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Abstract

Fisher�s geometrical model amounts to a description of mutation and se-

lection for individuals characterised by a number of quantitative traits. In the

present work the �tness landscape is not assumed to be spherically symmet-

ric, hence di¤erent points, i.e. phenotypes, on a surface of constant �tness

generally have di¤erent curvatures. We investigate two di¤erent approxi-

mations of Fisher�s geometrical model that have appeared in the literature.

One approximation uses the average curvature of the �tness surface at the

parental phenotype. The other approach is based on a normal approxima-

tion of a distribution associated with new mutations. Analytical results and

simulations are used to compare the accuracy of the two approximations.
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1 Introduction

In his book The Genetical Theory of Natural Selection, R. A. Fisher (1930)

introduced a description of mutation and selection of quantitative traits that

was essentially geometrical in content. This has come to be known as Fisher�s

geometrical model. Individuals were characterised by the value of n quanti-

tative traits. These trait values were taken as the Cartesian coordinates in

an n dimensional space of characters and an individual, with their particular

set of n characters, was represented as a point in this space.

Fisher was one of the �rst people to consider �tness to depend on all

relevant biological variables, when he allowed selection to depend on the n

quantitative traits characterising an individual. Implicit in Fisher�s writing,

was the existence of a single �tness optimum. Hence for phenotypes in the

vicinity of this optimum, selection is of a stabilising type. Phenotypes far

from this optimum are subject to directional selection.

The process of mutation results in a mutant o¤spring being located at a

di¤erent position in the character space to that of their parent (for simplicity

we couch matters in the language of an asexual population). When the num-

ber of characters n, is large, results from the model con�rm the commonly

held belief, that most random changes of a complex organism reduce �tness,
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and that only a small fraction are bene�cial (increase �tness). Amongst other

things, this model actually allows us to quantify the proportion of mutations

that are bene�cial and, quite recently, such a model has been considered in a

variety of di¤erent contexts (Rice, 1990; Hartl and Taubes, 1996, 1998; Peck

et. al., 1997; Orr, 1998, 1999, 2000, 2006; Burch and Chao, 1999; Poon and

Otto, 2000; Barton, 2001; Welch and Waxman, 2003; Whitlock et. al., 2003;

Waxman and Welch, 2005; Waxman, 2006; Martin and Lenormand, 2006).

Indeed this model and generalisations of it are becoming part of the concep-

tual and theoretical toolkit of workers in the area of evolutionary adaptation.

In the present work, we compare two approaches to approximating Fisher�s

geometrical model, when the �tness landscape is not spherically symmetric -

which is a highly idealised situation - but rather, when a surface of constant

�tness has di¤erent curvatures at di¤erent locations on the surface.

The �rst approach (Rice, 1990) involved averaging over curvatures. Thus

at the location of a parental phenotype, in the n dimensional space of char-

acters, an approximate (curvature averaged) �tness surface was used in place

of the exact �tness surface. An alternative approach (Waxman and Welch,

2005; Waxman, 2006) approximated the problem as one in which new mu-

tations are associated with a Gaussian random variable that depends on the
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parental phenotype. It is hard to directly compare the two approximations

since they involve related quantities, but in apparently quite di¤erent com-

binations. It is the purpose of the present work to make a comparison of

the two approximations. We shall approach this by looking at a speci�c case

that clearly illustrates the di¤erences and has the virtue of being exactly

calculable within a well de�ned approximation scheme.

2 The basic form of Fisher�s model

The values of the n quantitative characters that describe the relevant phe-

notype of an individual are z = (z1; z2; :::; zn) and each of the di¤erent char-

acters, zi, is taken to range from �1 to 1.

