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Bouts of vocalizations given by seven red deer stags were recorded over the rutting period, and
homomorphic analysis and hidden Markov models !two techniques typically used for the automatic
recognition of human speech utterances" were used to investigate whether the spectral envelope of
the calls was individually distinctive. Bouts of common roars !the most common call type" were
highly individually distinctive, with an average recognition percentage of 93.5%. A “temporal”
split-sample approach indicated that although in most individuals these identity cues held over the
rutting period, the ability of the models trained with the bouts of roars recorded early in the rut to
correctly classify later vocalizations decreased as the recording date increased. When Markov
models trained using the bouts of common roars were used to classify other call types according to
their individual membership, the classification results indicated that the cues to identity contained in
the common roars were also present in the other call types. This is the first demonstration in
mammals other than primates that individuals have vocal cues to identity that are common to the
different call types that compose their vocal repertoire. © 2006 Acoustical Society of America.
#DOI: 10.1121/1.2358006$

PACS number!s": 43.80.Ka, 43.80.Lb, 43.80.Ev #DOS$ Pages: 4080–4089

I. INTRODUCTION

Individual differences in the acoustic structure of vocal-
izations have been described in several mammal species
!e.g., spider monkeys, Ateles geoffroyi: Champman and
Weary, 1990; mouse lemurs, Microcebus murinus: Zimmer-
man and Lerch, 1993; timber wolves, Canis lupus: Tooze et
al., 1990; arctic foxes, Alopex lagopus: Frommolt et al.,
1997; swift foxes, Vulpes velox: Darden et al., 2003; spotted
hyenas, Crocuta crocuta: East and Hofer, 1991; harbour
seals, Phoca vitulina: Hanggi and Schusterman, 1994; sea
otters, Enhydra lutris: McShane et al., 1995; elephants, Lox-
odonta africana: McComb et al., 2003; Clemins et al., 2005;
bottlenose dolphins, Tursiops truncatus: Tyack, 1986; Sayigh
et al., 1990; Janik et al., 2006". In deer, studies of individual
recognition based on acoustic cues have focused on the vo-
calizations emitted during early mother/young interactions,
and have described how information on individual identity
present in vocalizations facilitated either mutual !reindeer,
Rangifer tarandus: Espmark, 1971, 1975" or partial !red
deer: Vankova and Malek, 1997; Vankova et al., 1997" rec-
ognition. Individual vocal cues have also been found in the
barks given by roe deer !Capreolus capreolus" bucks during
inter- and intraspecific interactions !Reby et al., 1999" and in
the groans of fallow deer !Dama dama" bucks during the

rutting period !Reby et al., 1998". Although roaring in red
deer stags has been extensively studied !Clutton-Brock and
Albon, 1979; McComb, 1987, 1988, 1991; Reby et al., 2001;
Reby and McComb, 2003a, 2003b; Reby et al., 2005", the
potential for red deer rutting calls to convey information on
the identity of the caller has not been systematically investi-
gated. Red deer stags give loud and repeated calls during the
period of reproduction. Although the roar has received most
attention red deer stags actually give four different call types:
common roars, harsh roars, chase barks, and barks, each dif-
fering in their temporal and spectral acoustic structure, and
each being associated with specific postures, social contexts
and motivational levels !Reby and McComb, 2003b".

The aim of this study is to evaluate the interindividual
variability of the most frequent call type !the common roar"
and to assess the temporal variation in this identity informa-
tion over the rutting period. We also assess whether the iden-
tity information we detect in the common roars is also
present in the other three call types !harsh roars, chase barks,
and barks". As three of the studied call types !common roars,
harsh roars, and chase barks" are typically composed of more
than one vocalization, we use signal detection and classifica-
tion tools that are compatible with the analysis of series of
nonstereotypical signals !rather than focusing our analyses
on the first vocalization in the series or treating each vocal-
ization as independent". For this, we use digital signal pro-
cessing techniques initially developed for the automatic clas-a"Electronic mail: reby@sussex.ac.uk
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sification of human speech utterances, and based on the
source-filter theory of voice production.

