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The nk Model and Population Genetics

John J. Welch and David Waxman

Centre for the Study of Evolution
School of Life Sciences
University of Sussex
Brighton BN1 9QG

Sussex UK

Abstract

The nk model of �tness interactions is examined. This model has been used
by previous authors to investigate the e¤ects of �tness epistasis on substitution dy-
namics in molecular evolution, and to make broader claims about the importance of
epistasis. To examine these claims, an in�nite-allele approximation is introduced. In
this limit, it is shown that the nk model is, at an appropriate level of description,
formally identical to the non-epistatic House-of-Cards model; a well-studied model in
theoretical population genetics. It is further shown that in many parameter regimes,
the analytical results obtained from this in�nite-allele approximation are very close
to results from the full nk model (with a �nite number of alleles per locus). The
�ndings presented shed light on a number of previous results.
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1 Introduction

When the �tness e¤ect of an allele varies with the genetic background in which the
allele is present, we say there is epistasis for �tness. When the �ttest allele in one
genetic background is not the �ttest allele in another background, then we have
�rank-order�or �reverse-sign�epistasis. The e¤ects of such epistasis are most promi-
nent when highly divergent individuals hybridise - causing post-zygotic reproductive
isolation, or its within-population analogue, outbreeding depression (Barton 2001;
Edmands 2002). However, the suggestion that such epistasis might play a role in the
adaptive evolution of single populations has been far more controversial (Whitlock
et al. 1995; Coyne et al. 1997; Wolf et al. 2000). A key question is whether segre-
gating alleles often encounter genetic backgrounds that are su¢ ciently di¤erent for
signi�cant epistasis to be manifest - i.e. whether genetic variation of the appropriate
kind is present.
These issues aside, it is clear that �tness epistasis might have important evolu-

tionary consequences even when little genetic variation of any kind is present. One
of these consequences is the existence of multiple genotypes with higher �tness than
all of their one-mutant neighbours (the one mutant neighbours of a given genotype
are those genotypes that may be reached by a single mutational event). Since these
locally-optimal genotypes may have lower �tness than the best possible combination
of alleles (the global optimum), and double mutations are rare, populations may
become �trapped�at globally suboptimal states (Wright 1932; Maynard Smith 1970;
Kau¤man and Levin 1987; Whitlock et al. 1995). In addition, when multiple local
optima exist, the stochastic appearance of mutations may be an important diver-
sifying force in evolution - bringing about the evolutionary divergence of isolated
populations subject to identical selection pressures (e.g., Mani and Clarke 1990).
A second possible consequence of �tness epistasis is the occurrence of non - inde-

pendent substitution events. This stems from the fact that the �xation of a partic-
ular allele may alter the selective context for other alleles, actively inducing further
substitutions, or preventing them from taking place. When substitutions induce fur-
ther substitutions, molecular evolution may be characterised by concerted bursts of
change. This is one possible explanation for the overdispersal of the molecular clock
- the empirical �nding that the variance in the number of non-synonymous substitu-
tions in a lineage may greatly exceed the mean number (Maynard Smith 1970; Fitch
and Markowitz 1970; Gillespie 1984; Kimura 1985; Stephan and Kirby 1993; Ohta
1997a, 1997b).

These, and other e¤ects of �tness epistasis have been invoked to explain an in-
creasing range of empirical results (e.g., Lenski and Travisiano 1994; Korona 1996;
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Schrag et al. 1997; Elena et al. 1998; Burch and Chao 1999; Moore et al. 2000;
Elena and Lenski 2001; Jeong et al. 2001; Kondrashov et al. 2002; Fraser et al.
2002). Despite this, however, there has been a relative dearth of quantitative theo-
retical predictions. A possible explanation is the sometimes baroque complexity of
the models used to study genetic interactions. An exception, in this respect, is the
�nk model� introduced by Kau¤man and Levin (1987; c.f. Felsenstein 2000; Bar-
ton and Keightley 2002). The nk model has the advantage that the level of �tness
epistasis may be tuned by adjusting a single parameter, denoted k; but despite this
simplicity, it is able to account for a rich variety of empirically observed phenom-
ena (see below). In addition, the adequacy with which the nk model represents a
particular biological system is, in theory, open to empirical test (e.g., Kau¤man and
Weinberger 1989; Fontana et al. 1993; Jeong et al. 2001; Fraser et al. 2002).
Previously, the nk model has been used to investigate both the properties of local

optima, and substitution dynamics in molecular evolution. In particular, Kau¤man
and Levin (1987) and others (Weinberger 1991; Macken and Perelson 1989; Kau¤man
1993; Perelson and Macken 1995) investigated statistics concerning the number and
�tness values associated with locally-optimal genotypes. Kau¤man (1993) showed
that increasing the epistasis parameter, k, causes the number of local optima to
increase, but their expected �tness to decrease. As such, he suggested that when an
equilibrium was reached, populations characterised by a high value of k would tend
to be at a severe selective disadvantage compared with populations characterised by
a smaller value of k. He dubbed this �nding �the crisis of complexity�(Kau¤man
1993). Ohta (1997a, 1997b, 1998) used individual-based simulation to investigate
the substitution process under the nk model. Choosing parameters so that both
natural selection and genetic drift played an important role in substitutions, Ohta
showed that overdispersal of the substitution process could result. With this in mind,
the nk model was described as a generalisation of Gillespie�s (1984) �mutational
landscape model,�which was introduced to model coordinated bursts of selectively-
driven substitutions. Furthermore, and in seeming contradiction to Kau¤man (1993),
Ohta showed that the equilibrium level of �tness attained in the simulations was
relatively independent of k.
The present study introduces a slightly modi�ed version of the nk model that

allows us to shed light on the results of Kau¤man and Ohta. Though our model
is still technically epistatic in the sense above, it is also formally identical to a
standard population genetics model that contains no epistasis (for reasons given
below). As such, the modi�ed model is capable of generating neither local optima,
nor substitutions that induce further substitutions. Despite this fact, we show that
the modi�ed model is able to qualitatively reproduce some of the key results of the
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previous authors. Let us begin by introducing the nk model in something close to
its conventional form.