Individuals are assumed to be subject to stabilising selection, with the

characters de�ned in such a way that the optimum of the �tness function

lies at the coordinate origin, z = (0; 0; :::; 0). In Fisher�s original analysis,

the �tness landscape was implicitly taken to be spherically symmetric, with

the �tness of an individual depending only on the Euclidean distance of z

from the origin: kzk �
p
z21 + z

2
2 + :::z

2
n, for example exp

�
�� kzk2

�
where �

is a positive constant whose value is a measure of the strength of stabilising
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selection. A consequence of spherical symmetry is that surfaces of constant

�tness are hyperspheres centred on the coordinate origin, that is, circles if

n = 2, spheres if n = 3 and higher dimensional analogues of these for higher

n.

The change in characters, due to mutation, is given by n random muta-

tional changes on the di¤erent characters, namely the numbers r = (r1; r2; :::; rn).

An organism, with phenotype z, gives rise to a mutant o¤spring with pheno-

type z+ r. We assume all n components of r are generally non-zero, so when

a mutation occurs all n characters are generally changed. This model there-

fore assumes a universal form pleiotropy. In Fisher�s original formulation,

a mutation will be adaptive (or bene�cial) if the distance of z+ r from the

origin, i.e. kz+ rk, is smaller than the parental distance from the origin, kzk.

The condition for being adaptive can thus be written as kz+ rk2 < kzk2 and

for a given distribution of r, we can determine the proportion of adaptive

mutations from the proportion of all mutations satisfying this condition.

Fisher compared the adaptive nature of mutations with a given magnitude

of r, which we denote by r, i.e., r = krk. He took r to be uniformly distributed

over the surface of a sphere of radius r in n dimensions. As long as the

distribution of mutational changes is spherically symmetric (depends only on
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krk) the proportion of bene�cial mutations, Pben, depends on only a single

aspect of the parental phenotype, z, namely its magnitude (or distance from

the optimum), kzk. The case of n = 2 characters is illustrated in Figure 1.

Figure 1

Fisher gave an exact result for the proportion of bene�cial mutations,

Pben, when n = 3 and it is possible to write an exact expression for Pben for

general n in terms of special functions (see e.g. Kimura, 1983). However

for n � 1 an accurate and convenient approximate expression for Pben was

also given by Fisher. It was found to depend only on the combination of

parameters

�0 =
r
p
n

2 kzk (1)

and given by

Pben(�0) '
r
1

2�

Z 1

�0

e�u
2=2du =

1

2
erfc

�
�0p
2

�
(2)

where erfc (�) denotes the complementary error function (Abramowitz and

Stegun, 1970). The ratio �0 naturally emerges from the calculations and a
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possibly useful way to view it is as the mutational magnitude, r, divided by a

scale that is intrinsic to the problem, which is not kzk, but rather 2 kzk =pn.

Generalisations of Fisher�s model involve more complicated �tness land-

scapes (Rice, 1990; Whitlock et. al., 2003; Waxman and Welch, 2005; Wax-

man, 2006; Martin and Lenormand, 2006). In the work of Waxman and

Welch (2005) a generalised stabilising-selection �tness function was intro-

duced that was motivated by concerns of Haldane (1932). It takes the form

WG(z) = exp
�
�
Xn

j;k=1
Mijzizj

�
(3)

where Mij are elements of a positive de�nite symmetric matrix and if, for

di¤erent i and j, some of the Mij are non-zero, then this form of �tness

function represents �tness interactions between di¤erent traits. However,

compound traits exist that are linear combinations of the existing traits and

which simplify the structure of the problem. If we write the compound traits

as z�i then when these are chosen appropriately, the �tness function of Eq.

(3) can be expressed in terms of these compound traits as exp (��1z�21 ) �

exp (��2z�22 ) � ::: � exp
�
�Pn

j=1 �jz
�2
j

�
, where all �j > 0. Such a �tness

function corresponds to selection acting independently, and in a stabilising
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manner, on the compound traits (Waxman and Welch, 2005). Furthermore,

the distribution of mutations, because it has been taken to be spherically

symmetric, is completely una¤ected by the above �diagonalization� (which is

simply a rotation of the coordinate axes, in the n-dimensional space of traits).

