect-size (ρ = 0.1), a moderate effect size (ρ = 0.3), a large 

effect size (ρ = 0.5), and a very large effect (ρ = 0.8). These effect sizes were based on 

Cohen’s (1988, 1992) guidelines for a small, medium and large effect (in terms of 

correlation coefficients). For each Monte Carlo trial a set number of studies were 

taken from a given pseudo-population and average effect sizes and measures of 

homogeneity of effect sizes calculated. The Type I error rate or test power were 

estimated from the proportion of significant results over 100,000 Monte Carlo trials. 

Number of Studies 

The first factor in the Monte Carlo study was the number of studies used in the 

meta- analysis. This factor varied systematically from 5 to 30 studies5 in increments 

of 5. Therefore, for the first set of Monte Carlo trials, the program took 5 random 

studies from the pseudo-population on each trial. The correlation coefficients of the 

studies were used to calculate the mean effect size (and other statistics) using each of 
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the methods described. The program stored the mean effect size, and a counter was 

triggered if the average effect size was significant (based on the associated z-score). A 

second counter was triggered if the test of homogeneity was significant. Having 

completed this task, the next trial was run until 100,000 Monte Carlo trials were 

completed, after which the program saved the information, reset the counters, 

increased the number of studies in the meta-analysis by 5 (so the number of studies 

became 10) and repeated the process. The program stopped incrementing the 

number of studies once 30 studies was reached. 

Average Sample Size 

The second factor to be varied was the average sample size of each study in the meta-

analysis. This variable was manipulated to see whether the three methods differed 

across different sample sizes. In most real-life meta-analyses study sample sizes will 

not be equal and so to model reality sample sizes were drawn from a normal 

distribution of possible sample sizes, with the mean of this distribution being 

systematically varied. So, rather than fixing the sample size at a constant value (e.g. 

40), sample sizes were randomly taken from a distribution with a fixed mean (in this 

case 40) and a standard deviation of a quarter of the mean (in this case 10). For each 

Monte Carlo trial, the sample size associated with the resulting r was stored in a 

separate vector for use in the meta-analysis calculations. 

Values of the average sample size were set using estimates of the sample size 

necessary to detect small, medium and large effects in the population. Based on 

Cohen (1988) the sample size needed to detect a small effect is 150, to detect a 
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medium size effect a sample of about 50 is needed and to detect a large effect a 

sample size of 25 will suffice. As such, the original average sample size was set at 20. 

Once the program has completed all computations for this sample size, the sample 

size was multiplied by 2 (average n = 40) and the program looped through all 

calculations again. The average sample size was then multiplied by 2 again (average 

n = 80) and so on to a maximum average sample size of 160. These sample sizes are 

logical because, ceteris paribus, the smallest average sample size (20) is big enough 

for only a very large effect (ρ = 0.8) to be detected. The next sample size (40) should 

enable both a very large and a slightly smaller effect (ρ = 0.5) to be detected. The next 

sample size (80) should be sufficient to detect all but the smallest effect sizes and the 

largest sample size (160) should detect all sizes of population effect sizes. 

 Design 

The overall design was a four factor 5 (Population effect size: 0.0, 0.1, 0.3, 0.5, 0.8) × 

4 (average sample size: 20, 40, 80, 160) × 6 (Number of studies: 5, 10, 15, 20, 25, 30) × 2 

(method of analysis: Hedges & Olkin/Rosenthal & Rubin vs. Hunter & Schmidt) 

design with the method of analysis as a repeated measure. For each level of 

population effect size there were 24 combinations of the average sample size and 

number of studies. For each of these combinations 100,000 Monte Carlo trials were 

used (100 times as many as the minimum recommended by Mooney, 1997) so, each 

cell of the design contained 100,000 cases of data. Therefore, 2,400,000 samples of 

data were simulated per effect size, and 12 million in the whole study. 
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Results 

Table 1 shows the mean effect size from the two methods when the average sample 

size and number of samples in the meta-analysis are varied. For the null case, all 

three techniques produce accurate estimates of the population effect size. As the 

effect size in the population increases the Hedges and Olkin/Rosenthal and Rubin 

method tends to slightly overestimate the population effect size whereas the Hunter 

and Schmidt method underestimates it. This finding was predicted because these 

two methods differ in their use of transformed effect size estimates. The degree of 

bias appears to be virtually identical when rounded to two decimal places. 

Insert Table 1 About Here 

More interesting are the data presented in Table 2, which shows the proportion of 

significant results arising from the Z score associated with the mean effect size. This 

table also includes separate values for the Rosenthal-Rubin method (because it differs 

from the Hedges-Olkin method in terms of how significance is established). In the 

null case, these proportions represent the Type I error rate for the three methods. 

Using a nominal α of 0.05 it is clear that the Hedges-Olkin method keeps tight control 

over the Type I error rate (this finding supports data presented by Hedges & Vevea, 

1998). The Hunter-Schmidt method does not control the Type I error rate in the 

homogenous case, although for a large total sample size (i.e. as the number of studies 

in the meta-analysis and the average sample size of each study increases) the Type I 

error rate is better controlled (α ≈ 0.06). However, for small numbers of studies and 

small average sample sizes the Type I error rate is around thrice the desirable level. 