2 The nk model

The nk framework can be used to model �tness interactions at various levels of or-
ganisation (such as interactions between di¤erent proteins, or among di¤erent sites
within a protein). With suitable parameterisation, the treatment given below is
broadly consistent with all of these scenarios. However, for concreteness, and fol-
lowing most previous treatments, we will use the terminology of �loci�and �alleles�
throughout. With this in mind, consider a sequence of n haploid loci, each with
a possible alleles. In this case, an distinct haploid genotypes may be formed. The
logarithm of the �tness associated with each of these genotypes is determined from
the sum of n ��tness-contributions,�- one contribution arising from each locus. De-
noting the �tness of a given genotype by W , and the �tness contribution of locus i
by hi, we have

ln (W ) =
nX
i=1

hi. (1)

The use of log �tness in this equation gives us a multiplicative model of �tness (since
W = eh1�eh2�� � ��ehn). This is a minor departure fromKau¤man (1993) and others,
who used an additive nk model. However most previous results depend exclusively
on the rank ordering of the �tness values, and so will be identical for additive and
multiplicative models. Furthermore, for several reasons, a multiplicative model is
the natural choice in population genetics (see, e.g., Phillips et al. 2000).
The key to the model is understanding how the hi are calculated. Rather than

assign these values in a formulaic way to facilitate the analysis, the nk model assumes
that each possible hi is a random number that is drawn, at the outset, from a
particular probability distribution. This distribution, denoted f(h), is termed the
landscape distribution, since it determines the statistical properties of the �tness
landscape. In all of the work below, we assume that the landscape distribution is
normal, with mean 0 and variance �2:

f(h) =
�
2��2

��1=2
exp

�
�h2=

�
2�2
�	
. (2)

We note that Kau¤man (1993) and others, have used a uniform distribution for f(h).
However, a normal distribution has some advantages (as will become clear below),
and again, the exact form of f(h) makes little di¤erence to the rank-order statistics
considered by most previous authors.

4



So far, we have not made clear exactly how many h values must be generated in
order to determine the �tness values of all possible genotypes. The answer to this
question depends on how genotype relates to �tness, and this depends crucially on
the value of the epistasis parameter, k.
Consider �rst the nk model when there is no epistasis (this corresponds to setting

k = 0 in the general description given below). In this case the �tness contribution
of locus i, namely hi, is independent of the alleles carried at other loci and depends
only on the allele carried at locus i. Since a alleles are available at locus i, hi may
take one of a distinct values in any given individual. For each particular realisation
of the model, each of these a values must be independently generated from f(h) and
then stored in a lookup table. Following this procedure for each of the n loci, we
end up with a table containing a total of n � a independently-generated random
numbers. The �tness values of all possible genotypes can then be calculated using
the appropriate numbers from the table.
To incorporate epistasis, the nk model allows the �tness contribution of locus i

to depend not only on the allele carried at locus i, but also on the alleles carried at k
other loci. We say these k loci epistatically in�uence locus i, such that the value of
hi will change whenever a mutation occurs at any of k + 1 loci, namely locus i and
the k other loci that epistatically in�uence this locus. Since each locus has a possible
alleles, considered together, locus i and the k loci that epistatically in�uence locus
i may form a total of ak+1 distinct combinations of alleles. Under the assumptions
of the nk model, each of these ak+1 combinations leads to a distinct, independently-
generated value of hi. As such, to specify the �tness of all genotypes, we need a
lookup table that contains a total of n� ak+1 random numbers, each generated from
the landscape distribution, f(h).

An additional complication that arises when there is epistasis (i.e., when k > 0),
is that we must specify the pattern of epistatic connections. In other words, we must
decide exactly which k loci epistatically in�uence each locus. Kau¤man (1993) calls
this the speci�cation of the �k-amongst-the-n�. A variety of methods have been used
to assign the epistatic connections, three of which are depicted in Figure 1.
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Figure 1

Possible patterns of epistatic connectivity under the nk model are depicted. In
each case, n = 9 loci are shown, and each locus is epistatically in�uenced by k = 2
other loci. Connections of epistatic in�uence are denoted with arrows; so the loci that
epistatically in�uence a given locus have arrows leading from them, and terminating
at that locus. Because k = 2, exactly two arrows terminate at each locus in all
cases. Each diagram represents the results of assigning the epistatic connections via
a di¤erent method. Fig. 1a represents a possible outcome when the connections are
assigned at random (so each locus is epistatically in�uenced by k = 2 loci chosen at
random from the remaining n� 1 loci). Note that, in this case, a variable number of
arrows stem from each locus. Fig. 1b shows the pattern when each locus is in�uenced
by its k nearest-neighbour loci, with the loci on the ends of line connected to each
other. Fig 1c shows epistatic connections arranged in blocks of k + 1 reciprocally
interacting loci.
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Kau¤man investigated assigning the connections at random (Fig. 1a), and con-
necting each locus to its k nearest neighbours in the sequence (Fig. 1b). The latter
method was adopted by Ohta (1997a). A third possibility, the �block method�, was
introduced by Perelson and Macken (1995), and was motivated by the observation
that molecular sequences have natural partitions - such as protein domains. To
implement the block method, the n loci are divided into a series of equally-sized
blocks, each containing k + 1 loci - thus n must be exactly divisible by k + 1. (The
generalisation to blocks of variable size is trivial.) Each locus within a given block
is epistatically in�uenced by every other locus within that block, but by no locus
outside the block (Fig. 1c).
Kau¤man (1993) suggested that the way in which the epistatic connections are

assigned makes little di¤erence to the statistics of the nk landscapes. Below, we
con�rm, via simulation, that the three methods depicted in Figure 1 yield very similar
results. There are, however, important di¤erences as regards analytical tractability.
In particular, with the random and nearest neighbour methods (Figs. 1a and 1b),
di¢ culties stem from the fact that the sets of epistatic connections overlap, so a
single locus may be connected to every other locus via a chain of connections. For
this reason, the analytical results which follow apply strictly to the block method
(Fig. 1c).

