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Abstract

Fisher’s geometrical model of evolutionary adaptation has recently been used in
a variety of contexts of interest to evolutionary biologists. The renewed interest in
this model strongly motivates generalisations that make it a more realistic descrip-
tion of evolutionary adaptation. Previously, the distribution of mutant effects has,
for analytical tractability, rather than biological realism, been taken as spherically
symmetric. Here we substantially extend Fisher’s model, by allowing a wider class
of mutational distributions that incorporate mutational bias and more general de-
viations from spherical symmetry such as correlations between mutant effects. We
also incorporate work on generalised fitness landscapes, thereby reducing the num-
ber of artificial assumptions underlying the model. The generalised model exhibits
a substantially increased flexibility and a far richer underlying geometry. We find
that the distribution characterising selection coefficients of new mutations is ex-
pressed in terms of a number of geometrical invariants associated with mutation,
selection and the parental phenotype.



1 Introduction

In his famous book The Genetical Theory of Natural Selection, R. A. Fisher out-
lined a view of evolutionary adaptation in terms of intuitive, geometrical consider-
ations (Fisher, 1930). An organism was described as having n quantitative traits
(i.e. n characters with effectively continuous variation). Examples of nine such
characters that have been investigated in Drosophila melanogaster are viability,
fecundity, hatchability, development time, longevity, mating speed, phototaxis,
body length and abdominal bristle number (Keightley and Ohnishi, 1998).

Fisher viewed the quantitative characters of an organism as the Cartesian coor-
dinates in an n dimensional “space of characters” and a particular organism, with
its particular set of n characters, was then geometrically represented as a point
in this space. In the original formulation of Fisher, the level of adaptation of an
organism was determined from its distance from a fixed point in the n dimensional
character space: the closer an organism is to this fixed point, the higher is its
fitness. This fixed point was thus implicitly taken as a fitness optimum and since
only the distance from this point is of significance, surfaces of constant fitness are
hyperspheres surrounding the optimum, i.e. circles, if there are only n = 2 char-
acters (see Fig. 1), spheres when there are n = 3 characters, .... The intention
of Fisher was not obviously to provide a realistic model of adaptation, but rather
to illustrate how adaptation is determined by a number of different features of an
organism acting in concert.



Figure 1

Caption

An illustration of Fisher’s geometrical model is shown for the case of two traits z;
and 29, when fitness and mutation are spherically symmetric. The fitness optimum lies
at (z1,22) = (0,0). and is represented by a filled dot. The unfilled dot represents
the current state of a population and the arrow stemming from this point represents
a mutational change, r. The quantity ||z|| is the distance of the population from the
optimum. All points on the solid circle, with radius ||z||, correspond to the same value
of fitness. All points on the small circle with radius 7 are equally likely to be reached
by a single mutation. The dashed arc shows the proportion of those mutations that are
closer to the optimum than the parental population and are thus beneficial.



In Fisher’s geometric description, the change in characters associated with a
mutation corresponds to a mutant offspring lying at a different position (in the
character space), compared with that of its parent (we are assuming an asexual
population). Such a change is beneficial - or adaptive - if it results in an increase
in some measure of the organism’s viability /reproductive success i.e. its fitness. A
mutation is adaptive if an individual carrying a newly arisen mutation is closer to
the location of the fitness optimum than that of its parent - see Fig.1. The muta-
tional changes considered by Fisher were taken to have the simplest distribution,
namely that of being equally likely to occur in all directions in the character space
(spherically symmetric).

Fisher’s considerations amount to an explicit model of evolutionary adaptation,
with analytical or quantitative results derivable for results such as the proportion
of beneficial mutations.

Quite recently, there has been renewed interest in this model, because, despite
being highly simplistic, there is the implicit belief that certain features it exhibits
may be robust to modifications of the underlying assumptions and hence allow its
conclusions to have wider applicability. The recent work, which uses Fisher’s model
in its original form, includes investigation of the size of mutations contributing to
adaptation (Orr, 1998, 1999; Hartl and Taubes, 1998; Burch and Chao, 1999),
topics such as drift load (Hartl and Taubes, 1996; Peck et. al., 1997; Poon and
Otto, 2000), hybridisation (Barton, 2001) and evolutionary rates (Orr, 2000; Welch
and Waxman, 2003). Generalisations of Fisher’s model have also been considered
(Rice, 1990; Whitlock et. al., 2003; Waxman and Welch, 2005).

