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Abstract 

One conceptualization of meta-analysis is that studies within the meta-analysis 

are sampled from populations with mean effect sizes that vary (random-effects 

models). The consequences of not applying such models and the comparison of 

different methods have been hotly debated. A Monte Carlo study compared the 

efficacy of Hedges and Vevea’s random-effects methods of meta-analysis with Hunter 

and Schmidt’s, over a wide range of conditions, as the variability in population 

correlations increases. (1) The Hunter-Schmidt method produced estimates of the 

average correlation with the least error, although estimates from both methods were 

very accurate; (2) confidence intervals from Hunter and Schmidt’s method were 

always slightly too narrow, but became more accurate than those from Hedges and 

Vevea’s method as the number of studies included in the meta-analysis, the size of 

the true correlation and the variability of correlations increased and, (3) the study 

weights did not explain the differences between the methods. 
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Is the Meta-Analysis of Correlation Coefficients Accurate when Population Correlations 

Vary? 

Meta-analysis is a statistical technique for assimilating research findings that was 

developed because of the failure of discursive reviews to provide objective 

assessments of the substantive importance of empirical effects (see Wolf, 1986). 

Although its objectivity can also be limited (for example, by the selective inclusion of 

studies and the difficulty in including all relevant studies because of unpublished 

research findings), Field (2001, 2003a,b) reports a remarkable increase in its usage 

since Glass (1976), Hedges and Olkin (1985), Rosenthal and Rubin (1978), Schmidt 

and Hunter (1977), Hunter, Schmidt and Jackson (1982), and Hunter and Schmidt 

(1990a) made their groundbreaking contributions. However, meta-analysis is not 

without controversy and recent debate has centered on the appropriate application of 

meta-analytic methods (e.g., Field, 2003a,b; Hunter & Schmidt, 2000) and 

comparisons of different methods (Field, 2001; Hall & Brannick, 2002; Johnson, 

Mullen & Salas, 1995; Schulze, 2004). This paper reviews these controversies before 

presenting empirical data comparing two different methods over a wide range of 

conditions. 

Methods of Meta-Analysis   

In meta-analysis, effect-size estimates from different studies are combined to try 

to estimate the true size of the effect in the population. Although several effect-size 

estimates are available (e.g., the Pearson product-moment correlation coefficient, r; 

Cohen’s effect-size index, d; odds ratios; risk rates; and risk differences), they, at 

some level, represent the same thing and in some cases can be converted into one of 

the other metrics (see Rosenthal, 1991; Wolf, 1986)i. The general meta-analytic 

framework is similar for all of these metrics: the population effect size is estimated by 
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taking effect sizes for individual studies, converting them to a common metric, and 

then calculating a weighted average effect size that has an associated standard error. 

The weight given to a particular study is often based on the sample size for that study 

(usually the sampling variance of the effect size), which is an indicator of the sampling 

accuracy of that particular study. Confidence intervals can be constructed around the 

weighted average and its significance can be determined from a z-test. Meta-analysis 

can also be used to assess the similarity of effect sizes across studies using tests of 

homogeneity (Hedges & Olkin, 1985) or variance estimates (Hunter & Schmidt, 

1990a; 2004).  

Fixed- and Random-Effects Methods 

One controversy within the meta-analysis literature is the appropriate application 

of methods (Field, 2003a,b; Hunter & Schmidt, 2000). In essence, there are two ways 

to conceptualise meta-analysis: fixed- and random-effects models (see Hedges, 1992; 

Hedges & Vevea, 1998; Hunter & Schmidt, 2000)ii. The fixed-effect conceptualisation 

assumes that studies in the meta-analysis are sampled from a population with a fixed 

effect size or one that can be predicted from a few predictors; in the simplest case, 

the effect size in the population is constant for all studies included in a meta-analysis 

(Hunter & Schmidt, 2000). The alternative is to assume that population effect sizes 

vary randomly from study to study; that is, studies in a meta-analysis come from 

populations of effect sizes that are likely to have different means. Population effect 

sizes can, therefore, be thought of as being sampled from a universe of possible 

effects—a ‘superpopulation’ (Becker, 1996; Hedges, 1992). 

Which of the two conceptualisations to use is controversial and this issue hinges 

on both the assumptions that can realistically be made about the populations from 

which studies are sampled, and the types of inferences that researchers wish to make 
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from the meta-analysis. On the former point, there has been support for the position 

that real-world data are likely to have variable population parameters (Field, 2003a; 

Hunter & Schmidt, 1990b, 2000; National Research Council, 1992; Osburn & 

Callender, 1992) and empirical data have shown that real-world data do not conform 

to the assumption of fixed population parameters (Barrick & Mount, 1991). Figure 1 

shows the distribution of between-studies standard-deviation estimates calculated 

(where data were available) for all meta-analytic studies using correlation coefficients 

published in Psychological Bulletin 1997-2002iii. These estimates are based on the 

Hunter-Schmidt method (they are the square root of equation (15), described later). 

This histogram shows that the meta-analytic studies typically give rise to between-

studies standard deviation estimates ranging from 0 to 0.3, with values of 0 being 

very common. However, when effect-size variability is present, it is most frequently in 

the region of 0.10-0.16 (which is broadly consistent with Barrick & Mount, 1991), and 

values as high as 0.3 are relatively infrequent. 

With regard to the latter point, Hedges and Vevea (1998) suggested that the 

choice of model depends on the type of inferences that the researcher wishes to 

make: fixed-effect models are appropriate for inferences that extend only to the 

studies included in the meta-analysis (conditional inferences) whereas random-effects 

models allow inferences that generalise beyond the studies included in the meta-

analysis (unconditional inferences). Psychologists typically wish to make 

generalizations beyond the studies included in the meta-analysis and so random-

effects models are more appropriate (Field, 2003a; Hunter & Schmidt, 2000). 

This debate has been exacerbated by the fact that fixed- and random-effects 

meta-analytic methods are frequently incorrectly applied. Despite some good evidence 

that real-world data support a random-effects conceptualisation, psychologists 

routinely apply fixed-effects meta-analytic methods to their data. For example, Hunter 



6 

and Schmidt (2000) listed 21 recent examples of meta-analytic studies using fixed-

effects methods in the major review journal for psychology (Psychological Bulletin) 

compared to none using random-effects models. The theoretical consequence, 

according to Hunter and Schmidt (2000), is that the significance tests of the average 

effect size should not control the Type I error rate: they predicted inflated error rates 

of between 11–28%. In fact, Field (2003a) has shown using Monte Carlo simulations 

that Type I error rates are inflated from 5% to anywhere between 43 and 80%. So, of 

the 21 meta-analyses reported by Hunter and Schmidt (2000) anywhere between 9 

and 17 of them are likely to have reported significant effects when in reality no true 

effect may have existed within the population (see Field, 2003a). 

One function of the homogeneity of effect-size measures mentioned earlier is to 

ascertain whether population effect sizes are likely to be fixed or variable, through 

inference from the variability in sample effect sizes (Hedges & Olkin, 1985). The 

rationale is that if homogeneity tests yield non-significant results then sample effect 

sizes are roughly equivalent and so population effect sizes are likely to be 

homogenous (and hence the assumption that they are fixed is reasonable). Even if we 

overlook the fact that researchers often ignore these tests (e.g., 17 of the 21 meta-

analyses listed by Hunter & Schmidt, 2000, used fixed-effect methods despite 

significant homogeneity tests), the tests themselves can be misleading because they 

sometimes have been claimed to have low power to detect genuine variation in 

population effect sizes (Hedges & Pigott, 2001; Sackett, Harris & Orr, 1986; but see 

Field, 2001, who showed that their power is high). Consequently, researchers can be 

misled into concluding that population effect sizes are fixed when they are, in fact, 

variable.  
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Comparing Methods 

Since the early work of Glass (1976) two methods of meta-analysis have 

remained popular: the methods devised by Hedges and colleagues, and those of 

Hunter and Schmidt (1990a, 2004)iv. Hedges and colleagues (Hedges & Olkin, 1985; 

Hedges, 1992; Hedges & Vevea, 1998) have developed both fixed- and random-

effects models for combining effect sizes, whereas Hunter and Schmidt (and Hunter, 

Schmidt & Jackson, 1982) label their method a random-effects model (see Hunter & 

Schmidt, 2004; National Research Council, 1992; Schmidt & Hunter, 1999) although 

in earlier writings they were less explicit in defining it in these terms (Hunter & 

Schmidt, 1990a). The second main controversy in the meta-analysis literature is 

which of these two methods should be applied. This paper looks at methods for 

combining effect sizes expressed as correlation coefficients, r. 

Hedges and Colleagues’ Method 

In this method, correlations are first converted into a standard normal metric 

(using Fisher’s r-to-Z transformation) before calculating a weighted average of these 

transformed scores. Fisher’s (1921) r-to-Z transformation is given in equation (1) in 

which ri is the correlation coefficient from study i  

( )
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r
er Logz −

+=
1
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2
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, (1) 

which has an approximate normal distribution with mean ρz , and variance 1/(ni–3), 

where ni is the number of cases or pairs of data in the study. The transformation back 

to ri is simply 
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The transformed effect sizes are then used to calculate an initial average in 

which each correlation is weighted by the inverse of the within-study variance of the 

study from which it came (for Fisher zr values the sample size, ni, minus three)— see 

Equation (3)v, and where k is the number of studies in the meta-analysis (Hedges & 

Olkin, 1985, p. 231): 
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This average is then used to calculate a test of the homogeneity of correlations: 

the squared difference between each study’s observed transformed r and the mean 

transformed r (from equation (3)), weighted by the within-study variance, is used. 

This gives us the statistic Q in Equation (4), which has a chi-square distribution with k 

– 1 degrees of freedom under the null hypothesis of homogenous effect sizes (Hedges 

& Olkin, equation 16, p. 235): 

( )( )∑
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. 
(4) 

To calculate the random-effects average correlation, the weights use a variance 

component that incorporates both between-studies variance and within-study 

variance. The between-studies variance is denoted by τ2 and an estimate of it ( 2τ̂ ) is 

simply added to the within-study variance. The weighted average in the zr metric is 

(based on Hedges & Vevea, 1998, equation 12):  
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in which the weights ( )*
iw  are defined as (based on Hedges & Vevea, 1998, equation 

14): 

( ) 12
3
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(6) 

The between-studies variance can be estimated in several ways (see Friedman, 

2000; Hedges & Vevea, 1998; Overton, 1998; Takkouche, Cadarso-Suárez & 

Spiegelman, 1999), however, Hedges and Vevea (1998, equation 10) use Equation 

(7)), which is based on Q (the weighted sum of squared errors in equation (4)), k, 

and a constant, c, such that: 

( )
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where the constant, c, is defined as: 
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and for correlations, because wi = ni – 3, c is: 
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(9) 

If the estimate of between-studies variance, 2τ̂ , yields a negative value then it is 

set to zero (because the variance between-studies cannot be negative). The estimate 

2τ̂ , is substituted in equation (6) to calculate the weight for a particular study, and 
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this in turn is used in equation (5) to calculate the average correlation. This average 

correlation is then converted back to the r metric using equation (2) before being 

reported. 