The Rosenthal-Rubin method keeps fairly tight control of the Type I error rate with 
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error rates falling between those observed using the Hedges-Olkin and the Hunter-

Schmidt methods. For the remainder of Table 2 (in which an effect exists within the 

population), the proportions represent the power of the tests assuming that the Type 

I error rate is controlled (as such the values for the Hedges-Olkin and Rosenthal-

Rubin methods are estimates of the power of the test). A proportion of 0.8 generally 

represents a high level of power in the social sciences (Cohen, 1988, 1992). The power 

of the meta-analysis will increase as the total sample size increases and so as both the 

number of studies, and their respective sample sizes increase, we expect a 

concomitant increase in power. The methods advocated by Hedges and Olkin, and 

Rosenthal and Rubin both yield high levels of power (greater than 0.8) except when 

the population effect size is small (ρ = 0.1) and the total sample size is relatively 

small. For example, when number of studies in the meta-analysis is small (5 studies) 

a high level of power is achieved only when the average study sample size is 160, 

similarly, regardless of the number of studies, a high level of power is not achieved 

when the average study sample size is only 20, and when the average sample size is 

40, a high degree of power is achieved only when there are more than 20 studies. For 

all other population effect sizes (ρ > 0.1) the probability of detecting a genuine effect 

is greater than 0.8. For the Hunter-Schmidt method power estimations cannot be 

made because the Type I error rate is not controlled, nevertheless, the values in Table 

2 are comparable to those for the other two methods.  

Insert Table 2 About Here 

Table 3 shows the proportion of significant tests of homogeneity of effect sizes. In 

this study, the population effect sizes were fixed (hence homogenous); therefore, 



 

28 

these tests of homogeneity should yield nonsignificant results. The proportions in 

Table 3 should, therefore, be close to the nominal α of 0.05. For small to medium 

effect sizes (ρ ≤ 0.3), both methods control the Type I error rate under virtually all 

conditions. For larger population effect sizes (ρ ≥ 0.5) the Hedges-Olkin/Rosenthal-

Rubin method controls the Type I error rate to within rounding error of the nominal 

α. However, the Hunter-Schmidt method begins to deviate substantially from the 

nominal α when the average sample size is small (< 40) and this deviation increases 

as the number of studies within the meta-analysis increases. These results conform to 

accepted statistical theory (see prediction 2) in that the benefit of transformed effect 

sizes is increasingly apparent as the population effect size increases. 

Insert Table 3 About Here 

Summary 

To sum up, study 1 empirically demonstrated several things. (1) Both meta-analytic 

methods yield comparable estimates of population effect sizes; (2) The Type I error 

rates were well controlled for the Hedges-Olkin and Rosenthal-Rubin methods in all 

circumstances, however, the Hunter-Schmidt method seemed to produce liberal 

significance tests that inflated the observed error rate above the nominal α; (3) the 

Hedges-Olkin and Rosenthal-Rubin methods yielded power levels above 0.8 for 

medium and large effect sizes, but not for small effect sizes when the number of 

studies, or average sample size were relatively small; (4) Type I error rates for tests of 

homogeneity of effect sizes were equally well controlled by the two methods when 



 

29 

population effect sizes were small to medium but better controlled by the Hedges-

Olkin/Rosenthal-Rubin method when effect sizes were large. 

STUDY 2: THE HETEROGENEOUS CASE 

Method 

The method for the heterogeneous case was virtually identical to that of the 

homogenous case: both the number of studies and the average sample size were 

varied in the same systematic way. However, in this study, population effect sizes 

were not fixed. A normal distribution of possible effect sizes was created (a 

superpopulation) from which the population effect size for each study in a meta-

analysis was sampled. As such, studies in a meta-analysis came from populations 

with different effect sizes. To look at a variety of situations, the mean effect size of the 

superpopulation ( ρ ) was varied to be 0 (the null case), 0.1, 0.3, 0.5, and 0.8. The 

standard deviation of the superpopulation was set at 0.16 because (a) for a medium 

population effect size (ρ = 0.3) this represents a situation in which 95% of population 

effect sizes will lie between 0 (no effect) and 0.6 (strong effect), and (b) Barrick and 

Mount (1991) found this to be the standard deviation of population correlations in a 

large meta-analysis and so it represents a realistic estimate of the standard deviation 

of population correlations of real-world data (see Hunter & Schmidt, in press). The 

methods used to combine correlation coefficients in this study were the Hunter-

Schmidt method and Hedges and colleagues’ random effects model. As in study 1, 
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100,000 Monte Carlo trials were used for each combination of average sample size, 

number of studies in the meta-analysis, and average population effect size. 