3 Optima results

We have already noted that the earliest analytical work on the nk model focussed
on the statistics of the locally optimal genotypes - genotypes with higher �tness
than all of their single-mutant neighbours. When k = 0, natural selection can,
in theory, �optimise� each locus independently, and so there is only one optimal
genotype - which is by de�nition the global optimum. As k increases, and loci become
increasingly interdependent, the number of local optima increases rapidly (Kau¤man
1993). Perelson and Macken (1995) have shown that under the block method, the
expected number of local optima is approximately an [(a� 1)(k + 1)]�n=(k+1) (the
approximation assumes that k is reasonably large).
We can also calculate the expected �tness of the globally optimal genotype, which

we denote Wglo, and that of a randomly chosen locally-optimal genotype, denoted
Wopt. These are extreme value statistics (e.g., Gumbel 1958), and so follow from
standard results. However, to express the statistics of interest in a helpful form, our
choice of landscape distribution, eq. (2), requires that we make some rather crude

7



approximations (described in Appendix 1). These lead to

E [lnWglo] � n� [2 ln(a)]1=2 ; Var [lnWglo] �
0:82n�2

(k + 1) ln(a)
(3)

E [lnWopt] � n�
�
2D

k + 1

�1=2
; Var [lnWopt] �

0:82n�2

D
(4)

where D = ln [(a� 1)(k + 1) + 1]�1. Note that the expected log �tness of the global
optimum, E [lnWglo], is entirely independent of k (to the level of approximation
adopted). However, the equivalent statistic for a randomly chosen optimum declines
rapidly with k. Indeed, as k become very large, E [lnWopt] approaches zero - which
is the mean of the landscape distribution, and so the value expected for a genotype
chosen entirely at random. This is one of Kau¤man�s (1993) key results.

4 How is the model epistatic?

So far, we have presented results that are largely within a conventional nk framework.
However, it is revealing to relate the all-important parameter k to the conventional
population genetics notion of epistasis. This will, in turn, help us to understand
the population dynamics of the nk model under natural selection. With this in
mind, consider a mutation occurring at locus i. This mutation may described by
its selection coe¢ cient, si, de�ned by W 0 = W � (1 + si), where W denotes the
denotes the �tness of an individual not carrying the mutation, and W 0 the �tness of
the mutant. A mutation at a second locus, j, might be described in a similar way,
and have a �tness W 0 = W � (1 + sj). If there is no epistasis, then the �tness of
the double mutant (the genotype with mutations at loci i and j) would be W 00 =
W � (1+si)� (1+sj). The extent of epistasis is usually measured by the magnitude
of the deviation from this multiplicative result. Denoting this epistatic deviation by
"ij, we have W 00 = W � (1 + si)� (1 + sj)� (1 + "ij).
Let us now calculate the relevant quantities for the nk model. Under the model,

the mutation at locus i will alter a certain number of �tness contributions - that of
locus i itself, and all of those loci that are epistatically in�uenced by locus i (these
would be the loci whose arrows terminated at locus i, in Figure 1). The �tness
contribution of all other loci will remain unchanged. From eq. (1), we have

ln(1 + si) = lnW
0 � lnW =

X
l

(h�l � hl) (5)
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where the sum is over all loci that are epistatically in�uenced by locus i, and hl
and h�l denote the �tness contribution of locus l before and after the mutation has
occurred. According to the speci�cation of the model, both hl and h�l are random
numbers drawn from the landscape distribution, f(h).
We can gain important insights into the nk model merely by noting the number

of terms that appear in the sum in eq. (5), and in the equivalent sum needed to
specify the epistatic deviation, "ij. To see this, consider the two loci i and j, when
k = 1. In this case, there are three possible patterns of connection, and these are
depicted in the left hand column of Table 1.
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Table 1

The quantities needed to represent selection acting on a pair of loci are shown,
under the assumptions of the nk model (see text, eqs. (1) and (5)). Each row of
the table shows results for a di¤erent arrangement of epistatic connectivity between
the loci. Within a row, each di¤erently-notated h value is simply a distinct random
number, independently generated from the landscape distribution, f(h).
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The other columns give the quantities relevant for calculating the e¤ects of selec-
tion, and the epistatic deviation, in each of the three cases. There are three things
to notice about Table 1, all of which reveal important properties of the nk model.
Firstly (and of least signi�cance), as the interconnectivity of the loci increases, we
require more independently generated h values to describe the situation (the three
cases require 4, 6 and 8 values respectively). Since increasing the value of the pa-
rameter k increases the connectivity, this shows why more h values are required to
specify the �tness of every possible genotype as k increases.
Secondly, the number of terms in the epistatic deviation increases with the con-

nectivity. This means that the selective e¤ect of the double mutant will become
increasingly unpredictable from those of the two single mutants. It is this property
that is commonly meant by epistasis. As a result, increasing k will increase the
amount of epistasis, in this commonly-used sense.
Thirdly, it is clear from Table 1 that the number of terms needed to specify

