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Abstract 

Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in 

prokaryotes requires Ku and a specific multidomain DNA ligase (LigD).  Here we present 

crystal structures of the primase/polymerization domain (PolDom) of Mycobacterium 

tuberculosis LigD, either alone or complexed with nucleotides. The PolDom structure 

combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with 

additional loops and domains that together form a deep cleft on the surface, likely used for 

DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of 

accessory domains and Ku proteins, has the potential to recognize DNA end-joining 

intermediates. Strikingly, one of the main signals for the specific and efficient binding of 

PolDom to DNA is the presence of a 5´-phosphate, located at the single/double-stranded 

junction at both gapped and 3´-protruding DNA molecules. Although structurally unrelated, 

Pol λ and Pol µ, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a 

similar capacity to bind a 5´-phosphate. Other properties that are beneficial for NHEJ, such as 

the ability to generate template distortions and realignments of the primer, displayed by Pol λ 

and Pol µ, are also shared by the PolDom of bacterial LigD. In addition, PolDom can also 

perform non-mutagenic translesion synthesis on termini containing modified bases. 

Significantly, ribonucleotide insertion also appears to be a recurrent theme associated with 

NHEJ, maximized in this case by the deployment of a dedicated primase, although its in vivo 

relevance is presently unknown. 
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Introduction 

DNA double-strand breaks (DSB) are particularly dangerous lesions because of the loss 

of integrity of both strands of the DNA duplex. These lesions are repaired by two 

fundamentally different processes, homologous recombination (HR) and non-homologous end-

joining (NHEJ) that can be distinguished based on the involvement of a DNA sequence that is 

homologous to the break site.1  In HR, the repair mechanism utilizes an intact duplex that is 

homologous to the DSB site to guide the repair event and accurately restore the DNA structure 

and sequence at the break site.  By contrast, in NHEJ-mediated DSB repair DNA ends are 

brought together, processed and then directly joined together.  This process has the potential to 

be error-prone, leading to genetic alterations ranging from the loss or the addition of a few 

nucleotides at the break site, or even the joining of previously unlinked DNA molecules.1   

 

Unusually, key factors in NHEJ, the Ku70/Ku80 heterodimer, XRCC4 and DNA ligase 

IV, were first identified in mammals.  Subsequent studies have revealed the presence of 

functionally homologous factors in the lower eukaryote Saccharomyces cerevisiae,2 and more 

recently, in prokaryotes3, indicating that the mechanism of NHEJ has been conserved 

throughout evolution. The DNA end-binding Ku heterodimer and DNA-PKcs are assembled 

together on a DNA end to constitute the DNA-dependent protein kinase (DNA-PK) in higher 

eukaryotes.  Both have been shown to have end-bridging activity,4,5 as has the yeast 

Rad50/Mre11/Xrs2 complex.6 Furthermore, each of these factors functionally interacts with 

the DNA ligase complex, DNA ligase IV/XRCC4 in mammalian cells and Dnl4/Lif1 in yeast, 

that completes the repair pathway. 6-8   
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The majority of DSBs generated in vivo have ends that are non-complementary and 

may also have damaged termini.  Such DNA ends require processing by factors including 

nucleases and DNA polymerases to generate ligatable termini.  Many DNA polymerases, 

including Pol µ Pol λ and TdT in mammals and pol4 in yeast,9-11 and the nucleases Artemis, 

Mre11 and FEN-1,11-14 have been implicated in eukaryotic NHEJ.  In contrast, the prokaryotic 

NHEJ pathway appears to consist of only two repair factors (Ku and Ligase D; LigD) that form 

a fully functional two-component DSB repair complex.3,15 Many of the Ku-associated ligases 

(LigD) possess modular domains with end-processing activities,15-21 including polymerases 

that belong to the Archaeo-Eukaryotic Primase (AEP) family and DNA exonuclease domains 

capable of removing single-stranded 3’ overhangs.  These domains play a direct role in 

resecting the termini of DSBs prior to ligation15 and can function independently of one 

another.20,21 These additional activities appear to compensate for the lack of the various 

processing factors implicated in eukaryotic NHEJ.  Although bacterial Ku is not directly 

involved in end-processing, it is essential for recruiting LigD, via a direct interaction with the 

polymerase domain, to DSBs and may also co-ordinate the order and extent of resection.20 

Thus, bacterial NHEJ-mediated DSB repair can be reconstituted, both in vitro and in vivo, 

simply by the addition of Ku and LigD.15-20  Interestingly, LigD and Ku are genetically 

associated in many diverse bacterial species suggesting that NHEJ is functionally relevant to 

many prokaryotes.19  It has been proposed that bacteria in stationary phase rely on NHEJ, in an 

analogous manner to non-cycling eukaryotic cells.3,15 

 

LigD from Mycobacterium tuberculosis (Mt-LigD) and Mycobacterium smegmatis (Ms-LigD)  

is composed of polymerase (Mt-PolDom/Ms-PolDom) and nuclease domains that reside as N-
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terminal distal and proximal extensions of the ligase domain, respectively.  Mt-PolDom 

possesses a remarkable variety of nucleotidyltransferase activities including DNA-dependent 

RNA primase, terminal transferase and DNA-dependent DNA/RNA gap-filling polymerase 

activities.3,15,16,20 Previously, we reported that the Mt-PolDom (amino acids 1-300), when 

expressed in isolation, retains both DNA end-filling and primase activities.20 Here we present 

the crystal structure of the polymerase domain from M. tuberculosis, and the co-crystal 

structures with either GTP or dGTP bound in the active site.  We also describe a detailed 

functional characterisation of the interaction between either Mt-PolDom or Ms-PolDom and 

various NHEJ-relevant DNA substrates that illuminates the basic modus operandi of these 

versatile DSB repair polymerases.  
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Results 

Structure of the NHEJ polymerase domain of Mt DNA ligase D 

Many bacterial NHEJ DNA ligases contain additional catalytic domains that encode specific 

polymerase and nuclease activities.15 These domains play a direct role in resecting the termini 

of DSBs prior to ligation and each of the domains (ligase, polymerase and nuclease) can 

function independently of one another.  Previously, we reported that the polymerase domain 

(amino acids 1-300) of the M. tuberculosis NHEJ ligase D can be readily over-expressed in E. 

coli and purified to near homogeneity using nickel affinity and size-exclusion chromatography 

steps.20 The recombinant polymerase domain (PolDom) retains both DNA end-filling 

polymerase activities and also possesses an intrinsic primase activity.20  

 

To understand the molecular basis of these, and other polymerase activities ascribed to 

this domain, we have crystallized both native and the selenomethionine-substituted PolDom 

mutant (F64L) and also co-crystallized PolDom with either dGTP or GTP and divalent metals 

(see Materials & Methods).  The native crystals diffracted to beyond 1.6Å, whilst the co-

crystals diffracted to ~1.8 Å, and belong to the monoclinic space group P21 or orthorhombic 

space group P212121 with typical unit cell dimensions of a = 41.0, b = 75.8, c = 96.1 Å and β = 

92.7º.  There are two molecules in the asymmetric unit, giving a Vm of 2.13 Å3 Da-1, 

corresponding to 41.8% solvent content. The structure of selenomethionine-substituted 

PolDom (F64L) was determined to 1.8 Å using MAD phasing methods (see Materials and 

Methods) and the refinement statistics are shown in Table 1.  The native structure and co-

crystal structures with bound nucleotides were determined to resolutions of 1.65 Å, 1.8 Å and 

1.78 Å by molecular replacement using the selenomethionine-substituted structure (see 

Materials and Methods).  The structure comprises residues 2 to 288 of the Mt-PolDom 
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sequence with no density observed for 12 amino acids at the C-terminal end.  Over 90% of the 

residues in the structure are in the most favorable region of the Ramachandran plot (Table I). 