The renewed interest in this model strongly motivates generalisations that
make it a more realistic description of evolutionary adaptation. Here we make
some progress in this direction, by not only incorporating recent work on gen-
eralised fitness functions of a stabilising form (Waxman and Welch, 2005) but
more importantly, by incorporating a wider class of distributions of mutational
effects, beyond the spherically symmetric ones that have been considered to date.
Thus, with the ultimate aim of setting out a somewhat more general framework
for Fisher’s geometrical model, we consider distributions of mutant effect that in-
corporate mutational bias and allow correlations between the mutational changes
on different traits. In the framework presented the distribution of mutant effects
has surfaces of constant probability density that are ellipses or their higher di-
mensional analogues (ellipsoids) and the distribution has a functional form that
includes a normal distribution as a special case. The present work therefore re-
duces some of the artificial assumptions about mutation that have been present in
Fisher’s geometrical model to date, and provides a useful tool for subsequent work
employing the model.

The generalised model, outlined above, exhibits a substantially increased flex-



ibility and a far richer underlying geometry. The present work concentrates on
a fundamental quantity; a distribution characterising new mutations and exposes
the way the richer geometry manifests itself in quantities of interest associated
with such mutations.

2 Model

Consider a population of asexual organisms that are subject to selection and mu-
tation on the values of n quantitative characters, z1, zs,..., 2,, which make up
the relevant phenotype of an individual. Each of the different characters contin-
uously ranges from —oo to co and we neglect any environmental component of
the characters. It is convenient to collect all n characters into the column vector
z = (21, 22, ..., 2n) T where the superscript T denotes the transpose of a matrix.

2.1 Mutation

The change in characters, due to mutation, is given by n random numbers r =
(r1,79,...,7)T. The mutant offspring of an organism with phenotype z, has phe-
notype z + r. Generally, all n characters are changed by a mutation, indicating
that in this model, mutation exhibits a high level of pleiotropy.

The distribution (or probability density) of mutant effects is written as f(r),
and the probability of mutational changes on the n traits lying in the infinitesimal
range r to r + dr is f(r)dridrs...dr, = f(r)d"r.

In contrast to previous work on this subject, we shall not make the analytically
simplest choice for the distribution of mutant effects. That is, we shall not assume
that mutations are equally likely to occur in all directions in the n dimensional
phenotypic space, by assuming f(r) is a spherically symmetric function (depends
only on ||| = \/rf 4+ rZ + ...r2). Rather, we shall consider a class of mutation
distributions that include spherically symmetric distributions as a special case, but
are more general than these, and hence incorporate important statistical aspects of
mutation. Specifically, we consider distributions of mutant effects that only depend
on mutational changes, r, in the quadratic combination (r — b)” C~! (r — b). That
is

f(r) = function of A, A= —-b) ' C ! (r—b) (1)

where b is a fixed column vector and C is a real n x n symmetric positive definite
matrix. For mutational distributions of the form just described, the variance-
covariance matrix of mutational changes can be shown to be proportional to the
matrix C and we shall make an appropriate choice of scaling of the distribution, so
that variance-covariance matrix ezactly coincides with C. This choice of scaling
puts a single condition on the dependence of f(r) on A but beyond this and
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the requirement of normalisation, the possible dependence on A is general (see
Appendix A for details).

Note that positive definiteness of C results in this matrix having positive diag-
onal elements - corresponding to the variances of mutational changes on different
characters. Positive definiteness of C does not, however, require its off-diagonal el-
ements to be positive, so covariances of either sign (or zero), can be accommodated
in the above framework.

The above class of mutation distributions has the following properties:

(i) Surfaces of constant probability density are ellipses when n = 2 and higher
dimensional analogues of an ellipse when n > 2 (i.e. n dimensional ellipsoids).
This follows directly from the set of r values that correspond to A = constant, and
which, in appropriately translated and rotated coordinates (r*) can be written as
the simplest representation of an n dimensional ellipsoid: )", m; ?r¥2 = constant,
where m? are the eigenvalues of C. Thus the class of mutation distributions
considered here go beyond the spherically symmetric ones previously considered
and only coincide with the previously studied distributions in the special case
where b vanishes and C is proportional to the n x n identity matrix.

(ii) The mean mutational change of the n traits is b i.e.

