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A one locus, biased mutation
model and its equivalence to an

unbiased model

D. Waxman and J. R. Peck
Centre for the Study of Evolution,

School of Life Sciences
University of Sussex,

Brighton BN1 9QG, Sussex, UK.

Abstract

Experimental data suggests that for some continuously varying characters under sta-
bilising selection, mutation may cause a mean change in the value of the character. A
one locus, mathematical model of a continuously varying biological character with this
property of biased mutation is investigated. Via a mathematical transformation, the
equilibrium equation describing a large population of individuals is reduced to the equi-
librium equation describing a mutationally unbiased problem. Knowledge of an unbiased
problem is thus su¢ cient to determine all equilibrium properties of the corresponding
biased problem. In the biased mutation problem, the dependence of the mean equilib-
rium value of the character, as a function of the mutational bias, is non monotonic and
remains small, for all levels of mutational bias. The analysis presented in this work sheds
new light on Turelli�s House of Cards approximation.
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1 Introduction

When genetic material of living organisms is duplicated, during the act of reproduction,
there is the possibility of copying errors (mutations). Here, we concentrate on mutations
that a¤ect characters possessing the feature of continuous variation, such as the height
of an individual (Lynch and Walsh, 1998). Mutation is not solely characterised by its
probability of occurrence; amongst other things, it is characterised by the distribution of
changes it induces. While some mutations tend to increase the value of a character, others
decrease it and in the recent past it has typically been assumed that, over the population
as a whole, the mean mutational change in the character is zero (see e.g. Lande, 1976;
Bulmer, 1980; Turelli, 1984). There is no a priori reason for this assumption of mutation
causing zero mean genotypic change and there is some experimental data to the contrary
(Santiago et. al., 1992; Lyman, et. al., 1996; Mackay, 1996; Keightley and Ohnishi,
1998). Here, we consider a simple (possibly the simplest) model of a continuously varying
character of a sexual population, that incorporates the possibility of mutation causing
a mean change in the value of the character. We note that a one locus model may, at
the level of alleles controlling the trait, di¤er signi�cantly from a mutationally biased
multilocus model, the latter having been investigated elsewhere (Waxman and Peck,
2003). In particular, in the multilocus model, it has been found that there is generally a
persistent turnover - and hence lack of equilibration - of alleles at loci a¤ecting the trait
- unless genetic constraint (Zeng and Cockerham, 1993) is incorporated into the model.
No such allelic turnover occurs in a one locus model and in the present work no form
of genetic constraint is included. By contrast to the behaviour at the allelic level, the
trait itself rapidly equilibrates (Waxman and Peck, 2003). The present work provides
an explicit example of the behaviour of a trait when mutation causes a mean change
in its value. We also provide a novel calculational scheme that may have applications
elsewhere.

2 Model

Consider a very large, e¤ectively in�nite population of individuals that possess non-
overlapping generations. The e¤ect of genetic drift is negligible, in such a population,
and the model can be treated as entirely deterministic. Individuals are characterised
by a single continuously-varying character and the probability that individuals survive
from birth to reproductive maturity - their viability - is determined by the value of
the character they possess. Individuals are taken to be diploid and reproduce sexually,
with two genes within an individual determining the value of the character. There are
negligible di¤erences in the viability of individuals of the two sexes of common character
value. This is thus a one locus, sexual model with discrete generations.

To proceed, let x (y) label the allele of maternal (paternal) origin in an individual. Let
the distribution of maternal origin alleles in one generation, immediately after formation
of zygotes, be denoted by �(x). Apart, possibly, the initial generation, the distribution
of alleles of paternal origin is identical to that of maternal origin. Assuming random
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mating, the distribution of the alleles in zygotes is given by �(x)�(y). To proceed further,
we assume the value of the character of an organism is additively determined from their
two genes. The genotypic value of the character, G, is thus taken as G = x + y,
with the contribution (or e¤ect) of an allele, to the character (x or y), having been
taken to coincide with the label of the allele. Following Crow and Kimura (1964), we
assume that x�s and y�s can take continuous values in the range �1 to 1. Since
individuals with di¤erent genotypic values, i.e. with di¤erent G�s, generally have a
di¤erent viabilities, the distribution of alleles in adults generally di¤ers from �(x)�(y)
and is given by w(x + y)�(x)�(y)= �w where w(G) is proportional to the viability of
individuals with character value G and the presence of �w =