 

The overall architecture of the N-terminal polymerase domain of Mt-ligase D is shown 

in Figure 1(a).  PolDom is a globular monomeric protein with a mixed α+β structure and is 

composed of three sub-domains (two mixed α+β and one β domain) with 18 β-stands and 6 α-

helices on the periphery of the structure.  The central core of the PolDom molecule is 

composed of two β-sheets, comprising of a four-stranded anti-parallel sheet (β4, 3, 7 and 15) 

and a six-stranded anti-parallel β-sheet (β13, 14, 10, 12, 11 and 17). The single β-domain is 

made up of two distinct β-sheets (β5,6 and β8,9) which protrude from the globular structure, 

forming the upper edge of the active site cleft.   

 

Searches of the protein structural data base (PDB) using the SSM server 

(http://www.ebi.ac.uk/msd-srv/ssm) revealed that PolDom shares significant structural 

homology with the catalytic domains of the DNA primases of the archaea Sulfolobus 

solfataricus,22 Pyrococcus furiosus 23 and Pyrococcus horikishii24 (Figure 1(b)).  For example, 

Mt-PolDom and S. solfataricus primase structures align with a Z score of 4.4 and a root-mean-

square (rms) deviation of 2.4 Å over 167 Cα positions.  PolDom also shares significant 

structural homology with the pRN1 DNA primase-polymerase domain from Sulfolobus 

islandicus25 (Z score of 2.7 and rms deviation of 3.0 over 116 Cα positions). Although these 

primases share a common catalytic core, many of the proteins contain additional loops and 

domains (Figure 1(b)) that are likely to determine the substrate specificity, and hence the 

specific role of these primases in DNA metabolism. These findings confirm previous 

predictions that the prokaryotic NHEJ polymerases do not belong to the eukaryotic polymerase 
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X family (that includes the NHEJ repair polymerases, Pol µ, Pol λ and TdT) but rather are 

members of the archaeo-eukaryotic primase (AEP) superfamily,15,26 although unlike their close 

relatives they have evolved to have a role in DSB repair processes rather than in priming DNA 

replication.27    

 

Structures of the polymerase active site with and without bound nucleotide  

To understand the molecular basis of nucleotide binding by PolDom, we elucidated a 

number of crystal structures of the polymerase bound to either dGTP or GTP, in the presence 

of manganese. In both structures, the nucleoside triphosphates substrates are bound in a large 

positively charged central cleft on the surface of the protein (Figure 2(a); see also 

Supplementary Figure1 online), although the relative orientation of the respective guanine base 

differs significantly (see below).  A closer view of the structure and molecular interactions in 

the active site of PolDom are shown in Figure 2.  In the apo-enzyme structure a large number 

of ordered water molecules are observed in the active site (Figure 2(b)).  Many of these 

hydrogen-bonding interactions between conserved active site residues are lost upon binding of 

the nucleotide (Figure 2(c),(d)) and replaced with nucleotide/metal-specific contacts.  We can 

group the atomic interactions within the active site into three overall categories: (1) the metal 

binding sites, (2) triphosphate contacts and, (3) nucleoside contacts. Overall, the conformation 

of the triphosphate tail and the positioning and co-ordination of the metal ion (manganese) is 

nearly identical in both the GTP (Figure 2(c)) and dGTP (Figure 2(d)) co-crystal structures. In 

the co-crystal structures, a Mn2+ ion is co-ordinated in an octahedral complex with contacts 

being made with the δ−oxygens of the essential catalytic aspartate residues (Asp137 and 

Asp139), a couple of ordered water molecules and with non-bridging oxygens of the β− and 

γ−phosphates of the triphosphate tail.  Interestingly, Asp139 is pointing away from the Mn 

binding site in the apo-enzyme but undergoes a conformational change upon addition of GTP, 
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causing it to rotate towards the other conserved aspartates. The utilization of a two-metal 

catalysis mechanism is highly conserved among DNA polymerases.28 Although a single metal 

ion is present in the native co-crystal structures, we did observe a second metal binding site in 

the active site of co-crystal structures of a mutant form of PolDom (F64L; Supplementary 

Figure 2 online). The second metal (magnesium) binding site, is partially coordinated in a 

distorted tetrahedral complex by δ−oxygens of Asp137 and Asp139, as well as to an ordered 

water molecule shared with the Mn2+ site.  In addition, the side-chain of Asp227 also 

coordinates the Mg2+ ion.  Based on active-site models described for other polymerases, we 

predict that the Mg2+ ion is most likely positioned to activate the 3’-OH of the primer for an in-

line attack on the α-phosphate of the bound NTP, whilst the location of Mn2+ makes it likely 

that it acts to stabilize the optimal conformation of the pyrophosphate (PPi) leaving group.  

Although two different metal ion species are present in the structures, it remains to be 

determined which is the divalent metal of choice in vivo. 

 

The triphosphate tail of the bound GTP is stabilized by a number of specific 

interactions with the manganese ion, specific amino acid residues and with ordered water 

molecules.  Arg244 (a His residue in archaea and eukarya) co-ordinates to the non-bridging 

oxygens of the α− and β−phosphates, His178 (invariant in all groups of eukaryotic-type 

primases) co-ordinates the β-phosphate non-bridging oxygen via Nε and the γ-phosphate 

hydrogen-bonds to a number of conserved residues (Ser174, Lys175 and Gly176), as well as 

making a number of water and metal-mediated contacts in the active site. Ser172, which is 

invariant in all groups of AEPs, also interacts with the γ-phosphate. 