Despite the fact that the source-filter theory was initially
designed for the study of human speech production, several
recent studies have shown that it can be successfully gener-
alized to most vocalizations emitted by terrestrial mamma-
lian species !Fitch and Hauser, 1995; Fitch, 1997; Rendall et
al., 1998; Fitch and Reby, 2001; Reby and McComb, 2003a,
2003b; McComb et al., 2003; Reby et al., 2005". According
to this theory, the spectral structure of mammalian voiced
vocalizations results from two successive and independent
mechanisms. The glottal wave is generated by the vibration
of the vocal folds caused by the passage of air through the
closed glottis. It is characterized by its fundamental fre-
quency !F0" and its series of harmonic overtones, which are
determined by variation in the subglottal pressure and ten-
sion of vocal folds !Titze, 1994" and affect the pitch of the
vocalization. The relative amplitude of these frequency com-
ponents is then modulated due to resonances occurring in the
supralaryngeal vocal tract. This supralaryngeal filtering gen-
erates broadband frequency components in the sound spec-
trum, which are called vocal tract resonances or formants.
Variation of the relative positions and movement of articula-
tors !the larynx, mandibles, tongue, and lips" throughout the
call and among different call types will affect the shape of
the vocal tract and therefore the formant characteristics !Lie-
bermann, 1968, 1969; Fitch and Hauser, 1995; McComb,
1988; Owren and Rendall, 1997". Both the individual mor-
phology of the animal’s vocal tract and the individual varia-
tion in its operation are likely to yield individual differences
in the central frequencies and bandwidth of formant frequen-
cies, affecting the “timbre” of the vocal signal.

Analyses of the fundamental frequency in red deer roars
have suggested that the fundamental frequency varies with
motivational state !although the average F0 in adults is
107 Hz, it can drop as low as 20 Hz in “lazy roars”" !Reby
and McComb, 2003a, 2003b, and unpublished data". More-
over, three of the four call types studied here are either
largely !harsh roars" or totally !chase barks and single barks"
aperiodic, and therefore do not contain measurable funda-
mental frequency and harmonics. On this basis, we decided
to focus instead on interindividual variation in the filter-
related formant frequencies !as in Rendall et al., 1998". In
order to separate the characteristics of the formant frequen-
cies !filter" from the fundamental frequency contour !source",
we use “homomorphic analysis,” a method based on the
source-filter paradigm of voice production !Oppenheim and
Schafer, 1968". We then run a series of classification experi-
ments using hidden Markov models, in which the bouts of
roars are modeled as a succession of silences and roars, and
each roar is modeled as a succession of states of the filter-
related frequency components. First, we train a model of
each individual’s bout of roars using the most commonly
uttered vocalization in the repertoire, the bout of common
roars. Different identification tests are then performed to
evaluate the model’s ability to recognize and predict the in-
dividual membership of these bouts of vocalizations. Second,
we test the stability of the information on individual identity
conveyed by the formants throughout the rut. For this, we

train a model with the bouts uttered in the first days of vocal
activity, and we test the remaining bouts as additional cases.
Finally, we test whether this individuality holds across the
different vocalizations that compose the vocal repertoire of
the stags during the rut, i.e., whether red deer stags have
individual voice characteristics. For this, we classify the
other call types as additional cases, using a model exclu-
sively trained with bouts of common roars.

II. DATA

A. Study animals

We recorded the vocalizations of three adult red deer
stags !aged 5, 9, and 12" at the Picarel red deer farm !South-
west France" between September 25 and October 18, 1995,
and from four additional adult stags !aged 5, 6, 6, and 8
years, and, respectively, weighing 210, 210, 215, and
230 kg" at the INRA experimental station of Redon !Puy de
Dôme" between September 13 and October 4, 1996.

B. Sound recording

Vocalizations were recorded with a Telinga pro-III-S
/DAT Mike microphone and a DAT Sony TCD7 recorder,
!amplitude resolution: 16 bits, sampling rate: 48 kHz". Digi-
tal signals were directly transferred on to a Quadra 950 Ma-
cintosh computer using an Audiomedia II sound card and
Sound Designer software. Each sound file consisted of a se-
ries !bout" of 1–10 consecutive vocalizations !roars" uttered
by a stag during a single exhalation. Canary 1.2 !Charif et
al., 1995" was used to edit spectrograms of vocalizations. We
considered 696 bouts of vocalizations from the seven males.
Bouts were classified into four different categories on the
basis of their acoustic structure and the postural and social
context in which they were given.