Results 

Table 4 shows the mean effect size from the two methods when the average sample 

size and number of studies in the meta-analysis are varied. In the null case both 

methods produce accurate estimations of the population effect size. When there is an 

effect in the population the Hedges and colleagues’ method uniformly overestimates 

and the Hunter-Schmidt method uniformly underestimates the population effect 

size. This is expected from prediction 1. The overestimation from the Hedges and 

colleagues method is substantial and is typically around 0.1–0.2 greater than the 

actual average population effect size for medium to large effects. In contrast the 

underestimation of the Hunter-Schmidt method is relatively small (typically within 

rounding error of the actual average population value). However, as the average 

population effect size increases, so does the margin of error in the Hunter-Schmidt 

estimations and at very large average population effect sizes ( ρ  = 0.8) the magnitude 

of the underestimation of this method is equivalent to the overestimation of Hedges 

and colleagues’ method. This finding was predicted because at larger effect sizes the 

benefit of the r to z transformation should be more apparent (prediction 2), although 

even at very high effect sizes the bias from transforming r to z is the same but 

opposite to that of not transforming r. 

Insert Table 4 About Here 
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Table 5 shows the proportion of significant results arising from the z-score 

associated with the mean effect sizes in Table 4. In the null case, these proportions 

represent the Type I error rate for the two methods. Using a nominal α of 0.05, it is 

clear that both techniques lead to inflated Type I error rates when there are 15 or less 

studies in the meta-analysis (although the Hedges and colleagues’ method retains 

better control than the Hunter-Schmidt method). Control of the Type I error rate 

improves in both methods as the total sample size increases, and when the meta-

analysis includes a large number of studies (30), Hedges and colleagues’ method 

produces error rates within rounding distance of the nominal α-level. Even for large 

numbers of studies, the Hunter-Schmidt method inflates the Type 1 error rate. 

For the remainder of the table (in which an effect exists within the population), the 

proportions displayed represent the power of the tests assuming that the Type I error 

rate is controlled. Given that neither method has absolute control over the Type I 

error rate these values need to be interpreted cautiously. What is clear is that the two 

methods yield very similar results: for a small average population effect size ( ρ = 0.1) 

the probability of detecting an effect is under 0.3 for both methods. High 

probabilities of detecting an effect (> 0.8) are achieved only for large average 

population effect sizes ( ρ  ≥ 0.5) or for medium effect sizes ( ρ = 0.3) when there are a 

relatively large number of samples (20 or more). The only substantive discrepancy 

between the methods is that the values for Hedges and colleagues’ method are lower 

when there are only 5 studies in the meta-analysis, which was predicted (prediction 
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4). This difference is negligible when the average population effect size is very large 

( ρ = 0.8).  

Insert Table 5 About Here 

Table 6 shows the proportion of significant tests of homogeneity of effect sizes. In 

this study, the population effect sizes were heterogeneous; therefore, these tests 

should yield significant results. The proportions in Table 6, therefore, represent the 

power of the tests to detect variability in effect sizes assuming that the Type I error 

rate is controlled. This study does not present data to confirm that the methods 

control the Type I error rate (which would require that these tests be applied to the 

homogenous case); nevertheless, for all average population effect sizes the two 

methods yield probabilities of detecting an effect greater than 0.8 with samples of 40 

or more regardless of the number of studies in the meta-analysis. Even at small 

sample sizes and numbers of studies, the proportion of tests that correctly detected 

genuine variance between population parameters is close to 0.8 (the lowest 

probability being 0.704) and comparable between methods.  

Insert Table 6 About Here 

Summary 

To sum up, study 2 empirically demonstrated several interesting findings. (1) The 

Hunter-Schmidt method produces the most accurate estimates of population effect 

sizes when population effect sizes are variable but the benefit of this method is lost 

when the average population effect size is very large ( ρ = 0.8); (2) The Type I error 
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rates were not controlled by either method when 15 or less studies were included in 

the meta-analysis (although the Hedges-Olkin method was better in this respect), 

however, as the total sample size increased the Type I error rate was better controlled 

for both methods; (3) although flawed by the lack of control of the Type I error rate, 

the potential power of both techniques was less than 0.3 when the average 

population effect size was small; (4) for large average population effect sizes the 

three techniques were comparable for probable test power, but for small numbers of 

studies in the meta-analysis, Hedges and colleagues’ method yielded lower power 

estimates; (5) power rates for tests of homogeneity of effect sizes were comparable for 

both techniques in all circumstances. 

CONCLUSIONS 

This study presents the results of a thorough simulation of conditions that might 

influence the efficacy of different methods of meta-analysis. In an attempt to develop 

Johnson et al.’s (1995) work, this study used Monte Carlo simulation rather than 

manipulation of a single data set. In doing so, these data provide a broader insight 

into the behaviour of different meta-analytic procedures in an applied context (rather 

than the theoretical context of Hunter & Schmidt, in press; Schmidt & Hunter, 1999). 

Several predictions were supported. (1) Prediction 1 was substantiated in that the 

Hedges-Olkin and Rosenthal-Rubin methods (using transformed effect size 

estimates) led to upward biases in effect size estimates. These biases were negligible 

in the homogenous case but substantial in the heterogeneous case. (2) Prediction 2 
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was also substantiated with the Hunter-Schmidt method underestimating population 

effect sizes. This bias increased as the population effect sizes increased (as predicted). 