R
w(x + y)�(x)�(y)dxdy

(the mean �tness of the population), ensures normalisation of the distribution. We
take w(G) = 1 � s (G�Gopt)2 where s is a positive constant that characterises the
intensity of selection. The quantity Gopt is another constant and we work under the
assumption that all values of G of non-negligible frequency are su¢ ciently close to Gopt
that w(G) does not become negative. The adopted form of w(G), in the absence of
other evolutionary processes, tends to cause the value of the character, G, to approach
its �optimal value,�Gopt, over time, and a viability depending quadratically on G is
a mathematically tractable form of stabilising selection with similar properties to a
Gaussian function exp(�s (G�Gopt)2) (Haldane, 1954).

Mature adults duplicate their genetic material when they produce gametes and this
entails copying errors - mutations, which occur to each allele independently. The prob-
ability of any allele mutating per generation is written as �. Given a mutation does
occur, we take the e¤ect of the mutated allele, x, to have the distribution f(x� xp � b)
where xp is the e¤ect of the parental gene, of which the mutated gene is an imperfect
copy, and the function f(�) is a Gaussian distribution with zero mean and a variance of
m2

f(x) =

r
1

2�m2
exp

�
� x2

2m2

�
: (1)

The parameter b characterises the mean change in x caused by a mutation - the mu-
tational bias. In a mutated individual, this mean change, relative to the (unmutated)
parental value, is

R
(x � xp)f(x � xp � b)dx = b (here and elsewhere, integrals with

unspeci�ed limits range from �1 to 1). If b = 0 we have the most conventional,
unconstrained model of mutation (see e.g. Lande, 1976; Turelli, 1984).

The gametes produced by an individual contain a copy of only one of the individ-
ual�s two alleles. With equal probability, only one of the two alleles of an individual
is deposited into a gamete and this, and the perfect or imperfect transmission (mu-
tation) of alleles between parent and gamete is taken into account by the function
K(xjy; z) = 1

2

P
�=y;z [(1� �)�(x� �) + �f(x� � � b)]. In terms of this function, the
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distribution of alleles in gametes in the next generation, written �0(x), is given by

�0(x) = �w�1
Z
K(xjy; z)w(y + z)�(y)�(z)dydz

(2)

�w =

Z
w(y + z)�(y)�(z)dydz:

As it stands, Eq. (2) is non-linear and, by virtue of the integration, non-local. To make
progress, let us henceforth restrict all considerations to equilibrium, where �0(x) = �(x).
With no approximation, Eq. (2) can then be written as [ �w � w1(x) + �w1(x)]�(x) =
�
R
f(x�y�b)w1(y)�(y)dy where w1(x) =

R
w(x+y)�(y)dy. Working on the assumption

that � and 1 � w1(x) are both small (� 1), we accurately neglect very small terms of
order of the product of these terms, with the resulth

s(x+ �x�Gopt)2 � s(x+ �x�Gopt)2 + �
i
�(x)� �

Z
f(x� y � b)�(y)dy = 0 (3)

where an overbar denotes an average with respect to �(x): �x =
R
x�(x)dx, (x+ �x�Gopt)2 =R

(x+ �x�Gopt)2�(x)dx. In the circumstance that �x = 0 (which is not generally the case
of the present work), Eq. (3) coincides with the equilibrium equation describing a single
haploid locus, with selection coe¢ cient s (x�Gopt)2 and a distribution of mutant e¤ects
of f(x� y � b).