The sampling variance of the untransformed average correlation is the reciprocal 

of the sum of weights and the standard error of this average correlation is the square 

root of this sampling variance. Bearing in mind that the weights are calculated using 

equation (6) the standard error is (see Hedges & Vevea, 1998, p. 493): 

( )
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. (10) 

Hedges and Olkin (1985) recommend constructing a confidence interval around 

the average effect size, which is easily done using the standard error and zα/2, the 

two-tailed critical value of the normal distribution (which is 1.96 for the most 

commonly used 95% confidence interval). The upper and lower bounds are calculated 

by taking the average effect size from equation (5) and adding or subtracting its 

standard error multiplied by 1.96: 

( )** 96.1 rrUpper ZSEzCI += , 

( )** 96.1 rrLower ZSEzCI −= . 

(11) 

These values are again transformed back to the r metric using equation (2) before 

being reported. 

Hunter and Schmidt Method 

This method emphasises the need to isolate and correct for sources of error such 

as sampling error and reliability of measurement scales. Although these recommended 

corrections are undoubtedly the method’s great strength, this study deals only with 
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the method in its simplest form. Hunter and Schmidt (2004, p. 81) recommend using 

untransformed effect-size estimates, ri, to calculate the weighted mean correlation, 

and the weight used is simply the sample size, ni: 

∑
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Hunter and Schmidt (2004) argue that the variance across sample correlations 

will be made up of the variance of correlations in the population and the sampling 

error; therefore, to estimate the variance in population correlations we have to correct 

the variance in sample correlations by the sampling error. The variance of sample 

correlations is the frequency weighted average squared error. Equation (13), from 

Hunter and Schmidt (2004, p. 81 & 89), shows this: 
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The sampling error variance is calculated using the average correlation, r , and 

the average sample size, N , (see Hunter & Schmidt, 2004, p. 88): 

( )
1

12
22
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r
eσ . 

(14) 

It is a simple matter to estimate the variance in population correlations by 

subtracting the sampling error variance from the variance in sample correlations (see 

Hunter & Schmidt, 2004, p. 88): 
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222 ˆˆˆ er σσσ ρ −= . (15) 

Hunter and Schmidt recommend correcting this estimate for artifacts (see Hunter 

& Schmidt, 2004 or Hall & Brannick, 2002 for details) and then constructing what they 

call credibility intervals. These intervals are based on taking the average correlation 

(equation (12)) and adding to or subtracting from it the square root of the estimated 

population variance in equation (15) multiplied by zα/2 (1.96 for a 95% interval):  

2
Upper ˆ96.1Interval yCredibilit ρσ+= r , 

2
Lower ˆ96.1Interval yCredibilit ρσ−= r . 

(16) 

If confidence intervals are required (rather than credibility intervals) these can 

be obtained by using the standard error of the mean correlation. To obtain this 

standard error simply divide the variance of sample correlations (given in equation 

(13)) by the number of studies in the meta-analysis, k, and take the square root: 

k
rCI r

Upper

2

96.1
σ+=

, 

k
rCI r

Lower

2

96.1
σ−=

. 

(17) 

Differences between Methods 

If we take the bare bones version of the Hunter-Schmidt method (described 

above), which does not correct for research artifacts other than sampling error, then 

the differences between this method and Hedges’ random-effects method are: (1) the 

use of transformed or untransformed correlation coefficients, and (2) the difference in 

study weighting (which in turn creates differences in the estimates of the sampling 

error variance of the mean). 
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The evidence on whether or not it is better to transform r has been inconsistent. 

For example, although Silver and Dunlap (1987) claimed that meta-analysis based on 

Fisher transformed correlations is always less biased than when untransformed 

correlations are used, they ignored the effect of the number of studies in the analysis: 

they did not report results for when different numbers of correlation coefficients were 

being combined, nor did they report how many correlation coefficients were combined 

for the data presented.  Strube (1988) went on to demonstrate that as the number of 

studies increased there was no discernible difference between the biases resulting 

from using Fisher transformed or untransformed correlations. In addition, transformed 

correlations were less biased than untransformed ones only when 3 or fewer studies 

were included in the meta-analysis and sample sizes were 20 or less (which would be 

rare in the application of meta-analysis). However, this study too was limited to the 

scenario in which a maximum of 20 studies were included in the meta-analysis. 

Schulze (2004) in a set of extensive simulations recently concluded that computations 

based on z transformed values would invariably differ from those based on 

untransformed rs. 

The second difference is in the study weightingvi. Hedges and Vevea (1998) have 

argued that Hunter and Schmidt’s method assumes that the between-studies variance 

is small; therefore, when between-studies variance is not small, the practice of 

weighting studies by ni (see equation 12) in the Hunter-Schmidt method should 

produce an inaccurate mean correlation (Hedges & Vevea, 1998). However, although 

both methods have estimates of the between-studies variance that are truncated at 

zero (if computed values are negative, they are set to zero), unlike the H-S method, 

Hedges and Vevea’s (1998) method uses the estimate of between-studies variance as 

part of the study weights. Consequently, the accuracy of the average correlation is 
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biased in this method too — especially when the number of studies in the meta-

analysis is small (see Hedges & Vevea, 1998).  

Several recent studies have attempted to compare these two methods. Johnson 

et al. (1995) compared the Hedges-Olkin (fixed-effect), Rosenthal-Rubin and Hunter-

Schmidt meta-analytic methods by manipulating a single data set to look at the 

effects of the number of studies compared, the mean correlation of studies, the mean 

number of participants per study and the range of effect sizes within the database. 

They concluded that the methods converged in terms of the mean correlation and 

estimates of the heterogeneity of effect sizes, but the significance of the mean 

correlation differed substantially across the methods: the Hunter and Schmidt method 

reached more conservative estimates of significance than the other two methods and 

Johnson et al. concluded that it should be used only with caution. 

Although this study was a good starting point, Schmidt and Hunter (1999) 

claimed that Johnson et al. used the wrong estimate of the standard error of the mean 

correlation and showed that, theoretically, when a corrected estimate was used, their 

method was comparable to the Hedges and Olkin and Rosenthal and Rubin methods. 

Field (2001) also pointed out that Johnson et al. applied Hedges and Olkin’s method 

for d (by first converting each correlation coefficient from r to d) rather than using the 

methods for directly combining rs (without converting to d), that the use of a single 

database limited the generality of the findings, and that the Hunter-Schmidt method 

had not been compared with Hedges’ random-effects counterpart. Field (2001) 

rectified some of these concerns by conducting a series of Monte Carlo simulations 

comparing the performance of the Hunter and Schmidt and Hedges and Olkin (fixed- 

and random-effects) methods both when population correlations were fixed, and when 

they were variable. The number of studies in the meta-analysis, the average sample 

size, and the size of the correlation in the population were systematically varied. Field 
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found that when comparing random-effects methods the Hunter-Schmidt method 

yielded the most accurate estimates of population correlation across a variety of 

situations. However, neither the Hunter-Schmidt nor Hedges and colleagues’ method 

controlled the Type I error rate when 15 or fewer studies were included in the meta-

analysis, and the method described by Hedges and Vevea (1998) controlled the Type I 

error rate better than the Hunter-Schmidt method when 20 or more studies were 

included. Hall and Brannick (2002) conducted a similar study but looking at the 

methods within the context of test validation and found that the Hunter and Schmidt 

method provided the most accurate estimates of the population correlation. Schulze 

(2004) has also done extensive simulation studies and based on these findings 

recommends against using Fisher’s z transform and suggests that the ‘optimal’ study 

weights used in the H-V method can, at times, be sub-optimal in practice. However, 

Schulze based these conclusions on using the fixed-effects version of Hedge’s method 

(he did not examine the method described by Hedges and Vevea, 1998) 

The Current Study 

Although Field (2001) and Hall and Brannick (2002) have used simulation 

techniques to compare these two methods under a wider variety of situations than 

earlier researchers, their findings are still limited. Field restricted his simulations to a 

single degree of variability between effect sizes and extended his simulations only to 

when meta-analyses of 30 studies were included (relatively few in real terms). Hall 

and Brannick used a fairly restricted range of population correlation variances. 

Furthermore, neither study systematically investigated the source of the differences 

between methods. Schulze (2004) took a different approach in his simulations and 

used discrete distributions of the true correlation and it is unclear how much the 

simulation process itself contributes to the conclusions drawn about the relative merits 



16 

of the two methods. He also did not explicitly investigate Hedges and Vevea’s (1998) 

random-effects method. As such, the current study aims to extend Field’s (2001), Hall 

and Brannick’s (2002) and Schulze’s (2004) work by (1) comparing two random-

effects methods across a more diverse array of situations than Field and Hall and 

Brannick, (2) investigating whether technical aspects of the simulations affect the 

conclusions drawn, and (3) investigating whether the weights in the two methods are 

responsible for the differences observed. A few general predictions can be made: 

(1) Confidence intervals and estimates of the mean correlation from the H-V 

method should be less accurate when small numbers of studies are included in 

the meta-analysis and variability between effect sizes is small. This is because 

the study weights are based on estimates of between-studies variance that are 

truncated at zero. 

(2) If Hunter and Schmidt’s method utilizes sub optimal weights that do not take 

account of the variability between population effect sizes (Hedges & Vevea, 

1998), then estimates of the average correlation and its variability will become 

less accurate as the variability between population effect sizes increases. 

(3) A related prediction is that if the weights are responsible for the differences 

between the methods, the estimates from the H-S method should improve if 

the H-V ‘optimal’ weights are used (conversely, the H-V method should become 

less accurate if the weights are replaced with those from the H-S method). 