the selective e¤ects of the single mutants will also increase with the connectivity.
In nk papers, this is usually expressed by saying that increasing k decreases the
correlation of the �tness landscape. Less formally, we can say that increasing k
will lead, on average, to mutations causing larger changes in �tness. As a result,
mutations occurring at loci with more epistatic connections will tend to be under
stronger selection, but, as pointed out by Fisher (1930, Ch. 2), these large-e¤ect
mutations are also more likely to be deleterious.
It is important to note that the close relation of the three properties mentioned

above, is not typical of epistatic models in theoretical population genetics. For exam-
ple, it is easy to imagine a model in which the distribution of the epistatic parameter,
"ij, changes, while the distributions of the single-mutant selection coe¢ cients, si and
sj, remain �xed. However, the three properties are intimately linked in the nk frame-
work, and each of them stems from the fact that a given substitution will alter, on
average, k + 1 distinct h values. As a result of this, any increase in �tness epistasis
(the unpredictability of the double mutant �tness from the single mutant �tnesses)
will also be accompanied by a decrease in the correlation of the �tness landscape -
or an increase in the expected �size�of single mutants. This will prove crucial for
understanding the dynamics of the nk model.

5 In�nite alleles approximation

A major problem with analysing the nk model is the fact that evolution may revisit
previously-tested combinations of interacting alleles - a fact which leads to some
intractable mathematics. Previously published analyses have avoided this problem
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by assuming that the number of genotypes is very large (e.g., Macken and Perelson
1989; Weinberger 1991; Perelson and Macken 1995). Here, we also make this as-
sumption, but in a novel way. Speci�cally, we treat the nk model in the limit where
the number of alleles, a, becomes very large and e¤ectively in�nite. In this case,
rather than choosing our mutant values from a lookup table of limited size, we can,
when a mutation occurs, simply generate a new random number directly from the
landscape distribution. As a result, a mutation at any locus may generate the com-
plete spectrum of mutant e¤ects, regardless of the allele present before the mutation;
thus, in principle, all possible �tness values are reachable via a single mutation from
all possible genotypes.
Technically, employing the in�nite-allele limit does not alter the epistatic nature

of the nk model. The e¤ects of a particular allele may still be background-dependent,
and so all of the properties described in the previous section will still apply. However,
because the mutational opportunities available are now background-independent, the
large a approximation does nullify two of the most important consequences of �tness
epistasis. In particular, regardless of the value of k, substitutions can never induce
further bursts of substitutions, and populations will never become trapped at local
optima. Indeed local optima will cease to exist - a fact which exempli�es their
general irrelevance in �tness landscapes of high-dimensionality (see Provine 1986;
Gavrilets 1997). Furthermore, it can be shown that in the in�nite-allele limit, the
nk model becomes formally identical to an entirely non-epistatic model familiar from
population genetics. This model is the ��xed�or �House-of-Cards�model that has
been widely studied in the context of molecular evolution (Ohta and Tachida 1990;
Tachida 1991, 1996; Gillespie 1994, 1995). We clarify the relationship between the
House-of-Cards model and the nk model below.
The above considerations show that employing the in�nite-allele limit alters the

nk model in a fundamental respect. Nevertheless, we show below that the analytical
results obtained in this limit are often very close to simulation results from the
original nk model with a small number of alleles.

6 Dynamics with in�nite alleles

Let us now consider the dynamics of a population evolving according to the nk model
in the in�nite-allele limit. Our overall aim is to calculate the probability distribution
of population �tnesses as they change over time. This distribution characterises the
evolution of a large number of replicate populations with an identical initial state,
and incorporates the stochastic processes of drift and mutation as well as natural
selection.
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Consider a single population of stable size N . We assume that the per locus
mutation rate, u, is su¢ ciently small that mutations appear in the population very
rarely. That is, we assume unN � 1. In this low mutation rate limit, it follows that
the loss or �xation of a newly-arisen mutation occurs very rapidly when compared
with the typical interval between the appearance of mutations. Hence the population
is genetically monomorphic, at the relevant loci, for the majority of the time, and
the �xation of loss of a mutation is approximated as an instantaneous process. It
also follows that the mode of reproduction (i.e., whether sexual or asexual) makes
little di¤erence to the evolutionary outcome. Assumptions similar to the above have
been used by many previous authors (e.g., Maynard Smith 1970; Gillespie 1983,
1984; Tachida 1991; Orr 1998; Barton 2001; Welch and Waxman 2003), and in
most previous nk work (Kau¤man and Levin 1987; Weinberger 1991; Macken and
Perelson 1989) - although this work has not often taken natural selection explicitly
into account (see Fontana et al. 1993 and Orr 2002). Clearly, a crucial quantity in
the analysis is the probability that a newly arisen mutation reaches �xation. If the
mutation has selection coe¢ cient s, this probability is given by

�(s) =
1� e�2s
1� e�2Ns (6)

(Kimura 1957). Since all analytic work in this section is restricted to the block
method of assigning epistatic connections (Fig. 1C), we consider the evolution of a
single block of loci. Given the in�nite-allele assumption, the loci within the block
are fully interchangeable. As such, we need only consider the sum of their �tness
contributions. With this in mind, we introduce the notation X =

P
j hj where the

sum is over all loci in the block under consideration. Since each block contains k+1
loci, the sum contains k+1 terms. Now consider a mutation taking place at any one
of the loci within the block. From eq. (5), we have s = eX

��X � 1, where X� is the
�tness contribution of the block after the mutation. This result for s shows that the
dynamics of the �tness contribution of the block can be expressed solely in terms of
the random variables X� and X. We now describe the probability densities of these
variables. We begin with the post-mutation quantity, X�, whose probability density
we will denote q(x). It follows from the discussion of mutation given above, that X�

is simply the sum of k+1 independent draws from the landscape distribution. Since
we have assumed that the landscape distribution is normal, eq. (2), it follows that
q(x) will also be normal, with a mean 0 and a variance (k + 1)�2.

q(x) =
�
2�(k + 1)�2

��1=2
exp

�
�x2=

�
2(k + 1)�2

�	
. (7)

Furthermore, it follows from the Central Limit Theorem, that for all landscape
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distributions with �nite variance, a su¢ ciently large value of k will lead to an ap-
proximately normal q(x). Our choice of a normal f(h) yields an exactly normal q(x)
for arbitrary k.
The variable X describes the �tness contribution of a block at a given time.