 

The most profound difference between the two nucleotide-bound structures (GTP vs 

dGTP) is the position adopted by the nucleosides in the active site (Figure 2(c),(d)).  In the 
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PolDom-GTP structure, the guanosine moiety is positioned away from the triphosphate tail 

with the guanine  base stacking against the ring of a conserved phenylalanine (Phe64) and it 

also interacts with Lys52 (via N7 of the purine).  This docking exposes the guanosine base to 

the solvent but positions the ribose hydroxyl groups towards the active site. The nucleoside is 

held in this orientation via direct interactions with the ribose moiety. These contacts include 

hydrogen bonding between the ribose hydroxyls O2’ and O3’ with the oxygen atoms of 

Thr236 (invariant in bacterial AEPs; invariant Arg in archaea; invariant His in eukarya) and 

His111 (Nδ) (invariant in bacterial AEPs).  In contrast, the deoxyguanosine of dGTP appeared 

to bind less specifically, with the nucleoside adopting a number of orientations in the active 

site of crystal structure.  In the co-crystal structure (PolDom:dGTP), refined with the best 

occupancy for the dGTP nucleotide, the nucleoside adopts a conformation that positions the 

deoxyribose moiety in a more solvent-exposed position than is observed in the GTP complex.  

The deoxyribose O3’ hydrogen bonds to the ε−oxygen atom of side-chain of Gln230 (invariant 

in Mt-like AEPs; substituted by an Arg in Pae-LigD).  The base still stacks with Phe64 

(invariant in bacterial AEPs), but instead the base interacts the γ−oxygen of Thr236 (via N7 of 

the purine).  In the dGTP complex and the apo-enzyme structures, an ordered water molecule 

occupies the same position as the ribose O2’ in the GTP complex and engages in similar 

interactions with residues in the active site.  These two distinct molecular “snap-shots” of 

different nucleotides bound to the polymerase suggest that the observed binding modes may be 

in equilibrium between a productive mode (GTP) and an unproductive one (dGTP).  It also 

suggests that the enzyme has a stronger preference for binding NTPs over dNTPs. 

 

Terminal transferase activity of PolDom preferentially inserts ribonucleotides 

The terminal transferase activity of the PolDom of Mt- and Ms-LigD was assessed using 

homopolymeric ssDNA substrates, conditions that are unambiguous in comparison with others 
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that use heteropolymeric ssDNA, the latter prone to self-priming (and therefore templated) 

events.  Thus, in these strict conditions, Pol µ, like TdT, displays significant terminal 

transferase activity, preferentially activated by Mn+2 ions and using dNTPs as substrates29 

(Figure 3). When using NTPs, Pol µ showed a more restricted pattern of terminal transferase 

extension, being limited to the addition of either a single or a few nucleotides.  In these 

conditions, in the presence of magnesium or manganese ions and with either dNTPs or NTPs, 

Pol λ was inactive (data not shown). Mt-PolDom displayed an intrinsic terminal transferase 

activity also on a homopolymeric substrate, preferentially inserting ribonucleotides versus 

deoxynucleotides. As in the case with Pol µ, terminal transferase extension with NTPs was 

restricted to a few nucleotide units, and preferentially activated by manganese versus 

magnesium ions (Figure 3).  Very similar results were obtained with the PolDom of Ms-LigD 

(data not shown). When the terminal transferase activity was assayed on a double-stranded and 

blunt ended DNA substrate (Figure 3) the activity had the same specificity for NTPs and Mn+2 

ions, but it was more prominent, perhaps as a consequence of an improved binding to dsDNA 

versus ssDNA substrates. Therefore, the capacity of PolDom to carry out the preferential 

insertion of rNTPs in the absence of template information (terminal transferase) is in 

agreement with the structural information provided here, in which an enzyme/NTP complex 

appears to be stable in the absence of a template, and in an active conformation compared to 

the enzyme/dNTP complex.  It is also consistent with previous reports on LigD that showed 

proficient single nucleotide non-templated additions on DSBs with a marked preference for 

NTP over dNTP incorporation.15,21 The larger degradation of the primer observed in the 

presence of manganese appears to be due to traces of a contaminant 3´-5- exonuclease 

accompanying the MtPolDom fraction. 
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Preferences for DNA binding parallel optimal polymerization in a gap 

In Pol ß, a structural domain named “8 kDa” is very important for DNA binding at a gap,  

and it also contains a dRP lyase activity required for its role in base excision repair (BER). 30,31   

A key feature of this domain is a cluster of positively charged residues that strongly bind the 

5´recessive end, particularly if it is endowed with a terminal phosphate.30 In gap filling studies, 

it was demonstrated that the presence of a 5´-phosphate makes processive the polymerization 

reactions required to fill-in the gap32. 

 

Using electromobility gel-shift assays (EMSA), we observed that the PolDom of Mt-

LigD has a strong preference for binding gapped DNA molecules having a 5´-phosphate at the 

gap (Figure 4 (a)), giving rise to a single and sharp retardation band, using as little as 5 ng of 

protein, that represents a stable enzyme/DNA complex. Similar results were also obtained by 

using the PolDom of Ms-LigD (data not shown).  In support of the functional significance of 

the enzyme/DNA complex observed, Figure 4(b) shows that the templated insertion of C 

occurred much more efficiently on the 5’ P-containing gapped molecule, in agreement with the 

preferred binding of PolDom to this DNA substrate.  Insertion of dC also occurred efficiently 

on the 5´ P-gapped substrate, although at a lower rate in comparison with the insertion of C. 

Similarly to template-independent reactions (terminal transferase), manganese ions (1 mM) 

rather than magnesium ions (3 mM) stimulated the templated insertion of both C and dC 

nucleotides.  The magnesium-activated insertion of NTPs versus dNTPs, assayed in a 1nt-

gapped DNA substrate containing a 5´ P, was estimated to be about 20-70 fold higher, 

depending on each particular base pair (see Supplementary Figure 3 online).   

 

 An important matter is the insertion fidelity of PolDom on its preferred DNA substrates.  
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It is very likely that the optimal interaction with DNA could affect selectivity of the incoming 

nucleotides, and a more efficient use of the dNTP substrates. This is particularly important 

because, in the absence of DNA, dNTPs can bind to the enzyme in a “sub-optimal”, perhaps 

inactive conformation (as shown here, terminal transferase activity was very poor with these 

substrates).  For a qualitative analysis, we selected 1nt-gapped DNA substrates having the 4 

possible template bases (Figure 5), and tested +1 extension of the labelled primer by addition 

of each independent deoxy or ribonucleotide at different concentrations in the presence of 

magnesium ions. In all cases, the template nucleotide directed the preferential addition of the 

complementary nucleotide (note the different concentrations used for complementary versus 

non-complementary nucleotides, and also the different concentrations used for ribo versus 

deoxynucleotides). As previously reported on different DNA substrates, there is a significant 

level of misincorporation, irrespective of using either deoxy or ribonucleotides as substrates. 

This suggests that misinsertion is occurring after template stabilization of an active 

conformation with both nucleotides. In summary, the PolDom of Mt- and Ms-LigD strongly 

bind gapped DNA molecules containing a 5’-phosphate, which represents an important NHEJ 

intermediate, mimicking the bridging step on an end-joining reaction. This strong interaction is 

functional, as it improves polymerization and nucleotide selection on these substrates. As the 

structure shows, Mt-PolDom lacks an equivalent “8 kDa” domain and showed no detectable 

dRP lyase activity (data not shown). These enzymes must therefore utilize a novel structural 

element to facilitate interaction with the 5’-phosphate moiety. 

