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abstract: Fisher’s geometrical model was introduced to study the
phenotypic size of mutations contributing to adaptation. However,
as pointed out by Haldane, the model involves a simplified picture
of the action of natural selection, and this calls into question its
generality. In particular, Fisher’s model assumes that each trait con-
tributes independently to fitness. Here, we show that Haldane’s con-
cerns may be incorporated into Fisher’s model solely by allowing the
intensity of selection to vary between traits. We further show that
this generalization may be achieved by introducing a single, intui-
tively defined quantity that describes the phenotype prior to adap-
tation. Comparing the process of adaptation under the original and
generalized models, we show that the generalization may bias results
toward either larger or smaller mutations. The applicability of
Fisher’s model is then discussed.

Keywords: geometrical model, beneficial mutations, adaptation.

The classic arguments in favor of micromutationalism—
the doctrine that mutations of very small phenotypic effect
are the most likely to contribute to adaptation—are given
by Fisher (1930). To support this position, Fisher offered
an analogy, comparing the effect of a mutation to the
“mechanical adaptation of an instrument, such as a mi-
croscope.” He claimed that “it is sufficiently obvious that
any large derangement will have a very small probability
of improving the adjustment,” while in the case of the
smallest possible alterations, “the chance of improvement
should be almost exactly half” (Fisher 1930, pp. 37–38).
In addition to his verbal analogy, Fisher introduced a
mathematical model of natural selection acting on multiple
quantitative traits. In the model, each trait has an optimal
value, and the fitness of a complete phenotype is jointly
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determined from the distances of the different traits from
their optimal values. Fisher showed that under these as-
sumptions, mutations that affect all traits have a proba-
bility of being beneficial that increases rapidly as their size
decreases (see below for a definition of size). When the
size of mutations approaches 0, their probability of being
beneficial achieves the maximal value of 1/2.

Two years later, Haldane (1932) questioned the gener-
ality of Fisher’s conclusion. He pointed out that Fisher’s
calculation relies on the assumption that traits act inde-
pendently to determine fitness. In most real cases of ad-
aptation, however, traits are likely to interact such that a
change in a given trait might be beneficial in one phe-
notypic context and deleterious in another. “For example,”
Haldane wrote, “an increase in pigmentation in an animal
might be disadvantageous unless balanced by an increase
in the capacity of its liver for storing vitamin D during
sunny weather” (Haldane 1932, p. 175). Haldane’s criti-
cism is particularly apposite, since Fisher explicitly set out
to examine “complex” adaptations involving many inte-
grated traits. However, Haldane did not explore his sug-
gestion mathematically, and so it remained unclear to what
extent Fisher’s conclusions were threatened by his
suggestion.

A more serious challenge to Fisher’s advocacy of mi-
cromutationalism came more than 50 years later in the
work of Kimura, who did not question the assumptions
of Fisher’s model or the accuracy of his calculations. In-
stead, he pointed out that the quantity that is most relevant
to evolutionary adaptation is not the probability that a
mutation is beneficial but rather the probability that it is
both beneficial and achieves fixation (Kimura 1983, pp.
150–156; see also Orr 1998). This is because only those
beneficial mutations that achieve permanence in the pop-
ulation can be said to contribute to adaptation. Kimura
showed that under Fisher’s model, mutations of an inter-
mediate size have the greatest overall probability of being
beneficial and fixing. This is because small-effect muta-
tions, though most likely to be beneficial, typically have
very small effects on fitness and hence are most likely to
be lost via genetic drift. By contrast, large-effect mutations
are less susceptible to drift but are less likely to be
beneficial.
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In the last decade, many further studies have used
Fisher’s model. Some of these studies have continued the
investigation of the size of mutations contributing to ad-
aptation (Hartl and Taubes 1998; Orr 1998, 1999; Burch
and Chao 1999), while others have treated topics such as
drift load (Hartl and Taubes 1996; Peck et al. 1997; Poon
and Otto 2000), hybridization (Barton 2001), and evo-
lutionary rates (Orr 2000; Welch and Waxman 2003). Like
Kimura, all of these authors have used Fisher’s model in
its original form.

In this study, we modify Fisher’s model to take into
account the concerns expressed by Haldane (1932). We
then examine the extent to which this modification affects
the conclusions of Fisher (1930), Kimura (1983), and, by
implication, those of the more recent studies. Let us begin
by presenting the model in a general manner that can be
applied both to Fisher’s original treatment and to our
extended form.