(4) If the z-transformation is a useful procedure then the Hunter-Schmidt method 

should become less accurate (especially for small samples) as the correlation 

and standard deviation in the superpopulation increases (because as these 

parameters increase, the resulting population distribution becomes non-normal: 

negatively skewed and platykurtic). Conversely, Hedges’ method, because it 
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uses Fisher’s transformation, should become relatively more accurate when the 

population distributions are skewed. However, if, as Schulze (2004) suggests, 

the Fisher’s z-transformation is unnecessary then the skew of the distribution of 

rs will not adversely affect H-S estimates. 

(5) Simulating meta-analysis using a superpopulation of z-transformed values 

should favour the H-V method whereas a superpopulation based on r should 

favour the H-S method. 

Monte Carlo Simulations 

General Method 

The rationale behind all of the simulations in this paper is simple: if data are 

sampled from a population which itself is sampled from a superpopulation with a 

known mean and standard deviation, the accuracy of random-effects methods can be 

ascertained by comparing the mean correlation against the known mean in the 

superpopulation. The standard deviation within the superpopulation can also be 

manipulated to look at how variability between population effect sizes influences the 

accuracy of different meta-analytic methods (in terms of their average correlation and 

the confidence intervals around that average). 

The general approach was as follows: a distribution of correlations with a known 

average and standard deviation was created to act as a superpopulation, from which 

the population correlation for each study in a meta-analysis was sampled. A sample of 

a given size was taken from a particular population and the correlation coefficient 

calculated and stored. Once a specified number of samples (representing the number 

of studies in the meta-analysis) had been taken from the populations, the two 

random-effects meta-analytic techniques were applied (the average correlation and 

95% confidence intervals were calculated). The number of samples in the meta-
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analysis, the relative size of those samples, and the standard deviation of 

superpopulation correlations were varied systematically to look at whether these 

factors influenced the accuracy of the methods. Also, by looking at the average 

correlation across many trials it was possible to ascertain the boundaries within which 

95% of average correlations fell. As such, a population confidence interval for the 

average correlation could be calculated by discarding the lower and upper 2.5% of 

estimated average correlations from 100,000 trials. 

The Superpopulation 

All simulations were run using GAUSS 4.0. A distribution of possible correlations 

was created (a superpopulation) from which the population correlation for each study 

in a meta-analysis was sampled. Although this distribution was theoretically normal, 

the exact shape of the distribution of ρs sampled from this distribution depended on 

the values of the mean and standard deviation. This is discussed in due course (and in 

Figure 3). The mean effect size of the superpopulation ( ρ ) was initially set to be 0 

and was then systematically changed to represent a small ( ρ  = .1), medium ( ρ  = 

.3), large ( ρ  = .5), and a huge effect size ( ρ  = .8) based on Cohen’s (1988, 1992) 

guidelines for correlation coefficients. 

As the mean correlations and their standard deviations get larger, values in the 

superpopulation will begin to exceed 1 (the upper bound of the correlation 

coefficient). To prevent this, two methods were used to define this superpopulation: 

1. The superpopulation was treated as a distribution of z-transformed correlations 

(see equation (1)), which are not constrained to be less than 1. So, the z-

transformation was first used to transform the mean correlation (0, .1, .3, .5 or 

.8), then a normal distribution with this mean and a specified standard deviation 

(0.04, 0.08, 0.16 or 0.32)vii was created. A correlation was sampled from this 
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distribution and was back-transformed (see equation (1)) to create the correlation 

in the population (which would be less than 1). 

2. The superpopulation was treated as a distribution of ρs, but with a correction to 

prevent inadmissible values. The mean correlation (0, .1, .3, .5 or .8) and standard 

deviation (0.04, 0.08, 0.16 or 0.32) of correlation was set as before, and then a 

normal distribution with this mean was created. A correlation was sampled from 

this distribution but if its value was greater than 1 or less than -1, it was rejected 

and a new correlation was sampled. 

Once the mean correlation for the population had been sampled from the 

superpopulation, it was necessary to simulate the process of ‘sampling’ the sample 

correlation from this population. This was achieved using the A matrix procedure 

described by Mooney (1997) in which the correlation between two randomly 

generated normally distributed variables is set using the Choleski decomposition of a 

fixed correlation matrix. The correlation matrix contained a single value, ρ, and pairs 

of normally distributed scores for ni cases were then generated (ni was manipulated as 

described below) using this value and the A matrix procedure already described. The 

correlation between these two variables was then calculated and represented the 

sample correlation.  

For each Monte Carlo trial a set number of studies was taken from a given 

population and the average correlation and its confidence interval were calculated 

using both methods. The proportion of these confidence intervals containing the effect 

size in the superpopulation was calculated over 100,000 Monte Carlo trials, and 

population confidence intervals were constructed (defined earlier).  
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The Mean and Standard Deviation of Population Correlations 

When the superpopulation was treated as a distribution of ρs, the mean 

correlation of the superpopulation ( ρ ) was initially set to be 0 and was then 

systematically changed to represent a small ( ρ  = .1), medium ( ρ  = .3), large ( ρ  = 

.5), and a huge correlation ( ρ  = .8). The standard deviation of the superpopulation 

was systematically varied to be 0.04, 0.08, 0.16, and 0.32. These were set based on 

values of the estimates of standard deviation of population correlations reported in 

Psychological Bulletin during 1997-2002 (see Figure 1). The end result is a set of 

population standard deviations that represent situations that range from almost no 

variability (0.04) through frequently reported variability (0.04 to 0.16) to around the 

largest reported variability (0.32). The intention was to present a full range of 

situations so that data can fully inform real-world situations including values at the 

very extreme of what could be found (i.e., 0.32). 

When the superpopulation was treated as a distribution of z-transformed 

correlations, the same values for the means and standard deviations were used but 

were applied to the distribution of zs; therefore, the actual means and standard 

deviations of the back-transformed distribution (the distribution of ρs) were smaller. 

Values of the actual means and standard deviations for all combinations used in the 

main study were estimated using the data simulation function of Excel with 10000 

data points generated for each cell. The resulting values can be found in Table 1. 

Number of Studies 

The number of studies, k, used in the meta-analysis was manipulated by varying 

it from 5 to 160, with 6 values: 5, 10, 20, 40, 80 and 160. Field (2001) varied the 

number of studies in the meta-analysis only from 5 to 30, so the range of numbers of 

studies in the present simulation is much wider. 
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Average Sample Size 

The average size of each sample in the meta-analysis was also varied. In most 

real-life meta-analyses study sample sizes are not equal; so to model reality sample 

sizes were drawn from a normal distribution of possible sample sizes, with the mean 

of this distribution being systematically varied. Sample sizes were randomly taken 

from a distribution with a fixed mean (20, 40, 80 or 160) and a standard deviation of 

a quarter of that mean. Although by taking sample size values from a population an 

additional source of variance is introduced into the simulations, this approach was 

taken because in real-life meta-analyses study sample sizes do vary (otherwise there 

would be no point in weighting studies based on their sampling accuracy). As such 

this method more accurately represents what happens in reality than if sample sizes 

were held constant (Field, 2003a, 2001 and Hall & Brannick, 2002 used similar 

methods). 

Values of the average sample size, n , were set using estimates of the sample 

size necessary to detect small, medium and large effects in the population based on a 

single study. The sample sizes needed to detect a small, medium or large effect in a 

single study with power = .8 are approximately 150, 50, 25 respectively (see Cohen, 

1988). As such, values were set at n = 20, 40, 80 and 160. The one restriction was 

that any sample sizes less than 4 were discarded and replaced because Hedges’ 

method of meta-analysis requires a sample size of at least this size. 

Design 

In all simulations the design was a four factor, 5 (mean superpopulation 

correlation: 0, .1, .3, .5, .8) × 4 (standard deviation of superpopulation: 0.04, 0.08, 

0.16, 0.32) × 4 (average sample size: 20, 40, 80, 160) × 6 (number of studies: 5, 

10, 20, 40, 80, 160), design. For each level of these 480 combinations 100,000 Monte 
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Carlo trials were used (100 times as many as the minimum recommended by Mooney, 

1997). Each cell of the design contained 100,000 cases of data (48,000,000 samples 

of data were simulated in all). 

Having said this, the results for certain combinations of the mean 

superpopulation correlation and standard deviations were omitted because they 

represent unrealistic situations. In reality, values of ρ in the superpopulation would 

never reach their maximum value of 1 because of the measurement error that is 

always present in whatever measures are used. Even assuming extremely high 

reliability of measures (e.g., .9), and the maximum possible correlation between 

constructs of 1, the maximum value of ρ in the superpopulation would be: 

( )[ ] 9.19.9.
2/1 =× . 

As such, values above .9 in the superpopulation are unrealisticviii. By converting .9 to 

a z-score and using tables of the normal distribution (e.g., Field, 2005) it is clear, for 

example, that in a superpopulation with a mean correlation of .8 and a standard 

deviation of 0.32 that (z = (.9-.8)/0.32 = 0.31) 37.83% of ρs in the superpopulation 

will be above .9. Results are reported for situations in which less than 5% of ρs in the 

superpopulation fall above .9; so, all levels of the standard deviation are reported for 

mean correlations up to .3 (maximum number of ρs above .9 = 3.04%), but only 

standard deviation values up to 0.16 are reported for a superpopulation mean of .5 

and only a standard deviation value of 0.04 is reported for the maximum 

superpopulation mean of .8 (in both cases only 0.62% of ρs would fall above .9). 
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Results 

Simulation 1: Comparing the Methods 

The first simulation compared the average correlations and their confidence 

intervals when the superpopulation was constructed using z-transformed values 

(described as method 1 above). Figure 2 shows the estimated average correlation and 

the boundaries between which 95% of average correlations from the Monte Carlo 

simulations fell; both are expressed in terms of the deviation from the true correlation 

(values of which are in Table 1) and so can be directly compared across the different 

parameters of the simulation. 

Hedges’ method (H-V) yielded average correlations within .031 of the actual 

correlation in all conditions (the maximum deviation being when the superpopulation 

correlation was .3 and the standard deviation of the superpopulation was large 

(0.32)—in all other conditions average correlations were within .015 of the actual 

correlation. These results are inconsistent with Field (2001) who found that the H-V 

method substantially overestimated the mean correlation. The Hunter-Schmidt (H-S) 

method generally produced more accurate average correlations than the H-V method 

with the maximum deviation being –.010 (which occurred when the actual correlation 

was at the extreme value of .80). Although these findings are in line with Hedges and 

Vevea’s (1998) belief that because Hunter and Schmidt’s method does not weight 

studies using the between study variance it will underestimate the average 

correlation, these underestimations were minimal and less than the overestimation 

produced by the H-V method. When the mean superpopulation correlation was zero 

the H-S estimates were always accurate, when the superpopulation correlation 

increased to .1, .3, .5, and .8, the underestimation ranged from .000 to .003, .000 to 

.007, .000 to .010, and .001 to .010 respectively.  