 

Efficient binding to 3´-protruding DNA ends supports a role for PolDom in NHEJ  

As recently demonstrated, Pol µ and Pol λ are capable of bridging two 3´ protruding 

DNA ends, depending on the level of existing microhomology.33-35 Pol λ requires some 

complementarity between the 3´-protruding ends, whereas Pol µ is capable of "aligning" 



 14 

ends even without any investment in base pairing, thus supporting a non-redundant role 

for these two DNA polymerases in NHEJ.  Interestingly, both enzymes have a similar 

preference for binding DNA with a phosphate at the 5´ recessive end of a gap (our 

unpublished data), in agreement with the conservation of the “8 kDa” domain. Therefore, 

and especially for those polymerases dealing with broken ends (and with 3´-protruding 

ends in particular), a tight interaction with the 5’P-containing recessive end could be 

generally required as a first step of the end-joining reaction.33-35 A second step would 

imply the connection between the two 3´ protruding DNA ends. Strikingly, as shown in 

Figure 6, the PolDom of LigD can form a similarly stable enzyme/DNA binary complex 

even in the absence of a primer strand (P), provided that the 5´-phosphate at the 

downstream (D) oligonucleotide is maintained. Identical results were obtained with the 

PolDom of either Mt-LigD or Ms-LigD. The capacity to bind T/D DNA substrates, 

containing a 5´P in the downstream oligo, would likely be very important to improve any 

further reactions occurring at the 3´ end of the template (via end-joining or self 

annealing), as shown in Figure 6. In agreement with this conclusion, the insertion 

reaction was much less efficient using a T/D molecule without the 5´P in the downstream 

oligo (data not shown). 

 

Dislocation and realignment capacity of PolDom  

Pol µ is the paradigm of a DNA polymerase with a very potent template dislocation and 

realignment capacity.36,37 When assayed on template/primer molecules, or gaps longer than 1 

nucleotide, Pol µ extends the primer by inserting nucleotides that are complementary to 

templating bases that are distal to the primer-terminus. Such behaviour is based on Pol µ´s 

intrinsic capacity to dislocate (distort) one or more proximal templating bases, thus generating 
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frameshift deletions and base substitutions.36,37 This dislocation capacity is instrumental for 

end-joining of DNA ends with limited complementarity. To analyze if the PolDom of Mt- and 

Ms-LigD also have dislocation capacity, we analyzed nucleotide incorporation in a 2nt gapped 

DNA.  As shown in Figure 7(a), in addition to the preferred incorporation of either dC or C, 

complementary to the first position of the gap, insertion of dG or G, complementary to the 

second base of the gap also occurred very efficiently, suggesting that it is templated by the 

second base (dC) of the gap after dislocation of the first templating base (dG). This is 

particularly obvious when using the Ms-PolDom, which has a higher specific activity.  In this 

case, when adding either dG or G, 2 nucleotide units are inserted, filling in the gap. This result 

suggests that in addition to the dislocation capacity, PolDom is capable of extending both a 

dG:dGMP and a dG:GMP mismatch. 

 

 The capacity to accept distorting nucleotides is very important in allowing the connection 

of two protruding 3´-ends with imperfect complementarity. An experiment that substantiates 

this capacity, beneficial for NHEJ, is shown in Figure 7b. In this case, the DNA substrate is a 

template/primer molecule whose 3´-terminus is not properly paired. As a control, it can be seen 

that Pol µ uses its capacity to accept distorted nucleotides in the template strand (2 nt in this 

case) to induce a primer realignment, thus forming a correct pair between the 3´-terminal base 

of the primer (dC) and a complementary base (dG) available in the template (see scheme in 

Figure 7(b)).  Thus the mismatched end can be efficiently extended by Pol µ only with a dGTP 

residue, complementary to the template after primer relocation. Ms-PolDom was also capable 

of inducing realignment of the mismatched end, as deduced from the insertion of either dGTP 

or GTP (the latter not shown). Moreover, the alternative insertion of dTTP suggests that after 

primer realignment (TC dislocated), the second available template base (dA) can also direct the 



 16 

extension reaction, by accepting a second dislocation (C dislocated) as described  above 

(Figure 7(a)). Similar results were obtained with Mt-PolDom (data not shown).  In conclusion, 

the suggested parallels with Pol µ are strengthened by these results that show that PolDom has 

an intrinsic capacity to dislocate (distort) one or more proximal templating bases and can 

induce realignment of a mismatched end, two important properties that have been implicated in 

microhomology-mediated end joining.  

 

Polymerization at 8-oxoG containing templates by PolDom is preferentially non-

mutagenic 

Translesion synthesis at damaged templates requires an insertion step, usually carried out by a 

specialized DNA polymerase, followed by an elongation step than can require an additional 

specialized DNA polymerase before resuming long-term elongation by a processive replicase.  

However, there are other situations in which a damaged template base must be accepted either 

for base-pairing or “to instruct” a DNA repair reaction uncoupled to replication. A relevant 

situation concerns the repair of a double-strand break by the NHEJ pathway.  If the break is 

associated with DNA damage, the bridging step and filling-in reactions required to seal the 

break could incidentally require base-pairing with damaged bases in the template strand.  Thus, 

we first analyzed the capacity of the Mt-PolDom and Ms-PolDom to synthesize in front of a 8-

oxoG template base. The substrate selected was a 1 nt-gapped DNA, having a 5´-phosphate, in 

which 8-oxoG was the templating base (see Figure 8(a), left panels).  Such a substrate could 

serve to mimic the gap-filling reaction that follows an end-joining/bridging reaction. 

Interestingly, as shown in Figure 8(b) (left panels), insertion of dCTP (the correct nucleotide) 

in front of 8-oxoG occurred very efficiently, even greater than the insertion rate of dC in front 

of a non-damaged dG templating base. Conversely, and in contrast to most DNA-dependent 
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DNA polymerases with the exception of human Pol η, insertion of dA in front of 8-oxoG (a 

mutagenic event) by PolDom was very inefficient.  The dC/dA ratio of insertion in front of 8-

oxoG was 12-fold for Mt-PolDom and 27-fold for Ms-PolDom.  When the elongation step was 

studied (Figure 8(a) & (b), right panels), there was a clear preference to extend the 8-

oxoG:dCMP pair versus a 8-oxoG:dAMP pair. Strikingly, the efficiency of extension of the 

“correct” 8-oxoG:dCMP pair was even better than that corresponding to a “bona fide” 

dG:dCMP  pair. Again, it is worth noting that other DNA polymerases have a stronger 

preference (~27-fold in the case of Polδ) for extending the 8-oxoG:dAMP pair. 