However, this bias was negligible in the homogeneous case and was less severe than 

the Hedges-Olkin method in the Heterogeneous case. (3) Results for prediction 3 

were complex. The Hedges-Olkin method best controlled the Type I error rate and 

the Hunter-Schmidt method led to the greatest deviations from the nominal α. 

However, unlike Johnson et al.’s who found that the Hunter-Schmidt method was 

too conservative, this study showed that the Hunter and Schmidt method (using 

their revised formula) was too liberal—too many null results were significant). These 

results also contradict the theoretical observations of Hunter and Schmidt (in press) 

and Schmidt and Hunter (1999). (4) Prediction 4 was also supported in that Hedges 

and colleagues’ method was slightly biased when only 5 studies were included in the 

meta-analysis in the heterogeneous case. 

In summary, in the homogenous case Hedges-Olkin and Rosenthal-Rubin 

methods perform best in terms of significance tests of the average effect size:  

contrary to Johnson et al. (1995), the present results indicate that the Hunter-Schmidt 

method is too liberal in the homogenous case (not too conservative) but this means 

that the method should, nevertheless, be applied with caution in these circumstances. 

In terms of estimates of effect size and homogeneity of effect size tests there are few 

differences between Hedges-Olkin/Rosenthal-Rubin methods and that of Hunter 

and Schmidt. In the heterogeneous case, the Hunter-Schmidt method yields the most 

accurate estimates of population effect size across a variety of situations. The most 

surprising result was that neither the Hunter-Schmidt nor Hedges and colleagues’ 
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method controlled the Type I error rate in the heterogeneous case when 15 or fewer 

studies were included in the meta-analysis. As such, in the heterogeneous case 

researchers cannot be confident about the tests they use unless the number of studies 

being combined (and hence the total sample size) is very large (at least 30 studies in 

the meta-analysis for Hedges and colleagues’ method and more for the Hunter-

Schmidt method). In addition, the probabilities of detecting a small effect in the 

heterogeneous case were very small, and for medium effect sizes were small when 10 

or less studies were in the meta-analysis. Given that the heterogeneous case is more 

representative or real-world data (National Research Council, 1992, Osburn and 

Callender, 1992) the implication is that meta-analytic methods for combining 

correlation coefficients may be relatively insensitive to detecting small effects in the 

population. As such, genuine effects may be overlooked. However, this conclusion 

must be qualified: when 15 or less studies are included in the meta-analysis neither 

random effects model controls the Type I error rate, as such accurate power levels 

cannot be estimated. As such, the finding that the probabilities of detecting medium 

population effect sizes ( ρ = 0.3) are low for less than 15 studies is, at best, tentative. 

Nevertheless, for small population effect sizes ( ρ = 0.1), even when Type I error rates 

are controlled (the Hedges and Colleagues’ method when 20 or more studies are 

included in the meta-analysis) the power of the random-effects model is relatively 

small (average power across all factors is 0.209). 
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Using Meta-Analysis for Correlations 

There are many considerations when applying techniques to combine correlation 

coefficients. The first is whether the researcher wishes to make conditional or 

unconditional inferences from the meta-analysis, or in other terms, whether the 

researcher wishes to assume that the population effect size is fixed or variable. As 

already mentioned, it is more often the case that population effect sizes are variable 

(National Research Council, 1992, Osburn and Callender, 1992) and that the 

assumption of fixed population effect sizes is tenable only if a researcher does not 

wish to generalise beyond the set of studies within a meta-analysis (Hedges & Vevea, 

1998; Hunter & Schmidt, in press).  One practical way to assess whether population 

effect sizes are likely to be fixed or variable is to use the tests of homogeneity of 

study effect sizes associated with the three methods of meta-analysis. If this test is 

non-significant then it can be argued that population effect sizes are also likely to be 

homogenous (and hence fixed to some extent). However, these tests typically have 

low power to detect genuine variation in population effect sizes (Hedges & Olkin, 

1985; National Research Council, 1992) and so they can lead researchers to conclude 

erroneously that population effect sizes are fixed. The present data suggest that the 

test of homogeneity of effect sizes advocated by Hedges-Olkin/Rosenthal-Rubin and 

the method suggested by Hunter and Schmidt have relatively good control of Type I 

errors when effect sizes are, in reality, fixed. When effect sizes are, in reality, variable 

both Hedges and colleagues’ method and the Hunter-Schmidt method produce 

equivalent estimates of power (although when the average effect size is large and the 

average sample size is less than 40 the Hunter-Schmidt method loses control of the 
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Type I error rate). However, in this later case these detection rates are difficult to 

interpret because there are no simulations in the current study to test whether the 

random-effects homogeneity tests control the Type I error rate in the fixed case 

(when population effect sizes are, in reality, the same across studies). 