24 

Figure 2 also shows the population confidence intervals for the two methods: 

these are empirically determined limits within which 95% of observed population 

effect size estimates fell. These population confidence intervals were fairly comparable 

across methods. Generally, the confidence intervals became tighter around the 

average as the number of studies in the meta-analysis increased but became wider as 

the standard deviation of superpopulation correlations increased. For example, when 

there was no effect in the superpopulation, average correlations ranged from, in their 

extreme, -.35 to +.35 when the standard deviation of superpopulation correlations 

was extreme (σρ = 0.32) and the number of studies in the meta-analysis was small (k 

= 5). For both methods, when the standard deviation of superpopulation correlations 

was large (σρ = 0.16 to 0.32) it was possible to obtain erroneously small to medium 

average correlations unless about 40 (σρ = 0.16) or 80 (σρ = 0.32) studies were 

included in the meta-analysis. However, when the standard deviation of 

superpopulation correlations was small (σρ = 0.04 to 0.08) small to medium average 

correlations were obtained only when 20 or fewer studies were included in the meta-

analysis. When there was a non-zero effect in the superpopulation, to keep average 

correlation estimates within .1 of the true value, then 40 or more studies needed to 

be included if the mean effect in the superpopulation was small to medium ( ρ  = .1 or 

.3), and the standard deviation of correlations, σρ, was greater than or equal to 0.16. 

If the correlation in the superpopulation was large ( ρ  = .5), or if the standard 

deviation of correlations was smaller (σρ = 0.08) only 10-20 or more studies were 

required to keep estimates within .1 of the true value. However, when the standard 

deviation of superpopulation correlations was small (σρ = 0.04) population confidence 

intervals were fairly tight even with only 5 studies in the meta-analysis. There was 

also a relationship between the average sample size of studies and the standard 

deviation of effect sizes: at large standard deviations (σρ = 0.32) the confidence 
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intervals were relatively unaffected by differences in study sample sizes, but as the 

standard deviation of effect sizes got smaller, the confidence intervals became wider 

as study sample sizes decreased. 

Simulation 2: Does the Shape of the Superpopulation Influence the Results? 

As the mean correlation in the superpopulation increases and as the standard 

deviation of this population increases, the distribution of correlations becomes skewed 

because correlation coefficients cannot exceed 1, and so there will be a build up of 

sample correlations just below 1. One way to model this is as in the first simulation: 

the superpopulation was treated as a population of z-transformed correlations (see 

equation (1)), which are not constrained to be less than 1. For the H-S method the 

sampled correlations were back-transformed to a correlation coefficient (see equation 

(1)) before any calculations were carried out. Regardless of the relative performance 

of the H-S and H-V methods, this simulation method has the potential to make the H-

V estimates better (because they are based on z-transformed correlation coefficients), 

and the H-S estimates worse, than they actually are. Simulation 2 sought to test this 

possibility by re-running simulation 1, but using a different superpopulation. In this 

simulation, the superpopulation was made up of r values (as described in method 2 

above), but inadmissible correlations were rejected and a new correlation sampled 

until one was found with a value between -1 and 1. 

The effect of these two methods of simulation can be seen in Figure 3ix, which 

shows the frequency distribution of correlations in the population (when the 

superpopulation is based on zr values, these values have been transformed back into r 

for these graphs) as the mean correlation and its associated standard deviation in the 

superpopulation changes. The main difference is what happens as the mean 

correlation in the superpopulation becomes large or huge ( ρ  = .5 or greater): when 
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the superpopulation contains z-transformed values, the distribution becomes 

leptokurtic, whereas when raw r-values are used, the distribution retains a shape 

similar to that for smaller effects. As the standard deviation of correlations increases 

to 0.16 or more, the distributions start to deviate from normal distributions (not just 

for large mean correlations). Table 2 shows the values of skew and kurtosis for each 

of these distributions and whether the associated z-test is significantx. 

Another thing to note from Figure 3 is that when the superpopulation is based on 

r (as in the current simulation), the distributions become slightly truncated. One 

consequence of this truncation is that the true mean correlation for these populations 

will not be the value set in the simulations (i.e., the true effects will not be 0, .1, .3, 

.5 and .8). Therefore, to evaluate the accuracy of the estimates from the H-V and H-S 

methods of meta-analysis it is important we compare these estimates to the truncated 

mean of the superpopulation and not the value set in the simulation. Schmidt, Hunter 

& Urry (1976) present equations for calculating the mean and standard deviation of a 

truncated normal distribution. For this example (using correlations truncated at the 

top end of the distribution) the true mean of the distribution is given by equation (18) 

in which pdfn(x) is the Normal probability density function (pdf) of x, cdfn(x) is the 

cumulative distribution function (cdf) of the Normal distribution at x, and ρ  and σρ are 

the mean and standard deviation respectively of the distribution before truncation. 

Throughout this simulation, mean correlations from the H-V and H-S methods were 

compared to the true effect in the superpopulation based on equation (18). 
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Figure 4 shows the estimates of the average correlation and the boundaries 

between which 95% of average correlations from the Monte Carlo simulations fell 

expressed as deviations from the true effect in the superpopulation. For the H-V 

method, the results were, as predicted, worse than those of simulation 1: the profile 

of results was similar to simulation 1 in that this method still tended to over-estimate 

the true correlation, but these overestimations were larger than simulation 1. As the 

mean superpopulation correlation (before truncation) increased from 0, .1, .3, .5 to .8 

the overestimations ranged from .000 to .002, .000 to .018, .001 to .052, .002 to 

.031, and .004 to .012 respectively. The H-S method performed relatively similarly 

under these simulation conditions to those in simulation 1. As the mean 

superpopulation correlation (before truncation) increased from 0, .1, .3, .5 to .8 the 

deviations ranged from .000 to .002, .000 to –.003, .000 to –.007, –.001 to –.011, 

and .000 to –.008 respectively. 

Confidence Intervals from Simulations 1 and 2 

Table 3 shows the proportion of confidence intervals calculated using the H-V 

equations that contained the true correlation from the superpopulation (the values in 

Table 1). These proportions ranged from .814 to .962. When the standard deviation of 

correlations was small (σρ = 0.04) the proportion of confidence intervals containing 

the true effect sizes was between .83 and .96. The vast majority of proportions fall 

between .94 and .96 (within .01 of the desired .95), the only exceptions were when 

the number of studies combined was large (k = 160) and the true correlation was .3 
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or .5, and when 40 or more studies were combined and the true correlation was .80. 

As the standard deviation of correlations increased to 0.08, more confidence intervals 

failed to include the true correlation. When the true correlation was small ( ρ  = 0 or 

.1), most proportions were between .94 and .96, however, for larger population 

correlations proportions fell between .94 and .96 only when average sample sizes 

were less than 40 and fewer than 80 studies were combined. When the standard 

deviation of correlations was 0.16, confidence intervals included the true correlation 

on 94-96% of occasions only when the true correlation was small ( ρ  = 0 or .1) and 

40 or more studies were combined. In all other situations less than 94% of confidence 

intervals contained the true correlation. Finally, when the standard deviation of 

correlations was large (σρ = 0.32), fewer than 94% of confidence intervals contained 

the true correlation except when the true effect was zero and more than 40 studies 

were combined. 

Table 4 shows the proportion of confidence intervals calculated using equations 

based on H-S’s methodology that contain the true correlation from the 

superpopulation (based on Table 1). It is worth remembering that H-S advocate the 

use of artifact-corrected credibility intervals, and not the confidence intervals 

constructed here (which have been used because they are comparable to the H-V 

confidence intervals). Nevertheless, the proportions for the H-S model were lower 

than the H-V model in general (they ranged from .830 to .949). The proportions were 

above .94 only when 80 or more studies were included in the meta-analysis and when 

the true correlation was .3 or less. When the true correlation was .3 or less, the 

proportions got closer to the desired .95 as the number of studies in the meta-

analysis increased; however, when the true correlation was .5 or larger this was true 

only up to 40 studies included in the meta-analysis, with proportions dropping away 

from .95 as more studies were included. There was no condition for which the 



29 

proportion reached the desired .95 suggesting that confidence intervals were too 

narrow. 

Tables 5 (H-V) and 6 (H-S) show the same information as Tables 3 and 4 but 

when the superpopulation was based on values of r (in these cases the true 

correlations are those calculated using equation (18)). For the H-V method, the 

results are broadly similar using this different superpopulation. The main differences 

are that proportions are lower using a superpopulation based on r when the true 

correlation was .5 or more, 80 or more studies were in the meta-analysis and the 

standard deviation of correlations was 0.08 or less. When the standard deviation of 

correlations was 0.16, the proportions were lower using a superpopulation based on r 

in all conditions when the true correlation was .3 or larger. When the standard 

deviation of correlations was 0.32, the proportions were lower using a superpopulation 

based on r when the true correlation was .1 or larger and 80 or more studies were 

included in the meta-analysis. For the H-S method the results when the simulation 

was based on a superpopulation of r values were virtually identical to when the 

superpopulation was based on z-transformed values. As such, the method of 

simulating the superpopulation made a slight difference for the H-V method (which 

performed slightly better when the superpopulation contained z-transformed values), 

but made very little difference in how well the H-S method performed. 

To sum up, coverage proportions for H-S’s method were always too low: these 

confidence intervals did not capture the true effect in the superpopulation as often as 

they should. Coverage proportions from the H-V method were generally on target; 

however, when the variability of effect sizes was large the coverages were sometimes 

much lower than for H-S. 
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Simulations 3 and 4: The Effect of the Weights 

One suggestion has been that the H-S method uses sub-optimal weights and so 

is inaccurate in random-effects situations. Although the results shown in Figures 2 and 

4 do not support this suggestion, simulations 3 and 4 tested this possibility in another 

way by replicating simulations 1 and 2, but calculating each method using the weights 

from the opposite method. For the H-V method this entailed replacing the *
iw  in 

equations (5) and (10), with ni. For the H-S method, this entailed replacing  ni with 

*
iw in equations (12) and (13). This process was used to try to tease apart the effect 

(if any) that the weights have on the accuracy of estimates of the mean correlation— 

it is not recommended for typical practice. 