 

Interestingly, 8-oxoG was also taken as an acceptable template for the insertion of 

ribonucleotides (the preferred nucleotide substrates for the PolDom of Mt- and Ms-LigD).  

Again, as shown in Figure 8(c) (left panels) there was a preferred selection of the 

complementary base (C in this case) to be inserted in front of 8-oxoG (the C/A ratio of 

insertion in front of 8-oxoG was 55-fold for Mt-PolDom and 5-fold for Ms-PolDom), and the 

efficiency was comparable to the insertion of CTP in front of a non-damaged dG templating 

base. Moreover, the extension of a 8-oxoG:CMP pair occurred with the same efficiency than 

the extension of a dG-CMP pair, and the extension of a 8-oxoG:AMP was very inefficient 

(Figure 8(c), right panels).  Therefore, the PolDom’s of Mt- and Ms-LigD are able to carry out 

efficient polymerization at 8-oxoG containing templates. Both reactions, insertion in front of 

the damaged base, and extension of a damaged base pair, are preferentially non-mutagenic. 
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Discussion 

There are two major non-related DNA primase families in prokaryotes, the DnaG-like proteins, 

which function as the bacterial replicative primases, and the AEPs that are closely related to 

replicative primases in archaea and eukaryotes.  DNA primases have long been regarded as 

polymerases with a limited cellular role, namely the synthesis of short oligoribonucleotide 

primers at replication forks, which are then extended by the replicative polymerases.  However, 

this restricted role for primases has recently been called into question with the discovery of a 

wide variety of bacterial and archaeal primases that possess a remarkable variety of nucleotidyl 

transferase activities including DNA-dependent RNA primase, terminal transferase and DNA-

dependent DNA/RNA gap-filling polymerase activities.18,19,27  DNA primases may therefore 

have additional roles in DNA metabolism, although the role of novel archaeal primase 

activities remains to be established.27   In contrast, the discovery of novel primase domains in 

prokaryotic DNA repair ligases3 and the subsequent demonstration that these domains are 

capable of catalyzing a wide variety of nucleotidyltransferase activities during NHEJ 

processes,15,20,21 establishes that AEPs are highly adaptable polymerases that can be utilized 

for a variety of cellular functions, including DNA repair, in addition to ascribed roles in 

priming of replication.   

 

Here, we have presented the crystal structure of the primase/polymerase domain of ligase D 

from M. tuberculosis.   In agreement with previous in silico studies, the fold of Mt-PolDom 

shares a structural core with members of the AEP family, that also includes the classical 

eukaryotic replicative primases.  AEPs contain a highly derived version of the RNA 

recognition motif (RMM) fold that is found in the catalytic palm module of other DNA and 
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RNA polymerases.26  It appears that AEPs were originally recruited for primer synthesis at the 

base of the archaeo-eukaryotic lineage and were subsequently acquired by prokaryotes via 

horizontal gene transfer.26  It has been suggested that the AEPs may be related to the PolX 

superfamily38, which includes Pol β, µ and λ.  However, a comparison of the structures of 

AEPs (including PolDom) and PolX (Pol β, Pol λ and TdT) reveals that the PolX members 

possess a fold unrelated to the RRM fold, although both families possess a triad of aspartate 

metal-chelating residues that are structurally super-imposable, which is unexpected given the 

considerable degree of difference in the secondary structures of the protein folds.  The 

conserved geometry of important active site resides suggests that members of the AEP and 

PolX families may have evolved by convergent evolution to have similar catalytic mechanisms 

as is discussed below.  The structure of the PolDom of Pseudomonas LigD possesses a very 

similar AEP-like architecture.55 

Unexpectedly, in the co-crystal structures with bound nucleotide (ribo or deoxyribo), 

the base of GTP and dGTP adopted distinct orientations in the active site of PolDom suggesting 

a preferred binding mode within the enzyme for these nucleotides.  In-line with this 

observation, we observed a 20-70 fold difference, depending of the templating base, in 

PolDom’s preference for incorporation of rNTPs versus dNTPs.  Considering that the in vivo 

concentration of ribonucleotides is much higher (at least 10-fold higher) than that of dNTPs, 

the probability of using NTP for a templated repair reaction by PolDom could be >700-fold.  

PolDom’s preference for incorporating NTPs in vitro and its lack of 2’ specificity reflect a 

catalytic plasticity that has also been maintained during the evolution of other unrelated NHEJ 

polymerases, such as Pol µ. 15,18,39  It has been postulated that both eukaryotic and prokaryotic 

NHEJ polymerases may incorporate RNA to repair DSBs when intracellular pools of dNTPs 

are depleted, as is the case during stationary phase, when break repair cannot be accomplished 
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using homologous recombination.15,18,39  The majority of prokaryotic species that possess 

NHEJ-associated PolDom’s can subsist for extended periods in stationary phase, suggesting 

that the repair of DSBs in these organisms by NHEJ would result in the incorporation of a 

significant number of short stretches of RNA into the genomic DNA.  Although it remains to 

be resolved how RNA patches introduced during DSB repair processing are tolerated by the 

cell.  One possibility is that the replicative polymerases may be capable of synthesizing through 

short stretches of hybrid RNA/DNA.  Alternatively, incorporated RNA may be excised from 

DNA by short-patch repair processes, such as the RNase HII pathway.40 The incorporation of 

RNA could potentially act as a signal to the cell, signalling the presence of excessive sites of 

DNA damage that must be processed, for example to remove modified bases, prior to the 

restart of replication.  Whatever the exact nature of the cellular response to RNA incorporation, 

our findings, and those of others, strongly imply that there is a direct connection between RNA 

synthesis and the repair of DSBs by NHEJ, that is conserved even though the end-joining 

polymerases that perform this task are specific to each kingdom. 

 

Our findings directly connect several paradigms among Pol X and AEP  proteins that 

have been implicated in NHEJ-mediated DSB repair. In mammalian cells, three PolX members 

(Polµ, Polλ and TdT) with overlapping activities partake in the repair of DSBs by NHEJ.33-35  

In contrast, PolDom appears to be the sole polymerase involved in NHEJ processing in 

prokaryotes.  As we have shown, PolDom possesses not only a remarkable variety of 

polymerase/primase activities but also has many of the essential features required to participate 

in unusual nucleotidyltranseferase activities required during end-processing. Remarkably, 

PolDom appears to have evolved into an enzyme that possesses many of the combined 
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activities present in Pol µ, Pol λ and TdT in a single active site.  In common with Polµ, and 

TdT, PolDom exhibits a reduced dependence on template as evidenced by its terminal 

transferase activity. Either gapped-DNA molecules or 3´-protruding DNA, containing a 5´ 

phosphate, strongly interact with PolDom. PolDom’s versatility as an end-joining enzyme 

extends from its capacity to combine the template dislocation properties and ability to realign 

mismatched ends of Pol µ,29 with some capacity to perform direct extension of mismatched 

ends, an activity associated with Pol λ.41 PolDom also exhibits the desirable facility to perform 

non-mutagenic translesion synthesis on termini containing modified bases, such as 8-oxoG.  It 

therefore appears that, unlike replicative polymerases, it is beneficial if the active site of end-

joining polymerases can accommodate a variety of unstable DNA alignments that are 

encountered during NHEJ.  