We recorded 625 bouts of common roars !Fig. 1" from

FIG. 1. Narrow band spectrogram of a bout of common roars. The common
roar typically includes three phases, A, B, and C. In phase A, the formants
fall while the fundamental frequency increases. During phase B the formants
are more stationary. Phase C is shorter, with rising formants and a decreas-
ing fundamental frequency.
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the seven stags, regularly distributed across the periods of
vocal activity !Table I". Bouts of common roars contain be-
tween 1 and 11 roars, and each roar within the bout is typi-
cally composed of three distinct phases that reflect changes
in vocal fold vibration and vocal tract shape that occur dur-
ing the production of the roar #described in detail in Fitch
and Reby !2001" and in Reby and McComb !2003a, 2003b"$.
In the first phase the stag lowers its larynx and extends its
neck to lengthen its vocal tract, inducing the decrease of the
formants frequencies and spacing. During the second phase,
the vocal tract remains extended and formant spacing re-
mains minimal. Finally, the stag relaxes its vocal tract in the
last !and usually shorter" phase, causing formants to rise. We
recorded 40 bouts of harsh roars from six different individu-
als !Fig. 2". These bouts are less frequent, and usually char-
acteristic of high motivational states following a contest or a
period of intensive herding. Typically the bout starts with a
series of short roars !also called grunts" followed by a couple
of longer roars with comparable formants. The harsh roar is
louder and less periodic than the common roar, and often
contains no noticeable harmonics. It is also characterized by
little or no formant modulation, reflecting the static body
posture adopted by the animal while producing a bout of

harsh roars !the larynx is fully lowered and the neck fully
extended before the onset of the call and both remain almost
static throughout the production of the bout". We also re-
corded 13 series of chase barks !Fig. 3" from three different
stags. These calls are short series of short, loud, and explo-
sive barks typically emitted by stags while they chase a hind
or a young stag !Clutton-Brock et al., 1982". Finally, we
recorded 18 single barks !Fig. 4" from five different stags.
These louder and longer calls are typically given by stags
immediately before a bout of roaring or sometimes singly,
and appear to be directed at females !Reby and McComb,
2003b".

III. METHODS

A. Signal processing and analyses

Sound files were low-pass filtered, converted to 8 bits,
8 kHz, SunAU files format, and transferred to a Sun SPARC
station. In order to detect the time labels indicating the be-
ginning and ending of each roar in the recorded bouts, we
used a preprocessing automated segmentation technique fol-
lowed by a relative threshold voice detection technique.

The segmentation was performed with the a priori

TABLE I. Distribution of stags’ recordings across the period of vocal activity. Each cell represents the number
or recorded bouts of common roars. Day 1 is the first day when the stag is heard to vocalize. Bold figures
indicate the vocalizations used in the training set of the “temporal” classification test.

Days of recording

Stag 1 2 3 4 5 6 8 10 11 12 13 14 15 16 18 19 22 23 24 25

1 14 35 24 3
2 20 6 11 24 22 54 28
3 22 24 7 13 17 7 7
4 5 10 11 26 43
5 7 3 8 4 13 9 16 5 3
6 5 2 2 31 4
7 18 48 3 9 5 14 1 11

FIG. 2. Narrow band spectrogram of a bout of harsh roars. Compared to
common roars, harsh roars are louder, atonal, and characterized by little
frequency or energy modulation.

FIG. 3. Narrow band spectrogram of a chase bark series. Chase barks are
short vocalizations that are emitted in series.
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“forward-backward divergence” algorithm !André-Obrecht,
1988". By detecting changes in the parameters of an autore-
gressive model, this method fragments the signal into sta-
tionary segments of variable size, on which statistical param-
eters can be computed.

Then, in order to define the vocalization boundaries in
the sound file by separating intervals of “silence” from inter-
vals of “vocalization,” we used the relative energy of each
segment. For this, we !1" identified the least energetic seg-
ment in the bout, presumably consisting of background
noise; !2" calculated the difference between the energy of

each segment in the bout, and the energy of the least ener-
getic one; !3" calculated the ratio of each segment’s differ-
ences to the highest difference. If Ei is the energy of a seg-
ment i, and n the number of segments in the bout, the ratio k
for the considered segment was calculated as follows:

ki =
Ei−MINi=1

n !Ei"

MAX#Ei−MINi=1
n !Ei"$

.

