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Abstract

Adaptive Dynamics is an approach to studying evolutionary change when �tness is density
or frequency dependent. Modern papers identifying themselves as using this approach �rst
appeared in the 1990s, and have greatly increased up to the present. However, because of the
rather technical nature of many of the papers, the approach is not widely known or understood
by evolutionary biologists. In this review we aim to remedy this situation by outlining the
methodology and then examining its strengths and weaknesses. We carry this out by posing
and answering 20 key questions on Adaptive Dynamics. We conclude that Adaptive Dynamics
provides a set of useful approximations for studying various evolutionary questions. However, as
with any approximate method, conclusions based on Adaptive Dynamics are valid only under
some restrictions that we discuss.
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1 Introduction

Over the past 10 years or so, a large number of papers employ a set of techniques and methods
that the authors call �Adaptive Dynamics.�These techniques are used to approach a number of
interesting and important issues in evolution and related subjects. These include investigations
into the maintenance of genetic variation, coevolution and sympatric speciation, i.e., subjects
that both puzzle and intrigue practising biologists. However, the technical or mathematical
nature of most papers on Adaptive Dynamics makes it very di¢ cult for a typical biologist to
understand the essence, usefulness or limitations of this approach. At the outset, we considered
writing a review of the subject in a traditional format. We are, however, talking about a subject
that is still in a rapid stage of development and which has not yet achieved a mature form. Thus
while a review might be appropriate for a mature subject, it seemed more appropriate to us to
frame a set of questions that someone newly-encountering the subject would like to ask - and
have answered - in plain language.
It should be noted that the authors of this review do not come from the core of individuals that

are recognised as practitioners of Adaptive Dynamics, but rather, from the much larger group
of outsiders, including population geneticists, who are interested in this recent development in
theoretical population biology. Indeed, when, below, we describe Adaptive Dynamics, we do
so from the perspective of population geneticists, rather than following the interpretations and
emphases that have been adopted by practitioners of Adaptive Dynamics.
This paper is arranged as a main body of 20 key questions. Despite the often highly theoret-

ical/technical content of papers in this area, we have endeavoured to answer the questions with
an absolute minimum of mathematical formalism.
Much of the exposition presented here closely follows that of Geritz et al. (1998) and this

paper is a good starting point for readers interested in a more technical introduction to the
subject.
We begin with a description of the methods and concepts of Adaptive Dynamics. After

establishing the basics of Adaptive Dynamics, we discuss connections with previous work.

2 General description

2.1 What is Adaptive Dynamics all about?

Adaptive dynamics is a theoretical approach for studying some of the phenotypic changes that
take place, over time, in evolving populations.
It grew out of early work of game theorists (e.g., Eshel and Motro 1981, Eshel 1983, Taylor

1989, Hofbauer and Sigmund 1990, Nowak and Sigmund 1990), population geneticists (e.g.,
Christiansen 1991, Abrams et al. 1993a, b) and theoretical ecologists (e.g., Scha¤er 1977, Reed
and Stenseth 1984, Metz et. al. 1992) seeking simple tools to study evolutionary change when
�tnesses are density or frequency-dependent. It is based on the assumption that mutations occur
rarely, and cause very small changes in existing phenotypic values.
In most applications, organisms are assumed to be asexual and the initial population - termed

the resident population - consists of phenotypically identical individuals, i.e. is monomorphic.
Most calculations are performed in terms of a speci�c �tness function, which is termed the
invasion �tness.
To the best of our knowledge, the term �Adaptive Dynamics� was �rst introduced in the

papers of Hofbauer and Sigmund (1990) and Nowak and Sigmund (1990).
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2.2 How are �tness functions derived in Adaptive Dynamics?

The most basic models in evolutionary population genetics involve �tness functions that depend
only on the phenotypic trait values under selection. In reality, �tness depends on far more than
just trait values including (i) the frequencies of individuals with di¤erent trait values; i.e. �tness
is frequency dependent, (ii) the density of the population, as measured e.g. by the number of
individuals/unit area; i.e. �tness is density dependent, (iii) the absolute number of individuals
in the population. Investigations involving such quantities are typically the domain of ecology,
where absolute numbers or densities are the focus of attention. One of the really interesting
features of Adaptive Dynamics is that its practitioners have attempted to provide a framework
where interactions and �tnesses originating from explicitly ecological considerations are incor-
porated into population genetic models of evolutionary dynamics. Thus, for example, some of
the Adaptive Dynamics literature, explicitly refers to quantities such as �tness - a primarily
population genetics concept - while also directly employing a model of ecological dynamics, for
example that of Lotka Volterra.

2.3 What is invasion �tness?

Much of the work on Adaptive Dynamics has centred around a concept known as �invasion
�tness�. To understand invasion �tness, it is easiest to think of a population of asexual organisms
that have discrete generations and are characterised by a single, continuously varying, phenotypic
trait. We assume this population - the resident population - initially consists of individuals that
all possess the same phenotypic value x (i.e. is monomorphic). Mutations that di¤er from the
monomorphic resident population are randomly and recurrently generated, and these can be
thought of as attempting to �invade� the initial population. The �tness function of very rare
mutations of phenotype y, in an (almost monomorphic) resident population, with phenotype
x, is just a function of x and y and it is and is usually written as s(y; x) (or sx(y)). This
function is referred to as the invasion �tness and the precise form of s(y; x) depends on the
speci�c biological situation under consideration. The invasion �tness governs the dynamics of
the frequency of the mutants, while they are at low frequency. Since the resident population
is stable over the long term in the absence of mutation, the residents have a �tness of unity:
i.e. s(x; x) = 1. Neglecting stochasticity associated with genetic drift (which is discussed in the
answer to Question 4.3), mutant types will usually initially exhibit near exponential growth or
decay in their frequency, depending on whether s(y; x) > 1 or s(y; x) < 1. Invasion �tness can
be (and sometimes is) de�ned for a polymorphic population of residents (e.g., see Question 2.9).

2.4 What is an invasion �tness landscape?

The problems that density and frequency dependent �tnesses create for predicting evolutionary
change can be envisaged by thinking about �tness landscapes. The notion of �tness (or adaptive)
landscapes was introduced by Sewall Wright (1932, 1988) and has proved to be extremely useful
in evolutionary biology (e.g., Provine 1986; Gavrilets 1997, 2004; Fear and Price 1998; Arnold
et al. 2001). In the case of continuously varying traits, a �tness landscape is often visualized
as a three-dimensional plot containing a surface of individual �tness that lies above a horizontal
plane. The coordinate axes of the plane correspond to the values of two phenotypic characters.
Although we believe that there are usually more than two characters a¤ecting �tness, �tness is,
in such plots, represented as a function of only two phenotypic characters because we cannot
plot a graph with more than 3 axes.
As long as �tness depends only on the trait values of an individual, the �tness landscape

remains rigid and unchanging. However, if �tness is density or frequency-dependent, then instead
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of remaining �xed, the �tness landscape heaves and bulges as the population moves over it.
There is, however, something intuitively appealing and useful about visualizing �tnesses in

terms of a �xed landscape. We therefore introduce the notion of an �invasion �tness landscape�
which, despite sounding similar to a traditional �tness landscape, is fundamentally di¤erent.
An �invasion �tness landscape� is a three-dimensional plot where invasion �tness, s(y; x), is
plotted as a surface above a horizontal plane. In this case, one coordinate axis of the plane is
determined by possible values of the phenotypic character of the resident population, while the
other axis is determined by the values of the same character, in mutation bearing individuals.
Notice that our de�nition implies that the invasion �tness landscape does not change shape as
evolutionary change occurs - even when �tnesses are density or frequency-dependent. Invasion
�tness landscapes also di¤er from traditional �tness landscapes in the way the population moves
over the landscape during evolutionary change. Instead of moving uphill, the population tracks
a path among the hills of the landscape, along a line where �tness has the value of unity, as the
answer to the next question shows.