 

Considering the biochemical similarities between PolDom, Pol µ,  Pol β and Pol λ, including 

the shared requirement for a 5' phosphate, it will be intriguing to discover how DNA 

recognition is accomplished by PolDom, which lacks the 8 kDa domain responsible for 

phosphate binding by the eukaryote polymerases. Pol µ and TdT both possess template-

independent polymerase activities, that have been attributed, at least in part, to the presence of 

a surface loop (loop 1).29,34 Pol λ contains an attenuated loop 1, which does not confer 

template-independent activity when presented with homopolymeric DNA substrates, although 

it does allow it to act upon DNA ends with limited microhomology.  In contrast, Pol β does not 

possess this loop and is unable to act on DSBs with limited or no homology. PolDom clearly 

possesses terminal transferase activity and it will be of great interesting to discover if 

convergent evolution has provided it with an equivalent to the loop 1 of the Pol X polymerase 

family members. 
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Materials and Methods 

Crystallization and data-collection of PolDom 

Mt-PolDom and Ms-PolDom were expressed and purified as previously described.20 

Native Mt-PolDom and Mt-PolDom (F64L) crystals were grown by the hanging drop, 

vapour diffusion method at 12°C by mixing equal volumes of protein solution (433 μM) 

and reservoir buffer: 20% (w/v) PEG 3350, 0.2 M Mg-acetate.  Crystals formed 

overnight and typically grew to a size of 160 μm x 160 μm x 270 μm in 6-9 days.  The 

Mt-PolDom (F64L) selenomethionine (SeMet) derivative protein was expressed in E. 

coli B834(DE3).  SeMet PolDom (F64L) was purified in an identical manner to the 

native protein, while crystals of SeMet PolDom were obtained by microseeding from 

native crystals.  Co-crystals were grown in 0.1 M Na Hepes pH 7.5, 10 mM MnCl2, 10% 

(v/v) iso-Propanol, 20% (w/v) PEG 4000, plus 10 mM (d)GTP by microseeding from 

native crystals.  Multiple wavelength anomalous diffraction (MAD) data of the apo- Mt-

PolDom were collected at beam-line ID14-1 of the ESRF (Grenoble, France).  The 

crystals belong to space group P21 with unit cell dimensions: a = 48.8Å, b = 76.0Å, c = 

95.8Å.  Data sets for the native crystals and co-crystals were collected in-house on a 

Raxis IV++ with a rotating anode X-ray generator RU-H3R.  The crystals of apo- Mt-

PolDom belong to space group P21 with unit cell dimensions: a = 41.0Å, b = 75.8Å, c = 

96.1Å.  The co-crystals of Mt-PolDom with GTP belong to spacegroup P212121 with unit 

cell dimensions: a = 42.6Å, b = 75.5Å, c = 89.5Å.  The co-crystals of Mt-PolDom with 

dGTP belong to space group P21 with unit cell dimensions: a = 41.2Å, b = 75.9Å, c = 

95.8Å.  All crystals were harvested and cryoprotected with Paratone-N before freezing in 

liquid nitrogen, while all data sets were collected at 100K.  The diffraction data were 



 24 

processed with IPMOSFLM42 and were merged, scaled and reduced with programs from 

the CCP4 suite.43  The statistics for data processing are summarized in Table I.  

 

Structure solution and refinement of Mt-PolDom   

The structure of SeMet (apo) PolDom was determined by direct methods using the 

autoSHARP program.44  Heavy atom position refinement and initial phasing was carried 

out using SHARP.45 The crystallographic model derived from the MAD data was used as 

a molecular replacement search model against higher resolution native data within the 

program PHASER.46 Initial refinement was carried out against 95% of the data with 

REFMAC5.47  The remaining 5%, which were randomly excluded from the full data set, 

was used for cross-validation by calculating the Rfree to follow the progress of the 

refinement.  The same subset of reflections was used throughout the refinement.  A final 

refined model at 1.65Å resolution, with an Rcryst of 19.0% and Rfree of 23.9%, was used 

for isotropic refinement using TLS parameters in REFMAC5.48 Each cycle of refinement 

was accompanied by manual rebuilding using the programs O49 and COOT.50  For the 

determination of the GTP/dGTP structures, the models were built/refined using 

COOT/REFMAC5 after an initial molecular replacement search using the apo structure 

in PHASER. The structure images were prepared with CCP4mg.51,52 

 

DNA Substrates. Synthetic oligonucleotides, purified by PAGE, were obtained from 

Invitrogen or Eurogentec. Homopolymeric poly-dA (15-mer) or blunt-ended DNA 

(generated by aligning oligonucleotide P1 (5´ GATCACAGTGAGTACAATA 3´) to its 

complement) were used as substrates for the terminal transferase activity assay shown in 
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Fig.3. Template-primer (T/P) and 1-nucleotide gapped (Gap-1OH; Gap-1P) molecules 

used in the electrophoretic mobility shift assay (EMSA) and primer extension reactions 

shown in figure 4, were generated by annealing either the primer oligonucleotide P2 (5´ 

TCTGTGCAGGTTCTT 3´) alone, or together with the downstream oligonucleotide D2 

(5´ GTCGAGAGGGACTTC 3´), the latter having either a 5´ OH group or a 5´ 

phosphate group, to the template oligonucleotide T2 (5´-

TGAAGTCCCTCTCGACGAAGAACCTGCACAGA-3´). The 1-nucleotide gapped 

molecule with a 5´ phosphate group shown in figure 6 was obtained by annealing the P1 

primer and downstream oligonucleotide D1 (5´-AGATACACTTCT-3´, having a 5´ 

phosphate group) to the template oligonucleotide T1: (5´-

AGAAGTGTATCTCGTACTCACTGTGATC-3´). Template/downstream (T/D) 

molecule used in figure 6 were obtained by annealing different template oligonucleotides 

T1-X (5´-AGAAGTGTATCTXGTACTCACTGTGATC-3’, where X is A, C, G or T) to 

D1 oligonucleotide. Four different 1-nucleotide gapped molecules with a 5´ phosphate 

group used in figure 5 and Supplementary Fig. 3 were obtained by annealing the four T1-

X template oligonucleotides to P1 and D1 oligonucleotides. The 2-nucleotide gapped 

molecule used in figure 7a was obtained by annealing oligonucleotides P2 and D2* (5´-

GTCGAGAGGGACTTC-3´, having a 5´-phosphate), to oligonucleotide T2.  The 

mismatched T/P molecule used in figure 7b was obtained by annealing the primer P3 (5’-