Since its value will change cumulatively as the result of selection, mutation and
drift, its probability density will also be time-dependent. Accordingly, we denote the
probability density of X at time t by p(x; t). In Appendix 2, we derive the following
equation which determines how p(x; t) changes over time.

@p(x; t)

@t
= (k + 1)uN

�
q(x)

Z
�(ex�y � 1) p(y; t)dy

�p(x; t)
Z
�(ey�x � 1) q(y)dy

�
(8)

Equation (8) is virtually identical to an equation given by Tachida (1991) for de-
scribing the House-of-Cards model (his eq. (A4)), and this clari�es the relationship
between the two models. When the number of alleles is in�nite, the nk model re-
mains epistatic at the level of single loci, but each block of loci evolves according
to the non-epistatic House-of-Cards model. This is reasonable, since while there is
epistasis within blocks, there is no epistasis between blocks (Fig. 1).
Due to this formal identity, we can make use of previously available results to

understand the nk model. For example, Tachida (1991) shows that eq. (8) has a
stable equilibrium, which can be approximated by

lim
t!1

p(x; t) ' q(x� �) (9)

where � = 2(N � 1)(k + 1)�2 (10)

(see Appendix 2; Zeng et al. 1989; Tachida 1991). Thus the approximate equilibrium
distribution of the �tness contribution of a block of loci is simply the normal distri-
bution, q(x), with a shifted mean. Using this result, we can �nd the expected value
of log �tness at equilibrium; this is simply the sum of the expected values for each
block. The same applies approximately to the equilibrium variance in log �tness.
Since, by assumption, there are n=(k + 1) blocks in total, we have

E
h
lncWi ' 2(N � 1)n�2; Var

h
lncWi ' n�2 (11)

(see also Gillespie 1994). Remarkably, both results in eq. (11) are wholly independent
of k.
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7 Simulation results

How well, then, do the in�nite-allele results approximate the dynamics of the nk
model when a is �nite and the epistatic connections are, e.g., randomly assigned?
To answer this question, we have carried out simulations. The simulation procedure
is designed to match the assumptions behind the preceding analysis in all respects
other than the in�nite-allele approximation. As such, we assume that mutations are
very rare, and so enter a homogeneous population one at a time, and then either reach
�xation or are lost. (Simulations carried out in this way were used by Tachida 1991,
and a comparison with results obtained by more sophisticated simulation methods
was undertaken by Gillespie 1994.) To initialise each simulation trial, we populated
�tness lookup tables using the landscape distribution, and chose an initial genotype
at random (note that the results changed little if the initial conditions were retained
for whole sets of simulation trials). After initialisation, the simulation procedure can
be described by the following algorithm: i) to determine the interval of time before
the appearance of a mutation, a random Poisson waiting time was generated from
a distribution with mean 1=(Nnu); ii) the mutating locus was chosen at random,
and its allele was replaced with one of the a � 1 alternative alleles, also chosen
at random; iii) the mutant �tness was calculated using the lookup tables, and the
mutation either reached �xation or was lost with a probability determined by eq. (6).
These three steps were then repeated for the next mutation, and the trial terminated
after evolution had proceeded for a certain length of time. For each set of parameter
values, we carried out 1000 replicate trials, and then averaged over the results.
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Figure 2

The expected logarithm of �tness, E [lnW (t)], is plotted as a function of time,
measured in units of unNt. Simulation results (the grey curves) are compared to
the numerical integration of eq. (8) (the black curves). In all cases, n = 32 loci were
used, and � = 10�3 was the standard deviation of the landscape distribution, eq.
(2). Each plot shows two di¤erent values of k (the level of gene interaction): k = 1
(thinner lines) and k = 15 (thicker lines). Simulation results are presented for a = 2
alleles and a = 9 alleles, and the block method of assigning epistatic connection was
used.
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Figure 3

The results shown are identical to those in Figure 2, with the exception that the
simulation results shown use the random method, and the nearest-neighbour method
of assigning epistatic connections (see Fig. 1). In each case a = 9 alleles were used.
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Figures 2 and 3 show simulation results generated in the manner described above.
Also shown, for comparison, are in�nite-allele results obtained by the numerical
integration of eq. (8) with p(x; 0) = q(x) as the initial condition (this is equivalent
to choosing the initial genotype at random). For the �xed parameters, previous
work on the House-of-Cards model has shown that its behaviour depends crucially
on the strength of selection, measured by the product of the population size and the
standard deviation of the mutant distribution, q(x); this product is N

p
k + 1� in

our notation. In contrast, the genomic mutation rate un - which we have assumed is
small - simply acts as an overall scaling factor of time. We choose to vary N and k
in the results presented. In particular, pairs of plots show results for weak selection:
N� = 1=10; and for strong selection: N� = 10. Each plot then includes results for
two values of k, namely k = 1 (the thinner line of each pair) and k = 15 (the thicker
lines).