2.5 How does the population move on the invasion �tness landscape?

To answer this question we make the assumption that the vast majority of mutant phenotypes
are very close to the phenotype of the monomorphic resident population; this is the standard
assumption that most mutations are of small e¤ect. In a population of large size, where delete-
rious mutations have a negligible chance of �xation, only mutants that have higher �tness than
the residents will invade.

Figure 1

Figure 1 illustrates some of the processes associated with adaptive evolution on the invasion
�tness landscape. An adaptive mutation occurs to a member of the resident population, whose
phenotypic value is represented by the x coordinate of the point p. The mutation is represented
by a dashed line, from p to q, that is parallel to the y axis and corresponds to the instantaneous
phenotypic change associated with the mutation. In order to be successful, a mutant must have
greater �tness than that of a mutant, so successful mutational change is always in an �uphill�
direction. Fixation results in the mutant phenotype (y) becoming the new resident phenotype
(x), and is represented by the solid line that is parallel to the x axis and runs from q to r. This
line shows the resident phenotype, x, being reset to equal the mutant phenotype, y (the thin line,
on which p, r and t lie, is the line y = x). The move is e¤ectively in a �downhill�direction, so that
the point r has the same value of s(y; x), namely unity, as the starting point, p. The movement
downhill does not imply that the population experiences any �tness loss but rather re�ects the
resetting of �tnesses so that new resident population has a �tness of unity. The dashed line
from r to s represents the change caused by another adaptive mutation (again uphill) and the
line from s to t represents �xation of the mutant (again downhill). Over the course of time the
population can be thought of as performing many such jagged steps (of the form p ! q ! r)
and if the mutational e¤ects are very small, as assumed, then the population closely traces out
a trajectory along the diagonal line y = x. The overall e¤ect is that the population does not
ascend the invasion �tness landscape over time.

Figure 2

Figure 3

In Figures 2a and 3a the population�s trajectory, as a result of many tiny mutational steps,
followed by resetting of the resident phenotype to that of the mutant, is well approximated by
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the smooth line from point p to close to point q. This line remains horizontal. Figures 2 and
3 will be repeatedly used, below, to illustrate various issues. The picture, just given, of the
dynamics of the population applies, as long as there is a well de�ned �uphill�direction for the
mutants to take. We discuss next, a measure of the steepness or slope of the invasion �tness
landscape so that we can recognise and deal with the important case where this is not so and
the slope vanishes.

2.6 What is the local �tness gradient?

The �tness gradient, D(x), is a measure of the steepness of the invasion �tness landscape as
experienced by a small e¤ect mutation, when the resident population has phenotype x. Mathe-
matically, D(x) is the slope along the y direction: D(x) = [@s(y; x)=@y]y=x. If D(x) is positive
(as it is in Figures 2a and 3a, in the vicinity of the point p) then mutants with larger (smaller)
trait values than that of the residents will invade. Conversely, if D(x) is negative, mutants with
smaller trait values will invade. Such gradient-type dynamics are analogous to those studied in
standard population genetics (e.g., Wright, 1935; Lande 1976; Barton and Turelli, 1987).
If initially successful mutants completely supplant the residents then the local �tness gradient

determines not just which mutants are adaptive, but also the direction of change of phenotypes,
via substitution. However, while initial invasion occurs when the frequency of mutants is small
and the resident population monomorphic, during the time when substitution occurs the mutant
frequencies do not remain small and the population is far from a monomorphic state.. In recent
work, Mylius and Diekmann (2001) questioned the assumption that initially successful mutants
completely supplant the residents, while Geritz et. al., (2002) explored its validity. However, the
set of conditions required for �xation of initially successful mutants remains an open question.
Typically, the local �tness gradient changes with phenotype, x . Under some circumstances, a

sequence of successful substitutions results in the magnitude of the local �tness gradient, jD(x)j,
becoming progressively smaller.. An example of this is illustrated in Figures 2a and 3a, where
the population traces a trajectory, from p to q. At point q in both Figures, the local �tness
gradient vanishes: D(0) = 0.. Figures 2 and 3 show some subtly di¤erent features in the vicinity
of the point q. These features turn out to be highly signi�cant for the subsequent dynamics of
the population, once it has approached close to point q. To deal further with this requires some
additional analysis: see the answers to Questions 2.7 and 2.8.

2.7 What are pairwise invasibility plots?

Not all the information in the invasion �tness landscape is needed to predict the outcome of
invasion in a monomorphic population. The necessary information can be summarized in a
�pairwise invasibility plot�(Christiansen & Loeschcke, 1980; Matsuda, 1985; van Tienderen and
de Jong, 1986). This is a horizontal slice of the invasion �tness landscape, that is taken at the
level where s(y; x) equals 1. Parts of the slice that pass under the solid hillside are indicated by
�+�signs along the region where the slice �rst enters the hillside. Parts of the slice that pass
into the �thin air�above the hillside are indicated by ���signs where the �thin air�above the
hillside �rst begins. (In some publications this convention is replaced by dark shading in the
parts of the slice passing through the hillside.)�

Figure 4

Figure 4 shows the pairwise invisibility plot taken from the invasion �tness landscape in Figure 1.
Along the line y = x, where mutants are phenotypically identical to residents, there is no �tness
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di¤erence of mutants and residents. It may be the case that the �tness di¤erence s(y; x)�s(x; x)
is equal to zero for other combinations of y and x other than just y = x.

Figure 5

In Figure 5, it is assumed that in addition to the diagonal line y = x, where s(y; x)� s(x; x) = 0,
there is another line where s(y; x)�s(x; x) = 0. This additional line is determined by the detailed
properties of the invasion �tness and, since there is no general mathematical reason why it should
be straight, it will typically be curved. This line intersects the diagonal line, y = x, at a resident
phenotypic value denoted x�. Since D(x) changes sign as x passes through x�, D(x) is zero at
x = x�.
Phenotypic trait values where the �tness gradient vanishes are given very special signi�cance

in Adaptive Dynamics and such a value is called an �Evolutionarily Singular Strategy� or a
�Singular Point.�Many people would call such a point an �equilibrium point�, irrespective of
whether it is stable or not. For the case depicted in the Pairwise Invasibility Plot of Figure
5, the population evolves (by successively �xations of bene�cial mutations), until it reaches a
neighborhood where D(x) is zero - the neighbourhood of an Evolutionarily Singular Strategy.
The approach to the same Evolutionarily Singular Strategy is indicated by the line from p to q on
Figure 2a, which shows the invasion �tness landscape corresponding to the pairwise invasibility
plot given in Figure 5. The Evolutionarily Singular Strategy in Figure 2a is the point q.
In general, an Evolutionarily Singular Strategy is only a single point on an invasion �tness

landscape. A priori, it might be considered an improbable phenotype that is of little relevance
to the dynamics of a population. However, considerations, such as those given above, make it
clear that the population may be driven to such a point by its intrinsic substitutional dynamics.