GATCACAGTGAGTAC-3´) to the template oligonucleotide T3 (5´-

TCTACGTCTACTCACTGTGATC-3´). The 1nt-gapped DNA selected to analyze 

insertion in front of 8-oxoG (Fig. 8) was obtained by annealing the primer P4 (5´-

CTGCAGCTGATGCGC-3´) and the downstream oligonucleotide D4 (5´-

GTACGGATCCCCGGGTAC-3´, having a 5´phosphate) to either the template 
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oligonucleotide T4 (5´ GTACCCGGGGATCCGTACGGCGCATCAGCTGCAG-3´) or 

T4-oxoG (5´-GTACCCGGGGATCCGTACG8-oxoGCGCATCAGCTGCAG-3´). To 

analyze extension of a 8-oxoG/dCMP versus 8-oxoG/dAMP, either oligonucleotide P4-C 

(5´-CTGCAGCTGATGCGCC-3´) or P4-A (5´-CTGCAGCTGATGCGCA-3´) were used 

as primers hybridized to the template T4-oxoG. As a control, primer P4-C was annealed 

to template T4. Selected oligonucleotides were labelled at the 5´-end with [γ-32P] ATP 

(3000 Ci/mmol, Amersham) and T4 polynucleotide kinase (New England Biolabs). 

These labelled oligonucleotides were then hybridized to one or two oligonucleotides to 

generate different DNA substrates in the presence of 50 mM Tris-HCl, pH 7.5, and 0.3 

M NaCl, and heating to 80 ºC for 10 min before slowly cooling to room temperature 

overnight. 

 

Preparation of PolX enzymes. Purified human Pol µ and Pol λ were obtained as 

originally described.53,54 

 

Electrophoretic mobility shift assay (EMSA). EMSAs were carried out using different 

DNA substrates, obtained as indicated in the previous section, to analyze the interaction 

of either Ms- or Mt-PolDom and DNA.  Incubation was performed in a final volume of 

12.5 µl, containing 50 mM Tris–HCl, pH 7.5, 0.1 mg/ml BSA, 1 mM DTT, 4% glycerol, 

5 nM labeled DNA and different concentrations of Ms- or Mt-PolDom. After incubation 

for 10 min at 30°C to allow the formation of enzyme–DNA complexes, samples were 

mixed with 3 µl of 30% glycerol and resolved by native gel electrophoresis on a 4% 

polyacrylamide gel (80:1 monomer/bis). After autoradiography, stable PolDom/DNA 

complexes are detected as slow migration bands compared to the mobility of free DNA.  
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Polymerization assays. The incubation mixture (20 µl) contained 50 mM Tris-HCl pH 

7.5, 3 mM MgCl2 or 1 mM MnCl2, 1 mM DTT, 4 % glycerol, 0.1 mg/ml BSA, 5 nM 

DNA, the indicated concentration of Mt- or Ms-PolDom, and dNTPs or NTPs. After 30 

min of incubation at 30ºC, reactions were stopped by adding loading buffer (10 mM 

EDTA, 95% formamide, 0.03% bromophenol blue, and 0.3% cyanol blue) and subjected 

to electrophoresis in 8 M urea-containing 20% polyacrilamide sequencing gels.  After 

electrophoresis, the unextended and extended DNA primers were detected by 

autoradiography. 
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 FIGURES LEGENDS 

 
Figure 1. Structure of polymerase/primase domain of Mt-Ligase D  

(a) The crystal structure of Mt-PolDom is depicted in ribbon form. α-helices are 

coloured light blue and β-strands coloured yellow with intervening loop regions coloured 

grey.  The secondary structural elements are numbered according to their assignment in 

DDSP (Dictionary of protein secondary structure).  

(b) Structural comparison of Mt-PolDom, with the primase small subunits of Sso (PDB 

code:1ZT2) and Pfu (PDB code:1G71).  Structurally conserved regions are coloured red 

with structurally variant regions coloured green, yellow and blue for Mt-PolDom, Sso 

and Pfu, respectively. 

 

Figure 2. Detailed view of the active site conformation of Mt-PolDom. 

(a) Electrostatic surface representation of Mt-PolDom with GTP bound in the active site.  

A solvent accessible surface representation of Mt-PolDom with electrostatic potential 

mapped is shown for the structure with bound GTP and cations.  Negatively charged 

regions are coloured red and positively charged regions are coloured blue.  Manganese is 

coloured pink.   

 

(b-d) Close-up views of the active-site pocket of Mt-PolDom, apoenzyme (b), GTP-

bound (c) and, dGTP-bound (d) co-crystals.  Potential hydrogen bond interactions are 

shown as dashed lines.  Manganese ions and water molecules are represented as pink and 

red spheres respectively.  Amino acids and nucleotides are labelled and shown as stick 

representations. 
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Figure 3.  Terminal transferase activity of  Mt-PolDom. Homopolymeric poly-dA (a) 

or blunt-ended DNA (b) were used as substrate to analyze the terminal transferase 

activity of the Mt-PolDom.  Polymerization assays were carried out as described (see 

Materials and Methods), in the presence of 380 nM of either human Polµ or the Mt-

PolDom, and activated by either magnesium ions (3 mM MgCl2; a, left and right; b, left) 

or by manganese ions (1 mM MnCl2; b, right). After 30 min of incubation at 30 ºC in the 

presence of each indivcated dNTP or NTP (100 µM), reactions were stopped by adding 

loading buffer. Terminal transferase activity is detected by the appearance of extension 

products of the labelled primer used in each case. 

 

 
Figure 4. PolDom prefers DNA gapped substrates containing a 5´-P. (a) DNA-

binding capacity of Mt-PolDom.  Electrophoretic mobility shift assays (EMSA) were 

performed on the different DNA substrates (T/P; Gap 1-OH; Gap 1-P) shown in the 

scheme (asterisk indicates the 5´-labelled oligonucleotide), as described in Materials and 

Methods, in the presence of the indicated amounts of Mt-PolDom. Mobility of free DNA 

and enzyme/DNA complexes was detected by autoradiography. (b) Gap-filling synthesis 

and substrate preferences of Mt-PolDom. Primer extension reactions on the indicated 

DNA substrates (T/P; Gap 1-OH; Gap 1-P) was carried out as indicated in the Material 

and Methods, using 380 nM Mt-PolDom and the indicated concentrations of metal (Mg2+ 

or Mn2+) and the complementary nucleotide (dCTP or CTP). After incubation for 30 min 

at 30°C, primer extension products were analyzed by 8M urea-PAGE and 

autoradiography. 
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Figure 5.   Nucleotide insertion fidelity by Mt-PolDom at 1nt-gapped DNA. (a) Four 

1-nt gapped DNA substrates, differing in the templating base (X), and having a phosphate 

at the 5´-side of the gap (GAP1P), were used. The primer (P) and downstream (D) 

oligonucleotides were annealed to four oligonucleotide templates (T), where X is A, C, G 

or T. Labeling of the oligonucleotide primer is indicated by an asterisk. (b) Gap-filling 

DNA synthesis reactions were carried out as described (Materials and Methods), using 

the four variant gapped substrates shown in a, in the presence of 380 nM Mt-PolDom and 

3 mM Mg2Cl. Extension of the labeled primer in the presence of either the correct or the 

incorrect dNTP or rNTP (as indicated in the figures) was analyzed by 8 M urea-20% 

PAGE and autoradiography. 