/ rf(r)d'r =b (2)

(see Appendix A) where here and elsewhere, all integrals with unspecified limits
cover the full, —oo to oo, range of all integration variables. The 7’th trait experi-
ences mutations that are not symmetrically distributed around the parental trait
value, z;, but are symmetrically distributed around the trait value z; + b;. Such a
mutation scheme can be said to exhibit mutational bias and this has been observed
in quantitative traits (Santiago et. al. 1992; Mackay, 1996; Keightley and Ohnishi,
1998) and investigated theoretically (Waxman and Peck, 2003, 2004).

(iii) The variance-covariance matrix of mutational changes, C, is, in general,
non-diagonal, in which case the mutational changes on different traits are corre-
lated.

(iv) Apart from some restrictions of the dependence of the distribution of mu-
tant effects, f(r), upon A, that arise from normalisation and the scaling require-
ment (mentioned above), the functional dependence on A is otherwise unspecified.
It follows that generally,mutational changes on different traits will not be statis-
tically independent, and will not, by any linear transformation, be convertible to
statistically independent changes (unlike mutational changes that are multivariate
normal , which is a special case of the mutational distributions considered here).



2.2 Selection

Selection is taken to be stabilising, with the characters defined in such a way
that the optimum of the fitness function lies at the coordinate origin, z = 0 =
(0,0, ...,0)T. In Fisher’s original formulation(Fisher, 1930), the fitness landscape
was implicitly taken to be spherically symmetric, which means that fitness depends
only on the Euclidean distance, ||z|| = /2% + 22 + ...22, of the characters from the
origin. To combine the z; in this way means that they must, of course, all be
measured in the same units.

In the work of Waxman and Welch (2005) and the present work, we adopt
a more general fitness function of the form motivated by Haldane (Waxman and
Welch, 2005; Haldane, 1932), namely

w(z) = exp (—z" Sz) (3)

where S is a real symmetric n x n matrix. Such a form for w(z) can be derived
from the Taylor series of In (w(z)), by expanding to quadratic deviations in z, from
a fitness optimum (Waxman and Welch, 2005).

If selection is stabilising, as we assume, then fitness decreases as z moves away
from the fitness maximum (z = 0) in all directions in the n dimensional character
space. This follows only if S is a positive definite matrix. It also follows that sur-
faces of constant fitness are generally n dimensional ellipsoids (higher dimensional
analogues of an ellipse): such surfaces are the set of z values satisfying z7Sz =
constant, and this last equation can, in an appropriately rotated set of coordi-
nates (z*), be written as the simplest representation of an n dimensional ellipsoid:
Sor 022 = constant, where the o, are the eigenvalues of S.

In Figure 2 we give an example, for n = 3, of a surface of constant fitness, where
a particular parental phenotype lies (large ellipsoid). The same figure contains
some of the possible mutational changes of the parental phenotype (partially visible
small ellipsoid).
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Figure 2

Caption

This figure applies for the case of n = 3 characters. The large ellipsoid represents a
surface of constant fitness that contains a parental phenotype, z. Surfaces of yet higher
fitness lie inside the large ellipsoid illustrated. The small, partially visible ellipsoid
represents equiprobable mutational changes of the parental phenotype. The parts of
the small ellipsoid visible represent non-adaptive mutations, since they correspond to
mutant phenotypes that have lower fitness than the parental phenotype. The geometry
of the problem is complex, since the fitness and mutational ellipsoids can be at arbitrary
orientations and locations, relative to one another.



3 Results/Methods

In the present work we determine a distribution characterising the selection coef-
ficients of new mutations. This distribution is derived for mutations characterised
by Eq. (1). Any notions about the size of mutations that contribute to the distri-
bution characterising selection coefficients(however size is defined) need not need
be addressed since all mutations can make a contribution, irrespective of any of
their attributes.

To proceed, we note that a random mutational change r of parental phenotype
z results in an offspring with a selection coefficient of

s=w(z+r)/w(z)— 1. (4)

In the work of Waxman and Welch (2005) it was found advantageous to deal not
with the selection coefficients directly, but rather with a variable () that is closely
related to selection coefficients and defined by

Q=In(l+s)=In[w(z+r)/w(z). (5)

In Eq. (5) the parental phenotype, z, is a fixed parameter but @ is a random
variable because it depends on the random mutational change r. Knowledge of
the distribution of () is, of course, equivalent to knowledge of the distribution of s,
however the advantage in dealing with () is that its distribution has a simpler form
than that of s. In particular, it was shown that when the distribution of mutant
effects is spherically symmetric, and n > 1, the distribution of () for mutations
with a fixed size (i.e. having a fixed value of ||r||) is well approximated by a normal
distribution (Waxman and Welch, 2005)).