The Geometrical Model

Fisher’s model treats natural selection as acting on a set
of n quantitative (i.e., continuously varying) traits. The
relevant phenotype of any individual is geometrically de-
scribed as a point in an n-dimensional space of traits. Such
a point is conveniently represented by an n-dimensional
vector of trait values: .z p (z , z , … , z )1 2 n

Consider a mutation that may alter the value of all n
traits. The mutational changes on the n traits are denoted
by , and the mutated phenotype is givenr p (r , r , … , r )1 2 n

by . The size of az � r p (z � r , z � r , … , z � r )1 1 2 2 n n

mutation can now be defined as the magnitude of the
mutational change:

2 2 2�krk { r � r � … r , (1)1 2 n

provided that all are measured in the same units. Moreri

generally, an appropriate choice of measurement scale for
the traits is crucial to make a meaningful measure ofkrk
mutational size. For some sets of traits (see, e.g., Cheverud
2001), a scale may naturally present itself. However, even
for an arbitrary collection of traits (including, e.g., pig-
mentation and capacity to store vitamin D), a reasonable
dimensionless scale can be chosen, for example, by defin-
ing each as a proportion of some reference phenotyperi

or by measuring in units of the mutational or environ-
mental standard deviation of the trait.

Denoting the fitness of phenotype z by , we defineW(z)
the selection coefficient of a mutation, r, via s p

. It then follows that the mutation[W(z � r) � W(z)]/W(z)
is beneficial if . The quantity that interested Fishers 1 0
was the probability that a mutation of given size, say r, is
beneficial; that is, the fraction of mutations with krk p

, for which . To express this quantity succinctly, wer s 1 0
introduce the random variable Q, defined by

W(z � r)
Q p ln (1 � s) p ln . (2)[ ]W(z)

A random mutation is then beneficial only if Q is positive.
Let denote the probability density of Q when mu-w(q; r)
tations have size r. In other words, is the prob-w(q; r)dq
ability that Q lies in the infinitesimal range q to q � dq
for mutations with . The probability that a mu-krk p r
tation of size r is beneficial can now be written as

�

P (r) p w(q; r)dq. (3)ben �
0

Kimura (1983) calculated the probability that a muta-
tion of size r is both beneficial and achieves fixation. This
is denoted by . In a large Wright-Fisher population,P (r)fix

the fixation probability of a newly arising mutant is ap-
proximately for and 0 otherwise (see,1 � exp (�2s) s 1 0
e.g., Kimura 1983). In terms of the random variable Q,
this probability is , which is well ap-Q1 � exp [�2(e � 1)]
proximated by 2Q when selection is not too strong, such
that values of Q are typically small. In this case, isP (r)fix

simply

�

P (r) � 2 qw(q; r)dq. (4)fix �
0

Equations (3) and (4) show that the calculation of either
or reduces to the problem of calculating theP (r) P (r)ben fix

distribution, . To find this distribution, we need tow(q; r)
know not just the fitness function but also the probability
of occurrence of all possible mutations of given magnitude.

At this stage, we make one of the key simplifying as-
sumptions of this work. We assume that mutations are
equally likely to occur in all “directions” in the n-dimen-
sional phenotypic space; this is equivalent to assuming a
distribution of mutational changes that is radially sym-
metric (i.e., it depends only on the magnitude of , namelyr

). This assumption, which is common to most previouskrk
work on Fisher’s geometrical model, is made for analytical
tractability. In particular, it allows us to calculate P (r)ben

and for any given fitness function using simple pro-P (r)fix

cedures from “ geometric probability” (Kendall and Moran
1963). We return to this assumption and its justification
in “Discussion.”
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Normal Approximation

Of course, evaluating the integrals in equations (3) and
(4) is much easier if takes a simple form. It is shownw(q; r)
below that a simple approximation often does hold when
the number of traits under selection, n, is large. In this
case, for some fitness functions of interest, is ap-w(q; r)
proximately normal and takes the form

21 (q � m)
w(q; r) � exp � , (5)[ ]� 2v2pv

where m and are the mean and variance of Q. The greatv
benefit of the normal approximation is that any quantity
that depends on Q can be expressed solely in terms of m

and (as calculated for a particular fitness function). Inv
fact, , which is dimensionless, depends only on theP (r)ben

ratio

m
r p � . (6)�v

This follows from substituting equation (5) into equation
(3), and making the change of variables 1/2t p (q � m)/v
yields

�
1 2�t /2P (r) � e dt. (7)ben ��2p r

Similarly, the probability of a beneficial mutation with
magnitude r reaching fixation is found by using equation
(5) in equation (4), yielding

�
2v 2�t /2�P (r) � (t � r)e dt. (8)fix �
p r

The above results for and can both be ex-P (r) P (r)ben fix

pressed in terms of the error function (Abramowitz and
Stegun 1970), if desired.