3 Transformation of the distribution

The presence of averaged quantities, such as �x, in Eq. (3), means the problem is still
non-linear and non local. Changing description in Eq. (3) from x and �(x) to a new
variable X and its distribution  (X; b; �), as de�ned by

X = x+ �x�Gopt;  (X; b; �) = '(x) (4)

yields

sX2 (X; b; �)� �
Z
f(X � Y � b) (Y ; b; �)dY = �s �2 (X; b; �) (5)

where �2 = �=s �
R
X2 (X; b; �)dX. Equation (5), which now coincides exactly with

the equilibrium equation describing a single haploid locus, may be interpreted as an
eigenvalue equation where �s �2 plays the role of an eigenvalue and  (X; b; �) the
eigenfunction. Thus underlying the equilibrium distribution of the biological problem is,
to high accuracy, a linear eigenvalue problem. The eigenfunction, since it represents a
probability density, is subject to the conditions  (X; b; �) � 0 and

R
 (X; b; �)dX = 1

and these uniquely determine �2.
Using the form of f(�) of Eq. (1), it directly follows that f(X�Y �b) = e�b

2=(2m2)�
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eb(X�Y )=m
2
f(X�Y ). Using this in Eq. (5) along with a new function, �(X), de�ned by

�(X) =
e�bX=m

2
 (X; b; �)R

e�bX=m2 (X; b; �)dX
(6)

leads to �(X) satisfying

sX2�(X)� U(b)
Z
f(X � Y )�(Y )dY = �s �2�(X) (7)

U(b) = �e�b
2=(2m2) (8)

We observe that in Eq. (7),
(i) b is not present in the argument of f(�),
(ii) the mutation rate in Eq. (5), �, is replaced by U(b)
(iii) �(X) is non-negative and normalised to unity: �(X) � 0,

R
�(X)dX = 1.

Accordingly, �(X) corresponds with the equilibrium distribution in an unbiased (b =
0) problem where the mutation rate is U(b). Thus a direct comparison of Eqs. (5) and
(7) allows us to make the identi�cation �(X) =  (X; 0; U(b)). Using this result in Eq.
(6) and solving the resulting equation for  (X; b; �) yields

 (X; b; �) =
ebX=m

2
 (X; 0; U(b))R

ebX=m2 (X; 0; U(b))dX
: (9)

This equation indicates that knowledge of the equilibrium distribution of a single sym-
metric (i.e. b = 0) problem,  (X; 0; U), for a range of mutation rates, U , that are
� �, is su¢ cient to determine the equilibrium distribution,  (X; b; �), for all b, of a
biased problem. Equation (9) is a statement of the exact relation between the solution
 (X; b; �) of Eq. (5) and  (X; 0; U(b)).

Note that (i) since  (X; 0; U(b)) is non-negative, it must be a function of X that has
no zeros. (ii) Taking X ! 0 in Eq. (7), yields
�U(b)

R
f(Y ) (Y ; 0; U(b))dY = �s �2 (0; 0; U(b)). The left side of this equation is

negative de�nite and  (0; 0; U(b)) is non negative, so the eigenvalue must be negative:
��2 < 0. (iii) The smallness of the allelic mutation rate, �, means that typically, there
will only be a single negative eigenvalue.

4 House of Cards Approximation

We can rewrite Eq. (7) for �(X) �  (X; 0; U(b)) as
�(X) = [U(b)=s]

R
f(X�Y )�(Y )dY=

�
X2 + �2

�
and an approximation for  (X; 0; U(b))

is given by

 (X; 0; U(b)) ' U(b)

s

f(X)

X2 + �2
(10)

where �2 is determined from the requirement of normalisation,
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R
 (X; 0; U(b))dX = 1.
The above approximation is valid when � is small compared with the �range�over

which f(�) is appreciable, which is of order m, i.e. when � � m. When this applies,
� ' �U(b)f(0), hence the approximation is applicable when �U(b)f(0) � m. An
alternative way of viewing this approximation is to note that it corresponds to the range
of mutations, m, being large compared with the range of  (X; 0; U(b)), which is of order
�. When this occurs there is little relation between the pre and post-mutated state of
an individual and this is close to the exact behaviour of the House of Cards model of
mutation (Kingman, 1978). Thus Eq. (10) is called the House of Cards approximation
(Turelli, 1984).