The normal approximation for the distribution of ) is a particularly convenient
way of proceeding, since the entire distribution is determined from just two parame-
ters: the mean and the variance of (). Furthermore, it leads to qualitatively good
predictions for properties of of direct biological interest. Consider, for example,
selection coefficients of new mutations, in the simplest case of Fisher’s geometrical
model - the original formulation - where there is no variation of the size of mu-
tations and surfaces of constant fitness are spherically symmetric (Fisher, 1930).
Approximate normality of () means that this variable has a distribution that is
(approximately) symmetric about its mean value. The distribution of selection co-
efficients (commonly termed the distribution of fitness effects) is not symmetric in
s yet is well captured by the normal approximation for (). Indeed when @) has the
distribution v(q), the distribution of selection coefficients is (1 + s) !¢ (In(1 + s5))
and this is not generally symmetric in s. We can calculate the exact distribution of
selection coefficients (for the original formulation of Fisher’s geometrical model)
and compare it with the distribution following from the normal approximation for
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(. Taking the “worst case” of mutations of size r = 2 |z||, where no mutations
are beneficial, and the relatively small n value, say n = 12, we obtain the Figure 3

10
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Figure 3

Caption

The exact distribution of fitness effects is plotted, as a function of selection coefficient,
s, for the original formulation of Fisher’s geometrical model (solid curve)). Also plotted
is the corresponding distribution that follows from the normal approximation of the
distribution of (), that the current work is based upon (broken curve). For the case
plotted, the number of characters is n = 12 and the size of mutations is r = 2 ||z||,
where no mutations are beneficial. A very reasonable qualitative agreement of the two
distributions is obtained over a wide range of s and increased agreement follows for larger

values of n.
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indicating a very reasonable qualitative agreement of the two distributions over
a wide range of s. The agreement increases with increasing n, and the relatively
small value of n was only adopted to provide a figure with discernible differences
between the two distributions. We note that for the case plotted, where r = 2 ||z||
(and no mutations are beneficial), the proportion of beneficial mutations predicted

by the normal approximation adopted in the present work is erfc (\/n/ 2) /2 ~

exp(—n/2)/v/27n and this is < 107° for n > 20, indicating that there are some,
but really rather few beneficial mutations predicted. In the less extreme case

= ||z|| /2 we obtain a proportion of beneficial mutations, following from the
normal approximation for ), that differs from the exact result (of approximately
0.1372) by less than 4%, when n > 20.

Going beyond the original formulation of Fisher’s geometrical model, we find
the distribution of Qthat besides incorporating non spherically symmetric fitness
functions (Waxman and Welch, 2005), also incorporates the wide class of mutation
distributions that are not spherically symmetric - as outlined in Eq. (1). This
involves, however, an extra level of averaging compared with the results of Waxman
and Welch (2005) because here all mutations, without restriction, contribute to the
distribution of (). As a consequence of this, the probability density of (), which we
write as 1 (¢), takes the approximate form of an average of a Gaussian distribution
(see Appendix B for details)

/ ”27rv ex p g?)?) F(R)dR. (6)

Here F'(R) is a non-negative function associated with the distribution of mutations,
i.e. associated with the function f(r) of Eq. (1) and is arbitrary, apart from two
conditions:

/ T P(R)IR =1 (7)

l/ R’F(R)dR = 1. (8)
nJo

The first of these two conditions, Eq. (7), ensures normalisation of f(r) while the
second, Eq. (8), is a “scaling” requirement that ensures C coincides precisely with
the variance-covariance matrix of mutational changes on different traits. If, for
example, the distribution of mutant effects is the multivariate Gaussian f(r) o
exp(— (r —b)" C! (r —b) /2) then F(R) o R"'exp(—R2/2). If we wish to
specialise to spherically symmetric mutations with fixed magnitude r (cf. Fisher,
1930) then we need to take F(R) = (R —/n) and C = r?I/n where §(e) denotes

12



a Dirac delta function and I is the n by n identity matrix. Other forms of F/(R)

are, of course, possible. Indeed if F(r) is any non-negative function satisfying

/ F(R)AR = a and / R*F(R)dR = b then F(R) = AF(AR)/a with A =
0

0
\/b/(na) satisfies Egs. (7) and (8) and hence is an acceptable function with which

to characterise mutations.
The quantities u(R) and v(R) appearing in Eq. (6) are given by

w(R) = — <2zTSb +b’'Sb + %2 Tr (CS)> (9)

v(R) = %RZ (z+b)" SCS(z+b) + n(i—}j:) (Tr (CSCS) — [Tr (Ss>}2> |

(10)

For the class of mutation distributions considered here, there is no guarantee that
the R? term in Eq. (10) is larger than the R* term (cf. Waxman and Welch, 2005).

