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Fisher�s Geometrical Model of Evolutionary
Adaptation - Beyond Spherical Geometry

D. Waxman
Centre for the Study of Evolution

School of Life Sciences
University of Sussex
Brighton BN1 9QG

Sussex UK

Abstract

Fisher�s geometrical model of evolutionary adaptation has recently been used in
a variety of contexts of interest to evolutionary biologists. The renewed interest in
this model strongly motivates generalisations that make it a more realistic descrip-
tion of evolutionary adaptation. Previously, the distribution of mutant e¤ects has,
for analytical tractability, rather than biological realism, been taken as spherically
symmetric. Here we substantially extend Fisher�s model, by allowing a wider class
of mutational distributions that incorporate mutational bias and more general de-
viations from spherical symmetry such as correlations between mutant e¤ects. We
also incorporate work on generalised �tness landscapes, thereby reducing the num-
ber of arti�cial assumptions underlying the model. The generalised model exhibits
a substantially increased �exibility and a far richer underlying geometry. We �nd
that the distribution characterising selection coe¢ cients of new mutations is ex-
pressed in terms of a number of geometrical invariants associated with mutation,
selection and the parental phenotype.

1



1 Introduction

In his famous book The Genetical Theory of Natural Selection, R. A. Fisher out-
lined a view of evolutionary adaptation in terms of intuitive, geometrical consider-
ations (Fisher, 1930). An organism was described as having n quantitative traits
(i.e. n characters with e¤ectively continuous variation). Examples of nine such
characters that have been investigated in Drosophila melanogaster are viability,
fecundity, hatchability, development time, longevity, mating speed, phototaxis,
body length and abdominal bristle number (Keightley and Ohnishi, 1998).
Fisher viewed the quantitative characters of an organism as the Cartesian coor-

dinates in an n dimensional �space of characters�and a particular organism, with
its particular set of n characters, was then geometrically represented as a point
in this space. In the original formulation of Fisher, the level of adaptation of an
organism was determined from its distance from a �xed point in the n dimensional
character space: the closer an organism is to this �xed point, the higher is its
�tness. This �xed point was thus implicitly taken as a �tness optimum and since
only the distance from this point is of signi�cance, surfaces of constant �tness are
hyperspheres surrounding the optimum, i.e. circles, if there are only n = 2 char-
acters (see Fig. 1), spheres when there are n = 3 characters, .... The intention
of Fisher was not obviously to provide a realistic model of adaptation, but rather
to illustrate how adaptation is determined by a number of di¤erent features of an
organism acting in concert.
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Figure 1

Caption

An illustration of Fisher�s geometrical model is shown for the case of two traits z1
and z2, when �tness and mutation are spherically symmetric. The �tness optimum lies
at (z1; z2) = (0; 0). and is represented by a �lled dot. The un�lled dot represents
the current state of a population and the arrow stemming from this point represents
a mutational change, r. The quantity kzk is the distance of the population from the
optimum. All points on the solid circle, with radius kzk, correspond to the same value
of �tness. All points on the small circle with radius r are equally likely to be reached
by a single mutation. The dashed arc shows the proportion of those mutations that are
closer to the optimum than the parental population and are thus bene�cial.
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In Fisher�s geometric description, the change in characters associated with a
mutation corresponds to a mutant o¤spring lying at a di¤erent position (in the
character space), compared with that of its parent (we are assuming an asexual
population). Such a change is bene�cial - or adaptive - if it results in an increase
in some measure of the organism�s viability/reproductive success i.e. its �tness. A
mutation is adaptive if an individual carrying a newly arisen mutation is closer to
the location of the �tness optimum than that of its parent - see Fig.1. The muta-
tional changes considered by Fisher were taken to have the simplest distribution,
namely that of being equally likely to occur in all directions in the character space
(spherically symmetric).
Fisher�s considerations amount to an explicit model of evolutionary adaptation,

with analytical or quantitative results derivable for results such as the proportion
of bene�cial mutations.
Quite recently, there has been renewed interest in this model, because, despite

being highly simplistic, there is the implicit belief that certain features it exhibits
may be robust to modi�cations of the underlying assumptions and hence allow its
conclusions to have wider applicability. The recent work, which uses Fisher�s model
in its original form, includes investigation of the size of mutations contributing to
adaptation (Orr, 1998, 1999; Hartl and Taubes, 1998; Burch and Chao, 1999),
topics such as drift load (Hartl and Taubes, 1996; Peck et. al., 1997; Poon and
Otto, 2000), hybridisation (Barton, 2001) and evolutionary rates (Orr, 2000; Welch
and Waxman, 2003). Generalisations of Fisher�s model have also been considered
(Rice, 1990; Whitlock et. al., 2003; Waxman and Welch, 2005).
The renewed interest in this model strongly motivates generalisations that

make it a more realistic description of evolutionary adaptation. Here we make
some progress in this direction, by not only incorporating recent work on gen-
eralised �tness functions of a stabilising form (Waxman and Welch, 2005) but
more importantly, by incorporating a wider class of distributions of mutational
e¤ects, beyond the spherically symmetric ones that have been considered to date.
Thus, with the ultimate aim of setting out a somewhat more general framework
for Fisher�s geometrical model, we consider distributions of mutant e¤ect that in-
corporate mutational bias and allow correlations between the mutational changes
on di¤erent traits. In the framework presented the distribution of mutant e¤ects
has surfaces of constant probability density that are ellipses or their higher di-
mensional analogues (ellipsoids) and the distribution has a functional form that
includes a normal distribution as a special case. The present work therefore re-
duces some of the arti�cial assumptions about mutation that have been present in
Fisher�s geometrical model to date, and provides a useful tool for subsequent work
employing the model.
The generalised model, outlined above, exhibits a substantially increased �ex-
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ibility and a far richer underlying geometry. The present work concentrates on
a fundamental quantity; a distribution characterising new mutations and exposes
the way the richer geometry manifests itself in quantities of interest associated
with such mutations.