Figure 5 shows the estimates of the average correlation and the boundaries 

between which 95% of average correlations from the Monte Carlo simulations fell 

expressed as deviations from the true size of the correlation. The results were 

virtually identical to simulation 1 (compare Figures 2 and 5): the change in weights 

had virtually no effect on the estimates of the true correlation. 

Table 7 shows the proportion of confidence intervals calculated using the H-V 

equations that contain the true correlation from the superpopulation. In all cases the 

use of H-S weights reduced the proportions to well below the expected .95 (compare 

Tables 7 and 3). Also, the extent of this bias became greater as the population 

standard deviation increased and as the number of studies in the meta-analysis and 

the sample sizes of those studies increased. This is not surprising because the H-S 

weights will be larger than the H-V weights, therefore, when they are replaced in 

equation (10) the resulting standard error of the mean z-transformed correlation will 

be smaller, and so too will be the resulting confidence intervals. This difference 

between the weights will increase as the between-studies variability estimate ( 2τ̂ ) 
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increases, and as sample sizes increase. Given that the H-S weights reduce the 

accuracy of the H-V confidence intervals, the next question is whether the H-V 

weights improve the H-S confidence intervals. Table 8 shows these results. It is clear 

from comparing this table to Table 4, that using the H-V weights in the H-S confidence 

intervals makes virtually no difference: they show the same precision as before. 

When the simulation was repeated but using a superpopulation based on r 

values, the findings were comparable to Simulation 2xi: using the wrong weights made 

little difference to the average correlation from each method, however, using ni in the 

H-V method dramatically reduced the proportion of confidence intervals that contained 

the true correlation (more so than when the superpopulation was based on z-

transformed values), and using *
iw in the H-S method had no noticeable effect on the 

proportion of confidence intervals containing the true correlation. As such the 

simulation process did not seem to interact with the weights in each method. 

Discussion 

Estimates of the True Correlation 

This paper aimed to present extensive simulated data about the performance of 

the two most widely used random-effects methods of meta-analysis. Doing so has 

expanded earlier work (Field, 2001; Hall & Brannick, 2002; Schulze, 2004) to provide 

detailed information about when these methods can be trusted, and present 

comparative data about the relative strengths of the Hunter and Schmidt and Hedges 

methods. Some firm conclusions emerge from the initial predictions. 

First, contrary to prediction 1 the estimates of the true correlation were not 

noticeably inaccurate when small numbers of studies were included in the meta-

analysis. However, confidence intervals were: when small numbers of studies based 

on small sample sizes were included in the analysis confidence intervals were too wide 
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when the standard deviation of correlations was small (σρ ≤ 0.08); regardless of the 

sample size of studies, when the standard deviation of correlations was large (σρ ≥ 

0.16) confidence intervals were too narrow when small numbers of studies were 

included in the meta-analysis. 

Contrary to prediction 2, estimates of the true correlation from the H-S method 

were unaffected by the variability in correlations. Instead, estimates of the true 

correlation from the H-V method were affected by variability in correlations. Most 

noticeably, the overestimation of the true correlation by the H-V method was marked 

when the standard deviation of correlations was 0.16 or above. Also, the proportion of 

H-V confidence intervals containing the true correlation fell as variability between 

correlations increased. This was true also for the H-S method, but less so. 

Contrary to prediction 3, the weights were not responsible for the differences 

between estimates of the true correlation: both methods appeared to produce similar 

estimates of the true correlation regardless of whether the correct weights were used 

or the weights from the opposite method. In terms of the confidence intervals from 

the two methods, weighting the correlation by the sample size in the H-V method did 

reduce the width of these intervals (and their accuracy). The reverse was not true: 

conducting the H-S method but using the weights from the H-V method had virtually 

no effect on the resulting confidence intervals. 

In terms of prediction 4, H-S estimates seemed relatively unaffected by the 

standard deviation of correlations and the size of the true correlation in the 

superpopulation. In all simulation conditions H-S estimates of the true correlation 

were very accurate indeed and precision of the confidence intervals (although less 

precise than those from H-V’s method) improved as correlation variability increased. 

However, H-V estimates of the true correlation were affected by the distribution of 
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correlations: estimates became less accurate and confidence intervals had lower 

coverage proportions as the standard deviation of correlations and the size of the true 

correlation became larger. These differences cannot be explained by the differing 

weights in the two methods (see above) and so these findings support Schulze’s 

(2004) general position that the Fisher z-transformation is unnecessary (perhaps even 

unhelpful). 

Finally, the way in which the superpopulation was simulated did have an effect 

on the results obtained: estimates of the true correlation using the H-V method were 

better when the superpopulation was based on z-transformed values than when it was 

based on rs. However, estimates from the H-S method were unaffected, and the 

profile of results remained unchanged by the simulation procedure: H-S estimates of 

the true correlation were as good as or better than those of the H-V method 

regardless of the simulation procedure. The data on the accuracy of confidence 

intervals was also unaffected in any substantive way by the simulation procedure: the 

H-V confidence intervals were more accurate when the superpopulation contained z-

transformed scores, but were more accurate (generally—see below) than those from 

the H-S method even when the superpopulation was based on r values. 

To sum up the findings about the accuracy of the estimates of the true effect, 

there was little to differentiate the H-V and H-S estimates of the true correlation when 

the standard deviation of correlations was small (σρ ≤ 0.08). However, H-V’s method 

overestimated the true correlation when the true correlation was large ( ρ ≥ .3) and 

the standard deviation of correlations was also large (σρ ≥ 0.16), and when the true 

correlation was small ( ρ ≥ .1) and the standard deviation of correlations was at its 

maximum value (σρ = 0.32). The H-S method produced very accurate estimates under 

all conditions (estimates were always within .011 of the true value).  
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The main deviation between the estimates from the two methods was when 

effect-size variability was large (σρ = 0.32). Hall and Brannick (2002) believe that this 

level of variability is ‘somewhat unrealistic’ and so perhaps these findings are 

unimportant. However, Figure 1 shows that variability around this size can occur in 

real data, albeit relatively infrequently, and so these findings do have relevance—

although it is worth remembering that this situation reflects the very extreme of what 

would occur in real-world data. 

95% Confidence Intervals 

In terms of coverage proportions of the 95% confidence intervals from the two 

methods, those from the H-V method were relatively more accurate than those from 

the H-S method. Coverage proportions for H-S’s method were always too low and so 

these confidence intervals miss the true effect in the superpopulation more often than 

they should. Coverage proportions from the H-V method were generally on target, but 

deteriorated when a small number of studies (k = 5) were included in the meta-

analysis and when the true effect, effect-size variability, and number of studies in the 

meta-analysis increased. This is likely to be a centering issue because these are 

exactly the combination of parameters that cause the average correlation from H-V to 

deviate from the true correlation (see, for example, Figure 1). 

In some situations, confidence intervals based on the H-S method had better 

coverage: in general, as combinations of the number of studies included in the meta-

analysis, the size of the true correlation and the variability of correlations increased, 

the confidence intervals from the H-S method were more likely to have the desired 

coverage than those from H-V. This suggests that the estimates of the standard error 

in the H-S method became more precise as the number of studies included in the 



35 

meta-analysis, the size of the true correlation and the variability of correlations, in 

combination, increased. 

The standard error of the mean correlation from the H-S method underestimated 

the true standard error generally and this was especially true when the number of 

studies in the meta-analysis was small. This underestimation is because the variance 

of the observed rs (equation 13) is calculated using the sum of sample sizes in the 

denominator (∑
=

k

i
in

1

), which is equivalent to the number of studies multiplied by the 

average sample size of all studies ( Nk ). In general, a less biased estimate of 

population variance is calculated using the number of observations minus 1 (for 

example, when estimating the population variance n–1 is used rather than n). In this 

case, the number of observations is the number of effect sizes, k, and so the 

denominator of equation 13 should be (k–1) N  rather than Nk . The effect of this 

change would be to increase the estimated variance of observed rs, which in turn 

would increase the standard error of the mean correlation, which would widen the 

confidence intervals (see equation 17). This observation explains why the confidence 

intervals from H-S were too narrow when few studies were included (k is small). 

The profile of results was unaffected by how the superpopulation was simulated, 

although the differences between methods were exaggerated when the 

superpopulation was based on rs. In addition, the weights used in the two methods 

did not appear to be responsible for the differences in the accuracy of estimates of the 

true correlation (although using sample size as the weight in H-V method certainly 

gave rise to poorer coverage proportions for the resulting confidence intervals). 
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Population Confidence Intervals 

The population confidence intervals around the mean correlation (the boundaries 

within which 95% of average correlations fell) were smallest when the number of 

studies in the meta-analysis was large, and generally got bigger as the standard 

deviation of superpopulation correlations increased. Based on these population 

confidence intervals the following advice could be given: if a large average correlation 

is found (ρ ≥ .5) then this will be within ±.1 of the true value only if 20 or more 

studies were included in the meta-analysis (if σρ ≤ 0.16), or if 40 or more studies 

were included (if σρ > 0.16). If a small or medium average correlation is found (ρ = .1 

or .3) then this value will be within ±.1 of the true value only when 40 (if σρ ≤ 0.16) or 

80 (if σρ > 0.16) or more studies are in the meta-analysis and the H-V method is 

used, but regardless of the correlation variability only 40 studies will be required if the 

H-S method is used. When there was no effect in the population and the standard 

deviation of population correlations was medium to extreme (σρ ≥ 0.16), the methods 

could erroneously detect a small average correlation unless more than about 40-80 

studies (H-V) or 40 studies (H-S method) are included in the meta-analysis. Although 

the average sample size of the studies in the meta-analysis did make a difference 

(larger sample sizes produced tighter population confidence intervals), this difference 

was smaller than the effect of the number of studies in the meta-analysis and the 

standard deviation of correlations. 

Comparisons with Previous Work 

The results of the current study are consistent with those of Hall and Brannick 

(2002) and Field (2001) who found consistent overestimations of the average 

correlation from the H-V method. Hall and Brannick (2002) found overestimations 

ranging from 0 to .06 (and in general the overestimation increased as a function of 
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the standard deviation of correlations). Field (2001) found even greater 

overestimation: in the range of 0 to .20. In the current study, estimates from the H-V 

method produced a maximum overestimation of .031 (when the superpopulation was 

based on zr values) and .052 (when the superpopulation was based on r). The latter 

value is based on a simulation procedure most similar to Field (2001) and Hall and 

Brannick (2002) and found a similar result.  