With the results of Egs. (6), (9) and (10), we can provide results for any
quantity that involves an average over selection coefficients of new mutations.
For example, the fraction of all mutations that are beneficial, By, is simply the
probability that @ > 0, i.e. the area under v (q) where ¢ > 0, and can be written as
Boen = fo q) dq. Similarly, the fraction of all mutations that are both beneficial
and fix in the popula‘mon P (cf. Kimura, 1983) is P = [ II(e? — 1)9 (q) dg
where I1(s) is the fixation probability of mutations with selection coefﬁc1ent s. As
a last example, the rate of change of log fitness in a single-mutant adaptive walk,
which figures prominently in the “cost of complexity” (Orr, 1998) can be written
as the expectation of In(1 + s)II(s) (see Eq. 2 of Welch and Waxman (2003). The
expectation for the rate of change of log fitness can again be written in terms of
¥ (q) as E[AInw = [7_qII(e? — 1)1 (¢) dg. With the introduction of

p(R) = —pu(R)//v(R) (11)

13



we obtain, using Eq. (6), and the substitution ¢t = (¢ — u(R))/+/v(R),

Poen = /0 N ( / :) %\/2_5/2)@ F(R)dR,

o'} 00 _ 42 2
P ~ / (/ (e Ve RErB) _ 1)%@) F(R)dR,
0 p(R) V2T

E[AInw] ~ / ) ( / = p(R)) TV ot _ 1)%&) F(R)dR.
0 p(R) n

Simpler results emerge in the last two results if the important ¢ contributing to
the integral are < 1 in which case we can make the additional approximations
(e — 1) ~TI(q) ~ 2q.

3.1 Additional approximation

The Gaussian approximation of Eq. (6), supplemented by Eqgs. (9) and (10),
indicates a somewhat complicated result for the distribution of (). To obtain
significantly simpler, and more readily interpretable results, we shall make some
additional approximations, beyond large n, that are based on additional plausible
assumptions.

We note that the functions p(R) and v(R) appearing in Egs. (9) and (10) are
not rapidly changing functions of R. Additionally, the scaling relation of Eq. (8)

indicates that the mean value of R? equals n: / R*F(R)dR = n. This makes it
0

plausible that the typical value of R is close to y/n. In particular, if for all positive
k, the mean value R* is close to n*/2 in the sense

/OORkF(R)dR =nf2 x (14+0(n™?) (12)

then this implies, amongst other things, that the variance of R is O(n"), which is
much smaller than the mean value of R, which is O(n'/2). Tt may be verified that

the multivariate Gaussian form of f(r) considered previously, which corresponds
o0

to F(R) oc R" ! exp(—R?/2), yields / REF(R)AR = 2"°T ((n + k) /2) /T (n/2),

0
where I (o) is Euler’s gamma function (Abramowitz and Stegun, 1970) and this
last result has precisely the property of Eq. (12) when n > 1. Thus the set of
functions satisfying Eq. (12) includes reasonable forms for F'(e).

14



We shall proceed, assuming Eq. (12) applies, and make the additional approx-
imations of (i) neglecting deviations of all powers of R from their mean value (by
replacing any power of R by its expected value) and (ii) discarding terms of relative
order n~!. For example the term R*/(n(n+2)), which appears in v(R), is replaced
by its expected value [ R'F(R)dR/(n(n+2)) =n®x (1+0(n™")) /(n(n+2)).
This simplifies to 1+ O(n~!) and is then approximated by unity. This approxima-
tion scheme leads to Eq. (6) reducing to the simple, explicitly normal form

¥ (q) ~ \/%exp (—%) (13)

p=—(22"Sb+ b"Sb + Tr (CS)) (14)

where

v=14(z+b)" SCS(z+b) +2 (Tr (CSCS) — M) . (15)

n

An example of the effectiveness of this approximation, for the distribution v (¢) is
given in Figure 4.