In what follows, we shall assume a transformation of the traits appearing in

the generalised �tness function, Eq. (3), has been made and that all traits

are now compound traits. To re�ect the formal similarity of problems with

the original traits (as appearing in Eq. (3)) and those expressed in terms

of compound traits, we will use the notation z to refer to any collection of

traits, regardless of their nature - original or compound. We thus de�ne the

�tness W (z) by

W (z) = exp
�
�
Xn

j=1
�jz

2
j

�
: (4)

An explicit implication ofW (z) is that various properties, e.g., the proportion

of bene�cial mutations, generally depend on details of z other than simply

its length, kzk. The behaviour of the proportion of bene�cial mutations is

illustrated in Figure 2,for the case of two traits, and this example explicitly

shows a dependence on z beyond that of kzk.

Figure 2
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We note that when all �j take the same value, say �, in the �tness func-

tion of Eq. (4), then it reduces to exp
�
��Pn

j=1 z
2
j

�
which can be written

exp
�
�� kzk2

�
. This depends only on kzk and is spherically symmetric.

The primary focus of this paper is an accurate treatment of generalised

�tness landscapes that are not spherically symmetric. Such landscapes have

curvatures which do not take the same value over all points of a surface

of constant �tness. In this Section we shall establish su¢cient notions of

curvature for the analysis presented in this work. More general treatments

of curvature can be found in textbooks (see e.g. Kreyszig, 1991).

The curvature, �, of a circle of radius r is de�ned as � = 1=r. For a more

general curve in the x-y plane, which we write as y = y(x), we can determine

the curvature at any point by �tting a circle to the point in question. Thus,

at any point of interest, we write the formula of the circle we shall �t as

(x � a)2 + (y � b)2 = r2. This has three unknowns, a, b and r, which have

to be found before the circle is determined. We shall use three nearby points

on the curve to determine the three unknowns. Taking the x value of the

point of interest as x0, the three points we shall use are (x0 � "; y(x0 � ")),

(x0; y(x0)) and (x0+"; y(x0+")). Since the circle passes through these points,

we have three equations in three unknowns: (x0�a)2+(y(x0)� b)2 = r2 and
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(x0� "� a)2+(y(x0� ")� b)2 = r2. We then solve these three equations for

a, b and r. In the limit "! 0 we obtain the unique circle that makes contact

with the curve. With a prime denoting di¤erentiation of a function with

respect to its argument, e.g. y0(x) � dy(x)=dx, we �nd that centre of the

circle has coordinates (a; b) where a =
�
x0y

00(x0)� y0(x0)� [y0(x0)]3
�
=y00(x0),

b =
�
1 + y00(x0)y(x0) + [y

0(x0)]
2� =y00(x0) and the curvature of the curve, at

x = x0, is

� = 1=r = jy00(x0)j=
�
1 + [y0(x0)]

2
�3=2

(5)

(we do not assign a sign, here, to curvature, and so always take � as a positive

quantity). The formula in Eq. (5) appears to originate with Newton (Rouse

Ball, 1960).

As a simple example of this, consider the ellipse x2=�2+ y2=�2 = 1. This

can be solved for y to yield y(x) which has one of the two sign choices

y(x) = ��
p
1� x2=�2 (6)

and a direct application of Eq. (5) leads to a curvature at x = 0 of � = �=�2.
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3 Curvature associated with �tness

Now let us consider the case of a surface of constant �tness, when the �tness

function is not spherically symmetric and given by Eq. (4). This form of

�tness function was motivated above, in Section 2.