The second issue is whether the researcher wishes to accurately estimate the 

population effect size, or accurately test its significance. In the homogenous case, all 

method yield very similar estimates of the population effect size. However, in the 

heterogeneous case the Hunter-Schmidt method produces more accurate estimates 

except when the average population effect size is very large ( ρ = 0.8). In terms of 

testing the significance of this estimate, Hedges and colleagues’ method keeps the 

best control over Type I errors in both the homogenous and heterogeneous case, 

however, in the heterogeneous case neither this method or the Hunter-Schmidt 

method actually controls the Type I error rate acceptably when less than 15 studies 

are included in the meta-analysis. 

Third, the researcher has to consider controlling for other sources of error. It is 

worth remembering that small statistical differences in average effect size estimates 

and the like may be relatively unimportant compared to other forms of bias such as 

unreliability of measures. Hunter & Schmidt (1990) discuss ways in which these 

biases can be accounted for and the experienced meta-analyst should consider these 

issues when deciding upon a technique. The Hunter-Schmidt method used in the 

present paper is only the simplest form of this method and so does not reflect the full 

method adequately. Despite its relative shortcomings in the homogenous case, the 

addition of procedures for controlling other sources of bias may make this method 
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very attractive in situations in which the researcher can estimate and control for these 

other confounds. However, further research is needed to test the accuracy of the 

adjustments for error sources proposed by Hunter and Schmidt. 

Final Remarks 

This study has shown that the Hunter-Schmidt method tends to provide the most 

accurate estimates of the mean population effect size when effect sizes are 

heterogeneous, which is the most common case in meta-analytic practice. In the 

heterogeneous case, Hedges and colleagues’ method tended to overestimate effect 

sizes by about 15-45%, whereas the Hunter-Schmidt method tended to underestimate 

it by a smaller amount (about 5-10%), and then only when the population average 

correlation exceeded 0.5. In terms of the Type I error rate for the significance tests 

associated with these estimates Hedges and colleagues’ method does control this 

error rate in the homogenous case. The most surprising finding is that neither 

random-effects method controls the Type I error rate in the heterogeneous case 

(except when a large number of studies are included in the meta-analysis) — 

although Hedges and colleagues’ method inflates the Type I error rate less than the 

Hunter-Schmidt method. Given that the National Research Council (1992) and others 

have suggested that the heterogeneous case is the rule rather than the exception, this 

implies that estimates and significance tests from meta-analytic studies containing 

less than 30 samples should be interpreted very cautiously. Even then, random-

effects methods seem poor at detecting small population effect sizes. Further work 

should examine the efficacy of other random-effect models of meta-analysis such as 
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Multilevel Modelling (Goldstein, 1995, Goldstein, Yang, Omar, Turner & Thompson, 

2000).  

 

FOOTNOTES

                                                           
1 The Web of Science (WoS) was used (http://wos.mimas.ac.uk). 

2 In reality it is possible to combine fixed and random effects conceptualizations to 

produce a mixed model. For the purpose of this study the mixed model is ignored 

but the interested reader is referred to Hedges (1992). 

3 Although Hunter, Schmidt & Jackson (1982) originally developed this method, 

Hunter and Schmidt (1990) provide an updated and more comprehensive exposition 

of the technique.  

4 In fact the equation for the mean effect size (see equation 11) implies a fixed-effects 

model because the use of ni as a weight assumes homogeneity (and indeed Hunter 

and Schmidt, 1990, p. 100 assert the homogeneity assumption). However, in more 

recent work (Schmidt & Hunter, 1999; Hunter & Schmidt, in press) the authors have 

been quite explicit in labelling their model as random-effect. 

5 The number of studies in real meta-analytic studies is likely to exceed 30 and would 

rarely be as small as 5, nevertheless these values are fairly typical of moderator 

analysis in meta-analysis. 
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TABLES 

• Table 1: Table to show the mean effect size, r, for the two methods of meta-

analysis for different average sample sizes, different numbers of studies in the 

meta-analysis, and different levels of population effect size (homogenous case). 

• Table 2: Table to show the proportion of significant tests of the mean effect size 

for different numbers of samples, different average sample sizes, and different 

levels of population effect size (homogenous case).  

• Table 3: Table to show the proportion of significant tests of homogeneity of 

sample effect sizes for different numbers of samples, different average sample 

sizes, and different levels of population effect size (homogenous case). 

• Table 4: Table to show the mean effect size, r, for the two methods of meta-

analysis for different average sample sizes, different numbers of studies in the 

meta-analysis, and different levels of population effect size (heterogeneous case). 

• Table 5: Table to show the proportion of significant tests of the mean effect size 

for different numbers of samples, different average sample sizes, and different 

levels of population effect size (heterogeneous case).  