15
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Caption

In this figure, we plot the approximation of 1 (¢) given in Eq. (13) against ¢ (solid
curve). In the same figure a histogram is plotted that illustrates the results of numerical
simulation. For n = 10 characters, the matrices C' and S and the vectors z and b were
independently generated at random and for the figure presented, ||z|| /7 ~ 2. Holding C,
S, z and b fixed, we generated 10° different mutational changes and hence 10° different
values of Q. The value of p following from Eq. (14) is —4.6579 x 10~* while the
mean value of Q resulting from from the simulations is —4.6577 x 10~*. The value of
v following from Eq. (15) is 8.8443 x 10~® while the variance of () resulting from the
simulations is 8.8850 x 1078.
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The same approximation leads (with the substitution ¢ = (¢ — u)//v) to
> exp (—1%/2)

Pben ~ ] Tdt, (16)

~ [ eVult=p) _ exp (—/2)
Prx _/p I1( 1) Nors dt, (17)
E[AInw] ~ \/5/:0 (t — p) II(eV?t=P) — 1)%\/%/2)& (18)

where p is given by

p=—p/v. (19)
We can interpret the value of p as a dimensionless measure of the typical size of a
mutation that naturally emerges from the model under consideration (cf. (Fisher,

1930; Orr, 1998)), but there is no guarantee that it is a positive quantity (see
later).

3.2 Compatible mutation and selection

The expressions for 1, v and p above can be thought of as consisting of geometrical
invariants formed from z, b, S and C that encapsulate key aspects of the geometry
of the problem. These invariant quantities are unchanged by replacements which
represent a rotation of coordinate axes. Such replacements can be written as
z —z* =0z b—b*=0Db,S — S* = 0SS0’ and C — C* = OCO? where O
is a real n x n orthogonal matrix (which has the property O = O~1).

A particularly simple case occurs when mutation and selection are compatible
in the sense that a choice for the orthogonal matrix O can be found where the
above forms for S* and C* are both diagonal matrices (i.e. both have vanishing
elements off the main diagonal). Generally, this is possible only when SC = CS
(Strang, 1988). Assuming this condition holds, and that the diagonal elements
of S* and C* are o; and m? respectively, for i = 1,2,...,n, it then follows that
the fitness function of Eq. (3) takes the form w(z) = exp (—n~' > | 0,2;%). The
distribution of mutant effects is a function only of A (Eq. (1)) and setting r* = Or,
we have A =" m;?(r; — b))%

Since the relation between z and z* means we can write z7 = O;121 + Oj020 + ...
the interpretation we can give to z; is as a set of “composite” traits that inde-
pendently affect fitness and are linear combinations of the original traits. For the
special case of compatible mutation and selection, the quantities © and v take the

forms 1 = —Z:Uz‘ (2br 25+ + m?),
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2
v=30 [4‘71‘2”%2 (zf + b:)2 +2 (Uim? - %Z?Zl Ujm?> ] and p = —pu/+y/v. From

these results we can infer that p need not be positive when mutation is biased
(b # 0). For example, in the special case where z* = —b* the numerator of p, i.e.

2

— 1, is Zé_laz- (m? — b?) and this will be guaranteed negative if b2 > m? for all
i. -

4 Discussion

In this work we have presented further theoretical developments of Fisher’s geomet-
rical model of evolutionary adaptation. In particular, we have extended Fisher’s
model to incorporate a distribution of mutant effects that includes (i) correlations
between mutational effects on different traits, (ii) mutational biases on different
traits and (iii) a class of distributions of mutant effects that have the property that
surfaces of constant probability density are ellipsoids. This includes a multivariate
Gaussian as a special case, but covers more general distributions.

The above was made in the context of fitness functions that were not spherically
symmetric.

Making additional assumptions about moments of the distribution of mutant
effects and exploiting the large number of traits, n, allowed us to obtain a simple
Gaussian form for the distribution of the random variable ) = In(1 + s), where s
is the selection coefficient of a new mutation. Simulations, based on a multivariate
Gaussian form for the distribution of mutant effects suggest a very reasonable
accuracy of the approximation even for values of n as as small as n = 10 (see
Figure 4).