To make the results for and meaningful,P (r) P (r)ben fix

we must of course first demonstrate that, for some fitness
functions of interest, the distribution is indeed ap-w(q; r)
proximately normal and, second, calculate the key quan-
tities m and . This is done in the following sections.v

Fisher’s Spherically Symmetric Fitness Function

In Fisher’s and Kimura’s analyses, it was assumed that all
traits are under stabilizing selection of identical intensity.
In particular, it was assumed that the fitness of a phenotype
is a monotonically decreasing function of its Euclidean
distance from the optimal phenotype. Geometrically, this

corresponds to a “fitness landscape” that is spherically
symmetric. “Surfaces” of constant fitness are hyperspheres
(i.e., circles when , spheres when , …) thatn p 2 n p 3
are centered on the optimal phenotype. If we choose to
measure each trait in such a way that its optimal value is
0, then the optimal phenotype will lie at the coordinate
origin, . Fitness is then a function ofz p 0 { (0, 0, … , 0)

.2 2 2 1/2kzk { (z � z � … z )1 2 n

Under these assumptions, a mutation is beneficial if it
results in a phenotype that is closer to the origin, in trait
space, than the parental phenotype; that is, if kz � rk !

. As such, Fisher’s result does not depend on the ratekzk
at which fitness declines with distance from the optimal
phenotype, and it applies to any spherically symmetric
fitness function of stabilizing form. However, it is con-
venient to specify a fitness function and then work with
the quantity Q of equation (2). This facilitates comparison
with the general case treated below and is necessary for
the calculation of the fixation probability, . With thisP (r)fix

in mind, we choose the following spherically symmetrical
fitness function:

n

2 2¯ ¯W (z) p exp (�jkzk ) { exp �j z , (9)�0 j( )
jp1

where is the common (nonnegative) intensity of selectionj̄

on all traits. We use the overbar, indicating a mean, for
consistency with following sections. Of course, when the
intensity of selection is identical for all traits, the mean
intensity of selection coincides with the intensity of selec-
tion on any single trait.

In what follows, we use the subscript 0 to indicate that
a quantity applies only to the spherically symmetric fitness
function of equation (9). For this fitness function, the
quantity Q is given by

n

2 2 2¯ ¯ ¯Q p �jkz � rk � jkzk { �j (2z r � r ). (10)�0 j j j
jp1

The distribution of this variable, namely , can bew (q; r)0

calculated exactly (see, e.g., Kimura 1983); however, more
readily comprehensible results are obtained by noting that
for , the normal approximation of equation (5) ap-n k 1
plies, with the mean and variance of are given byQ0

2¯m p �r j, (11)0

2 2 2¯4r j kzk
v p . (12)0 n

Appendix A derives the normal approximation of
, and the curve of intermediate thickness of figurew (q; r)0



450 The American Naturalist

Figure 1: a, Plots of against q, where is the probabilityw(q; r) w(q; r)
density of for mutations of magnitude . It is as-Q p ln (1 � s) krk p r
sumed that the number of traits, n, is sufficiently large that the normal
approximation of equation (5) applies. Results are presented for three
different values of the quantity defined in equation (23), which cap-fz, j

tures the variation in the intensity of selection on different traits, and
the extent to which the population is maladapted for particularly strongly

or weakly selected traits. The curve of intermediate thickness shows results
for , which would hold for a symmetrical fitness landscape. Thef p 0z,j

thickest and thinnest curves are for the cases , respectively.f p 0.1 � 0.3z,j

These values were chosen to represent two cases in which selection in-
tensity was equally variable over all traits but where the premutation
phenotype resulted in a covariance term in equation (23) that was either
positive (thickest curve) or negative (thinnest curve). b, Probability of a
mutation being beneficial, (eq. [7]), is plotted against the standardP (r)ben

magnitude of change, , which is proportional to r. Re-1/2r p n r/(2kzk)0

sults are plotted for the three values of used in a and correspond tofz,j

the areas under the probability densities of a, where q is positive. c,
Equivalent plots for the probability that a mutation is beneficial and
reaches fixation, (eq. [8]). We have chosen the constant of pro-P (r)fix

portionality, , to have the value 3.5 solely in order2¯�2v /m { 8jkzk /n00

to retain the axes of b.

1a (corresponding to ) shows the distribution asf p 0z,j

a function of q.
Approximate normality of follows from the factw (q; r)0

that is a sum of n random variables (see eq. [10]),Q0

which gives rise to a central limit type of behavior when
n is large (see, e.g., Bulmer 1967). Appendix A shows that
this behavior occurs despite the statistical nonindepen-
dence of the variables in the sum for (nonindependenceQ0

results from the fixed magnitude of r). The fact that the
mean of the distribution, , is always negative indicatesm0

that mutations are, on average, deleterious; this is a bio-
logically reasonable property of Fisher’s model.