Some cells of the design have approximately the same parameters examined in 

Field (2001) and can be directly compared. For example, when σρ = 0.16, the number 

of studies in the meta-analysis was 30, and the superpopulation was based on r 

values, Field (2001) reported for superpopulation correlations of .1, .3, and .5 

estimates from the H-V method of .144, .436, and .706 respectively. These are 

overestimations of .044, .136 and .206 respectively. In the present study, when σρ = 

0.16, the number of studies in the meta-analysis was 40, and the superpopulation 

was simulated using r values, the overestimations of population correlations of .1, .3, 

and .5, were (averaged across the different levels of sample size) .004, .013, and 

.025. Under the same conditions described above, Field (2001) reported for 

population correlations of .1, .3, and .5, estimates from the H-S method of .098, .293, 

and .478. These are deviations from the true value of -.002, -.007, and -.022 

respectively. In the present study, the comparable estimates were -.001, -.003, and -

.004. Thus, Field (2001) concluded that estimates of the average correlation from H-S 

were more accurate than from H-V — as did Hall and Brannick (2002). The current 

simulations tend to suggest the same conclusion; however, both methods produce 

more accurate average correlations than Field (2001) and, to a lesser extent, Hall and 

Brannick (2002) suggest. 

The likely explanation for these small differences is the treatment of inadmissible 

values. In the current study, population correlations outside of the boundaries of -1 to 
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+1 were rejected (i.e., correlations were simply sampled until a value between -1 and 

+1 was obtained). In Field (2001) values outside of the upper and lower limit of 1 

were capped; that is, replaced with a maximum value (0.999). Hall and Brannick 

(2002) used the same procedure as Field (2001) except values outside of ±.94 were 

capped at 0.94 (S. Hall, personal communication, 12th August, 2004). The result of a 

capping strategy is a build up of correlations at the very extreme of the distribution, 

which will be more pronounced as the superpopulation correlation and standard 

deviation increases. The effect of this build up of maximum values will be to drag the 

superpopulation mean upwards relative to when inadmissible correlations are rejected 

and regenerated. This will increase the H-V and H-S estimates of the true correlation. 

The overestimation in the H-V method is thus exaggerated. Also, because Field (2001) 

used a more extreme capping value than Hall and Brannick, there would be a greater 

build up of extreme values in his study, which explains the greater similarity between 

Hall and Brannick’s results and those in the current study. In addition, the present 

study made attempts to compare the estimated mean correlations from the H-S and 

H-V methods to the actual mean correlation of the superpopulation (and not the 

hypothetical value set in the simulation). The build up of correlations when a capping 

strategy is used will change the mean correlation of those distributions, but unlike the 

current study, neither Field (2001) nor Hall and Brannick (2002) attempted to 

estimate the true mean of the superpopulation. 

The current study also supports Schulze’s broad conclusions (although not based 

on H-V’s random-effects model for combining correlations) that the weights and z-

transformation advocated by Hedges do not necessarily produce more accurate 

average effect sizes than those proposed by Hunter and Schmidt. Switching the 

weights in the two methods made very little difference to the average correlation. 
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Hall and Brannick’s (2002) results differed from those of the current study in 

terms of the confidence intervals for the average effect size: they looked at credibility 

intervals from both methods and concluded that in most circumstances, the H-S 

method produced more accurate intervals. However, Hedges and Vevea (1998) do not 

advocate such intervals and instead provide equations for confidence intervals. The 

present study took the reverse approach and compared confidence intervals from both 

methods (which, conversely, Hunter and Schmidt do not advocate). The present study 

found a more complicated pattern of results than Hall and Brannick: the H-V 

confidence intervals were more accurate than those from the H-S method much of the 

time, but as combinations of the number of studies included in the meta-analysis, the 

size of the true correlation and the variability of correlations increased, the confidence 

intervals from the H-S method became more likely to be more accurate than those 

from H-V. However, even in these circumstances the H-S 95% confidence intervals 

(although an improvement on those from H-V) were still rather narrow containing only 

94% of true correlation values. 

Conclusions 

Most researchers reading this article might expect an answer to the question in 

the title: Is the meta-analysis of correlation coefficients accurate when population 

correlations vary? Well, yes, by and large random-effects methods of meta-analysis 

produce accurate estimates of the true correlation. Although when the true correlation 

was large ( ρ ≥ .3) and the standard deviation of correlations was also large (σρ ≥ 

0.16), and when the true correlation was small ( ρ ≥ .1) and the standard deviation of 

correlations was at its maximum value (σρ = 0.32) the H-V method overestimated the 

true correlation, these overestimations were small (less than .052 above the true 

value). The H-S estimates were generally less biased than H-V estimates (less than 
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.011 below the true value). In terms of 95% confidence intervals, the H-S method 

only ever produced confidence intervals that contained the true correlation on 94% of 

occasions, and often much lower (as low as 83% when few studies were combined). 

Although 95% confidence intervals from H-V’s method did, at times, contain 95% of 

true effect sizes, these confidence intervals could in certain circumstances be too wide 

(contained up to 96.2% of true correlations) or too narrow (contained 81.4% or 66% 

of true correlations depending on how the superpopulation was simulated). As such, 

researchers would need to make judgements about which method to use based on the 

size of the true correlation, the standard deviation of correlations (or estimates of 

these values), the number of studies being combined and the average sample size of 

studies in the meta-analysis. 
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Table 1: Actual means and SDs of the distributions of ρ simulated by an Fz 

Transformation 

  SD(Fz) 

Simulated 
ρ   0.04  0.08  0.16  0.32 

Actual Mean of Distribution 

.0  .0000  .0000  .0000  .0002 

.1  .0995  .09900  .0972  .0912 

.3  .2909  .2900  .2848  .2679 

.5  .4615  .4598  .4531   

.8  .6634       

Actual SD of Distribution 

.0  0.0399  0.0795  0.1561  0.2932 

.1  0.0395  0.0787  0.1547  0.2910 

.3  0.0366  0.0729  0.1440  0.2749 

.5  0.0315  0.0629  0.1253   

.8  0.0224       
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Table 2: Values of skew and kurtosis in population distributions (* indicates that the 

associated z-test is significant at p < .001, SESkew = .011, SEKurtosis = .022 throughout) 

 

    Superpopulation 

    Based on r  Based on z 

σρ   ρ   Skew  Kurtosis  Skew  Kurtosis 

 .0  0.012  -0.009  -0.010  0.012 

 .1  0.000  -0.025  -0.032  -0.016 

 .3  0.008  -0.062  -0.067*  -0.008 

 .5  -0.002  0.024  -0.110*  0.023 

0.04 

 .8  0.004  -0.017  -0.167*  0.021 

           

 .0  -0.004  -0.043  -0.002  -0.047 

 .1  0.013  0.047  -0.029  -0.070* 

 .3  0.013  0.033  -0.141*  0.032 
0.08 

 .5  -0.002  0.009  -0.214*  0.027 

           

 .0  -0.021  0.003  0.005  -0.184* 

 .1  0.010  0.002  -0.096*  -0.159* 

 .3  -0.007  0.010  -0.247*  -0.068 

 .5  -0.024  -0.076*  -0.412*  0.127* 

0.16 

          

           

 .0  -0.001  -0.136*  -0.005  -0.512* 

 .1  -0.051*  -0.142*  -0.133*  -0.468* 

 .3  -0.165*  -0.260*  -0.388*  -0.292* 

          

0.32 
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Table 3: Proportion of confidence intervals based on the H-V method that actually contained the true correlation when the 

superpopulation is based on zr values (True Effect = the mean correlation in the superpopulation) 

20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160

5 .962 .958 .955 .945 .962 .959 .954 .946 .962 .958 .954 .946 .960 .959 .955 .944 .958 .957 .954 .945

10 .959 .957 .954 .945 .959 .958 .954 .945 .959 .956 .954 .947 .956 .957 .952 .947 .954 .955 .951 .945

20 .958 .956 .952 .947 .957 .956 .952 .946 .955 .954 .953 .947 .952 .953 .950 .945 .946 .949 .949 .944

40 .957 .953 .950 .947 .956 .955 .950 .947 .952 .951 .949 .946 .943 .948 .947 .945 .928 .939 .943 .940

80 .954 .953 .950 .947 .954 .953 .949 .947 .944 .946 .946 .945 .927 .938 .942 .942 .896 .922 .932 .937

160 .953 .951 .950 .947 .951 .949 .948 .947 .930 .939 .943 .944 .896 .922 .933 .937 .833 .889 .912 .924

5 .955 .947 .933 .914 .955 .946 .932 .914 .954 .947 .933 .914 .953 .944 .932 .914

10 .955 .946 .936 .926 .954 .947 .936 .925 .952 .946 .936 .926 .950 .944 .935 .926

20 .954 .948 .942 .936 .952 .947 .940 .936 .949 .944 .938 .934 .944 .942 .936 .934

40 .951 .948 .943 .944 .950 .947 .943 .943 .945 .943 .940 .941 .934 .937 .934 .936

80 .950 .947 .946 .945 .949 .946 .946 .945 .936 .938 .940 .942 .916 .924 .929 .933

160 .952 .948 .947 .948 .946 .946 .946 .947 .922 .931 .935 .938 .876 .902 .915 .921

5 .936 .915 .895 .883 .935 .915 .896 .884 .934 .913 .895 .885 .931 .912 .894 .881

10 .938 .926 .919 .917 .937 .927 .919 .918 .936 .923 .917 .918 .929 .919 .912 .911

20 .940 .935 .935 .934 .939 .935 .934 .934 .933 .932 .930 .930 .925 .922 .922 .923

40 .943 .942 .943 .943 .942 .941 .941 .942 .931 .932 .933 .933 .910 .916 .918 .918

80 .946 .947 .945 .947 .944 .944 .945 .945 .920 .925 .926 .928 .879 .890 .896 .899

160 .948 .948 .948 .949 .942 .943 .942 .945 .897 .907 .910 .911 .814 .837 .845 .851