2.8 What Evolutionarily Singular Strategies are possible?

In general, a population will not start o¤ at a singular strategy (a point with D(x) = 0) and
the dynamical signi�cance of any such singular strategy (phenotype) has to be determined by
its stability properties.
An analysis of invasion �tness, close to a singular strategy, indicates that ordinarily, there

are only a limited number of di¤erent types of Evolutionarily Singular Strategies. Furthermore,
each singular point belongs to only one of these types and each of these has a unique form of
pairwise invasibility plot. Mathematically, since the �tness gradient and, it can be shown, the
derivative @s(y; x)=@x, both vanish at a singular strategy, i.e., when x = x� and y = x�, an
Evolutionarily Singular Strategy is a stationary point of s(y; x). It is thus intuitively reasonable
that the �rst non-vanishing derivatives - generically second order derivatives - are the means of
telling di¤erent types of singular strategy apart. It is not immediately obvious, and it requires
some detailed reasoning to infer that, to quadratic deviations from a particular Evolutionarily
Singular Strategy, x�, we have, with A and B constants, (Metz et. al., 1996)

s(y; x) ' 1 + A
2
(x� x�)2 � A+B

2
(x� x�)(y � x�) + B

2
(y � x�)2: (1)

The classi�cation of the Evolutionarily Singular Strategy can thus be completely achieved from
knowledge of just two second-order derivatives, namely

A =

�
@2s(y; x)

@x2

�
x=x�;y=x�

; B =

�
@2s(y; x)

@y2

�
x=x�;y=x�

(2)

which are evaluated at the singular strategy and which, generally, do not vanish.
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Let us introduce the convenient mathematical notation sign(x) to represent a step function
that has the value �1 (+1) when x is negative (positive):

sign(x) =

8<: +1; when x > 0;

�1; when x < 0:

We then de�ne
a = sign(A); b = sign(B); c = sign(jAj � jBj): (3)

The coe¢ cient a tells us whether the Evolutionarily Singular Point sits at the bottom of a valley
(a = 1) or top of a hill (a = �1) when viewed by cutting the invasion �tness landscape parallel
to the x axis. The coe¢ cient b tells us the same thing when the Evolutionarily Singular Point
is viewed by cutting the invasion �tness landscape parallel with the y axis. The coe¢ cient c
tells us whether the curvature of the invasion �tness landscape at the Evolutionarily Singular
Point is larger along the x (c = 1) or y (c = �1) direction. It turns out that the di¤erent
types of Evolutionarily Singular Strategy can be characterised by the triplet of numbers (a; b; c).
One virtue of this labelling scheme is that we can easily count the number of di¤erent singular
strategies. Since a, b and c can each independently take on two di¤erent values (namely �1), it
follows that there are 2� 2� 2 = 8 di¤erent types of Evolutionarily Singular Strategy.
The important properties of an Evolutionarily Singular Strategy, that hold in a very small

range of phenotypes around the strategy, are as follows (Eshel, 1983; Taylor, 1989; Christiansen
1991 and Geritz et. al. 1998).
(i) An Evolutionarily Singular Strategy, x�, is not invasible, if a resident population consisting

solely of x� phenotype individuals cannot be invaded by any nearby mutant. This is the case if
s(x�; x�) > s(y; x�) for all y close to x�. Geometrically, this implies that at the singular point
the invasion �tness landscape s(y; x) has a local maximum with respect to y. Mathematically,
this corresponds to B < 0. Conversely, if B > 0, then x� is not locally stable, and it can be
invaded by any nearby mutant. Note that at the singular point q of Figure 2b, the invasion �tness
landscape has a local maximum with respect to y (B < 0), whereas in Figure 3b, s(y; x) has a
local minimum (B > 0) at this point. Thus, in Figure 2, the singular point q is not invasible,
whereas in Figure 3, the singular point q is invasible.
(ii) Another important property of an Evolutionarily Singular Strategy is the ability of rare

mutants, with phenotype x�, to invade a population whose phenotype di¤ers from x�. This is the
case if s(x�; x) > s(x; x) for all x close to x�. Geometrically, this implies that at the singular point
the invasion �tness landscape s(y; x) has a local minimum with respect to x. Mathematically,
this corresponds to A > 0. Reversal of the inequality indicates the inability of rare mutants with
phenotype x�, to invade a population of di¤erent phenotype. Note, in both Figures 2c and 3c,
that at the singular point q, the invasion �tness landscape has a local minimum with respect to
x (A > 0) and thus the singular strategies, depicted in these Figures, are able to invade another
nearby strategy, when rare.
(iii) An Evolutionarily Singular Strategy, x�, possesses the property of being the stable end-

point of a sequence of successive successful substitutions - i.e., possesses convergence stability
- if a resident population�s phenotype, x, can only be invaded by mutants with a phenotype
closer to x� than x is itself. This is the case if the �tness gradient, D(x), is positive for x < x�

and negative for x > x�. This implies that at the singular point the �tness gradient D(x) is
a decreasing function of x. Expressed mathematically, this corresponds to A � B > 0 and if
the inequality is reversed, then successive substitutions will move the population�s phenotype
progressively further away from x�. Figures 2a and 3a exhibit the property that along the
trajectory of the population (the line from p to q), the slope of the invasion �tness surface in the
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y direction, i.e. the �tness gradient, decreases with x. Thus, the point q in both of these �gures
is convergence stable.
(iv) Lastly there is the possibility of the existence of a protected polymorphism. A protected

polymorphism arises if two strategies, say y1 and y2, making up the polymorphism can mutually
invade, i.e. if s(y1; y2) > 1 and s(y2; y1) > 1. The set of all pairs of mutually invasible traits
is given by the overlapping parts of the �+� regions in the pairwise invasibility plot and its
mirror image taken along the main diagonal. Geometrically, these conditions imply that along
the secondary diagonal, that is, on the line y � x� = �(x � x�), the invasion �tness landscape
s(y; x) has a local minimum at x�. Expressed mathematically, this corresponds to A + B > 0.
Reversal of the inequality signals that a protected polymorphism does not exist. Note that both
in Figure 2d and Figure 3d, at the singular point q, the invasion �tness landscape has a local
minimum on the line y�x� = �(x�x�). Thus, protected dimorphism can exist near the singular
point q in both cases.
We have not provided the detailed considerations of how the local properties of any of the

Evolutionarily Singular Strategies are related to A and B , or equivalently (a; b; c) because these
have been clearly presented elsewhere (Geritz et. al. 1998). We have, however, summarised the
eight possible Evolutionarily Singular Strategies in Table 1.