Using the above results, we find that the key quantity
r of equation (6) is

�r n�m0
r { p . (13)0 � 2kzkv0

The ratio , which compares the mutation magnitude rr0

with the quantity , was called the “standard mag-1/2kzk/n
nitude of change” by Fisher (1930; also see Orr 1998), and
using in equation (7) yields Fisher’s (1930) result forr0

the probability of a mutation of size r being beneficial.
This probability, which we write as , isP (r)ben, 0

�
1 2�t /2P (r) p e dt (14)ben, 0 ��2p r0

and is reproduced by the curve of intermediate thickness
(corresponding to ) in figure 1b. In the plot, thef p 0z,j

rapid decline of with (and hence, by eq. [13],P (r) rben, 0 0

with r) is clearly visible. Note that the intensity of selection,
, does not appear in . As such, altering the value ofj̄ r0

has no affect on , confirming that Fisher’s resultj̄ P (r)ben, 0

is independent of this detail of the fitness function.
We can also use dependency on to express the wayr0

the fixation probability of equation (8) depends on r, when
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Figure 2: Surfaces of constant fitness are shown as gray curves for three
fitness landscapes with phenotypic characters, namely and .n p 2 z z1 2

Lighter curves indicate lower fitness. The globally optimal phenotype lies
at the coordinate origin ( , ). a, Example of the sphericallyz p 0 z p 01 2

symmetrical fitness landscape of equation (9). b, Example of an elliptical
landscape of equation (17). c, Landscape of b, with the axes rotated. This
is a “diagonalization” of the fitness function of equation (17) and leads
to the result of equation (18). The axes now represent “compound traits”
that are linear combinations of the traits labeling the axes in a and b.

the symmetrical fitness function is assumed. From equa-
tion (8), we have

�
2v 20 �t /2�P (r) � (t � r )e dtfix, 0 � 0
p r0

�
r 20 �t /2� (t � r )e dt, (15)� 0�2p r0

where the constant of proportionality, , is inde-2¯8jkzk /n
pendent of r. The probability of equation (15) isP (r)fix, 0

plotted as the curve of intermediate thickness (correspond-
ing to ) in figure 1c. Unlike , which declinesf p 0 P (r)z,j ben, 0

monotonically with , the probability has a max-r P (r)0 fix, 0

imum at an intermediate value of given by .r r � 0.610 0

From this and equation (13), it is trivial to calculate the
size of mutation most likely to reach fixation. This “op-
timal” mutation size is given by

�r � 1.22kzk/ n. (16)opt, 0

Again, this result is independent of the intensity of selec-
tion (although does appear in the constant of propor-j̄

tionality of eq. [15], with stronger selection leading to
higher values of for mutations of all sizes).P (r)fix, 0

We note here that Kimura (1983) used the approxi-
mation in place of equation (15). Nu-P (r) � r P (r)fix, 0 0 ben, 0

merical comparison with equation (15) shows that Ki-
mura’s approximation is quite inaccurate; nevertheless, it
was adequate for his purpose, which was to point out the
qualitative difference in the way and vary withP (r) P (r)ben fix

r.

Generalized Fitness Function

Let us now generalize Fisher’s model in order to incor-
porate the concerns of Haldane (1932). We assume a
smooth fitness landscape and a population in the vicinity
of a fitness optimum, again located arbitrarily at the origin.
A general fitness function, , that conforms to theseW(z)
assumptions may be well approximated by performing a
Taylor expansion of log fitness around the optimum and
then excluding all deviations from the optimum that are
of higher order than quadratic (see, e.g., Apostol 1974, pp.
361–362). This produces a function of the form
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n

W(z) � exp � M z z , (17)� ij i j( )
i, jp1

where is a positive def-2M p �(1/2)� ln [W(z)]/�z �z Fij i j zp0

inite, symmetric matrix. This is the kind of fitness function
envisaged by Haldane (1932, p. 175), and it produces sur-
faces of constant fitness that are generally ellipses when

and the higher-dimensional analogs of an ellipsen p 2
when .n 1 2

To show how this fitness function embodies trait in-
teractions, figure 2b depicts a two-dimensional example
and compares it with its symmetrical counterpart (fig. 2a).
Note that, in figure 2b, if , then negative values ofz ! 01

confer higher fitness than do positive values; conversely,z 2

if , then positive values of confer higher fitness.z 1 0 z1 2

Nothing equivalent can ever occur with a spherically sym-
metric fitness function (fig. 2a).

Rather than work directly with the fitness function of
equation (17), we introduce n new traits (“compound
traits”) that are linear combinations of the original traits
(the ’s). Denoting these compound traits as (∗z z i pi i

), we write , where the make
n∗1, 2, … , n z p � O z Oi ij j ijjp1

up an square matrix. In terms of the ’s, fitness∗n # n zi

takes the form . If the matrix
n ∗ ∗exp (�� M O O z z )ij ik jl k li, j, k, lp1

is an appropriately chosen orthogonal matrix, then theOij

matrix is “diagonalized” in the sense that ∗M M pij kl

is a matrix whose only nonzero elements
n� M O Oij ik jli, jp1

lie on the diagonal ( ) and are given by (k p l j k pk

). We can then write the fitness function as1, 2, … , n
. Accordingly,

n n∗ ∗ ∗ ∗2exp (�� M z z ) { exp (�� j z )kl k l k kk, lp1 kp1

we define

n

∗ ∗2W (z ) p exp � j z . (18)�G k k( )
kp1

This result indicates that equation (17) is formally equiv-
alent to a fitness function where independent stabilizing
selection acts on n compound traits (fig. 2c). Indeed, be-
sides the definition of the traits, the only difference from
the symmetrical fitness function of equation (9) is that the
intensity of stabilizing selection, represented by the , mayjk

differ for each (compound) trait. Furthermore, the dis-
tribution of mutations, because it has been taken to be
spherically symmetric, is completely unaffected by the
above “diagonalization” (which is simply a rotation in the
n-dimensional space of traits).