Each segment was considered as vocalization if this ratio
was greater than 0.75, and silence !or background noise" if it
was less than 0.75. This threshold value was determined ex-
perimentally with the aim of minimizing the number of mis-
classified segments. Examination of spectrograms showed
that this technique was highly successful at identifying
voiced segments; almost all the misclassified segments were
very short segments located at the end of the vocalizations.
Consecutive segments of silence were then merged into si-
lence phases, and consecutive vocalization segments were
merged into vocalization phases. An example of this auto-
mated segmentation and energy threshold computation is
presented in Fig. 5. The resulting time labels were used to
indicate the location of common roars and silences in the
bout file for the training phase of the hidden Markov model
classifications.

As mentioned previously, we used homomorphic analy-
sis !Oppenheim and Schafer, 1968; Deller, 1999; Quatieri,
2002" to separate the contributions of the excitation source
and the vocal tract filter to the sound wave. According to the
source-filter theory, the sound wave is produced by filtering
the output of the excitation source through the vocal tract
filter. In the wave form domain this process can be thought
of as the convolution of the excitation wave form with the

FIG. 4. Narrow band spectrogram of a single bark. Single barks are typi-
cally longer than chase barks.

FIG. 5. Automatic detection of vocal-
ization and silence phases in a bout of
common roars. !a" Segmentation: the
“forward-backward divergence” algo-
rithm fragments the signal into station-
ary segments of variable size. !b" En-
ergy thresholding: segments are
classified as silence or vocalization us-
ing the relative energy of each seg-
ment. Consecutive silence segments
are merged into silence phases and
consecutive vocalization segments are
merged into vocalization phases.
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impulse response of the vocal tract. In the spectral domain
this same process can be thought of as multiplying the spec-
trum of the excitation function by the vocal tract’s transfer
function. Taking the logarithm of the energy spectrum
changes this multiplication to an addition, and homomorphic
analysis decomposes these additive components of the log
spectrum into cepstral components, in an exactly analogous
way to that in which frequency components are obtained
from a complex sound wave. The low “quefrency” cepstral
coefficients represent slowly changing aspects of the
spectrum—namely the formant frequencies imposed by the
vocal tract filter, whereas the high quefrency cepstral coeffi-
cients represent rapidly changing aspects of the spectrum—
the spectral ripple that is the harmonic structure !the funda-
mental frequency and its harmonic series". In order to
selectively capture the contribution of the vocal tract we used
the low quefrency cepstral coefficients. The application of
cepstral analysis to a red deer roar is represented in Fig. 6.

When the Mel scale !Stevens et al., 1937", a human
logarithmic perceptual scale, is applied to the signal in the
frequency domain in order to reduce the dimensionality of
the feature vector, these coefficients are called Mel frequency
cepstrum coefficients !MFCC". The use of the Mel scale in
the classification of red deer vocalizations is supported by
the fact that the hearing range of hoofed mammals is com-
parable to that of humans !Flydal et al., 2001", and that stud-
ies of the mammalian auditory system indicate that frequen-
cies are perceived along a roughly logarithmic scale !Fay,
1974; Greenwood, 1990; Clemins, 2005". In our study, we
analyzed windows of 25 ms !200 samples at the 8 kHz sam-
pling rate", with a 10 ms overlap. Each window was consid-
ered stationary, and the first eight MFCC were retained. For

each recorded roar, we obtained a sequence of observation
vectors Y = !Y1 ,Y2 , . . . ,YT" each corresponding to the eight
cepstral coefficients of the T subsequent analysis windows.