• Table 6: Table to show the proportion of significant tests of homogeneity of 

sample effect sizes for different numbers of samples, different average sample 

sizes, and different levels of population effect size (heterogeneous case). 
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  Hedges-Olkin/Rosenthal-
Rubin Hunter & Schmidt 

  
Average Sample Size 

  20 40 80 160 20 40 80 160 
  ρρρρ = 0.0       

5 -0.0002 0.0001 -0.0001 0.0001 -0.0001 0.0001 -0.0001 0.0001 

10 -0.0002 0.0000 0.0000 -0.0001 -0.0002 0.0000 0.0000 -0.0001 

15 0.0001 -0.0001 0.0000 0.0000 0.0001 -0.0001 0.0000 0.0000 

20 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000 

25 -0.0001 -0.0001 0.0000 0.0000 -0.0001 -0.0001 0.0000 0.0000 

30 0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 
 ρρρρ = 0.1         

5 0.1016 0.1007 0.1004 0.1002 0.0974 0.0986 0.0994 0.0997 

10 0.1024 0.1010 0.1003 0.1002 0.0976 0.0987 0.0992 0.0996 

15 0.1024 0.1009 0.1006 0.1003 0.0974 0.0985 0.0994 0.0997 

20 0.1026 0.1011 0.1006 0.1002 0.0975 0.0986 0.0994 0.0996 

25 0.1027 0.1013 0.1005 0.1003 0.0975 0.0988 0.0993 0.0997 

30 0.1026 0.1012 0.1006 0.1003 0.0974 0.0987 0.0994 0.0997 
 ρρρρ = 0.3         

5 0.3047 0.3022 0.3009 0.3003 0.2930 0.2965 0.2981 0.2990 

10 0.3057 0.3028 0.3014 0.3007 0.2925 0.2964 0.2983 0.2992 

15 0.3065 0.3032 0.3014 0.3008 0.2927 0.2966 0.2982 0.2991 

20 0.3065 0.3032 0.3015 0.3008 0.2925 0.2965 0.2982 0.2992 

25 0.3070 0.3033 0.3016 0.3008 0.2929 0.2965 0.2983 0.2991 

30 0.3071 0.3033 0.3016 0.3008 0.2928 0.2964 0.2982 0.2991 
 ρρρρ = 0.5         

5 0.5066 0.5031 0.5013 0.5007 0.4903 0.4953 0.4975 0.4988 

10 0.5085 0.5040 0.5020 0.5010 0.4902 0.4952 0.4977 0.4988 

15 0.5090 0.5044 0.5020 0.5010 0.4899 0.4953 0.4976 0.4988 

20 0.5094 0.5046 0.5021 0.5011 0.4899 0.4953 0.4975 0.4989 

25 0.5098 0.5045 0.5023 0.5011 0.4901 0.4951 0.4977 0.4988 

30 0.5099 0.5046 0.5022 0.5011 0.4901 0.4952 0.4975 0.4988 
 ρρρρ = 0.8         

5 0.8048 0.8021 0.8011 0.8005 0.7919 0.7960 0.7981 0.7991 

10 0.8063 0.8030 0.8015 0.8007 0.7918 0.7962 0.7981 0.7991 

15 0.8070 0.8033 0.8017 0.8008 0.7920 0.7962 0.7982 0.7991 

20 0.8071 0.8033 0.8017 0.8008 0.7918 0.7961 0.7982 0.7991 

25 0.8073 0.8034 0.8017 0.8008 0.7919 0.7961 0.7981 0.7991 
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30 0.8075 0.8036 0.8017 0.8008 0.7919 0.7962 0.7982 0.7991 
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Hedges & Olkin Rosenthal & Rubin Hunter & Schmidt 

  
Average Sample Size 

 20 40 80 160 20 40 80 160 20 40 80 160 
  ρρρρ = 0.0           

5 0.051 0.051 0.049 0.050 0.056 0.054 0.052 0.050 0.156 0.156 0.153 0.155 

10 0.051 0.051 0.050 0.050 0.054 0.053 0.051 0.050 0.098 0.098 0.097 0.096 

15 0.050 0.051 0.050 0.049 0.055 0.052 0.052 0.051 0.080 0.081 0.079 0.080 

20 0.050 0.051 0.049 0.051 0.056 0.050 0.052 0.050 0.071 0.073 0.071 0.073 

25 0.050 0.049 0.049 0.050 0.056 0.054 0.051 0.050 0.067 0.067 0.066 0.067 

30 0.051 0.049 0.051 0.050 0.056 0.052 0.050 0.050 0.064 0.063 0.065 0.063 
 ρρρρ = 0.1         

5 0.155 0.282 0.508 0.805 0.167 0.288 0.513 0.810 0.283 0.417 0.618 0.845 

10 0.270 0.496 0.799 0.978 0.284 0.505 0.804 0.979 0.343 0.557 0.819 0.977 

15 0.378 0.666 0.930 0.998 0.395 0.675 0.931 0.997 0.424 0.692 0.931 0.998 

20 0.477 0.789 0.978 1.000 0.496 0.798 0.976 1.000 0.510 0.800 0.976 1.000 

25 0.568 0.871 0.993 1.000 0.585 0.873 0.994 1.000 0.593 0.873 0.992 1.000 

30 0.646 0.923 0.998 1.000 0.665 0.922 0.998 1.000 0.661 0.924 0.998 1.000 
 ρρρρ = 0.3         

5 0.836 0.989 1.000 1.000 0.847 0.989 1.000 1.000 0.868 0.986 1.000 1.000 

10 0.985 1.000 1.000 1.000 0.988 1.000 1.000 1.000 0.983 1.000 1.000 1.000 

15 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000 

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 ρρρρ = 0.5         

5 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.998 1.000 1.000 1.000 

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 ρρρρ = 0.8         

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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  Hedges-Olkin/Rosenthal-
Rubin Hunter & Schmidt 