Figure 2 shows simulation results using the block method of assigning epistatic
connections (Fig. 1c), and di¤erent numbers of alleles. Results are presented for
a = 2 alleles, since biallelic loci are common to most nk work, and deviate most from
the in�nite-allele approximation. Results are also presented for a = 9 alleles, since
this value was used by Ohta (1997a, 1997b, 1998). Figure 2a shows the weak selection
results. In all cases, the population is shown to rapidly reach a dynamic equilibrium.
The continued �uctuation of the curves after this point shows that substitutions are
still occurring, it is just that weakly bene�cial and weakly deleterious substitutions
occur with roughly equal frequency (see also Gillespie 1994, 1995). For the curve
representing a = 2, k = 15, and for both curves using a = 9, the equilibrium
is given very accurately by eq. (11). In these cases, the agreement between the
analytical results and the simulation is excellent - and so the in�nite-allele House-
of-Cards model accurately approximates the dynamical behaviour of the nk model.
The exceptional case is the curve representing the case a = 2, k = 1; here the curve
reaches an equilibrium not treated analytically, where genetic drift, and the scarcity
of alleles a¤ect the outcome (we return to this case in the discussion).
Figure 2b shows equivalent results with strong selection. In this case, quantitative

agreement with the in�nite-allele results is good only at small times when a = 9, and
is poor when a = 2. This is because selection was strong enough for the �nite-allele
populations to reach a �tness optimum, rather than a drift-in�uenced equilibrium.
The �tness level reached lay between the values predicted by the optimum equations,
(3) and (4), rather than the higher value predicted by eq. (11). By comparing
equation (3) and eq. (11), we can say that, in general, an optimum is likely to be
reached if N� �

p
ln(a)=2.
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Figure 3 shows simulation results using di¤erent methods of assigning the epista-
tic connections, namely the random method (Fig. 1a) and the nearest-neighbour
method (Fig. 1b). In both cases, a = 9 alleles were used. Comparing Figures 2
and 3, it is clear that altering the pattern of epistatic connections makes rather little
di¤erence to the results (Kau¤man 1993). However, systematic di¤erences are ap-
parent, particularly when connections are randomly assigned and selection is strong
(Fig. 3b). These di¤erences seem to stem from the fact that a new mutation may
alter the �tness contribution of a variable number of loci (depending on how many
loci are epistatically a¤ected by the locus at which the mutation occurs.) Compared
to the cases where each mutation alters a �xed number of �tness contributions, this
variation in size acts as a mildly retarding force when k is small, but accelerates the
rate of adaptation when k is larger.

8 Dynamics with in�nite alleles and strong selec-
tion

We have seen in the previous section that the nk model can be very accurately
approximated by the House-of-Cards model when selection is weak (as measured
by small values of the compound parameter N

p
k + 1�). When selection is strong,

however, the agreement is typically poor. Nevertheless, in the following section, we
further explore the behaviour of the in�nite-alleles model with strong selection. We
show that, in spite of the poor quantitative agreement in this regime, the in�uence
of k on the outcome of evolution is remarkably similar to that under the standard
nk model.
Simulation results for the House-of-cards model with strong selection were re-

ported by Gillespie (1994, 1995). He showed that, after a relatively short period
of time, substitutions become increasingly rare and e¤ectively stop occurring. This
means that when selection is strong, the equilibrium represented by eqs. (11), is
simply never reached. (In general, the relevance of equilibrium quantities depends
on the relative timescales of equilibration and environmental change, after which the
�tness e¤ects associated with di¤erent allelic combinations are likely to change; e.g.,
Gillespie 1983, 1995; Tachida 1991.) The reason for the absence of equilibration in
the House-of-Cards model with strong selection is clear. In order for a block of loci to
approach its expected equilibrium �tness, mutations of value � = 2(N � 1)(k+1)�2
must be generated from q(x) (see eqs. (7) and (10)). Since these mutations are a
distance of 2(N � 1)

p
k + 1� standard deviations from the mean of q(x), it follows

that if N
p
k + 1� � 1, such mutations will be extremely rare. Gillespie (1994, 1995)
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made a similar point using the theory of records.
Although we know that eqs. (11) will not apply when selection is strong, no

previous results tell us the level of �tness that will be attained. We now derive this
result. The calculation uses an approximation for the �xation probability of eq. (6).
This approximation relies on the fact that when selection is strong, only bene�cial
mutations are capable of �xing, i.e., �(s) ' 0 for s < 0. In addition, we assume that
the selection coe¢ cients of bene�cial mutations are small. In this case, we have

�(s) '

8<:
2 ln(1 + s); s > 0

0; s � 0:
(12)

This approximate �xation probability allows us to obtain a major simpli�cation. By
scaling time and other quantities, we can eliminate all parameters from eq. (8).
As a consequence, if all blocks of loci are identically distributed initially, then we
can write the expected log �tness in terms of a single function, F (�), and just two
combinations of parameters:

E [lnW (t)] =
n�p
k + 1

� F
�
2 (k + 1)3=2 uN�t

�
. (13)

This equation is derived in Appendix 2. If, as in Figures 2 and 3, the population
begins with a randomly chosen genotype (which means that p(x; 0) = q(x)), an
exact form of the function F (�) can be found (see eq. (20) Appendix 2), and has
the approximation

F (T ) '

8<:
T; T � 1

2:36� T 0:05; 1� T < 107:
(14)