B. Models

Hidden Markov models are doubly stochastic processes
characterized by an underlying stochastic process that is not
observable !it is hidden", but can be assessed through another
stochastic process that produces the sequence of observed
symbols or vectors. Hidden Markov models !HMM"
!Rabiner and Juang, 1986" are typically used to model the
processes underlying a sequential behavior whose inner
workings cannot be directly observed. Here, we make the
hypothesis that interindividual differences in the way vocal-
izations are produced will result in observable interindividual
differences in the acoustic structure of the vocalizations. Al-
though we cannot directly observe the individual vocal ges-
tures that are at the origin of the observed individual differ-
ences in the acoustic structure of the calls, we can use a
HMM to model these underlying mechanisms, and then use
these models to predict the individual membership of addi-
tional vocalizations. The analyses were run using HTK ver-
sion 2.2 !Cambridge University Engineering Department".
Our Markov model analysis can be formally described as
follows: our purpose was to identify one deer among N
through the analysis of its bout of vocalization. As a bout
consists of a series including up to 11 vocalizations, the bout
model Mbou

k of the deer Dk is sequence of alternating silence
models Msil and vocalization models Mvoc

k , where the number
of vocalizations is variable #Fig. 7!a"$. Each elementary
model !Msil, Mvoc

k , k=1, . . . ,N" is a HMM with a Bakis to-

FIG. 6. Homomorphic analysis performed on a 512 samples window of a red deer stag common roar !sampling rate: 8 kHz". Panel A represents the sound
wave in the time domain; the signal is periodic with a period T0. Panel B represents the spectrum !fast Fourier transform" of this sample, with the fundamental
frequency !F0" and its harmonic series !the first six harmonics H1–H6 are labeled". Panel C shows the cepstrum Yn. The cepstrum is calculated by taking the
inverse Fourier transform of the logarithm of the energy spectrum of the signal. The contribution of the glottal source is represented by impulses spaced by
N0 samples !corresponding to the pitch period", while the contribution of the filter is represented by the lower part of the cepstrum. Finally, panel D shows
the frequency spectrum obtained by applying a Fourier transform to the first eight coefficients of the cepstrum, illustrating the smoothing effect of the
deconvolution process.
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pology #Fig. 7!b"$. In a Bakis topology, each state can be
repeated or omitted. This topology is used in speech recog-
nition in order to take into account the rhythm differences
that typically occur in speech sequences. In the case of red
deer roaring, this topology enables the HMM automates to
model the variability that characterizes deer vocalizations.

The silence model Msil is independent of the considered
deer Dk, so that:

Mbou
k = !Msil,Mvoc

k " .

In our study, the hidden process is a finite state, first order
Markov chain, meaning that each transition only depends on
the very preceding state !and not on the way that state was
reached". At each time step, a new state is entered based
upon a transition probability distribution !ai,j" which depends
on the previous state !the Markov property", and an observa-
tion output symbol !or vector Y" is produced according to a
probability distribution which depends on the current state
!bj". In our case, the distributions bj are Gaussian mixture
models !order 5". During the training phase, we use a subset
of records of each deer Dk to adjust the parameters of the
corresponding model Mvoc

k !ai,j
k ,bj

k", using the Baum Welch
algorithm !Rabiner and Juang, 1986". The silence model
Msil is estimated using all the silence segments available
within the training set. During the test phase #performed
using the Viterbi algorithm !Forney, 1973"$, for each un-
known bout characterized by an observation vector se-
quence Y = !Y1 ,Y2 , . . . ,YT", and for each individual bout of
roar model Mbou

k , the likelihood P!Y %Mbou
k " is calculated.

The predicted membership is determined by the best like-
lihood.

C. Classification experiments

Several data sets were constituted in relation to the in-
dividual and call type memberships of the vocalization bouts.
The first stages !training stage and validation stage" con-
sisted of training the HMM to establish a vocalization model
for each individual, with all the 654 bouts of roars. All these
bouts were then reclassified using this model in order to test
its ability to memorize the dataset !reclassification perfor-
mance". In the second stage, we tested the model’s ability to
generalize by performing a random cross-validation test.
This evaluated the model’s ability to classify additional vo-
calizations !prediction performance". For this purpose, we
trained a HMM with a sample which constituted two thirds
of each individual’s vocalizations !N=436". This model was
then tested with its validation set of remaining vocalizations
!N=218". In order to assess the possible degradation of
acoustic cues to identity in the course of the rutting period,
we conducted a temporal cross validation. To achieve this,
we constituted individual training sets including only the vo-
calizations recorded in the early day!s" of vocal activity !N
=165, Table I". We performed a logistic regression on the
classification results of the vocalizations recorded later in the
rut !N=489" in order to assess the time-related change of the
prediction performances of each individual’s model. To test
if the individuality modeled in common roars holds in the
three other vocalization types, we used the subset of com-
mon roar bouts as the training set !n=625" and all the other
vocalizations !n=71" as test sets. Because stags relatively
rarely produce harsh roars, chase barks, and barks, our vo-
calizations sets are unbalanced among call types, with
samples too small to conduct a split-sample approach !Ren-
dall et al., 1998". However, in our case, from the biological
point of view, our approach is consistent as recipients are
more likely to learn individuality from the most currently
uttered call type. Therefore, we do not compare individuality
among call types, but we instead test if individuality in the
most currently emitted one carries over into the others.