  
Average Sample Size 

  20 40 80 160 20 40 80 160 
  ρρρρ = 0.0       

5 0.053 0.050 0.052 0.050 0.047 0.047 0.051 0.050 

10 0.053 0.051 0.052 0.051 0.042 0.046 0.049 0.050 

15 0.055 0.052 0.051 0.051 0.041 0.045 0.047 0.049 

20 0.054 0.052 0.051 0.050 0.040 0.046 0.048 0.048 

25 0.054 0.052 0.051 0.051 0.039 0.045 0.048 0.050 

30 0.055 0.053 0.052 0.051 0.040 0.045 0.048 0.049 
  ρρρρ = 0.1        

5 0.053 0.052 0.050 0.051 0.048 0.049 0.049 0.050 

10 0.053 0.051 0.052 0.050 0.042 0.046 0.049 0.049 

15 0.053 0.051 0.052 0.050 0.042 0.045 0.049 0.049 

20 0.055 0.051 0.052 0.050 0.042 0.046 0.049 0.048 

25 0.053 0.052 0.052 0.050 0.040 0.046 0.048 0.048 

30 0.055 0.053 0.051 0.050 0.041 0.046 0.048 0.048 
 ρρρρ = 0.3         

5 0.052 0.051 0.051 0.049 0.049 0.050 0.050 0.049 

10 0.054 0.052 0.051 0.050 0.049 0.050 0.051 0.050 

15 0.052 0.052 0.051 0.050 0.049 0.051 0.051 0.050 

20 0.054 0.051 0.051 0.051 0.049 0.051 0.051 0.050 

25 0.052 0.052 0.051 0.051 0.050 0.051 0.051 0.051 

30 0.052 0.052 0.051 0.050 0.050 0.051 0.051 0.050 
 ρρρρ = 0.5         

5 0.050 0.050 0.050 0.050 0.054 0.051 0.051 0.050 

10 0.051 0.051 0.050 0.051 0.061 0.055 0.053 0.053 

15 0.051 0.051 0.050 0.050 0.067 0.058 0.055 0.052 

20 0.051 0.051 0.051 0.051 0.069 0.061 0.056 0.053 

25 0.052 0.052 0.051 0.050 0.073 0.063 0.057 0.052 

30 0.050 0.050 0.050 0.050 0.075 0.063 0.056 0.053 
  ρρρρ = 0.8        

5 0.048 0.049 0.051 0.050 0.063 0.057 0.054 0.052 

10 0.048 0.050 0.050 0.051 0.090 0.071 0.060 0.056 

15 0.047 0.050 0.050 0.050 0.107 0.078 0.066 0.057 

20 0.048 0.049 0.050 0.050 0.122 0.085 0.068 0.059 

25 0.047 0.050 0.049 0.051 0.134 0.092 0.071 0.060 

N
u

m
b

er
 o

f 
S

tu
d

ie
s 

in
 t

h
e 

M
et

a-
A

n
al

ys
is

 

30 0.046 0.049 0.050 0.049 0.144 0.095 0.073 0.060 
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Hedges and colleagues Hunter & Schmidt 