It is now clear that to incorporate the concerns of Haldane
(1932), all that is necessary is to allow the strength of sta-
bilizing selection to vary between traits. Haldane was, of
course, aware that his generalized model could be expressed
in a form resembling equation (18), and he pointed out

that the compound traits involved may appear to be rather
artificial, generally consisting of combinations of apparently
disparate properties of an organism. (In Haldane’s own ex-
ample, referred to above, a single compound trait would
involve measures of both pigmentation and the capacity of
the liver to store vitamin D.) Nevertheless, this artificiality
does not alter any of the conclusions reached here. As such,
to reflect the formal similarity, in what follows we will use
the notation z to refer to a collection of traits, regardless of
whether these are compound traits, such as those that appear
in equation (18).

Results for the Generalized Fitness Function

Let us now derive the quantities of interest for the gen-
eralized fitness function of equation (18). Through-W (z)G

out, the subscript G denotes a result applying only to this
fitness function.

First, the key quantity Q is found to be

n

2Q p � j (2z r � r ). (19)�G i i i i
ip1

In appendix B, it is shown that the large n normal ap-
proximation of equations (5), (7), and (8) still applies in
this general case. Given that a normal approximation holds
for both the symmetric and generalized fitness functions
(eqq. [9], [18]), any difference between the two cases must
lie solely in the mean and the variance of the variable Q.
For the general case, equation (18), these quantities are
found to be

2¯m p �r j, (20)G

4r
2 2 2v p 4r j z � O , (21)G ( )n

where overbars denote a mean over all traits, hence
and . In equation

n n�1 2 2 �1 2 2j̄ p n � j j z p n � j zj j jjp1 jp1

(21), we shall neglect the term that is, for practical4O(r /n)
purposes, always smaller than the term present by a factor

(see app. B).�1O(n )
Comparing the mean and variance of equations (20)

and (21) with those of equations (11) and (12) reveals the
relationship between the general and symmetrical cases.
Clearly, the two expressions for m are identical, so m pG

, but the relationship between and is more complex.m v v0 G 0

With denoting the covariance
n2 2 �1 2Cov (j , z ) n � (j �jjp1

, the relationship between and can2 2 2j )(z � kzk /n) v vj G 0

be clarified by expressing equation (21) in the expanded
form, . This expanded2 2 2 2 2v p 4r [kzk j /n � Cov (j , z )]G

expression can be written as
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Figure 3: Fitness function of equation (18), for traits, isW (z) n p 2G

plotted as a function of the trait values and . Both traits are underz z1 2

stabilizing selection, with intensities and . The set of zj p 0.3 j p 1.71 2

values corresponding to is plotted as a dashed line. Mu-W (z) p 1/2G

tational changes of equal magnitude are illustrated as two partially visible
circles. These are centered on two sets of parental trait values (solid circles)
that both lead to identical parental fitnesses (i.e., fitness 1/2). The part
of the mutational circles that are visible correspond to deleterious mu-
tations, since the trait values of the mutant offspring would, if projected
onto the fitness surface, lie at a lower fitness than that of the parent. The
two mutational circles have significantly different proportions visible,
indicating that there can be an appreciable range of variation in the
proportion of adaptive mutations for a given fitness value.

v p v # (1 � f ), (22)z,jG 0

where

2 2Var (j) Cov (j , z )
f p � . (23)z,j 2 2 2¯ ¯j j kzk /n

The consequence of equation (22) is that results for the
general fitness function can be derived by making the sub-
stitution in equations (14) andv r v { (1 � f ) # vz,j0 G 0

(15), which were derived for the symmetrical fitness func-
tion. Using the subscripts G and 0 to distinguish results
for the two landscapes, we find that after some simplifi-
cation, we can write

r
P (r) p P , (24)ben, G ben, 0( )�1 � fz,j

r
P (r) p (1 � f )P . (25)fix, G z,j fix, 0( )�1 � fz,j

Figure 1 plots these probabilities and the corresponding
distributions of for three different values of .Q fG z,j