For the purposes of the present work, the most relevant quantity is not

W (z) but its natural logarithm, logW (z), and a surface of constant �tness is

also a surface of constant logW (z) and given by �Pn
j=1 �jz

2
j = �c2 where

c is a constant. We shall restrict analysis to a particular point of extreme

symmetry on such a surface, where elementary considerations of curvature

su¢ce. We shall thus focus interest on the (generally di¤erent) n� 1 curva-

tures at a point which has z1 6= 0 and all other zj�s vanishing, i.e. the point

(z1; 0; 0; :::; 0).

At a general point on the surface of constant �tness, z1 takes one of the

two sign choices of

z1 = �
1p
�1

r
c2 �

Xn

j=2
�jz2j : (7)

Thus, for example if z3 = z4 = ::: = zn = 0 then z1 is a function only of z2
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which we write as z1(z2) and

z1(z2) = �
1p
�1

q
c2 � �2z22 : (8)

This is directly analogous to Eq. (6), with z1 ! y and z2 ! x, and the

curvature at the point of interest (z1 6= 0, z2 = 0) is �2 = �2=(
p
�1 jcj).

We can simplify this expression by noting that in the limit where all zj

(except z1) vanish, we have jcj =
p
�1jz1j hence �2 = �2=(�1jz1j). This

quantity represents the curvature, at z2 = 0, of a curve in the z1-z2 plane

that is constrained to lie in the surface of constant �tness. More generally,

there are n� 1 orthogonal directions that pass through the point of interest,

(z1; 0; 0; :::; 0) in the surface of constant �tness. These correspond to curves

that have only z1 and zj varying, with j taking only one of 2, 3, ..., n, and the

explicit value of the local curvature of such a curve, at the point of interest

(i.e. where zj = 0) is

�j =
�j
�1

1

jz1j
; j = 2; 3; :::; n: (9)

See Figure 3 for an illustration of the case of n = 3 characters, and the two
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di¤erent curves through the point (z1; 0; 0).

Figure 3

The n�1 values of curvature given in Eq. (9) correspond to the principal

values of curvature at the point z3 = z4 = ::: = zn = 0. At a general point on

a surface of constant �tness, the curvatures have a much more complicated

expression.

4 Application to generalised versions of Fisher�s

geometrical model

We now apply the above results to generalised versions of Fisher�s geometrical

model, where �tness functions are not spherically symmetric. Consider the

proportion of mutations, of size r, that are bene�cial in a �tness landscape

given by Eq. (4). The two approximations we discuss both yield a proportion

of bene�cial mutations of the form

Pben '
1p
2�

Z 1

�

e�t
2=2dt =

1

2
erfc

�
�p
2

�
: (10)
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Here the quantity � is a dimensionless quantity that characterises mutational

changes relative to selection. In the two approximations under consideration,

� takes di¤erent forms. Both of these are generally di¤erent to the quantity

�0 of Eq. (1).

We note that Rice (1990) was not approximating an identical �tness sur-

face to that associated with Eq. (4) - which is an ellipsoid; Rice�s geometry

was apparently that of a torus (Rice, 1990). However, it seems reasonable to

assume the two approximations should coincide for local quantities - such as

the proportion of bene�cial mutations, when mutations only probe a small

region of a �tness surface.

Proceeding, we interpret Rice�s calculation (Rice, 1990) as referring to

the curvature of the natural logarithm of �tness, rather than to �tness itself.

The resultant approximation for � is �R where

�R =

p
nrK

2
(11)

K =

 
1

n� 1
X

n�1 curvatures

1

�j(z)

!�1
(12)

(we assume Rice�s Eq. (9) contains a misprint and the factor n � 1 should
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lie within the bracket in this equation). The form of Eq. (12) is a particular

average curvature: the harmonic mean of the n � 1 principal curvatures at

the point of interest.

In the special case where z1 6= 0 and all other zj�s are zero, we use Eq.

(9) to reduce �R to:

�R =

p
nr

2

 
1

n� 1

nX

j=2

�1jz1j
�j

!�1
=

p
nr

2jz1j
H

�1
; special case (13)

where

H =

 
1

n� 1

nX

j=2

1

�j

!�1
(14)

is the harmonic mean of �2; �3; :::; �n.