Table 1

2.9 What are Evolutionary Branching Points?

In Table 1, Evolutionarily Singular Strategy No. 8 has the features of being (i) invasible, (ii)
able, when rare, to invade another nearby strategy, (iii) convergence stable and (iv) has protected
polymorphisms. Such an Evolutionarily Singular Strategy is termed an Evolutionary Branching
Point (see Figure 3 for an example of the invasion �tness landscape in a neighborhood of a
branching point).
As the population evolves towards a branching point x� by a sequence of small e¤ect muta-

tional substitutions, at some moment a mutant will be produced that has its trait value y on
the opposite side of x� to the resident trait x. From property (iv), above, the mutant y and the
resident x will not oust each other but will coexist. For consistency we rename their trait values
as x1 and x2 (the rationale for this will become apparent below).
What happens as new mutants are introduced?
To answer this question one has to consider the (invasion) �tness function of a rare mutant

y introduced into a dimorphic resident population with phenotypes x1 and x2. We will write
this function as s(y;x1; x2). It turns out (e.g. Geritz et al. 1998) that s(y;x1; x2) can be
approximated as 1 + B(y � x1)(y � x2)=2. Because B > 0, it follows that only mutants outside
the two resident types can invade (i.e. if y > x1 and x2 or y < x1 and x2). After invasion,
the (former) resident in the middle is ousted. Therefore, with each successful invasion, the two
remaining trait values will be more and more di¤erent. This process of phenotypic divergence is
called �evolutionary branching�.
From Eq. (1), the invasion �tness of a mutation of a population that has been driven very

close to the Evolutionarily Singular Strategy is s(y; x�) ' 1+B (y�x�)2=2. The fact that at the
branching point B > 0 means that this function has a minimum in the vicinity of y = x�. For
an example of this, see Figure 3b, where s(y; x�) is plotted as a function of y. In a sense, one can
say that the population in driven towards a �tness minimum where it subsequently undergoes
the process of branching.
Branching points do seem especially interesting, since they are the points near which genetic

variation becomes protected. Moreover, some practitioners of Adaptive Dynamics have iden-
ti�ed branching points with the process of sympatric speciation because in asexual models, or
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sexual models with e.g. assortative mating, the clusters of individuals associated with the two
branches remain distinct and may dynamically diverge from each other, thereby inducing strong
di¤erentiation (see also Question 5.3).

Figure 6

In Figure 6 we present an example of branching observed in numerical simulations.
As a concrete example of an Evolutionary Branching point, let us consider a classical model of

intraspeci�c competition (Christiansen and Loeschcke, 1980). In this model there are two impor-
tant functions that in�uence �tness: a function (x; y) = exp

�
�(x� y)2=(2�2C)

�
, characterising

competition between individuals with phenotypes x and y, and a phenotype-dependent carrying
capacity K(x) = K0 exp

�
�x2=(2�2K)

�
. Here K0 > 0 is the maximum possible carrying capacity,

�2C and �
2
K are positive parameters characterizing the strength of competition and stabilizing se-

lection, respectively. The invasion �tness of rare, y phenotype, mutants in a resident population
with phenotype x is s(y; x) = 1 + V [K(y)� (y; x)K(x)] where V is a constant that lies in the
range 1 > V > 0. From this invasion �tness it can be shown that x� = 0 is a branching point
when B =

�
�2K � �2C

�
V K0=(�

2
C�

2
K) is positive. Other conditions required in order for x

� to be a
branching point - which correspond to x� being able to invade when rare, x� being convergence
stable and x� being a protected polymorphism - are satis�ed for all parameter values. Thus
x� = 0 is a branching point when �2K > �

2
C . This inequality corresponds to competition between

individuals being stronger than the stabilising selection that individuals are subject to. Figure
3 illustrates the invasion �tness landscape corresponding to this case. The Adaptive Dynamics
prediction is that an asexual population �rst evolves toward the point x = 0 where it then splits
into two clusters of distinct phenotype (see Figure 6). If, on the other hand, stabilising selection
is stronger than competition, i.e. if �2K < �2C , then the population evolves to the monomorphic
state x� = 0 and stays there. Figure 2 illustrates the invasion �tness landscape corresponding to
this case.
The phenomenon of evolutionary branching is a general process for the origin and ampli�-

cation of genetic heterogeneity within populations experiencing frequency-dependent selection.
The word �branching�implies that only very well de�ned and di¤erentiated strategies (or trait
values) are observed in the population. However, evolutionary branching as de�ned by Adaptive
Dynamics (i.e. in terms of the conditions on A and B) is quite compatible with continuous and/or
unimodal distributions of the trait value in the population, if mutations are not extremely rare or
have appreciable e¤ects (see Question 4.2). Therefore, the term �branching�may be somewhat
misleading, when the adaptive dynamics assumptions are not met or their validity cannot be
checked. The appropriate way to interpret the conditions for �evolutionary branching�generally
needs to be wider than the interpretation it receives in Adaptive Dynamics, namely as conditions
for the maintenance of genetic variation.

3 Relation to previous work

3.1 What is the relation to theoretical population genetics?

Theoretical population genetics is a general quantitative theory of evolutionary change whose
emergence and formation in the �rst half of the last century allowed what is now known as the
Modern Synthesis of the 1930s and 1940s (e.g., Provine 1971). Although models of constant se-
lection are most advanced in population genetics, analyses of frequency-dependent selection have
a long history. There have been numerous approaches to building models incorporating changes
in both allele (or genotype) frequencies and population sizes (e.g., Kostitzin, 1937; Ludwig, 1950;
Roughgarden, 1979; Ginzburg, 1983). In studies of frequency-dependent selection �tnesses have
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been de�ned both phenomenologically and from explicit ecological considerations (e.g., Bulmer,
1974, 1980; Slatkin 1979a, b, 1980; Roughgarden, 1979; Christiansen and Loeschcke, 1980; As-
mussen, 1983; Wilson and Turelli, 1986, Bürger 2002 a,b). Adaptive Dynamics continues and
extends these traditions (although, unfortunately, often without acknowledging their existence).
To illustrate the di¤erences between standard population genetics approaches (see e.g., Crow

and Kimura, 1970) and those employed by adaptive dynamics, let us consider a simple model of
a haploid population experiencing frequency-dependent selection. Assume that the population
has no more than two distinct phenotypes simultaneously present. Let variables x and y specify
the two phenotypes present. To develop a model describing this system the standard population
genetics approach is to (i) specify the frequencies of the phenotypes in the population, say
px and py, (ii) specify a frequency-dependent �tness function, say W (y; x; py), that gives the
�tness of phenotype y, with frequency py, in a population that also has phenotype x present,
at frequency px, (iii) derive dynamic equations governing how px and py change in time, and
(iv) analyze the transient and steady state dynamics predicted by these equations. In contrast,
the adaptive dynamics approach attempts to predict evolutionary change on the basis of two
invasion functions: s(y; x) = W (y; x; 0) - the �tness of individuals of phenotype y that are at
very low frequency (py � 0) in a resident population where phenotype x is almost �xed (px � 1),
and s(x; y) = W (x; y; 0) which is the �tness of individuals of phenotype x that are at very
low frequency (px � 0) in a resident population where phenotype y is almost �xed (py � 1).
Transient dynamics are disregarded, as the focus is only on equilibrium states and on �long-term
evolution�. So, basically, steps (i) and (iii) above, are skipped altogether, whereas step (ii) uses
a �truncated�version of �tness (i.e., the invasion �tness). Using the invasion �tnesses instead
of full, frequency-dependent, �tnesses is often su¢ cient to gain signi�cant insight. However, the
range of possible applications is narrower because a number of assumptions (discussed throughout
this paper) have to be satis�ed. In this regard, Adaptive Dynamics is less general.
Specifying the number and the types of possible genotypes is often a standard step in building

a population genetics model. By contrast, models in Adaptive Dynamics always specify a range
of possible phenotypic values that organisms can have. In this regard, Adaptive Dynamics may
be considered more general. We note, however, that in the context of the modelling of the
genetics of quantitative traits, the continuum-of-alleles model (Crow and Kimura, 1964) is an
example where a range of e¤ects is also speci�ed.