 

Figure 6.   PolDom efficiently binds 3´-protruding ends. DNA binding capacity of 

Ms- and Mt-PolDom for NHEJ intermediates. The two types of DNA molecules used (1-

nucleotide gapped and template/downstream molecules with a 5´-phosphate) are shown 

in the scheme. Labelled oligonucleotides are indicated with an asterisk. EMSAs were 

performed as described (Materials and Methods) using the indicated amounts of each 

PolDom (Pol) corresponding to either Mt-LigD or Ms-LigD. Mobility of free DNA and 

enzyme/DNA complexes are indicated on the autoradiograph.  

 

Figure 7. Characterization of PolDom template dislocation and primer realignment 

capacities. Schemes representing template sequence contexts that are appropriate to 

evaluate dNTP selection-mediated dislocation (a), and mismatched-primer realignment 

(b) are shown (see text for details). Labelled primer (asterisk) and 5’-end phosphate 

group (P) are indicated. Transiently misaligned or mispaired nucleotides are indicated in 
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bold letters. Polymerization assays were carried out as described (Materials and Methods) 

using 380 nM of either human Pol µ, or Mt-PolDom (Mt), or Ms-PolDom (Ms), in the 

presence of each individual or combined dNTP or NTP (1 µM; part A), or in the presence 

of the indicated concentration of each dNTP (part B). After incubation for 30 min at 

30°C, extension of the labelled primer was analyzed by 8M urea-20% PAGE and 

autoradiography.  

    

 
Figure 8. Polymerization at 8-oxoG containing templates is preferentially non-

mutagenic. (a) Schemes representing the template sequence contexts used to evaluate 

insertion in front of a 8-oxoG versus a normal dG base (1nt-gap containing a 5´P), and 

extension of either a 8-oxoG/dC or 8-oxoG/dA primer terminus versus extension of a 

control dG/dC pair, are shown at the left and right, respectively. Labelled primer 

(asterisk) and 5’-end phosphate group (P) are indicated. Polymerization assays in the 

presence of the indicated deoxy (b)  or ribonucleotides (c), were carried out as described 

(Materials and Methods) using different nucleotide concentrations as a function of the 

PolDom (Mt or Ms, provided at 400 nM) and the DNA substrate used.  To analyze 

insertion (b,c; left) dNTPs were provided either at 100 µM (Mt) or at 1 µM (Ms), and 

NTPs were provided either at 0.5 µM (Mt) or at 0.1 µM (Ms). To analyze extension (b,c; 

right) dNTPs were provided either at 1 mM (Mt) or at 10 µM (Ms), and NTPs were 

provided either at 20 µM (Mt) or at 0.5 µM (Ms). After incubation for 30 min at 30°C, in 

the presence of 2.5 mM MgCl2, extension of the labelled primer was analyzed by 8 M 

urea-20% PAGE and autoradiography. 
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Table 1. X-ray diffraction data and refinement statistics 
Crystal  SeMet  Native GTP dGTP 

 Data collection   
 Source ESRF ID14-1 Raxis IV++ 
 Space group P21 P21 P212121 P21 

 Unit Cell Dimensions (Å)       
 a /b/c  48.8 / 76.0 / 95.8   41.0 / 75.8 / 96.1 42.6 / 75.5 / 89.5 41.2 / 75.9 / 95.8 
 a/b/g  90.0 / 92.5 / 90.0   90.0 / 92.7 / 90.0 90.0 / 90.0 / 90.0 90.0 / 92.6 / 90.0 
 Wavelength (Å)  0.97966 peak  0.97982 inflection  0.90790 remote  1.54 
 Resolution (Å)  35.92-1.80 35.92-1.80 35.92-1.80 20.37-1.65 34.79-1.80 40.49-1.78 
 Total Number of observationsa  195708 (27655) 194939 (27630) 194460 (28252) 406247 (27876) 242961 (18410) 207094 (29287) 
 Number of unique reflectionsa  54008 (7707) 54090 (7720) 54189 (7852) 63571 (7663) 27079 (3490) 56549 (8240) 
 Average I/(I)a 20.4 (5.6) 17.9 (3.8) 20.5 (5.6) 23.7 (3.0) 26.5 (2.9) 15.5 (4.3) 
 Overall completeness (%)a 99.6 (98.1) 99.7 (98.3) 99.9 (100.0) 90.1 (74.8) 98.4 (89.1) 100.0 (99.9) 
 Rmerge (%)a,b 4.3 (18.9) 5.1 (26.9) 4.3 (19.5) 7.0 (23.5) 5.9 (40.8) 7.0 (17.5) 
 Multiplicitya  3.6 (3.6) 3.6 (3.6) 3.6 (3.6) 6.4 (3.6) 9.0 (5.3) 3.7 (3.6) 
 FOMCentric/Acentric 0.5144 / 0.6376    

       

 Refinement       
 Resolution (Å)    20.37-1.65 34.79-1.80 40.49-1.78 
 No. of reflections    60313 25666 53660 
 Rfac /Rfree

c,d    0.190 / 0.239 0.164 / 0.209 0.182 / 0.230 
 Contents of asymmetric unit    2 mols. 1 mol. 2 mols. 
No. atoms       
 Protein    4344 2164 4371 
 Manganese    2 1 2 
 Nucleotide molecules    - 1 (GTP) 2 (dGTP) 
 Water molecules    665 327 659 
 Mean B value (Å2)    22.2 23.9 23.2 



 R.m.s. deviations       
 Bonds (Å)    0.015 0.014 0.015 
 Angles (degrees)    1.478 1.429 1.414 
 Ramachandran Statistics       

 Most favored regions (%)    93.6 95.0 93.8 
 Additionally allowed regions      
(%) 

   
6.2 5.0 6.0 

 Generously allowed regions        
(%) 

   
0.2 0.0 0.2 

 Disallowed regions (%)    0.0 0.0 0.0 
 PDB accession codes    xxxx xxxx xxxx 
 

 

aOutermost shell in brackets. 
b Rmerge = ΣhklΣι|Ii - <I>| /ΣhklΣi<I>, where Ii is the intensity of the ith measurement of a reflection with indices hkl and <I>is the weighted mean of the reflection 
intensity. 
cRfac =Σ||Fo| - |Fc||/Σ|Fo|, where Fo and Fc are the observed and calculated structure factor, respectively. 
d Rfree is equal to Rfac for a randomly selected 5% subset of reflections not used in the refinement. 
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