By contrast, Waxman and Welch (2005) obtained an alternative ap-

proximation from analysis of quantities associated with new mutations in

Fisher�s geometrical model. This was based on the approximate behav-

iour of log(W (z + r)=W (z)) as a Gaussian random variable (recall that r

is a random mutational change). These authors derived the approximation

� ' �WW where

�WW =
r2��

p
4r2�2z2

=
r��

2
q
n�1

Pn
j=1 �

2
jz
2
j

=

p
nr��

2
qPn

j=1 �
2
jz
2
j

(15)
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where �� =
Pn

j=1 �j=n is the mean value of the �i. Specialising to the case

above, namely z1 6= 0 and all other zj�s vanishing, we �nd

�WW =

p
nr

2jz1j
��

�1
; special case. (16)

Note that both �R and �WW are of the form

p
nr

2jz1j
A

�1
where A is ei-

ther H (the harmonic mean of �2; �3; :::; �n) or �� (the arithmetic mean of

�1; �2; :::; �n). Note also that when all �j are identical, �R and �WW (Eqs.

(16) and (13)) coincide with one another.

It is evident that generally, �R and �WW do not coincide in value. We

note that although the arithmetic mean is larger or equal to the harmonic

mean, we cannot apply this result here, without further assumptions, and

infer that �WW � �R, since �� and H refer to di¤erent sets of ��s (�� involves

�1 while H does not involve �1). However if we view the �i as having been

drawn from a given probability distribution, then for large n we have, by the

law of large numbers,�� ! E[�] and H ! 1=E[��1], where the expectations,

E[: : :], are taken with respect to the probability distribution of the ��s. The

ratio of �WW to �R is then given by �WW=�R = E[�]E[��1] and when this

result is applicable, the fact that E[�]E[��1] � 1 yields �WW � �R.
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4.1 Example

As an example, assume the ��s are drawn from a uniform distribution that

ranges from �min (> 0) to �max. The coe¢cient of variation (i.e. stan-

dard deviation/mean) of this distribution is given by CV(�) = (�max �

�min)=
�p
3(�max + �min)

�
and this lies in the range 0 to 1=

p
3 ' 0:58. We

�nd

�WW=�R =
1p

12CV(�)
ln

 
1 +

p
3CV(�)

1�
p
3CV(�)

!

(17)

and this is an increasing function of CV(�).

If the ��s deviate very little from their mean value, by having a small co-

e¢cient of variation, CV(�), then expanding �WW=�R in Eq. (17) to leading

non-zero order in CV(�) yields the approximation �WW=�R ' 1 + CV2(�).

For illustrative purposes, let �min = 0:7 and �max = 1:3. This leads to

CV(�) ' 0:17 and �WW=�R ' 1:03.

Alternatively, suppose there is appreciable variation in the ��s, by CV(�)

being close to the maximum possible value it can take for a uniform distri-

bution: CV(�) ' 1=
p
3. We then have �WW=�R ' 1

2
ln
�

2
1�
p
3CV(�)

�
. To

illustrate this, let �min = 0:002 and �max = 1:998, then CV(�) ' 0:58 and

�WW=�R ' 3:46 i.e., �WW is more than three times the size of �R.
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5 Numerical test

For the special case where z = (z1; 0; 0; :::; 0), we have numerically tested the

two approximations for the proportion of bene�cial mutations that result

from using either �R (Eq. (13)) or �WW (Eq. 16)) in Eq. (10), for Pben.