5 .897 .886 .879 .879 .896 .883 .880 .875 .894 .878 .874 .873

10 .921 .918 .919 .918 .918 .916 .917 .918 .910 .908 .907 .909

20 .936 .935 .935 .938 .933 .934 .933 .936 .917 .920 .919 .919

40 .942 .942 .942 .943 .938 .939 .939 .941 .910 .912 .913 .914

80 .946 .947 .947 .947 .940 .939 .940 .940 .881 .884 .887 .885

160 .949 .948 .948 .949 .934 .934 .935 .935 .822 .825 .825 .827

k

Number of 
Studies

True effect = .5True effect = 0 True effect = .1 True effect = .3

σρ = 0.16

σρ = 0.32

True effect = .66

Average Sample Size

σρ = 0.04

σρ = 0.08
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Table 4: Proportion of confidence intervals based on the H-S method that actually contained the true correlation when the 

superpopulation is based on zr values (True Effect = the mean correlation in the superpopulation) 

20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160

5 .843 .846 .844 .843 .845 .846 .844 .844 .845 .845 .845 .846 .843 .843 .845 .840 .842 .843 .845 .841

10 .903 .903 .903 .900 .904 .905 .903 .901 .904 .904 .904 .902 .903 .904 .903 .903 .905 .903 .905 .901

20 .929 .928 .927 .927 .928 .929 .927 .928 .928 .928 .928 .929 .928 .928 .927 .927 .929 .928 .927 .928

40 .941 .938 .938 .938 .941 .941 .938 .939 .938 .938 .938 .939 .935 .937 .939 .938 .932 .934 .937 .937

80 .945 .945 .944 .943 .945 .946 .943 .943 .939 .941 .942 .943 .929 .938 .941 .941 .912 .927 .936 .940

160 .947 .946 .947 .945 .947 .945 .946 .945 .932 .939 .942 .944 .908 .928 .938 .942 .861 .906 .928 .939

5 .847 .844 .842 .841 .844 .842 .842 .840 .842 .845 .841 .841 .842 .841 .842 .841

10 .904 .903 .900 .899 .903 .903 .900 .899 .902 .902 .902 .901 .901 .902 .902 .900

20 .929 .928 .928 .925 .928 .928 .926 .925 .927 .926 .925 .924 .926 .928 .926 .927

40 .939 .940 .936 .937 .938 .939 .937 .937 .938 .938 .937 .936 .936 .938 .936 .936

80 .944 .943 .942 .940 .944 .943 .942 .941 .940 .941 .942 .942 .931 .937 .940 .942

160 .949 .946 .944 .944 .945 .946 .944 .944 .933 .940 .943 .943 .911 .930 .938 .942

5 .841 .840 .837 .835 .840 .840 .838 .836 .840 .839 .838 .838 .838 .837 .836 .834

10 .902 .899 .896 .897 .901 .899 .897 .898 .901 .899 .897 .898 .900 .897 .895 .895

20 .926 .925 .923 .922 .925 .925 .923 .921 .925 .926 .923 .923 .927 .924 .922 .921

40 .936 .936 .934 .934 .937 .935 .934 .934 .937 .936 .935 .934 .935 .936 .935 .934

80 .942 .942 .939 .939 .942 .942 .940 .940 .939 .941 .938 .940 .934 .939 .939 .940

160 .946 .944 .942 .943 .944 .943 .941 .942 .937 .941 .941 .942 .921 .937 .940 .942

5 .836 .836 .835 .835 .835 .834 .836 .831 .834 .830 .830 .831

10 .898 .895 .897 .895 .896 .895 .895 .896 .895 .894 .891 .891

20 .924 .922 .921 .922 .923 .923 .922 .924 .922 .921 .920 .919

40 .934 .934 .932 .933 .934 .934 .934 .933 .935 .935 .933 .932

80 .940 .939 .939 .938 .940 .939 .939 .939 .939 .939 .937 .938

160 .943 .942 .939 .941 .941 .941 .940 .941 .941 .942 .940 .940

Average Sample Size

σρ = 0.04

σρ = 0.08

k

True effect = .5True effect = 0 True effect = .1 True effect = .3

Number of 
Studies

σρ = 0.16

σρ = 0.32

True effect = .66
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Table 5: Proportion of confidence intervals based on the H-V method that actually contained the true correlation when the 

superpopulation is based on r values 

20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160

5 .962 .958 .954 .947 .962 .959 .953 .945 .961 .958 .952 .943 .959 .954 .948 .934 .941 .930 .911 .894

10 .960 .957 .953 .946 .960 .958 .953 .946 .958 .956 .952 .944 .954 .952 .947 .937 .932 .925 .919 .917

20 .959 .955 .952 .947 .957 .956 .952 .946 .956 .954 .949 .944 .950 .949 .944 .941 .913 .917 .917 .921

40 .957 .955 .951 .948 .956 .953 .950 .947 .950 .951 .948 .944 .938 .943 .942 .939 .875 .891 .904 .911

80 .954 .953 .950 .947 .954 .951 .950 .947 .943 .945 .945 .944 .918 .931 .935 .938 .801 .843 .862 .874

160 .954 .952 .949 .947 .950 .949 .948 .947 .929 .939 .941 .942 .882 .909 .923 .930 .649 .732 .770 .790

5 .955 .946 .933 .914 .955 .947 .930 .914 .953 .941 .928 .910 .947 .934 .916 .898

10 .954 .947 .937 .926 .954 .947 .936 .926 .951 .943 .933 .924 .943 .935 .925 .921

20 .953 .948 .939 .937 .953 .945 .941 .935 .947 .942 .937 .936 .934 .930 .929 .930

40 .952 .946 .943 .942 .950 .946 .943 .942 .943 .940 .939 .940 .922 .927 .928 .932

80 .952 .947 .946 .947 .948 .947 .944 .946 .933 .936 .939 .941 .894 .909 .916 .920

160 .950 .947 .948 .947 .947 .946 .947 .947 .916 .926 .931 .935 .840 .871 .885 .894

5 .934 .914 .897 .884 .933 .912 .894 .884 .928 .910 .893 .885 .915 .898 .888 .883

10 .937 .926 .922 .919 .938 .926 .920 .920 .930 .923 .919 .917 .917 .914 .914 .916

20 .941 .936 .936 .935 .940 .934 .935 .936 .930 .929 .931 .931 .910 .914 .919 .920

40 .943 .942 .943 .943 .942 .941 .942 .943 .926 .929 .931 .932 .880 .889 .896 .900

80 .947 .947 .946 .947 .942 .944 .945 .945 .911 .918 .919 .922 .807 .825 .831 .837

160 .948 .948 .948 .949 .941 .943 .943 .944 .876 .888 .888 .895 .660 .686 .694 .700

5 .897 .890 .885 .884 .899 .888 .883 .883 .895 .887 .886 .885

10 .921 .920 .919 .922 .919 .918 .921 .921 .914 .915 .917 .917

20 .935 .936 .936 .936 .933 .934 .935 .934 .916 .918 .920 .920

40 .943 .944 .945 .944 .938 .938 .939 .939 .892 .893 .896 .897

80 .948 .946 .947 .947 .933 .934 .934 .936 .823 .826 .829 .831

160 .948 .949 .948 .948 .922 .920 .922 .922 .680 .685 .688 .689

Average Sample Size

σρ = 0.04

σρ = 0.08

True effect = .5True effect = 0 True effect = .1 True effect = .3

k σρ = 0.16

σρ = 0.32

True effect = .8

Number of 
Studies
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Table 6: Proportion of confidence intervals based on the H-S method that actually contained the true correlation when the 

superpopulation is based on r values 

20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160

5 .846 .844 .843 .846 .847 .846 .843 .843 .845 .843 .843 .843 .843 .844 .843 .841 .838 .841 .838 .837

10 .903 .904 .903 .903 .905 .903 .901 .901 .904 .902 .904 .901 .902 .904 .902 .902 .902 .900 .898 .899

20 .929 .927 .928 .927 .928 .929 .928 .927 .928 .929 .928 .926 .929 .929 .928 .928 .926 .926 .924 .925

40 .940 .940 .939 .940 .941 .939 .938 .939 .938 .939 .939 .938 .935 .937 .938 .937 .929 .933 .935 .935

80 .945 .945 .944 .943 .945 .944 .944 .944 .939 .941 .942 .943 .926 .936 .940 .942 .908 .928 .937 .939

160 .948 .948 .946 .945 .946 .945 .946 .945 .930 .940 .943 .944 .902 .926 .936 .943 .848 .907 .929 .938

5 .846 .843 .842 .840 .841 .838 .838 .836 .844 .842 .843 .842 .839 .842 .838 .837

10 .904 .903 .902 .900 .901 .901 .898 .899 .903 .901 .901 .900 .902 .901 .900 .900

20 .929 .929 .925 .926 .926 .924 .923 .924 .928 .926 .926 .927 .926 .925 .924 .924

40 .939 .937 .937 .936 .937 .937 .934 .935 .938 .936 .937 .935 .935 .937 .936 .936

80 .946 .943 .942 .942 .942 .942 .940 .939 .937 .941 .942 .941 .929 .936 .939 .940

160 .947 .945 .945 .942 .944 .943 .941 .942 .932 .939 .941 .943 .906 .930 .937 .942

5 .844 .840 .839 .837 .841 .838 .838 .836 .840 .840 .838 .838 .837 .836 .837 .836

10 .900 .900 .900 .898 .901 .901 .898 .899 .899 .899 .899 .897 .899 .898 .896 .896

20 .927 .924 .924 .921 .926 .924 .923 .924 .925 .924 .923 .921 .925 .922 .923 .920

40 .936 .936 .935 .935 .937 .937 .934 .935 .936 .935 .935 .934 .935 .935 .934 .934

80 .943 .941 .940 .940 .942 .942 .940 .939 .939 .939 .939 .938 .935 .938 .939 .939

160 .945 .944 .942 .943 .944 .943 .941 .942 .937 .941 .940 .941 .924 .936 .939 .941

5 .835 .838 .836 .836 .838 .836 .834 .835 .836 .835 .836 .835

10 .897 .897 .895 .897 .896 .895 .896 .895 .895 .895 .895 .895

20 .922 .922 .921 .920 .923 .921 .921 .920 .922 .921 .922 .920

40 .934 .933 .934 .933 .935 .932 .933 .933 .935 .932 .935 .932

80 .942 .938 .938 .938 .939 .939 .938 .939 .940 .939 .938 .935

160 .941 .941 .940 .941 .944 .941 .941 .941 .939 .942 .942 .939

Average Sample size

σρ = 0.04

σρ = 0.08

True effect = .5True effect = 0 True effect = .1 True effect = .3

k σρ = 0.16

σρ = 0.32

True effect = .8

Number of 
studies
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Table 7: Proportion of confidence intervals based on the H-V method, but with H-S weights, that contained the true 

correlation when the superpopulation is based on zr values (True Effect = the mean correlation in the superpopulation) 