Several conclusions follow immediately from the simple
results of equations (24) and (25). First, from equation
(24), the probability that a mutation of magnitude r is
beneficial in a generalized fitness landscape is equal to the
equivalent probability for a mutant of magnitude r/(1 �

in a symmetric landscape. Second, from equation1/2f )z,j

(25), the size of mutations most likely to reach fixation is

�r p r 1 � f , (26)opt, G opt, 0 z,j

where is the corresponding quantity for a symmetricalropt, 0

landscape (eq. [16]). Third, and of less relevance here, it
is possible to show that both and will in-P (r) P (r)ben, G fix, G

crease with for mutations of any magnitude.fz,j

Together, equations (24) and (26) show that the argu-
ments in favor of micromutationalism will be further
weakened if it is generally true that , because thenf 1 0z,j

the equations predict that larger mutations are more likely
to contribute to adaptation than would be the case under
Fisher’s original model. Conversely, arguments for micro-
mutationalism are strengthened if . What value,f ! 0z,j

then, might typically have? To answer this question,fz,j

consider the two terms of equation (23). The first term
measures the variance in the intensity of selection on dif-
ferent traits; as such, it will always be positive and may
be appreciable. The second term includes the covariance
between , a measure of the maladaptation of each (com-2zi

pound) trait, and , the intensity of selection on that2ji

trait. As such, if a population is particularly maladapted

for particularly strongly selected traits, then this term will
be positive; conversely, if the population is particularly
maladapted for particularly weakly selected traits, then it
will be negative. If, as seems probable, environmental
changes are equally likely to affect strongly and weakly
selected traits, then this term will be close to 0 on average.
In this case, the always positive (variance) term will dom-
inate, and will hold. However, it is possible that inf 1 0z,j

some cases, the negative contribution from the second
term may exceed the positive contribution from the first
term, in which case would hold.f ! 0z,j

The dependence of the quantities andP (r) P (r)ben, G fix, G

on details of the premutation phenotype (as described by
the quantity ) also has the implication that these prob-fz,j

abilities cannot be expressed solely as functions of pre-
mutation fitness. To see this, it is helpful to visualize a
fitness landscape with traits, which are under dif-n p 2
ferent intensities of selection, that is, with .j ( j1 2

Figure 3 shows such a landscape, with two (parental)
phenotypes of equal fitness represented as solid circles and
mutations as circles centered on these phenotypes. The
proportion of the “mutational circles” visible indicates (see
fig. 3) that the probability of a mutation being beneficial
can be different even for different parental phenotypes
with identical fitness.
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Discussion

In this work, we have generalized the geometrical model
of Fisher (1930) to take into account concerns first ex-
pressed by Haldane (1932). Haldane pointed out that
Fisher’s model relies on the assumptions that each trait
acts independently to determine fitness and that all are
under stabilizing selection of equal intensity. We have
shown that Haldane’s concerns can be dealt with solely
by allowing the intensity of selection to vary between traits,
although the relevant “traits” may have to be redefined.
We have shown further that, within the framework of a
normal approximation, the complications introduced by
this generalization amount to the introduction of a quan-
tity , equation (23). This quantity describes the variationfz,j

in the intensity of selection between traits and the extent
to which the premutation phenotype is maladapted for
particularly strongly or weakly selected traits. Figure 1
shows that expressions for the proportion of beneficial
mutations and the fixation probability of new mutations
are not qualitatively altered by this change. However, con-
clusions about the size of mutations contributing to ad-
aptation are affected. We have shown that conclusions will
be biased in favor of larger mutations when andf 1 0z,j

in favor of smaller mutations when . We have alsof ! 0z,j

suggested that, following a random environmental change,
is most likely to be positive.fz,j

The problem of incorporating variable intensities of se-
lection into Fisher’s model has been investigated by pre-
vious authors. In particular, Rice (1990) gave an alternative
approximation for (see his eqq. [3], [8], [9]).P (r)ben, G

However, Rice’s result is difficult to relate directly to our
equation (24), because it is expressed in terms of n � 1
measures of the curvature of the fitness surface rather than
in terms of phenotype and selection intensity, as used in
this work. Orr and Coyne (1992) suggested that selection
of variable intensity might be incorporated into Fisher’s
model by defining an “effective number of traits” (see also
Orr 2000). The results above show that, when n is large,
this can indeed be done by replacing n with

n
n p (27)e 1 � fz,j

in equation (12) and related expressions. Orr and Coyne
(1992) also asserted that variation in the intensity of se-
lection would always decrease the effective number of traits
and so weaken arguments in favor of micromutationalism.
The results above show that this is typically true (since we
can expect to hold more often than not), but it isf 1 0z,j

not always the case. It is also true that will change inne

value during a bout of adaptive evolution, even if the
fitness landscape remains constant. This is because de-fz,j

pends on details of the phenotype and so will vary with
each substitution that occurs.

Whitlock et al. (2003) used computer simulation to in-
vestigate how variation in the strength of selection affects
the level of drift load experienced by a population that is
evolving under Fisher’s model (cf. Poon and Otto 2000).
These authors found that results were not qualitatively
changed, which accords with the conclusions reached here.
Finally, it must be acknowledged that, although we have
generalized Fisher’s model somewhat, it remains highly
idealized (Orr 2001, 2005a, 2005b).