  
Average Sample Size 

  20 40 80 160 20 40 80 160 
  0.0=ρ        

5 -0.001 0.000 0.001 0.000 -0.001 0.001 0.001 0.000 

10 -0.001 0.001 0.000 0.000 -0.001 0.001 0.000 0.000 

15 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 

20 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 

25 0.000 0.000 -0.001 0.001 0.000 0.000 0.000 0.000 

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 1.0=ρ        

5 0.134 0.134 0.131 0.131 0.098 0.099 0.098 0.099 

10 0.141 0.140 0.139 0.139 0.098 0.098 0.099 0.099 

15 0.142 0.143 0.141 0.142 0.097 0.099 0.098 0.099 

20 0.143 0.144 0.142 0.143 0.097 0.099 0.098 0.099 

25 0.144 0.144 0.143 0.143 0.097 0.099 0.098 0.099 

30 0.146 0.144 0.143 0.144 0.097 0.098 0.098 0.099 
 3.0=ρ        

5 0.397 0.395 0.395 0.394 0.290 0.292 0.293 0.293 

10 0.421 0.417 0.417 0.416 0.290 0.291 0.292 0.293 

15 0.430 0.427 0.425 0.424 0.290 0.292 0.293 0.293 

20 0.434 0.431 0.429 0.429 0.290 0.292 0.292 0.293 

25 0.436 0.433 0.431 0.432 0.290 0.291 0.292 0.293 

30 0.438 0.436 0.433 0.433 0.289 0.292 0.293 0.293 
 5.0=ρ        

5 0.643 0.641 0.640 0.639 0.474 0.477 0.478 0.479 

10 0.680 0.677 0.676 0.675 0.475 0.477 0.478 0.479 

15 0.693 0.690 0.688 0.688 0.474 0.478 0.478 0.480 

20 0.699 0.696 0.694 0.695 0.474 0.477 0.478 0.479 

25 0.704 0.701 0.700 0.699 0.474 0.477 0.478 0.479 

30 0.707 0.703 0.702 0.701 0.475 0.477 0.478 0.479 
 8.0=ρ        

5 0.896 0.895 0.894 0.894 0.715 0.719 0.719 0.720 

10 0.922 0.920 0.919 0.920 0.715 0.718 0.719 0.720 

15 0.930 0.929 0.928 0.928 0.716 0.719 0.720 0.720 

20 0.934 0.933 0.932 0.932 0.716 0.718 0.720 0.720 

25 0.936 0.935 0.934 0.934 0.716 0.718 0.719 0.720 
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30 0.938 0.937 0.936 0.936 0.716 0.719 0.719 0.720 
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Hedges and colleagues Hunter & Schmidt 

  
Average Sample Size 

  20 40 80 160 20 40 80 160 
  0.0=ρ        

5 0.100 0.106 0.106 0.106 0.158 0.157 0.156 0.156 

10 0.069 0.069 0.070 0.069 0.097 0.098 0.098 0.096 

15 0.061 0.059 0.058 0.059 0.082 0.081 0.080 0.081 

20 0.055 0.054 0.053 0.053 0.073 0.072 0.072 0.073 

25 0.055 0.054 0.053 0.051 0.069 0.069 0.069 0.067 

30 0.051 0.051 0.050 0.049 0.065 0.065 0.065 0.064 
 1.0=ρ        

5 0.105 0.117 0.117 0.118 0.163 0.172 0.173 0.174 

10 0.116 0.121 0.124 0.124 0.159 0.167 0.172 0.174 

15 0.133 0.143 0.143 0.149 0.172 0.189 0.191 0.198 

20 0.159 0.172 0.171 0.179 0.198 0.217 0.221 0.230 

25 0.187 0.202 0.207 0.212 0.222 0.245 0.256 0.263 

30 0.219 0.232 0.237 0.244 0.253 0.275 0.284 0.295 
 3.0=ρ        

5 0.298 0.319 0.333 0.339 0.452 0.481 0.501 0.508 

10 0.478 0.505 0.525 0.534 0.608 0.651 0.676 0.690 

15 0.665 0.697 0.716 0.724 0.754 0.795 0.819 0.827 

20 0.799 0.830 0.845 0.853 0.851 0.887 0.904 0.913 

25 0.885 0.907 0.919 0.923 0.914 0.941 0.954 0.958 

30 0.933 0.949 0.956 0.959 0.952 0.970 0.978 0.981 
 5.0=ρ        

5 0.534 0.559 0.569 0.579 0.766 0.804 0.823 0.834 

10 0.864 0.883 0.893 0.900 0.941 0.960 0.969 0.972 

15 0.975 0.983 0.986 0.987 0.988 0.995 0.996 0.997 

20 0.996 0.997 0.998 0.998 0.998 0.999 1.000 1.000 

25 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 8.0=ρ        

5 0.867 0.879 0.884 0.886 0.976 0.985 0.990 0.991 

10 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Hedges and colleagues Hunter & Schmidt 

  
Average Sample Size 

  20 40 80 160 20 40 80 160 
  0.0=ρ        

5 0.720 0.882 0.958 0.988 0.704 0.879 0.958 0.988 

10 0.925 0.989 0.999 1.000 0.913 0.988 0.999 1.000 

15 0.980 0.999 1.000 1.000 0.975 0.999 1.000 1.000 

20 0.995 1.000 1.000 1.000 0.993 1.000 1.000 1.000 

25 0.999 1.000 1.000 1.000 0.998 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 1.0=ρ        

5 0.729 0.884 0.959 0.988 0.712 0.880 0.959 0.988 

10 0.928 0.989 0.999 1.000 0.916 0.988 0.999 1.000 

15 0.982 0.999 1.000 1.000 0.977 0.999 1.000 1.000 

20 0.996 1.000 1.000 1.000 0.994 1.000 1.000 1.000 

25 0.999 1.000 1.000 1.000 0.998 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 3.0=ρ        

5 0.780 0.910 0.969 0.990 0.762 0.907 0.969 0.990 

10 0.954 0.994 0.999 1.000 0.944 0.993 0.999 1.000 

15 0.990 1.000 1.000 1.000 0.987 1.000 1.000 1.000 

20 0.998 1.000 1.000 1.000 0.997 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 5.0=ρ        

5 0.863 0.945 0.982 0.995 0.842 0.942 0.982 0.995 

10 0.983 0.998 1.000 1.000 0.976 0.998 1.000 1.000 

15 0.998 1.000 1.000 1.000 0.997 1.000 1.000 1.000 

20 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 8.0=ρ        

5 0.967 0.986 0.994 0.996 0.953 0.985 0.994 0.996 

10 0.999 1.000 1.000 1.000 0.998 1.000 1.000 1.000 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

N
u

m
b

er
 o

f 
S

tu
d

ie
s 

in
 t

h
e 

M
et

a-
A

n
al

ys
is

 

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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