3.2 What is the relation to alternative approaches to Adaptive Dy-
namics?

The methods of Adaptive Dynamics are heavily based on (and extend) those developed within
a sub-area of population genetics that studies the dynamics of invasions as well as di¤erent
attempts to generalize the Evolutionarily Stable Strategy approach (e.g., Eshel and Motro, 1981;
Eshel, 1983; Vincent and Brown, 1988; Taylor, 1989; Christiansen, 1991; Abrams et al., 1993a,
b; Matessi and DiPasquale, 1996; Abrams, 2001). Some of these previous approaches derive the
dynamic equations from population genetics considerations, explicitly accounting for sex, diploidy
etc. Some of them use more general mutation schemes which, in particular, do not require
smallness of mutations (e.g., Matessi et al., 2001). We note that it is possible to identify two
major classes of alternative methods: �quantitative genetic methods�and �evolutionarily stable
strategy methods�(Abrams, 2001). The �quantitative genetic methods�use quantitative genetic
equations for the evolution of mean trait values, commonly assuming that the corresponding
genetic variances remain constant (but for a recent example where this assumption is not made,
see e.g. Waxman and Peck, 1999). The �evolutionarily stable strategy methods�concentrate on
�nding a complete set of evolutionarily stable phenotypes, given a set of �tness functions.
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3.3 What is the relation of Evolutionarily Singular Strategies to Evo-
lutionarily Stable Strategies?

In game theory, which may be viewed as a formulation of phenotypic evolution with frequency
dependent �tnesses, a key concept is the notion of an Evolutionarily Stable Strategy (see e.g.
Maynard Smith, 1989), where a strategy or behaviour - more generally a phenotype - cannot be
invaded by any other nearby phenotype. It is natural to ask whether there is any connection
between an Evolutionarily Stable Strategy and the notion, introduced in the answers to Question
2.7, of an Evolutionarily Singular Strategy?
We have been discussing matters in the context of a population that experiences the recurrent

appearance of new bene�cial mutations, thereby introducing new phenotypes into the population.
Such populations are sometimes driven to Evolutionarily Singular Strategies by their intrinsic
dynamics. Clearly, some (but not all) Evolutionarily Singular Strategies are prime candidates
for identi�cation with Evolutionarily Stable Strategies. Local stability of the game theoretic
strategies allow us to �rmly identify these with the singular strategies numbered 1,2,5 and 6 in
Table 1, since they have the same non-invasibility property.
While a purely static equilibrium analysis might determine a particular Evolutionarily Stable

Strategy, this is not the whole story. A population will generally start some �distance�from such
a point, and local stability does not guarantee that the population will actually be driven to the
singular strategy by its intrinsic dynamics. For this to occur, the requirement of convergence
stability is also required and strategies numbered 1, 5 and 6 have both of these properties. These
singular strategies are both locally and convergence-stable and strategies with this feature are
called �Continuously Evolutionarily Stable�(Eshel and Motro, 1981; Eshel, 1983). An initially
monomorphic population, in the vicinity of a strategies 1, 5 or 6, will, ultimately, end up in a
monomorphic state from which no further evolutionary change occurs. Note that although a
protected polymorphism can exist near strategy 6, this polymorphism is unstable to the intro-
duction of mutants with the trait value closer to the singular point than both residents, so that
the population will eventually end up at a monomorphic equilibrium (Geritz et al. 1998).
Overall, adaptive dynamics is more general than the theory of evolutionarily stable strategies

in that it studies the convergence to singular strategies and allows for more complex dynamics.

3.4 Is there a need for Adaptive Dynamics?

Using standard population genetics approaches for analysing frequency-dependent selection is
notoriously di¢ cult. Any approximate approaches that make analysis tractable are de�nitely
welcome. Approximate methods and models of quantitative genetics and of the theory of evolu-
tionarily stable strategies have been successful in answering this requirement to a certain extent.
Adaptive Dynamics provides a new and general way for analysing a variety of interesting prob-
lems that would be di¢ cult to approach using standard approaches. In this regard, the advent
of Adaptive Dynamics has been very useful from a theoretical point of view - which is one of the
reasons it has generated so much interest. Adaptive Dynamics has already had a signi�cant im-
pact on theoretical evolutionary research, e.g. by stimulating a new round of heated discussions
on the plausibility and generality of sympatric speciation. Ultimately, though, the biological
community will only maintain their interest in Adaptive Dynamics if this approach turns out
to be useful in some conceptual or predictive aspects. It is up to the practitioners of Adaptive
Dynamics to make a convincing case for this.
We note that the simplicity of the approach has to have some price which one should always

keep in mind. This is what we consider in the following few questions.
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4 Major assumptions and the consequences of their viola-
tion

4.1 What features of �tness are assumed?

The �tness functions used in Adaptive Dynamics are of a wide sort, that cover populations that
are subject to density and frequency dependent processes as well as to selection on trait values.
They are implicitly assumed to be smooth functions of mutant frequency. More details of �tness
are contained in the answers to Questions 2.2, 2.3 and 2.6.
While continuity of �tness functions may be an implicit assumption of Adaptive Dynamics,

it may not actually be a feature of the �tness functions actually realised in nature. Thus in the
event that �tness functions are not continuous functions of mutant frequency, the frequency of
mutant phenotypes cannot be neglected - even initially - and may have a signi�cant in�uence on
the dynamics of the population. We know, however, of no concrete examples of this and it might
be interesting to see this pursued further.

4.2 What features of mutation are assumed?

There are a number of assumptions made about mutation in Adaptive Dynamics that include
the following.
(i) A continuum of possible phenotypic e¤ects is assumed (c.f. Crow and Kimura, 1964),

where a mutation of phenotype x results in the phenotype x + � where � is a random number
that is drawn from a continuous distribution (the distribution of mutant e¤ects). Continuity of
the distribution has the immediate consequence that all mutations are unique, i.e., have never
previously appeared in the population. Furthermore, the phenotype of a mutation can take on
any possible value and thus can range from 1 > x > �1.
(ii) Staying with continuum-of-alleles models, we note that in most calculations it is either

implicitly or explicitly assumed that the distribution of the deviation of the mutant from the
parental phenotype is independent of the parental phenotype. This is the original continuum-
of-alleles model of mutation (Crow and Kimura, 1964). See, however recent work (Matessi et
al., 2001), where an alternative model of mutation, namely the House of Cards model has been
employed. In the House of Cards model the trait value of a mutant is independent of the trait
value of the parent (Kingman, 1978). There is yet another model of mutation that interpolates
between the original mutation model of Crow and Kimura (1964), and the House of Cards model
(Kingman, 1978), namely the regression model of mutation (Zeng and Cockerham, 1993). We
are not aware of this somewhat �exible mutation model having been employed in an Adaptive
Dynamics context.
Last, we consider two assumptions that are crucial for the conclusions of Adaptive Dynamics