IV. RESULTS

A. Classification of common roars

In the validation stage, 93.4% of the roars were correctly
attributed !Table II", with individual scores ranging from

FIG. 7. !a" The model of the roar bout is a succession of silences !Msil" and
vocalizations !Mvoc". The silence model is independent of the considered
individuals. !b" In contrast, each individual has its own roar model, a hidden
Markov model of three states, where each state emits a vector of eight
cepstral coefficients according to a Gaussian mixture probability distribu-
tion. Each state is assumed to correspond to one of the three phases that
characterize the roar !see Fig. 1".

TABLE II. Confusion matrix from the hidden Markov model validation
classification computed on the cepstral coefficients from 654 roaring bouts
from seven red deer stags. 93.4% of tested bouts are correctly classified.

Predicted group membership

Stag 1 2 3 4 5 6 7
%

correct N

1 73 1 0 0 1 0 1 96.0 76
2 1 149 9 1 1 0 4 90.3 165
3 0 10 87 0 0 0 0 89.7 97
4 0 1 0 94 0 0 0 98.9 95
5 0 0 0 0 63 4 1 92.6 68
6 0 1 0 0 3 38 2 86.4 44
7 1 0 0 0 0 1 107 98.1 109
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86.4% to 98.9%. In the one-third holdout cross validation,
84.9% of the 218 randomly selected and tested bouts of com-
mon roars are correctly classified !Table III". Individual per-
centages range between 60.0% and 96.0%.

B. Degradation of individuality in common roars with
time

In the temporal cross validation, 58.1% of the roars were
correctly classified with models constituted with the roars
uttered on the first days of vocal activity !Table IV". Percent-
ages were highly variable between individuals, ranging from
2.9% for stag 6 to 85.7% for stag 7. A logistic regression
performed on the classification scores of each individual
shows that, for three of the seven stags !stag 1: R=−0.361,
p!0.005; stag 2: R=−0.205, p!0.005, and stag 4: R=
−0.114, p=0.06" the percentage of correctly classified bouts
decreases significantly across the period of vocal activity.

C. Across call recognition

In the cross validation performed with the model trained
on common roars, 63.4% of the chase barks, harsh roars, and
barks are correctly classified !Table V". Last, when chase
barks, harsh roars, and barks were included with the common
roars in the training set, in the validation phase, the classifi-

cation score of the common roars was not affected !93.3%"
and 91.5% of the calls from the three other types were cor-
rectly recognized.

V. CONCLUSIONS

A. Automatic analysis of vocalization sequences

In this paper, we use entirely automated analysis tech-
niques that are particularly appropriate for the processing of
large amounts of acoustic data of variable format. The auto-
matic segmentation is particularly well adapted for the detec-
tion of calls given in series, and it could be generalized for
the automatic detection and identification of animal signals
in the context of wildlife population monitoring for conser-
vation or management purposes. The homomorphic analysis
is particularly appropriate for disentangling the formants
from the fundamental frequency contour in harmonically rich
vocalizations, and it has the advantage of characterizing the
filter function with a set of largely uncorrelated coefficients
suitable for multivariate classifications !Clemins et al.,
2005".

In red deer roars, the movement of the larynx causes
variation in the filter components. The use of Markov models

TABLE IV. Confusion matrix from the hidden Markov model classification
computed on the cepstral coefficients from 654 roaring bouts from seven red
deer stags. The model is trained with the bouts uttered on the first days of
vocal activity !N=165", and the bouts uttered during the rest of the period of
vocal activity !N=489" are tested as additional cases. 58.1% of tested bouts
are correctly classified.