To set up a numerical test we �rst invert Eq. (10), to obtain � '
p
2 erfc�1 (2Pben), where erfc

�1(�) is the inverse function to erfc(�). We note

that when all �i are identical, � ' �0 (�0 is given in Eq.(1)) hence in this

case �=�0 ' 1. It is natural, in a more general case, to de�ne a measure of

deviations of �=�0 from unity, since both approximations generally lead to

�=�0 6= 1. Accordingly, we de�ne a new quantity R, given by

R =
2jz1jp
nr

p
2 erfc�1 (2Pben) : (18)

Using the approximation of Pben in Eq. (10) yields R ' 2jz1j�=(
p
nr) � �=�0,

whatever the value of �, hence R does indeed measure of deviations of �

from �0. The approximation of Rice (1990) yields R ' H=�1, while that of

Waxman and Welch (2005) yields R ' ��=�1.

To useR as the basis of a numerical test of the value of �=�0, we specialised

to the case z1 = 1 and estimated Pben from simulation.
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A test of the value of �=�0 is carried out with: (i) a given number of

traits, n, (ii) a given magnitude of mutational changes, r, and (iii) a given

set of ��s, i.e. (�1; �2; ::; ; �n).

A test of the value of �=�0 involves generating a large number of random

mutation vectors, r, with a �xed magnitude of r, and which are uniformly

distributed over a sphere in n dimensions. We generated 105 random muta-

tion vectors. The proportion of these mutational changes that are bene�cial,

i.e. the proportion of all r for which W (z + r) > W (z), are determined as

an estimate of Pben, which is then used in Eq. (18).

In Table 1 we summarise results of simulations for two di¤erent values of

the number of traits, n, two di¤erent magnitudes of the mutational changes,

r, and three di¤erent sets of ��s. For a given n, a particular set of the ��s

was obtained by independently drawing each �i from a uniform distribution

ranging from �min to �max. Each set of ��s was held �xed, for all of the

mutational changes used to determine Pben, for the two di¤erent values of r.

Table 1

20



6 Summary

In this work we have compared two di¤erent approximations of Fisher�s geo-

metrical model of evolutionary adaptation. We considered �tness landscapes

with surfaces of constant �tness that are not spherically symmetric and hence

have di¤erent curvatures at di¤erent points. The two approximations are

rather di¤erent in character, and arise from di¤erent viewpoints; one man-

ifestly geometrical in nature, the other analytical. The approximation of

Rice (1990) is based on a geometric analysis. Because of the qualitative

reasoning on which the approximation is based, it is not straightforward

to determine its region of validity or its limitations. The approximation

of Waxman and Welch (2005) was based on the distribution of the quan-

tity log [W (z+ r)=W (z)] for �xed z but random r. Equation (4) allows this

quantity to be written as �Pn
j=1 �j

�
2zjrj + r

2
j

�
. The region where a central

limit (i.e. Gaussian) sort of behaviour of this sum manifests itself, despite in-

complete independence of the di¤erent terms, is susceptible to direct analysis

(Waxman and Welch, 2005).

We compared the two approximations by focussing on speci�c points of

particular symmetry on a surface of constant �tness. This allowed us to

analytically and numerically distinguish the predictions of the two approx-
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imations. The two approximations were used to compare the value of the

quantity � that appears in Eq. (10) and which characterises mutational

changes relative to selection. The value of � was determined from the pro-

portion of bene�cial mutations. Thus, its value was determined from what

is a rather subtle feature of the distribution of selection coe¢cients: the

relatively small part of the distribution corresponding to bene�cial muta-

tions. As such, a comparison based on � provides a stringent test of the

approximations. Our �ndings, for the range of parameters considered in this

work, indicate that when there is variation in the strengths of selection on

di¤erent traits (the �i) the Gaussian approximation of Waxman and Welch

(2005) (see also (Waxman, 2006)) is very close to the results of simulations

and signi�cantly di¤erent to the �average curvature� approximation of Rice

(1990).
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Figure Captions

Figure 1

This �gure illustrates Fisher�s geometrical model when there are two

traits, z1 and z2, and �tness and mutation are spherically symmetric. The

�tness optimum lies at the origin of the coordinate system, (0; 0) and is rep-

resented by a �lled dot. The un�lled dot represents the phenotype of an

individual and the arrow stemming from this point represents a mutational

change, of magnitude r. The quantity kzk is the distance of the parental

phenotype from the optimum. All points on the solid circle, with radius kzk,

correspond to the same value of �tness - i.e. they constitute a surface of con-

stant �tness. The dashed arc shows the set of mutations that are closer to

the optimum than the parental phenotype and are thus bene�cial mutations.