to be justi�ed. These assumptions are easily violated in natural populations.
(iii) A third assumption about mutations is that the typical range of a mutation (i.e., the

di¤erence between mutant and resident phenotypes) is small. If mutations are not of small e¤ect,
then some conclusions may break down. For example, Adaptive Dynamics methodology, based
on using Eq. (1), predicts that polymorphism cannot be maintained when the singular point
is locally stable. In terms of the parameter B, that characterises the Evolutionarily Singular
Strategy, (see Eq. (2)), this requires B < 0. However, the exact results of Christiansen and
Loeschcke (1980) show that in their model there exist cases where polymorphism, i.e., genetic
variation, can be maintained despite B < 0. Also, if mutations are not of small e¤ect, the
population does not necessarily approaches a convergence stable equilibrium but can �get stuck�
at a polymorphic equilibrium away from the singular point.
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The question �How small must the e¤ect of a mutation be, for the Adaptive Dynamics results
to accurately apply?�, cannot be answered a priori.
(iv) A fourth assumption about mutations is that their rate of occurrence is very small, so

that no more than 2 or 3 alleles are segregating in the population at any time., In this case the
phenotype distribution has a few �spikes�representing the discrete phenotypes present. If there
are many mutations segregating, the distribution will be continuous, with no single phenotype
at an appreciable frequency. It is possible to construct biologically meaningful mathematical
models where such a continuous distribution of phenotypes may be established at equilibrium
(e.g. Roughgarden 1972). We are not familiar with general analytical results on this topic
and continuous distributions were observed in our simulations under generic conditions. The
existence of such solutions, even for vanishingly small mutation rates, indicates that mutation
rate alone is not an indicator of the applicability of Adaptive Dynamics techniques.

4.3 What features of genetic drift are assumed?

In virtually all of the Adaptive Dynamics literature we have read, we have seen little or no
treatment of genetic drift. See, however, Metz, et. al. (1996), where branching processes are
brie�y mentioned in section 2.1. See also Dieckmann and Law (1996) where the average rate of
change in a trait value is approximated under the common assumption that the rate of �xation of
new alleles equals the product of the number of new mutants, per unit time, and the probability
of �xation of a mutant.
The particular aspect of genetic drift we are talking about concerns the fate of new mutations

in a large population. In the Adaptive Dynamics literature to date, it has been implicitly
assumed that bene�cial mutations, i.e., those with a positive selection coe¢ cient, will always
initially increase in frequency, irrespective of the size of the selection coe¢ cient, and irrespective
of the copy number at which they occur. Well established calculations (Haldane, 1927) have
shown that in large populations, the probability of a rare mutant surviving the initial highly
stochastic dynamics is approximately twice the selection coe¢ cient when the selection coe¢ cient
is small and positive. The mutations originally considered signi�cant for adaptation in single
step adaptive walks (Fisher, 1930) were, for geometric reasons, inferred to be only those of very
small e¤ects. More recent work, however, (Kimura, 1983; Orr, 1998, 1999, Welch and Waxman,
2003) indicates, in the context of Fisher�s geometric model (Fisher, 1930), that once genetic drift
is taken into account, the most signi�cant mutations, as far as adaptation is concerned, may be
those with intermediately sized e¤ects. Thus beyond simply adding a stochastic component to
the system, drift is likely to shift the emphasis away from very smallest-e¤ect mutations.
It thus requires further investigation to fully appreciate the e¤ects of incorporating the sto-

chastic aspects of mutation establishment in an Adaptive Dynamics context, particularly in the
light of the answer to Question 4.2.

4.4 What features of sex are assumed?

In much of the literature on Adaptive Dynamics, it is assumed that individuals are asexual.
Such populations have relatively simple dynamics, since there is no �mixing�of di¤erent types
within the population. In particularly, under circumstances where evolutionary branching occurs,
the two branches diverge, due to the disruptive e¤ects of the �tness function (see Figure 2).
By contrast, in a randomly mating sexual population, evolutionary branching (in the sense of
formation of discrete branches) will not occur in the absence of dominance or other e¤ects,
since the o¤spring resulting from any mating will have an intermediate phenotype to that of the
parents, nullifying any tendency to discrete branching. Thus in order for evolutionary branching
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to occur in a sexual population, mating must be non-random, e.g. because of assortative mating
(Dieckmann and Doebeli, 1999). Implications of assortative mating are covered in the answer to
Question 5.2. At the present time, there are few analytical results for the Adaptive Dynamics of
sexual populations.
In sexual populations, organisms are characterized by a number of genes which are reshuf-

�ed by recombination and segregation and which can interact non-linearly in controlling the
phenotypic value(s). In general, these features make Adaptive Dynamics inapplicable to sexual
populations. However, there are exceptions. For example, if mating is random and selection is in
the form of the di¤erences in viability, then the state of a one-locus, multi-allele diploid popula-
tion is uniquely de�ned by the set of allele frequencies. For such a one-locus model, let us assume
that the diploid phenotype, zij , is uniquely de�ned by the contributions zi and zj of the corre-
sponding two alleles. In this case, the diploid model (which may incorporate frequency-dependent
selection) is mathematically equivalent to an asexual haploid model. The role of the �tness of
a haploid organism will be played by the induced �tness of an allele in a diploid organism. All
Adaptive Dynamics results will then be applicable to the diploid case. Note that the assumption
that a diploid phenotype is uniquely de�ned by the corresponding two alleles is, implicitly, a
statement that the degree of dominance is not subject to evolutionary change. For example, it
will be satis�ed if the trait is assumed to be additive so that zij = zi + zj . This assumption has
been made in various studies of diploid populations (Christiansen and Loeschcke, 1980; Kisdi
and Geritz, 1999; Geritz and Kisdi, 2000; Matessi et al., 2001). However, if dominance is allowed
to evolve, then the two variables zi and zj are not enough to uniquely specify the three diploid
phenotypes zii, zij and zjj , and the methods considered above will not apply. We note that
similar conclusions have been arrived at from consideration of invasion �tnesses (van Dooren,
2003). As far as the maintenance of genetic variation is concerned, we also expect the Adaptive
Dynamics approximations to work in the case of a polygenic trait controlled by equivalent loci
and experiencing weak selection. In this case, linkage disequilibria can be neglected and alleles
at di¤erent loci will experience similar forces and have similar dynamics.

5 Applications

The more or less standard approach in Adaptive Dynamics for answering questions about bio-
logical systems is to use the analytical techniques outlined above supporting their conclusions
with numerical simulations. Here we consider three applications of adaptive dynamics that we
personally �nd particularly interesting.