Out of the analysis, the quantity p = —u/+/v naturally arose (where 1 and v are
given in Egs. (14) and (15)). Such a ratio has, for mutations that are spherically
symmetric, been interpreted as a dimensionless measure of size of a mutation
(Waxman and Welch, 2005). In the presence of mutational bias, the defect with
this interpretation was that the quantity p may be negative. Exact calculations
(not presented) indicate that negative p can arise simply from mutational bias
(b # 0), in the absence of correlations between mutational effects on different
traits. A negative value of p has very significant implications, since e.g. by Eq.
(16), this implies that the proportion of beneficial mutations can be > 0.5 if it
occurs; this follows since we can write Eq. (16) as Poen = 1 erfc(p/v/2) where
erfc(e) is the complementary error function (Abramowitz and Stegun, 1970) and
Lerfc(p/v/2) > 0.5 for p < 0. Thus under some circumstances mutational bias
may not be a trivial aspect of the problem.

The analysis also lead to explicit result for the distribution of ) that involved
a number of different geometrically invariant quantities, indicating the way the
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differently “orientated” matrices representing selection (S) and mutation (C) and
the various vectors in the problem describing phenotype and mutational bias (z
and b) combine together. It is one of the jobs of theory to focus attention on
the important quantities underlying a model and without the detailed calculations
presented here, it would be very hard to predict the combinations of geometrically
invariant quantities that are actually present in the final results.

Overall, we view the results obtained here as a step towards a more complete
theory of evolutionary adaptation, based on Fisher’s geometrical model. Given
that Fisher’s model has begun to be applied in a variety of contexts of interest
to evolutionary biologists (Orr, 1998, 1999, 2000; Hartl and Taubes, 1996, 1998;
Burch and Chao 1999, Peck et. al. 1997; Poon and Otto, 2000; Barton, 2001;
Welch and Waxman, 2003; Rice, 1990; Whitlock et. al. 2003; Waxman and
Welch, 2005), it would be interesting to investigate the extent to which empirical
data can be used to determine or constrain the values of the quantities appearing
in e.g., Egs. (15) and (16).

After submission of the original version of this paper I became aware of some
very recent work that has taken some interesting steps in this direction. In this
work, which addressed the implications of general trends in the distribution of
fitness effects, an unbiased Gaussian distribution of mutant effects was adopted.
Furthermore, additional mathematical approximations were made, including a key
one of averaging over the various matrices, assuming they were random. One key
biological assumption was also made, that gene number of an organism has an
appreciable positive correlation with the number of quantitative traits, n (Martin
and Lenormand, 2006).
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Appendix A

In this work we have assumed that the distribution of mutant effects, f(r),
depends on r in only a specific combination A = (r — b)T C!'(r —b), with C a
positive definite matrix. In this Appendix, we establish that when only a single
requirement on the A dependence of f(r) is made (beyond that of normalisation),
the matrix C is the variance-covariance matrix of mutational changes.

To proceed, we introduce a non-negative function F'(R) that satisfies just two
conditions:

/oo F(R)AR =1 (A1)

1 o0
—/ R*F(R)dR =1 (A2)
n Jo

but is otherwise arbitrary. With hindsight, we write the distribution of mutant
effects in terms of the somewhat arbitrary function F'(e) as

1 P4
/D) Ny AT

where N,, = 27"/2/T'(n/2) is the surface area of a unit radius sphere in n dimensions
and I'(e) denotes Euler’s Gamma function (Abramowitz and Stegun, 1970).

With all integrals with unspecified limits covering the full, —oco to co, range of
all integration variables, normalisation of f(r), i.e. [ f(r)d"r = 1, automatically
follows from Eq. (A1) when the following change of variables from r to R is made:
R = C "?(r —b). The same change of variables in [rf(r)d"r yields a mean
mutational change of b.

The variance-covariance matrix can then be written as [ (r — b) (r — b)” f(r)d"r

F(|R
and with the same change of variables, becomes C'/2 ( i RRTﬁd”R) C'/2

By symmetry, the bracketed quantity has the value I x x where I is the nxn identity
matrix and x equals n~? fol R*F(R)dR, which equals unity by Eq. (A2). Hence
when F(e) is subject to Eq. (A2), the variance-covariance matrix is C/2 x I x
C'/2 = C. The imposition of Eq. (A2) on F(e) is thus sufficient to give C the
unique identification as the variance-covariance matrix of mutational changes.

f(r) = (A3)
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Appendix B

In this Appendix we present arguments for probability density of (), namely
1 (q), having the approximate weighted Gaussian form given in Eq. (6).