It is of interest to know the properties of the quantity �2 � �2(b; �), which is pro-
portional to the eigenvalue of Eq. (5), as a function of the bias parameter, b. We can
determine a property of �2 from the observation that the same eigenvalue, �s�2, ap-
pears in the original eigenvalue equation, Eq. (5), and the transformed equation, Eq.
(7). An eigenvalue of an operator can only depend on parameters present in the opera-
tor, thus on comparison of Eqs. (5) and (7), it follows that we have the exact relation
�(b; �) = �(0; U(b)) where �s�2(0; U) is the negative eigenvalue of an unbiased problem,
with a mutation rate U . The approximation � ' �U(b)f(0) depends on � and b only in
the combination U(b) � � exp

�
�b2=(2m2)

�
and this form is compatible with the general

relation �(b; �) = �(0; U(b)).
We have noted above that the smallness of � provides the justi�cation of the House

of Cards approximation. We have that
�(b; �) ' �� exp

�
�b2=(2m2)

�
f(0), hence for b 6= 0, �(b; �) < �(0; �). As a consequence,

the House of Cards approximation, as applied to Eq. (7) and resulting in Eq. (10),
applies with higher accuracy in a biased mutation problem than it does in its application
in a standard unbiased problem.

4.1 Mean character value

The equilibrium mean value of the character isG =
R
(x+y)�(x)�(y)dxdy = 2

R
x�(x)dx �

2�x. Using Eq. (4) we have
R
X (X; b; �)dX = 2�x�Gopt = G�Gopt and using Eq. (9)

and the approximation of Eq. (10) yields G�Gopt ' (U(b)=s)
R
dX XebX=m

2
f(X)=(X2+

�2). We can rewrite the integral as
R
dX X sinh(bX=m2)f(X)=(X2 + �2) and in this

form, it can be veri�ed that neglecting �, since it is� m, is an accurate approximation.
Following from this, we obtain

G�Gopt '
�

sm
e�b

2=(2m2)

Z b=m

0
ev

2=2dv

=

r
�

2

�

sm
e�b

2=(2m2) 1

i
erf

�
ibp
2m

�
(11)

where i =
p
�1 and erf(�) denotes the error function (Abramowitz and Stegun, 1965).
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The result above for G�Gopt is an odd, non-monotonic function of b: for jb=mj � 1,
G�Gopt ' �b=(sm2) i.e. proportional to b while for jb=mj � 1, G�Gopt ' �=(sb) i.e.
proportional to b�1, see Fig. 1.

Figure 1

The deviation of the equilibrium mean genotypic value, G, from its optimal value,
Gopt, namely G�Gopt, is plotted as a function of mutational bias, b. Equation 11 was
used to produce the �gure and the parameter values adopted were the �typical�values
� = 10�5, m = 0:2 and s = 0:025 of a sexual population (Lynch and Walsh, 1998).

The non-monotonic behaviour of G�Gopt, as a function of b, indicates that although
mutations may cause a non-zero mean change in the value of the character, there is only
a very limited amount of change they can bring about: maxb

�
G�Gopt

�
' 0:77�=(sm),

with the maximum occurring at b ' 1:3m. This non-monotonic behaviour arises because
of the detailed interplay between mutation and selection. In the absence of selection,
the e¤ect of any b > 0 would be to systematically increase the character value over
time. Selection results in a decreased survival probability of individuals with large
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character-values and the combined outcome of mutation and selection is a non-monotonic
equilibrium behaviour.

It may be veri�ed, using a similar approach to that used in the determination of G,
that when the House of Cards approximation is applicable, there is negligible change in
the genetic variance from its b = 0 value.