A number of interesting conclusions follow from considering eqs. (13) and (14) to-
gether. Firstly, at large times, where the second line of eq. (14) will apply, the
expected log �tness of a population will be proportional to (k + 1)�0:425, a rate of
decline that is slightly less rapid than the reciprocal of the square root: (k + 1)�1=2.
This result is remarkably similar to the outcome of evolution when a is �nite. In that
case, as can be seen from Figs. 2b and 3b, and from eq. (4), strong selection takes
populations to optima whose expected log �tness also declines slightly less rapidly
than (k + 1)�1=2 (the small positive contribution comes from the term denoted D in
eq. (4)). In other words, the in�uence of k on the outcome of evolution is very similar
in both the in�nite-a House-of-Cards model and in the conventional nk model.
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A similar conclusion follows from comparing the small and large argument ver-
sions of eq. (14). These can be thought of as applying to poorly-adapted and well-
adapted populations respectively. In the former case, when t is small and the popula-
tion is poorly-adapted, E [lnW (t)] is proportional to (k + 1) t, so large k leads to the
most rapid rate of increase in �tness. At large times, when signi�cant adaptation has
already occurred, we have seen that E [lnW (t)] is proportional to (k + 1)�0:425t0:05,
so small k leads to the most rapid rate of adaptation. Although these results apply
strictly to the in�nite-allele model, an identical trade-o¤ between di¤erent values of
k can be seen clearly in the �nite-allele simulation curves shown in Figures 2b and
3b (where it leads to a crossing of the trajectories of populations characterised by
di¤erent values of k).
This trade-o¤ is inherently a multi-locus phenomenon, and so has not been pre-

viously reported for the House-of-cards model. However, very similar results have
been reported for a model of optimising selection acting on multiple quantitative
traits, that was �rst introduced by Fisher (1930, Ch.2) to advocate micromutation-
alism (Hartl and Taubes 1998; Orr 1998, 2000; Welch and Waxman 2003; see also
Hansen 2003 for more general results). The parallel between the two models helps
to reiterate the fact that the e¤ects of k on the correlation of the �tness landscape
can also be understood in terms of the �size�of new mutations.

9 Discussion

The present study has examined the nk model introduced by Kau¤man and Levin
(1987). We have shown that when epistatic connections are arranged according to
the block method of Perelson and Macken (1995), and the number of alleles, a, is
assumed to be e¤ectively in�nite, the nk model becomes formally identical to the
non-epistatic House-of-Cards model (Ohta and Tachida 1990; Tachida 1991, 1996;
Gillespie 1994, 1995).
We further showed that when selection is weak, the House-of-Cards model accu-

rately approximates the nk model even in the more general case - that is, when the
number of alleles is limited, and epistatic connections are, e.g., randomly assigned
(Fig. 3). The dynamical similarity of these models under weak selection has im-
portant implications for interpreting the simulation results of Ohta (1997a, 1997b,
1998). In particular, it suggests that they should not be explained by invoking those
properties of the nk model that disappear in the in�nite-allele limit. Such proper-
ties include the existence of multiple local optima, and the ability of substitutions
to selectively induce further substitutions, neither of which may occur under the
House-of-Cards model. This point has particular relevance for understanding the
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overdispersion of the substitution process in Ohta�s simulations. Although epistatic
models can lead to the clustering of substitutions (e.g., Fitch and Markovitz 1970), so
can the House-of-Cards model (Tachida 1991). As a result, rather than attribute the
overdispersion demonstrated by the nk model to �tness epistasis, it is more plausibly
attributed to the similarity of the nk model to the House-of-Cards model. Indeed,
Ohta (1997b) remarked that the behaviour of the index of dispersion under the nk
model closely resembles results from the House-of-Cards model; we have shown why
this is to be expected.

Kau¤man (1993) used the nk model to show how, as k increased, the ability
of populations to reach states of high �tness was compromised by the existence of
multiple locally optimal genotypes of low �tness. This can be thought of as resta-
ting and quantifying Wright�s (1932) claim that the lack of �t intermediates may
be an important obstacle to natural selection when �tness epistasis is widespread.
In response to Wright, it has been argued that local optima become increasingly
irrelevant in �tness landscapes of high dimensionality (e.g., Provine 1986; Gavrilets
1997). Here, however, we have shown that, when selection is strong, a near-identical
�tness penalty is paid by high-k populations, even when the number of alleles avail-
able is in�nite, and so no local optima exist (see eqs. (13)-(14)). The fact that this
result was obtained with the House-of-Cards model, and that similar results have
been reported with Fisher�s quantitative trait model (e.g., Hartl and Taubes 1996;
Orr 2000; Hansen 2003; Welch and Waxman 2003), suggest that this result can be
best explained by the e¤ect of the parameter k on the expected size of mutations - a
property that is inextricably linked with the level of �tness epistasis in the nk frame-
work. We have also shown that Kau¤man�s result is conditional on strong selection
acting on at all loci. When selection is weak, increasing k may have no e¤ect on the
equilibrium �tness (e.g., eq. (11); Fig. 2a, Fig. 3a, Ohta 1997a), and in some cases,
will lead to a �tness increase (Fig. 2a). Further caveats will apply when, as in real
genetic systems, the strength of selection varies between sites (see, e.g., Solow et al.
1999).

Finally, and more broadly, we have stressed that adjusting parameter k within the
nk framework, has variety of e¤ects on evolutionary dynamics. As such, it should not
be assumed that the �level of epistasis�can be adjusted without also adjusting other
quantities of crucial importance (e.g., the strength of selection acting on each site).
This should be borne in mind when interpreting the results of simulation studies
using the nk model in which k is an important parameter (e.g., Bergman et al. 1995;
Peck 2004).
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Appendix 1

In this appendix we brie�y derive equations (3) and (4), for the expectation and
variance of the log �tness of the globally-optimal genotype and of a randomly-chosen
locally optimal genotype. These are extreme value statistics and the following relies
heavily on Gumbel (1958) throughout. Consider a probability density g(x) with as-
sociated cumulative distribution G(x). We now make a number, Z, of independent
draws from g(x), and denote the largest value drawn by X1. The cumulative distrib-
ution of X1 is simply G(x)Z . When Z is large, and g(x) is normal, this distribution
approaches a Gumbel distribution with expectation and variance E [X1] ' � + 
�,
andVar [X1] ' �2�2=6, with � de�ned by 1�G(�) = 1=Z, � de�ned by 1=� = Zf(�),
and 
 = 0:5772::: is Euler�s constant. To give a clearer indication of the parameter-
dependence, in the text we make the rougher approximations:

E [X1] � �g (2 [ln (Z)� 1])1=2 ;
(15)

Var [X1] ' �2��2g ln
�
Z2=2�

�
=6:

where �g is the standard deviation of g(x). To derive the equations in the text,
consider a single block of loci. The �tness contribution of this block will be the sum
of k + 1 independent random numbers each drawn from the landscape distribution,
eq. (2). Given our choice of distribution, this is equivalent to taking a single draw
from a normal distribution with mean zero and standard deviation �g = (k+1)1=2�;
i.e., the relevant g(x) is the distribution q(x) of eq. (7). The globally optimal �tness
value of a block of loci will be the maximum of Z = a(k+1) draws, since this is total
number of allelic combinations that may be formed in that block. A randomly-chosen
optimal block will be the maximum of Z = (a�1)(k+1)+1 draws, which includes the
locally-optimal sequence and all of its one-mutant neighbours. The equations in the
text relate to the log �tness of a complete genotype, and so are found by multiplying
by expectation and variance of an optimal block, by the number of blocks, n=(k+1).

Appendix 2

In this Appendix, we derive the equation determining the dynamics of the prob-
ability distribution, p(x; t), eq. (8), and some of its properties. We begin with a
stochastic process where time is measured in �events,� and an event is the loss or
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�xation of a mutation that is newly arisen in a given block of loci. After � +1 events
the log �tness contribution of block �, namely X�, obeys

X�(� + 1) = X�(�) + I (X
0
� �X�(�)) (X

0
� �X�(�)) �r;�: (16)

Here, X 0
� is the mutant value of X� and I is an indicator variable which depends

on the �xation probability of eq. (6). At every event, I(x), takes the value 1 with
probability �(ex � 1), when �xation of a mutation occurs and it takes the value 0,
with probability 1 � �(ex � 1), when loss of a mutation occurs. Additionally �r;�
denotes a Kronecker delta and r takes one of the values 1; 2; :::; n=(k + 1) with the
probability that a mutation occurs in block r, namely (k + 1)=n.
From eq. (16), a di¤erence equation for the probability density of X�(�) can be

obtained. Equation (8) closely resembles this di¤erence equation, and follows from
(i) treating � as a continuously varying quantity, governed by a di¤erential equation
(an approximation which follows from the small probability of �xation associated
with each event); and (ii) averaging over an in�nite number of replicate populations,
allowing us to replace � by the expected number of events in time t, namely unN .
The equilibrium result, eq. (9), can be found by using an approximate form of the
�xation probability eq. (6). Speci�cally, we assume selection coe¢ cients are small,
and replace �(ex�y � 1) by �(x� y). From this follows

lim
t!1

p(x; t) ' q(x) exp [2(N � 1)x]R
q(y) exp [2(N � 1)y] dy (17)

(Tachida 1991) which can be con�rmed, numerically, to be stable. Equation (9)
follows from using eq. (7) in eq. (17).
We now derive results for the scaling leading to eq. (13), when the approximation

of eq. (12) applies. In terms of � = x [(k + 1)�2]�1=2, T = 2 (k + 1)3=2 uN�t, Q (�) =
exp

�
��2=2

�
=
p
2� and P (�; T ) =

p
(k + 1)�2p(x; t), the dynamical equation, eq.

(8), takes the form @P (�; T )=@T = Q (�)
R �
�1(� � �)P (�; T )d� � P (�; T )

R1
�
(� �

�)Q (�) d�. This equation contains no parameters. Assuming P (�; 0) is independent
of parameters, it follows that the mean value of � is only a function of T , which we
write as F (T ):

F (T ) =

Z
�P (�; T )d�: (18)

This is the function appearing in eq. (13) of the main text. For the special case
P (�; 0) = Q(�) corresponding to p(x; 0) = q(x), we have determined the exact solu-
tion for P (�; T ):

P (�; T ) = TQ(�)

Z �

�1
exp (��(�)T ) d� (19)
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where �(�) =
R1
�
(�� �)Q (�) d� = Q(�) � (�=2) erfc

�
�=
p
2
�
. In this case, the

function F (T ) follows by noting that �Q(�) = �dQ(�)=d�, allowing us to obtain

F (T ) = T

Z
Q(�) exp (��(�)T ) d�: (20)

From this result, it follows that limT!0 F (T ) =T = 1 (eq. (14)). An approximation
to F (T ) for larger T may be derived as follows. First, noting that Q(�) = d2�(�)=d�2

and integrating by parts in eq. (20) yields F (T ) = T 2
R
[d�(�)=d�]2 e��(�)Td�. Chang-

ing variable of integration from � to � leads to

F (T ) = T 2
Z 1

0

�
�[d�(x)=dx]x=�(�)

�
e��Td�: (21)

Since T appears only in the exponential, large T results in only small � contributing
to the integral and that for small �,

�
�[d�(x)=dx]x=�(�)

�
approximately depends on

� as a power of �. Using �(�) in the range 2 to 6, corresponding to � in the range
1:5� 10�10 to 8:5� 10�3, we �tted a straight line to log(

�
�[d�(x)=dx]x=�(�)

�
) as a

function of log(�): log(
�
�[d�(x)=dx]x=�(�)

�
) ' a+(B�1) log(�) and found a ' 0:88,

B ' 1:95 so �[d�(x)=dx]x=�(�) ' ea�B�1. Substitution of this into eq. (21) yields
F (T ) ' ea�(B)T 2�B where �(�) denotes Euler�s Gamma function and corresponds
to eq. (14) of the main text.
More generally, we expect that F (T ) ' ea(T )�(B(T ))T 2�B(T ) where a(T ) and

B(T ) are, on the scale of T = 106, slowly varying functions of T .
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