Predicted group membership

Stag 1 2 3 4 5 6 7
%

correct N

1 49 8 3 1 0 0 1 79.0 62
2 0 95 35 4 1 0 10 65.5 145
3 1 15 56 0 0 0 3 74.7 75
4 6 1 17 35 0 0 21 43.8 80
5 0 3 0 0 12 4 21 24.0 50
6 0 1 0 0 3 1 30 2.9 35
7 2 0 1 0 1 2 36 85.7 42

TABLE V. Classification of chase barks !cb", barks !ba", and harsh roars !hr" from six stags, using Hidden Markov Models trained with the cepstral
coefficients from 625 common roars from seven red deer stags. 63.4% correctly classified. Chase barks: 84.6%, N=13; barks: 55.5%, N=18; harsh roars: 60%,
N=40.

Predicted group membership

1 2 3 4 5 6 7

Stag cb ba hr cb ba hr cb ba hr cb ba hr cb ba hr cb ba hr cb ba hr N correct N total

1 - - 1 - - - - - - - - - - - - - - - - - - 1 1
2 - - - 10 - 8 - - 1 - - - - 1 - - - - - - - 18 20
3 - - - - - - - - - - - - - - - - - - - - - - -
4 - - - - 1 7 - - 1 - - 6 - - - - - - - 1 - 6 16
5 - - - - 2 - - - - - - - 1 9 4 - 1 - - - 1 14 18
6 - - - - - - - - - - - - 2 1 1 - - - - - - 0 4
7 - - - - - - - - - - - - - - 5 - 1 - - 1 5 6 12

TABLE III. Confusion matrix from the hidden Markov model classification
computed on the cepstral coefficients from 654 roaring bouts from seven red
deer stags. The model is trained with two-thirds of the available bouts ran-
domly selected within each individual, and the remaining third !N=218" are
tested as additional cases. 84.9% of tested bouts are correctly classified.

Predicted group membership

Stag 1 2 3 4 5 6 7
%

correct N

1 24 0 0 1 0 0 0 96.0 25
2 2 48 4 1 0 0 0 87.3 55
3 0 5 27 0 0 0 0 84.4 32
4 0 1 0 30 0 0 1 93.8 32
5 0 1 0 0 16 1 5 69.6 23
6 0 0 1 0 4 9 1 60.0 15
7 0 0 0 0 4 1 31 86.1 36
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enables us to take into account these different states as well
as the transition probabilities between these states. However,
it is important to note that the process being hidden, we
cannot verify whether the states used in the model actually
correspond to those anticipated on the basis of our knowl-
edge of formants production in red deer roaring. It would be
interesting in further investigations to assess the effect of
varying the number of states and the possible transitions on
the predictive performance of the different models. This
method has recently been applied successfully to the auto-
matic recognition of call types and individuals from elephant
vocalizations !Clemins et al., 2005". The use of Markov
models also enables us to include bouts of vocalizations.
Such techniques are particularly suited for the study of the
acoustic variability of vocalizations emitted in bouts or se-
ries, which is the case in many animal acoustic signals.

B. Individual differences in common roars

The results of the validation phase and 1/3 random
sample test classifications show that common roar bouts ut-
tered during the rutting period by red deer stags are highly
individually structured. Individuality is relatively stable
across the period of vocal activity, as a model trained with
the vocalizations uttered over a few days at the onset of
vocal activity was sufficient to predict the group membership
of a majority of the vocalizations uttered later in the rut. In
three of the stags studied, we observe a significant decrease
in membership prediction, probably resulting from a progres-
sive alteration of the formant characteristics. The very low
score obtained for stag 6 may indicate that a drastic change
had occurred between the roars given in the first days and
those from the rest of the rutting period. It may also be a
consequence of the small number of bouts available in the
training set !n=9" for this individual.

These results suggest that cues to caller’s identity exist
in the filter-related components of red deer stags’ common
roars. This variability is likely to result from interindividual
differences in the shape of the vocal tract. These differences
may have three origins: !1" differences in body size affecting
vocal tract length, !Reby and McComb, 2003a", !2" interin-
dividual differences in vocal tract shape independent from
body size, and !3" interindividual differences in vocal gesture
control of vocal tract length and shape involving larynx,
mandible, tongue, and lip positions.