Perhaps the most serious simplification involves the dis-
tribution of mutational changes. We have assumed that
this distribution is spherically symmetric, but for any real
biological system, this is most unlikely to be the case.
Indeed, we can expect single mutations of any given size
to be more common in some phenotypic directions than
others (e.g., Santiago et al. 1992; Mackay 1996; Keightley
and Ohnishi 1998). For some conceivable distributions,
such mutational biases might be removable by applying
transformations and scalings (similar to those applied here
to the fitness function). However, even when such a trans-
formation is possible, there are three objections that could
be raised to its use in the present context. First, any ap-
proximations involved in the transformation (such as
truncating a Taylor expansion) are likely to be least ac-
curate for those mutations—the largest—that are of the
greatest interest. Second, because the distribution of mu-
tations is likely to vary with the premutant phenotype,
maintaining a spherically symmetrical distribution would
require a fresh transformation after each fixation event.
Third, contriving a spherically symmetric distribution in
this way is, in effect, redefining the “size” of a mutation
in terms of its probability of occurrence; in the present
context, such a redefinition is both counterintuitive and
may lead to circularity.

While these particular objections do not apply to the
transformations applied to the fitness surface, this too is
an idealization: recall that each (compound) trait was as-
sumed to be under symmetrical stabilizing selection with
a single fixed optimum. Relaxing any of these assumptions
is sure to alter the results presented (see, e.g., Rice 1990;
Williams 1992, ch. 5; Fisher 2000, p. 302; Barton 2001;
Orr 2005b).

Even if complications such as those mentioned above
can be addressed, any attempt to use Fisher’s model to
make detailed quantitative predictions (relating, say, to
quantitative trait locus studies; Lynch and Walsh 1998)
faces formidable difficulties. These include problems with
making the required measurements (e.g., Whitlock et al.
1995; Keightley et al. 2000) and more fundamental diffi-
culties with identifying individual traits (Barton 1998;
Wagner 2001). This is particularly important because, in
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Fisher’s scheme, the definition of mutation size refers its
magnitude across all traits (eq. [1]) and not to its effect
on a single focal trait (Orr 1999; Griswold and Whitlock
2003).

Despite this skepticism, Fisher’s model still has impor-
tant uses as a guide to intuition and, perhaps, as a phe-
nomenological model (see, e.g., Burch and Chao 1999; Orr
2000, 2005b; Barton and Keightley 2002). One important
role will be to encourage careful examination of the pre-
dictions from other modeling frameworks that rely on the
a priori assumption that mutations have vanishingly small
size. These include Fisher’s own infinitesimal model
(Fisher 1918; Turelli and Barton 1994) and the more recent
adaptive dynamics approach (Geritz et al. 1998; Barton
and Polechová, forthcoming; Waxman and Gavrilets,
forthcoming).
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APPENDIX A

Normal Approximation of the Distribution of Q0

In this appendix, we determine the normal approximation
of the probability density of the random variable , whichQ0

is defined in equation (10). With denoting a Dirac dd(7)
function, the exact probability density of isQ0

n

2¯w (q; r) p E[d(q � Q )] p E d q � j (2z r � r ) ,�0 0 j j j{ [ ]}
jp1

where denotes an average over r’s of fixed magnitudeE[…]
(r) with a radially symmetric distribution.

We can write , where
n 2 2� (2z r � r ) p 2kzkr cos v � rj j jjp1

v is the angle between z and r. Adopting spherical polar
coordinates in n dimensions, we find

p n�2 2¯ ¯sin vd(q � 2jkzkr cos v � jr )dv∫0

w (q; r) p ,0 p n�2sin vdv∫0

where all angular integrals, except the one over v, cancel
between numerator and denominator. This last result can
be written as

p/2 n�2 2¯ ¯cos vd(q � jr � 2jkzkr sin v)dv∫�p/2

w (q; r) p . (A1)0 p/2 n�2cos vdv∫�p/2

If , the d function remains 0 and results2¯ ¯Fq � jr F 1 2jkzkr
in vanishing. When , a single v,2¯ ¯w (q; r) Fq � jr F ! 2jkzkr0

namely , contributes to the2¯ ¯� arcsin [(q � jr )/(2jkzkr)]
integral and leads to

2 (n�3)/2
2¯q � jr

w (q; r) ∝ 1 � .0 [ ( ) ]¯2jkzkr

Assuming and using for al-n k 1 ln (1 � x) � x FxF K 1
low to be approximated asw (q; r)0