In the case of a single haploid locus, with mean allelic e¤ect �x, it is possible to
establish results that indicate that the deviation of �x from the optimal value, j�x� xoptj,
vanishes faster than

p
�, as � ! 0 (see Eq. 6.10 of Burger, 2000). We have already

noted, in Section 2, that Eq. (3) is not identical to the equation of a single haploid
locus thus this limiting result does not ful�l the conditions for it to be applicable in
this case. However, inspection of Eq. (11) indicates that jG � Goptj is proportional to
� and consequently does vanish faster than

p
�, as � ! 0 (much faster, indeed). We

note that while such limiting results, when applicable, do put some constraints on the
size of j�x � xoptj, they are fairly blunt instruments, in that they are unable to capture
or predict the existence of the type of non-monotonic behaviour we have seen exhibited
in jG�Goptj and which is also manifested in one locus haploid models.

5 Discussion

As formulated, the model presented applies only to organisms with a character controlled
by a single genetic locus. The calculation may be directly extended to the case of a
character controlled by more than one locus, and hence more than two genes, if, and
only if, the mutational parameters b, � and m have no variation across loci. In this
case, under the approximation of linkage equilibrium (Bulmer, 1989, Turelli and Barton,
1990), the value of G�Gopt is identical to the result of Eq. (11). Thus in this multilocus
case, the deviation of G from Gopt is proportional to (and limited by) the allelic mutation
rate, and not, as one might guess, the mutation rate of the character itself. This alone,
is somewhat strange, however when b, � and m do not have the same values at all loci,
the situation is one with substantially more complicated behaviour. In particular, and as
noted earlier, the distributions of alleles at di¤erent loci do not equilibrate, although the
distribution of the character, and hence its mean value, G, does equilibrate (Waxman
and Peck, 2003). The situation is su¢ ciently complicated that at the present time, only
numerical results for the value of G are available, in this case.

An alternative, to considering multilocus generalisations of the present work, is to
consider if the mathematical results presented can be looked at from a more general
viewpoint. The essence of the present work concerned a mathematical transformation of
the equation that determined the equilibrium distribution of allelic e¤ects. The transfor-
mation changed the equation into a related (simpler) equation. In particular, the distrib-
ution of mutant allelic e¤ects had a parameter representing mutational bias transformed
away, at the cost of a modi�ed rate of mutation. In a general sense, this procedure can
be viewed as a way of relating two models with di¤erent distributions of mutant allelic
e¤ects. Let us therefore return to Eq. (3), or equivalently Eq. (5), but now with a
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distribution of mutant e¤ects g(x� y) so it reads

sX2 (X)� �
Z
g(X � Y ) (Y )dY = �s �2 (X): (12)

At this stage, we do not make any assumptions about g(x � y) apart from its non-
negativity and normalisation to unity, (we do, however, note that Eq. (5) is a special
case of Eq. (12), and follows from the choice g(x � y) = f(x � y � b)). We can then
relate the solution  (X) of Eq. (12), with the distribution of mutant e¤ects g(X � Y )
to the solution with a di¤erent distribution of mutant e¤ects by substituting  (X) =
e�cX�(X)=

R
e�cX�(X)dX for some new function �(X) and parameter c. Eliminating

the factors e�cX from Eq. (12), after the substitution has been carried out, yields

sX2�(X)� V (c)
Z
h(X � Y )�(Y )dY = �s �2�(X) (13)

where

V (c) = �

Z
ecXg(X)dX; (14)

h(X � Y ) = ec(X�Y )g(X � Y )R
ecXg(X)dX

: (15)

We thus see that proceeding in the above manner, we have gone from an equation
describing the equilibrium behaviour of a model with mutation rate � and distribution of
mutant e¤ects g(X�Y ), to a model with mutation rate V (c), Eq. (14), and distribution
of mutant e¤ects h(X�Y ), Eq. (15). Of course, for these calculations to be meaningful,
the integral appearing in Eqs. (14) and (15) must exist and this puts some restriction
on the asymptotic form of g(X).

From the above considerations, it follows that some models of the type considered
here - involving mutation and selection of a continuous character, but with apparently
di¤erent distributions of mutant e¤ects, are, via a transformation, convertible into each
other. The case of a Gaussian distribution of mutant e¤ects - the main example of this
work - was a particular example of this, where a transformation connected biased and
unbiased problems.
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