It is notable that classification percentages indicate that
cues to individual identity also appear to vary over time. This
suggests that the temporal approach described in this paper
should be used more often when designing training and test-
ing sets in studies of individual differences based on model-
ing and classification experiments. Indeed, pooling record-
ings from different dates, and using classifications
percentages from validation phases, leave-one-out valida-
tions or any cross validations where recordings made on the
same date as the tested case!s" are included in the training
sample is very likely to result in serious over-estimations of
the actual predictive potential of the models.

C. Across calls recognition

When we tested the membership of the three other com-
ponents of the males’ rutting vocal repertoire !harsh roars,
chase barks, and barks" using models trained on the cepstral
coefficients of the 625 common roars, we obtained percent-
ages of correct classification higher than expected if the
membership had been determined randomly. Our sample is
too small and our data set is too unbalanced among individu-
als and call types to allow a comparison of the percentage of
recognition between the three types of vocalizations. Never-
theless, our results suggest that although the four vocaliza-
tions are produced in different body postures, likely to affect
the length and shape of the vocal tract, their formant frequen-
cies share cues to identity. This result indicates that red deer
stag have individual voice characteristics, as seen in humans
!Doddington, 1985; Furui, 1997" and rhesus monkeys !Ren-
dall et al., 1998". The percentages of correct classification
obtained in the validation phase using models trained with
tokens from all four vocalization types are higher, showing
that the individuality of the voice may consist of individual
features shared by all call types as well as individual features
specific to each call type !the later being partially lost when
a particular call type is not used for the training of the
model".

This is the first demonstration of across call individual-
ity in a nonprimate mammal !for primates, see Cheney and
Seyfarth, 1988; Rendall et al., 1998". Indeed, to our knowl-
edge, all previous studies on individual cues in acoustic com-
munication in nonprimate mammals have been conducted on
the individual differences occurring within each type of call,
never across several types of calls !Lambrecht and Dhondt,
1995". Rendall et al. !1998" found more mixed evidence for
individual voice characteristics across the vocal repertoire of
rhesus monkey Macaca mulatta !harmonically rich coos
were more individually distinctive than either grunts or noisy
screams", raising the interesting possibility of interspecific
differences in the “individual voice” phenomenon. The abil-
ity of red deer receivers to discriminate the identity informa-
tion discussed above and to transfer it from one call type to
another could be assessed by means of playback experiments
using the habituation/discrimination paradigm !Rendall et
al., 1996; Reby et al., 2001".

D. Potential biological significance of cues to identity
in red deer roaring

Studying the acoustic structure of the first roar emitted
in a bout, Reby and McComb !2003a" have found that in red
deer, formant frequencies and their spacing decreased with
increasing age and/or body weight, and that stags attended to
these cues during agonistic interactions !Reby et al., 2005".
Formant spacing is correlated with the length of the vocal
tract and therefore indirectly related to overall body size and
body weight. In the present study the recorded males are all
adult farmed animals, which are likely to have reached their
maximum body weight. The body weight of the four stags
for which we had access to biometrical data ranged between
210 and 230 kg, and their roars were characterized by very
similar formant frequency spacing corresponding to esti-
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mated vocal tract lengths of 81.0, 81.5, 81.5, and 81.8 cm
!Reby and McComb, 2003a". Therefore, the individual dif-
ferences modeled here are more likely to rest in the relative
positioning and bandwidth of individual formants rather than
in the size-related overall spacing of the formants in the fre-
quency domain. Playback experiments have suggested that
females may be preferentially attracted to males with high
roaring rates, but indifferent to differences in roar pitch !Mc-
Comb, 1991". As females often leave or enter male harems,
McComb !1991" suggested that females choose which harem
to join on the basis of male roaring rate, a potentially reliable
cue of the stag’s fitness. More recently, Reby et al. !2001"
have shown that red deer hinds could discriminate between
the common roars of their current harem holder and the roars
of neighboring males !Reby et al., 2001", and suggested that
estrus hinds may choose to mate with stags that they are
most familiar with !familiarity being an indicator of the
stag’s ability to hold mating stands for significant periods", a
choice that may partially rely on acoustic individual recog-
nition. The results presented here suggest that hinds may use
characteristics of formant frequencies to achieve this indi-
vidual discrimination, and that these characteristics are avail-
able both within and across call types, constituting the
equivalent of an individual voice.
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