For the purposes of this Appendix, we shall initially write the distribution of
mutant effects as G((r —b)” C~! (r — b)) for some non-negative function G(e)
that leads to an f(r) that is normalised: [ f(r)d"r = 1.

Using the fitness function of Eq. (3), the quantity @ of Eq. (5) takes the form
Q=—22"Sr — r' Sr. The probability density of Q is given by ¥(¢) = F [6(q — Q)]
where (o) denotes a Dirac delta function and the expectation E|...] is taken over
all mutations, i.e.

»(q) = /5 (q +227Sr + rTSr) G((r — b)T C ' (r—b))d"r

We simplify this result by expressing it in terms of a linearly transformed muta-
tional change, R, defined by R = C~/2 (r — b). This leads to

Y(q) = /5(q + A+ a"R+R"MR)G(|R|?)/Det (C)d"R (B1)

where Det (...) denotes the determinant of a matrix and

2
A — 247Sb + b7Sb 4 IR Tr(CY?SCY?) (B2)
n
o =2CY?S (z + b) (B3)
I

M = CY28C'? — = Tr(CY/28C/?). (B4)

n

The integral in Eq. (B1) can be written as

blq) = / " bl)F(R)R (B5)

where

¢(q) = (0(g+ A+ a"R+R"MR)) (B6)

and the angular bracket, (...), denotes isotropically averaging over all directions
of R with its magnitude fixed at R and the function F(R) oc R"'G(R?) coin-
cides with the function F'(R) of Appendix A. In particular, it is defined so that
J.S F(R)R = 1.
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We shall concentrate, here, on the function ¢(¢q) and establish an approximate
Gaussian dependence upon ¢. Since we shall go further than the work of Waxman
and Welch (2005) we give independent and slightly extended arguments for the
reason for this dependence.

We note that ¢(q) is the probability density for the random variable

Y = —(A+ao'R+R'MR) (B7)

where the direction of R is random, but its magnitude is fixed at R. We can
write Y = —A =Y a;R; — szzl M;;R;R; and as such, it is a sum of random
variables which are not all independent, since Y | R? has the fixed value of R?.
If, despite this non-independence a central limit sort of behaviour is operating, so

that the distribution of Y is near normal then

(Blg— ) = ml(R) exp (—%) (B8)

where p(R) and v(R) are the mean and the variance of Y and are obtained by
averaging over all directions of R when ||R|| is held fixed at R.

We use results for spherical averages, such as F[R;] = 0 and E[R;R;] = R?4;;/n
etc. where §;; is a Kronecker delta that equals 1 when ¢ = j and is zero otherwise,
and obtain

WR) = (V)= —A=— (2ZTSb +b7Sb + %2 Tr (CS)) .

Similarly

o(R) = (v*) = (v)* = ((a"R)") + ((R"MR)") = %ami—% Tr (M?)
_4Rr? T 2R! [Tr (CS)]?
— T(z+b) SCS(z+b)+m (Tr(CSCS) — > )

Defining p; = <(Y — w(R)) >, we note that approximate normality also implies

12/ [v(R))? < 1 and pg/ [0(R)]> — 3 < 1 and these inequalities should hold for a
range of R. Exact analytical expressions for the ratios p2/ [v(R)]® and s/ [v(R)]?
(results not shown) are expressible in terms of a single vector, a = 2C'/28 (z + b),
and a single matrix, M = C¥/28C"? — L Ty(CY/28C"/?). These expressions allow
investigation of p2/[v(R)]® and 4/ [v(R)]> — 3, and in the absence of detailed
information about S and C, we have carried out this investigation using randomly
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generated values of & and M. We took elements of a to be independent and
identically distributed standard normal random variables (i.e. with mean zero and
variance unity). Furthermore, to determine M we set C/2SC2 = AT A where A
is an n X n matrix whose elements are also independent and identically distributed
standard normal random variables. Writing C'/2SC"? in terms of the matrix A,
in the form shown, is consistent with the positive definiteness of C/2SCY2. We
find, for n = 50 (100) and R in the range (0,+/n), that typically x3/ [v(R)]*> and
pa) [0(R)]* — 3 are < 0.2 (0.1). It is thus plausible that large enough n leads to
an approximately normal distribution of ¢, Eq. (B6), and hence to Eq. (6) of the
main body of this paper.
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