20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160

5 .924 .931 .930 .915 .925 .932 .929 .916 .923 .932 .930 .916 .922 .932 .929 .914 .921 .930 .930 .914

10 .923 .933 .930 .914 .924 .933 .929 .915 .924 .930 .929 .917 .919 .931 .928 .915 .917 .929 .927 .914

20 .925 .932 .929 .915 .925 .932 .928 .915 .920 .930 .930 .916 .917 .928 .926 .914 .908 .924 .924 .912

40 .926 .931 .928 .915 .924 .933 .928 .914 .918 .929 .926 .914 .907 .925 .924 .913 .886 .913 .920 .907

80 .925 .932 .929 .915 .923 .933 .928 .915 .911 .925 .925 .913 .887 .915 .919 .908 .848 .896 .908 .901

160 .925 .931 .930 .914 .921 .929 .928 .913 .894 .918 .921 .910 .849 .897 .910 .900 .771 .857 .885 .884

5 .911 .909 .881 .823 .911 .906 .881 .823 .910 .907 .879 .825 .908 .905 .878 .825

10 .913 .907 .880 .823 .912 .908 .879 .822 .908 .907 .880 .824 .905 .904 .878 .821

20 .913 .908 .882 .823 .911 .908 .880 .822 .906 .903 .877 .820 .901 .900 .874 .818

40 .912 .909 .880 .824 .909 .907 .880 .822 .902 .901 .876 .819 .886 .893 .867 .811

80 .912 .906 .881 .823 .910 .906 .879 .822 .892 .894 .871 .814 .864 .875 .855 .801

160 .913 .906 .878 .823 .907 .904 .877 .821 .874 .883 .861 .803 .815 .845 .828 .773

5 .863 .816 .723 .604 .861 .816 .725 .604 .861 .814 .723 .602 .857 .812 .725 .600

10 .863 .814 .724 .605 .860 .815 .723 .604 .857 .810 .720 .599 .850 .802 .713 .592

20 .862 .815 .724 .603 .859 .815 .721 .603 .850 .806 .714 .594 .837 .791 .701 .583

40 .861 .813 .726 .600 .858 .812 .722 .599 .841 .796 .706 .584 .810 .767 .676 .557

80 .862 .815 .725 .601 .856 .810 .718 .599 .822 .777 .687 .565 .759 .722 .634 .518

160 .861 .815 .724 .602 .851 .805 .713 .592 .781 .741 .653 .533 .663 .637 .552 .445

5 .708 .598 .473 .353 .708 .598 .471 .354 .703 .592 .464 .349

10 .708 .596 .473 .354 .708 .596 .468 .353 .691 .581 .456 .340

20 .708 .599 .468 .355 .707 .597 .464 .350 .678 .568 .447 .336

40 .705 .597 .467 .353 .699 .591 .464 .346 .652 .544 .422 .315

80 .709 .595 .467 .352 .695 .584 .456 .343 .593 .493 .378 .284

160 .710 .595 .466 .353 .681 .570 .446 .333 .500 .403 .305 .226

True effect = .66

Average Sample Size

True effect = .5True effect = 0 True effect = .1 True effect = .3

σρ = 0.16

σρ = 0.32

Number of 
Studies

k

σρ = 0.04

σρ = 0.08
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Table 8: Proportion of confidence intervals based on the H-S method, but with H-V weights, that contained the true 

correlation when the superpopulation is based on zr values 

20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160 20 40 80 160

5 .841 .845 .844 .843 .843 .845 .844 .845 .843 .844 .845 .846 .841 .842 .845 .841 .840 .843 .845 .841

10 .901 .902 .903 .900 .902 .904 .904 .902 .902 .904 .904 .903 .902 .904 .904 .904 .903 .902 .905 .902

20 .928 .927 .928 .928 .926 .928 .927 .928 .927 .927 .929 .929 .927 .927 .927 .927 .927 .927 .928 .929

40 .939 .938 .939 .939 .939 .941 .938 .940 .936 .938 .938 .939 .933 .937 .939 .939 .930 .933 .937 .938

80 .943 .945 .945 .944 .943 .946 .943 .945 .938 .941 .943 .943 .927 .938 .941 .942 .911 .926 .937 .941

160 .946 .946 .948 .946 .945 .945 .946 .946 .930 .939 .943 .945 .907 .928 .938 .943 .861 .906 .928 .940

5 .844 .844 .843 .843 .841 .841 .842 .842 .839 .844 .842 .844 .839 .841 .843 .844

10 .902 .902 .901 .902 .901 .903 .901 .901 .901 .902 .903 .903 .899 .902 .903 .902

20 .928 .928 .930 .928 .926 .928 .928 .928 .925 .926 .926 .927 .925 .928 .927 .930

40 .938 .940 .938 .940 .937 .939 .939 .940 .936 .938 .939 .940 .935 .938 .938 .939

80 .943 .943 .944 .943 .943 .943 .944 .944 .938 .941 .944 .945 .929 .937 .942 .945

160 .948 .946 .946 .947 .944 .946 .946 .947 .932 .941 .946 .946 .909 .930 .940 .945

5 .840 .841 .841 .842 .839 .841 .841 .842 .839 .840 .842 .844 .837 .838 .840 .840

10 .901 .902 .901 .903 .901 .901 .901 .903 .901 .900 .902 .904 .899 .899 .899 .900

20 .926 .927 .928 .928 .925 .927 .928 .928 .924 .928 .927 .928 .927 .926 .927 .928

40 .937 .939 .939 .940 .937 .939 .939 .940 .937 .939 .939 .940 .935 .939 .940 .939

80 .943 .946 .944 .945 .943 .944 .945 .945 .940 .944 .943 .946 .935 .942 .944 .945

160 .946 .947 .947 .948 .945 .947 .946 .948 .938 .944 .946 .948 .922 .939 .944 .948

5 .837 .841 .843 .844 .837 .840 .843 .840 .836 .835 .838 .839

10 .901 .902 .904 .903 .899 .901 .902 .905 .898 .899 .899 .900

20 .927 .928 .928 .931 .927 .929 .929 .931 .925 .927 .927 .927

40 .938 .940 .939 .940 .939 .940 .940 .941 .939 .940 .939 .939

80 .944 .945 .945 .945 .945 .945 .945 .945 .943 .945 .944 .945

160 .948 .947 .947 .948 .945 .947 .948 .947 .946 .948 .946 .947

k σρ = 0.16

σρ = 0.32

True effect = .66

Number of 
studies

Average Sample Size

σρ = 0.04

σρ = 0.08

True effect = .5True effect = 0 True effect = .1 True effect = .3
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FIGURES 

• Figure 1: Histogram showing the frequency of different levels of variability 

between effect sizes in meta-analytic studies using correlation coefficients 

published in Psychological Bulletin 1997-2002. The estimate of the population 

standard deviation was calculated using Hunter and Schmidt’s method (the 

square root of equation (15)). 

• Figure 2: The deviation from the true value of average correlations (circles) and 

the lower and upper boundaries of the 95% confidence interval (triangles) from 

Hedges-Vevea and Hunter-Schmidt methods of meta-analysis when the 

superpopulation is based on z-transformed values. The average sample sizes of 

studies in the meta-analysis are shown by the size of circles and triangles 

(smaller circles and triangles represent smaller average sample sizes). Average 

correlations and confidence intervals were compared to the values in Table 1. 

• Figure 3: Frequency of population correlations as the average correlation in the 

superpopulation and its standard deviation varies. Graphs are shown when z-

transformed values of r were used to model the superpopulation, and when the 

superpopulation was based on values of r but with inadmissible values replaced. 

• Figure 4: The deviation from the true value of average correlations (circles) and 

the lower and upper boundaries of the 95% confidence interval (triangles) from 

Hedges-Vevea and Hunter-Schmidt methods of meta-analysis when the 

superpopulation is based on r values. The average sample sizes of studies in 

the meta-analysis are shown by the size of circles and triangles (smaller circles 

and triangles represent smaller average sample sizes). 
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• Figure 5: The deviation from the true value of average correlations (circles) and 

the lower and upper boundaries of the 95% confidence interval (triangles) from 

Hedges-Vevea and Hunter-Schmidt methods of meta-analysis when the wrong 

weights are used (the superpopulation is based on z-transformed values). The 

average sample sizes of studies in the meta-analysis are shown by the size of 

circles and triangles (smaller circles and triangles represent smaller average 

sample sizes). Average correlations and confidence intervals were compared to 

the values in Table 1. 
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FOOTNOTES 

                                       

i These conversions can have statistical implications. 

ii A mixed-effects model exists too in which population effect sizes differ but their 

variability is explained by a moderator variable that is treated as ‘fixed’ (see Overton, 

1998) and also includes additional random heterogeneity. 

iii Several studies provided multiple values because each study typically involved 

several meta-analyses conducted on different predictors or outcomes. 

iv A third method developed by Rosenthal and Rubin (see Rosenthal, 1991) is 

popular but exists only in a fixed-effect form and differs from Hedges’ method only in 

how the significance of the mean weighted effect size is calculated (see Field, 2001). 

v This is the average effect size used in the fixed-effects model. 

vi In both methods these different study weights consequently affect the 

estimates of the standard error: in the H-V method the standard error is clearly 

related to the study weights (see equation 10) and in the H-S method, the standard 

error (in equation 16) is based on the variance of observed correlations (equation 13), 

which is also a function of the study weights. 

vii In this case the correlation standard deviation will be smaller than these 

values, because it was applied to a distribution of zs rather than rs (see Table 1). 

viii I am grateful to Frank Schmidt for pointing this out. 

ix A smoothing routine was used to plot the curves of the distributions and this 

resulted in the curves dropping below 0 in places and some other irregularities. Of 
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course frequencies were never below 0, but these curves give an overall impression of 

the shape of the distribution. 

x These significance values need to be treated cautiously because these 

distributions are based on large samples and, as Field (2005) notes, this results in low 

standard errors and, therefore, large values of z.  

xi To save space, the results for this simulation are not presented (but are 

available from the author).  
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