2
2¯n � 3 q � jr

w (q; r) ∝ exp ln 1 �0 { [ ( ) ]}¯2 2jkzkr
2

2¯n q � jr
� exp � .[ ( ) ]¯2 2jkzkr

From this result, we can read off the mean and the variance
of , namely and . These are,2 2 2 2¯ ¯Q m p �r j v p 4r j kzk /n0 0 0

in fact, the exact mean and variance of .Q0

Note that the normal approximation to can alsow (q; r)0

be directly derived from equation (A1) by making the
approximation

p/2 � 2nv
n�2cos v r exp � ,� � ( )2�p/2 ��

sin v r v. (A2)

Formally, this approximation corresponds to treating the
different as statistically independent normal random var-ri

iables with mean 0 and variance .2r /n

APPENDIX B

Normal Approximation of the Distribution of QG

In this appendix, we outline a derivation of a normal
approximation of the probability density of Q when the
fitness landscape has the generalized form, equation (18).
This appendix builds upon the intuition developed in ap-
pendix A with the derivation relying on n being large.

We have carried out Monte Carlo simulations, where
the components of z were independently drawn from iden-
tical normal distributions with mean 0, and the magnitude,

, was adjusted to have the fixed value of unity. Valueskzk
of the were independently drawn from a uniform dis-jk

tribution over the interval 0.2–1.8. Then 105 mutations
from a spherically symmetric distribution with fixed mag-
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nitude r were generated. Our findings suggest that the
normal approximation is reasonably accurate for n ∼ 10
traits: the error in the proportion of beneficial mutations
is approximately 3% (7%) when (0.4) and morer p 0.2
accurate for traits; the error in the proportion ofn p 50
beneficial mutations is approximately 1% (3%) when

(0.4).r p 0.2
We begin by writing the probability density of asQG

and shall use the integral representation of aw (q; r)G

Dirac d function , where��1d(u) p (2p) exp (ilu)dl∫��

and l is an arbitrarily named integration var-1/2i p (�1)
iable. We then have

w (q; r) p E[d(q � Q )]G G

� n

�1 2p (2p) dl exp (ilq)E exp il (2z r � r )j ,�� j j j j{ [ ]}
jp1��

where denotes an average over r’s of fixed magnitudeE[…]
(r) with a radially symmetric distribution. Using the iden-
tity

� 2i ix
2� exp � � irx dx p exp (iljr )� ( )4pjl 4lj��

allows us to write

� n
dl i�w (q; r) p dx dx … dx �G � 1 2 n( )2p jp1 4pj l�� j

n 2xj# exp �i � ilq (B1)�( )4ljjp1 j

n

# E exp i (2lz j � x )r .� j j j j{ [ ]}
jp1

We write the expectation appearing in the above equation
as . Using spherical polar coordinates in

n
E[exp (i � b r )]j jjp1

n dimensions leads, for large n (using eq. [A2]), to

p/2n n�2 �ikbkr sin vcos ve dv∫�p/2

E exp i b r p� j j p/2 n�2[ ( )]
jp1 cos vdv∫�p/2

2� �nv /2 �ikbkrve e dv∫�� 2 2�(kbk r )/2n� p e .2� �nv /2e dv∫��

Using this result in equation (B1) and integrating over all
yieldsxj

�1/2� n 2dl 2ilr jjilqw (q; r) p e 1 ��G � ( )2p jp1 n��

n 2 22 2 z j2r l j j
# exp � . (B2)� 2( )n 1 � 2ir lj /njp1 j

We approximate equation (B2) by

w (q; r) �G

� 4dl r
2 2 2 2 2¯exp il(q � r j) � l 2r j z � O , (B3)� { [ ( )]}2p n��

where and . On ne-
n n�1 2 2 �1 2 2j̄ p n � j j z p n � j zj j jjp1 jp1

glecting the terms in equation (B3) and carrying4O(r /n)
out the l integral, we obtain the normal approximation
of equation (5), supplemented by equations (20) and (21).

The terms in equation (B3) are not perfectly4O(r /n)
captured by the normal approximation of equation (A2),
since deviations of the from normality begin to manifestri

themselves at terms of this order. This is not problematic
since the terms are, under usual circumstances, a4O(r /n)
factor down on the leading term in equa-�1 2 2 2O(n ) 2r j z
tion (B3). To see this, we take the independent of n andji

first note that we can expect to hold; this follows2j̄kzk � 1
from equation (18) and the assumption that genetic load
is not too high. It follows from this that typically

and . Next, we note2 2 2 2 2 �1¯kzk p O(1) j z ∼ j kzk /n p O(n )
that the formula for and in equations (7) and (8)P Pben fix

are at all appreciable and of significance only when
. For the generalized case, this occurs whenr � 1

, and this necessarily requires2 2 2 1/2¯rj/[4j z � O(r /n)] � 1
; that is, . For large n, it is this last2 2 2 �1r � kzk /n r p O(n )

estimate that allows us to neglect the term in equa-4O(r /n)
tion (B3), which is then seen to be , compared with�3O(n )
the leading term, which is .2 2 2 2 �22r j z O(r /n) { O(n )
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