5.1 What does Adaptive Dynamics teach us about polymorphism?

The standard population genetics approach for studying polymorphism would be to �x parame-
ters of an appropriate model and then to identify the region(s) in the parameter space where
genetic variation is maintained. If these regions are relatively small, a natural conclusion is that
conditions for polymorphism are rather strict. For example, this approach was applied to the
case of constant �tnesses (Lewontin et al., 1978; Turelli and Ginzburg, 1983) and it was con-
cluded that it is very unlikely that substantial genetic variation can be maintained by selection.
However later it was shown that populations experiencing constant viability selection (Spencer
and Marks, 1988, 1992; Marks and Spencer, 1991) can evolve toward the narrow area of parame-
ter space where variation is maintained by �xing mutant alleles. In this case, even very narrow
areas of parameter space can become important if populations are �attracted�to these areas by
the joint action of mutation and selection.
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The ability of frequency-dependent selection to maintain genetic variation under certain con-
ditions is well appreciated (e.g. Cockerham et al., 1972; Udovic, 1980; Asmussen and Basnayake,
1990; Altenberg, 1991). Adaptive Dynamics extends both these previous results on frequency-
dependent selection and the �ndings about constant selection for the case of frequency-dependent
selection (Spencer and Marks, 1988, 1992; Marks and Spencer, 1991). Adaptive Dynamics has
provided convincing examples showing that under certain types of ecological interactions (e.g.,
competition, multiple niches), biological populations naturally evolve, through a sequence of �x-
ations of mutations, toward the area of parameter space where genetic variation is maintained
(e.g., Kisdi and Geritz, 1999; Geritz and Kisdi, 2000). Adaptive Dynamics has indicated that
polymorphism can be maintained under more general conditions than those identi�ed by standard
population genetics methods, thus, uncovering important limitations of the standard methods.

5.2 What does Adaptive Dynamics teach us about assortative mating?

There are two major points we would like to make. The �rst is that Adaptive Dynamics supports
and extends the notion that frequency-dependent selection often creates conditions in which
�intermediate�genotypes (or phenotypes) are present at appreciable frequencies, in spite of the
fact that they have reduced �tness. This situation favors the evolution of positive assortative
mating, which would reduce production of intermediate genotypes. One has to realize, however,
that selection against intermediate types would favour any mechanism that would result in
a reduced production of intermediate genotypes. Positive assortative mating is but one such
mechanism. Production of the intermediates can also be avoided by other mechanisms including
the evolution of dominance, epistasis, phenotypic plasticity or sexual dimorphism (e.g., van
Dooren, 1999; Matessi et. al., 2001; Bolnick and Doebeli 2003).
The second point is that in certain situations the evolution of assortative mating can be un-

derstood (and modelled) in terms of a chain of successful invasions leading to stronger assortative
mating (e.g., Matessi at al., 2001) or to the establishment of polymorphism (i.e., �branching�)
in alleles controlling mating (van Doorn and Weissing, 2001; Gavrilets and Waxman, 2002). An
illuminating observation (van Doorn and Weissing, 2001) is that competition among males for
access to females (and, potentially, the competition among females for access to males) can be
modelled and understood by analogies with ecological competitions for a resource. In particular,
�branching� in the male trait is expected if the competition among males is su¢ ciently strong
relative to the breadth of the distribution of the female trait.
Unfortunately, much less is currently known about the dynamics of assortative mating than

about ecological traits dynamics and some existing results are contradictory. For example, it has
been shown (Matessi at al., 2001) that invasion of alleles for stronger assortative mating does
not necessarily lead to ever increasing assortativeness; if disruptive selection is not extremely
strong, the population reaches a polymorphic state with partial assortativeness that is stable to
the invasion of further alleles. By contrast, it has been claimed (Dieckmann and Doebeli, 1999)
that assortative mating evolves to become very strong under very broad conditions.
However, a more careful reading of the paper of Dieckmann and Doebeli reveals that the two

alternative alleles at each locus were present at frequency 1/2 at the beginning of the simulations.
Therefore this paper does not actually consider the invasion of new alleles for assortativeness but
merely their ability to survive competition in a highly heterogeneous population.
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5.3 What does Adaptive Dynamics teach us about sympatric specia-
tion?

The evolution of complete (or very strong) assortative mating is one of the possible scenarios
of sympatric speciation. Therefore, the conclusions from the previous question, on assortative
mating, are directly applicable to sympatric speciation. That is, Adaptive Dynamics shows that
certain types of ecological interactions create conditions favouring the maintenance of genetic
variation under disruptive selection which in turn favour sympatric speciation. Whether sym-
patric speciation actually occurs is a di¤erent issue. The overwhelming majority of papers on
sympatric speciation written under the umbrella of Adaptive Dynamic are based on numerical
simulations (for a rare exception, see van Doorn and Weissing, 2001) the most interesting of
which are actually modi�cations of standard population genetics models. The numerical nature
of these studies makes generalizations di¢ cult.
The overall conclusions following from our analysis of numerical studies of sympatric speci-

ation using Adaptive Dynamics models parallel previous results obtained within the standard
population genetics approaches (e.g., Crosby, 1970; Dickinson and Antonovics, 1973; Caisse and
Antonovics, 1978; Moore 1979; Udovic, 1980; Felsenstein, 1981; Rice, 1984; Diehl and Bush,
1989; Gavrilets and Waxman, 2002; Gavrilets, 2003; 2004). That is, sympatric speciation is
most plausible if disruptive selection is strong, if both viability and mating preferences are con-
trolled by the same set of loci so that recombination does not prevent splitting of the population,
if initial population variation and/or rates of mutation are very high, and if there is no selection
for mating success so that choosy organisms pay no costs. Although to a certain degree it is
a matter of personal interpretation, nothing in the recent Adaptive Dynamics results seriously
challenges the common wisdom that conditions for sympatric speciation are rather speci�c (as
listed above).
Common claims about a �wide�range of conditions favoring sympatric speciation are, in our

interpretation, usually based on models incorporating unrealistic assumptions or using unreason-
able initial conditions and numerical values of parameters. For example, Geritz and Kisdi (2000)
claim that sympatric speciation in their model does not require very strong selection against
hybrids. Careful examination of the parameter values used by these authors reveals that in their
model for sympatric speciation to be possible assortative mating had to be extremely strong
from the start (with individuals mating with their own type with a probability 80 � 90%. van
Doorn et al. (2001) claim that speciation in their model �occurs for a wide range of parameters�.
Careful examination of the parameter values used by these authors reveals that they assumed
that a single mutation occurring with probability 10�4 per locus per generation in any of 120
loci reduces the probability of fertilization by 75%, whereas two mutations reduce it by almost
94%. This is, obviously, extremely strong assortative mating.
In the widely-cited paper of Dieckmann and Doebeli (1999), initial genetic variation was set

at the maximum possible level (the two alternative alleles at each locus were present at frequency
1/2), all females had equal mating success no matter how rare their preferred mates were, and
the rate of mutation was set at least at two orders of magnitude higher than common estimates.
None of these conditions are biologically justi�ed. Our intuition tells us that introducing costs
of choosiness and starting the population at a realistically low level of genetic variation (say,
at a mutation-selection balance) with realistic values of mutation rate will almost de�nitely
prevent sympatric speciation in the Dieckmann-Doebeli or in similar models. We note that this
hypothesis is easily falsi�able.
Initial conditions with allele frequencies at 1=2 emerge in a population of hybrids between

two diverged populations. In the strict sense, the paper by Dieckmann and Doebeli (1999) is not
a paper about sympatric speciation (by which one usually means the emergence of a new species
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from within the old species) but about preventing the fusion of two species that have somehow
diverged prior to their contact. Prevention of fusion of species as a result of hybridization is an
important theoretical question which however is very di¤erent from the question of the origin of
species (i.e., speciation).
We comment that spatial subdivision of natural populations is ubiquitous (e.g., Endler 1977,

Avise 2001). In general, isolation by distance and spatial heterogeneity in selection resulting
from spatial subdivision appear to be much more powerful and general in causing allopatric
and parapatric speciation than the mechanisms envisaged in the Adaptive Dynamics models of
sympatric speciation.