Figure 2

The Figure applies to the case of n = 2 traits. The proportion of bene-

�cial mutations, Pben, for the �tness function W (z) = exp
�
�P2

j=1 �jz
2
j

�
is

plotted as a function of the trait values z1 and z2. The strengths of selection

on the di¤erent traits are �1 = 0:15 and �2 = 0:85. The dashed line is a �sur-

face of constant �tness� - the set of trait values corresponding to the �xed
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value of �tness W (z) = 1=2. Because �tness is not spherically symmetric,

the surface of constant �tness is not spherically symmetric, but an ellipse,

whose curvature varies from point to point. Furthermore, the proportion

of bene�cial mutations, Pben, varies over the surface of constant �tness. To

produce the �gure, mutations were taken to have a spherically symmetric

distribution, with a �xed magnitude of r = 0:4.

Figure 3

A surface of constant �tness is illustrated for the case of n = 3 traits. The

black dot represents the point (z1; 0; 0) and the two broken curves through

this point signify lines in the surface of constant �tness are in the z1-z2 and

z1-z3 planes. The two curvatures, �2 and �3 (see Eq. 9)) are obtained by

�tting circles at (z1; 0; 0) in these two planes.
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Table 1 Caption

Results of simulations, as described in the main text are given in the

Table. Rows 1, 4, 7 and 10, which have �min = �max, correspond to no vari-

ation amongst the �i, and serve to show that the R statistic, introduced in

Eq. (18), is very close to unity in this case - as predicted by the analytical

approximations. In all other rows, R is signi�cantly larger than the approx-

imation following from the work of Rice (H=�1), while it is always close to

the corresponding result of Waxman and Welch (��=�1).

There are signi�cant di¤erences between R values arising from identical

distributions of the ��s, but having di¤erent values of n, e.g. the R values

given in rows 2 and 8 of the Table. Given that in both approximations

for �, we have that R / 1=�1, the di¤erences arise because �1 may vary

greatly from one set of ��s to the other, because for di¤erent n, the R�s were

calculated from independently generated sets of ��s.

Note that because of the specialisation to z1 6= 0 in this work, �1 has a

privileged place in various of the formulae derived here. However, �1 was not

distinguished in any way from any other of the �i, during the generation of

sets of the ��s. Thus generally, �1 is neither the smallest nor the largest of

the �i but merely a random member of each set of ��s.
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Figures

Figure 1
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Figure 2
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Figure 3
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Table 1

Row n r �min �max CV(�) H=�1 ��=�1 R

1 50 0:05 1:000 1:000 0:00 1:00 1:00 0:98

2 50 0:05 0:200 1:800 0:46 1:26 1:79 1:78

3 50 0:05 0:002 1:998 0:58 0:41 1:39 1:36

4 50 0:10 1:000 1:000 0:00 1:00 1:00 0:99

5 50 0:10 0:200 1:800 0:46 1:26 1:79 1:78

6 50 0:10 0:002 1:998 0:58 0:41 1:39 1:37

7 100 0:05 1:000 1:000 0:00 1:00 1:00 0:99

8 100 0:05 0:200 1:800 0:46 2:13 3:04 3:02

9 100 0:05 0:002 1:998 0:58 0:27 1:16 1:16

10 100 0:10 1:000 1:000 0:00 1:00 1:00 0:99

11 100 0:10 0:200 1:800 0:46 2:13 3:04 3:00

12 100 0:10 0:002 1:998 0:58 0:27 1:16 1:16
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