6 Recommendations for Adaptive Dynamics

We speculate that in the future Adaptive Dynamics will continue to be a useful method of attack-
ing a variety of interesting problems. As we have seen, in the preceding parts of this somewhat
non-standard Review, there are hidden limitations and unconscious or implicit assumptions that
are frequently made in calculations associated with Adaptive Dynamics. This is not unexpected,
since the intrinsic dynamics of evolving systems is, without a doubt, complex. However, we
believe that practitioners of Adaptive Dynamics will need to take a backward look at results
obtained to date, with a view of establishing their full regions of validity, as well as ensuring
that claims of novelty are justi�ed and are not, in fact, reproducing or closely parallelling earlier
work. They should be more careful in inventing new terms for old concepts. Consider, for ex-
ample, the term �Evolutionarily Singular Strategy�. We believe it would be simplest and most
communicative to use the conventional and well understood mathematical term �saddle point�
to describe this point. This usage might allow the integration of Adaptive Dynamics into more
standard theories of dynamical systems.
We also believe practitioners should be more open to referencing relevant recent work on evo-

lutionary dynamics; more e¤ort needs to be devoted to illuminate connections between Adaptive
Dynamics approaches and alternative or well established methods. The same can be said of
work that predates Adaptive Dynamics. For example, gradient type dynamics has been well
established in population genetics (e.g., Wright, 1935, Lande 1976, Barton and Turelli 1989) yet
it is treated as a new development in Adaptive Dynamics (Metz et al. 1996, Dieckmann and
Law, 1996, Geritz et al. 1998). Another example, already mentioned above, is the condition
for �Evolutionary Branching,��2K > �2c identi�ed by Dieckmann and Doebeli (1999). This was
previously found as a condition for the maintenance of genetic variation (Roughgarden, 1972;
Christiansen and Loeschcke, 1980) 20 years before the advent of Adaptive Dynamics. Similarly,
modelling the e¤ects of selection gradients on the possibility of parapatric speciation has a long
history (e.g., Endler, 1977; Caisse and Antonovics, 1978; Moore, 1981) which apparently was
missed by recent Adaptive Dynamics papers on this subject (e.g., Doebeli and Dieckmann, 2003;
Mizera and Meszéna, 2003).
On other matters, there will, no doubt, be special cases that are found where the simplest

application of the theory breaks down, and for these, it will be necessary to understand and
explain precisely where and what the failure is, so that a good intuition may be built up, for the
bene�t of later workers.
We believe that workers in Adaptive Dynamics need to come up with testable predictions of

their approach to evolution, that are novel, in the sense that they cannot be easily achieved by
any other approaches. It would be especially interesting to see a comprehensive comparison of
empirical data and the corresponding predictions of Adaptive Dynamics.
Lastly, we note that quite a lot of the work in the literature on Adaptive Dynamics relies
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on numerical simulation of the behaviour of populations. We observe that there is often a
somewhat sketchy description of the computational procedures adopted. To enable later workers
to reproduce computational work, we would like to see clearer descriptions of this important
aspect of the research, which should be viewed as being as important as an experimental protocol.
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Figure Captions

Figure 1
Evolution on an invasion �tness landscape. For a description of the dynamics illustrated in

this Figure, see the answer to question 2.5.

Figure 2
Figure 2a gives an example of an invasion �tness landscape and illustrates the trajectory of a

population. The many jagged steps that make up the recurrent processes of mutation, followed
by resetting the residents to the mutant phenotypic value, are approximated by the trajectory
along the solid line from p to q. In Figures 2b and 2c only sections of the invasion �tness
surface have been plotted to illustrate the behaviour of this surface. In Figure 2d the dashed
line corresponds to the invasion �tness along the line y�x� = �(x�x�). It is apparent that the
point q corresponds to a local maximum along the y direction (Figure 2b), to a local minimum
along the x direction (Figure 2c), and a local minimum along the line y�x� = �(x�x�) (Figure
2d).

Figure 3
Figure 3a illustrates the trajectory of a population in a di¤erent invasion �tness landscape to

that of Figure 2a. The trajectory of the population is along the solid line p to q. In Figures 3b
and 3c only sections of the invasion �tness surface have been plotted to illustrate the behaviour
of this surface. In Figure 3d the dashed line corresponds to the invasion �tness along the line
y � x� = �(x� x�). It is apparent that the point q corresponds to a local minimum along the y
direction (Figure 3b), to a local minimum along the x direction (Figure 3c), and a local minimum
along the line y � x� = �(x� x�) (Figure 3d).

Figure 4
A very simple Pairwise Invasibility Plot, where mutant phenotypes are denoted by y and

resident phenotypes by x. Only in regions marked with �+�signs do mutants have a �tness that
is larger than that of the residents and therefore can invade. In the regions with ���signs, the
residents have higher �tness than any mutants and invasion is not possible.
The di¤erences between mutant and resident phenotypes, y � x, are assumed small, so all

attention can be restricted to a narrow band along the diagonal line y = x. To use a Pairwise
Invasibility Plot to determine which mutants will invade (i.e., increase in frequency), when ini-
tially rare, given a resident population with speci�c phenotype, say x0, one simply looks along
a vertical line passing through the speci�c resident phenotypic value, at x = x0, on the x axis.
The mutant phenotypes along this vertical line that are above the diagonal line, y = x, have
y > x, while those below the diagonal line have y < x. Only those mutant phenotypes lying in
a �+�region can invade. This Figure shows a case where only mutants with y > x0 can invade.

Figure 5
A Pairwise Invasibility Plot, where mutant phenotypes are denoted by y and resident pheno-

types by x. The diagonal corresponds to the line y = x. The point of intersection of the two solid
lines, corresponds to x = x� and at this point there is a vanishing �tness gradient: D(x�) = 0.
The point, x�is termed an �Evolutionarily Singular Strategy.�

Figure 6
An illustration of Evolutionary Branching, where an initially monomorphic population splits

into two distinct branches. Darker areas correspond to higher frequencies of the corresponding
trait values in the population.
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Table 1

Di¤erent possible Evolutionarily Singular Strategies

No.
Labels
(a; b; c)

x� locally stable
(non-invasible)

x� can
invade

x� convergence
stable

protected
polymorphism

1 (�1;�1;�1) X � X �
2 (�1;�1;+1) X � � �
3 (�1;+1;�1) � � � X
4 (�1;+1;+1) � � � �
5 (+1;�1;�1) X X X �
6 (+1;�1;+1) X X X X
7 (+1;+1;�1) � X � X
8 (+1;+1;+1) � X X X

Table Caption
A listing of the 8 di¤erent generic Evolutionarily Singular Strategies that are possible, along

with their key invasion properties, as outlined in the main text. The listing is made in terms
of the triplet of parameters a, b and c given in Eq. (3). Note that Figure 2 is an example of
strategy Number 6 in this table, while Figure 3 corresponds to strategy Number 8.
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