2 Model

Consider a population of asexual organisms that are subject to selection and mu-
tation on the values of n quantitative characters, z1; z2; :::; zn, which make up
the relevant phenotype of an individual. Each of the di¤erent characters contin-
uously ranges from �1 to 1 and we neglect any environmental component of
the characters. It is convenient to collect all n characters into the column vector
z = (z1; z2; :::; zn)

T where the superscript T denotes the transpose of a matrix.

2.1 Mutation

The change in characters, due to mutation, is given by n random numbers r =
(r1; r2; :::; rn)

T . The mutant o¤spring of an organism with phenotype z, has phe-
notype z+ r. Generally, all n characters are changed by a mutation, indicating
that in this model, mutation exhibits a high level of pleiotropy.
The distribution (or probability density) of mutant e¤ects is written as f(r),

and the probability of mutational changes on the n traits lying in the in�nitesimal
range r to r+ dr is f(r)dr1dr2:::drn � f(r)dnr.
In contrast to previous work on this subject, we shall not make the analytically

simplest choice for the distribution of mutant e¤ects. That is, we shall not assume
that mutations are equally likely to occur in all directions in the n dimensional
phenotypic space, by assuming f(r) is a spherically symmetric function (depends
only on krk �

p
r21 + r22 + :::r2n). Rather, we shall consider a class of mutation

distributions that include spherically symmetric distributions as a special case, but
are more general than these, and hence incorporate important statistical aspects of
mutation. Speci�cally, we consider distributions of mutant e¤ects that only depend
on mutational changes, r, in the quadratic combination (r� b)T C�1 (r� b). That
is

f(r) = function of A; A = (r� b)T C�1 (r� b) (1)

where b is a �xed column vector and C is a real n�n symmetric positive de�nite
matrix. For mutational distributions of the form just described, the variance-
covariance matrix of mutational changes can be shown to be proportional to the
matrix C and we shall make an appropriate choice of scaling of the distribution, so
that variance-covariance matrix exactly coincides with C. This choice of scaling
puts a single condition on the dependence of f(r) on A but beyond this and

5



the requirement of normalisation, the possible dependence on A is general (see
Appendix A for details).
Note that positive de�niteness of C results in this matrix having positive diag-

onal elements - corresponding to the variances of mutational changes on di¤erent
characters. Positive de�niteness of C does not, however, require its o¤-diagonal el-
ements to be positive, so covariances of either sign (or zero), can be accommodated
in the above framework.
The above class of mutation distributions has the following properties:
(i) Surfaces of constant probability density are ellipses when n = 2 and higher

dimensional analogues of an ellipse when n > 2 (i.e. n dimensional ellipsoids).
This follows directly from the set of r values that correspond to A = constant, and
which, in appropriately translated and rotated coordinates (r�) can be written as
the simplest representation of an n dimensional ellipsoid:

Pn
i=1m

�2
i r�2i = constant,

where m2
i are the eigenvalues of C. Thus the class of mutation distributions

considered here go beyond the spherically symmetric ones previously considered
and only coincide with the previously studied distributions in the special case
where b vanishes and C is proportional to the n� n identity matrix.
(ii) The mean mutational change of the n traits is b i.e.Z

rf(r)dnr = b (2)

(see Appendix A) where here and elsewhere, all integrals with unspeci�ed limits
cover the full, �1 to 1, range of all integration variables. The i�th trait experi-
ences mutations that are not symmetrically distributed around the parental trait
value, zi, but are symmetrically distributed around the trait value zi + bi. Such a
mutation scheme can be said to exhibit mutational bias and this has been observed
in quantitative traits (Santiago et. al. 1992; Mackay, 1996; Keightley and Ohnishi,
1998) and investigated theoretically (Waxman and Peck, 2003, 2004).
(iii) The variance-covariance matrix of mutational changes, C, is, in general,

non-diagonal, in which case the mutational changes on di¤erent traits are corre-
lated.
(iv) Apart from some restrictions of the dependence of the distribution of mu-

tant e¤ects, f(r), upon A, that arise from normalisation and the scaling require-
ment (mentioned above), the functional dependence on A is otherwise unspeci�ed.
It follows that generally,mutational changes on di¤erent traits will not be statis-
tically independent, and will not, by any linear transformation, be convertible to
statistically independent changes (unlike mutational changes that are multivariate
normal , which is a special case of the mutational distributions considered here).
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2.2 Selection

Selection is taken to be stabilising, with the characters de�ned in such a way
that the optimum of the �tness function lies at the coordinate origin, z = 0 �
(0; 0; :::; 0)T . In Fisher�s original formulation(Fisher, 1930), the �tness landscape
was implicitly taken to be spherically symmetric, which means that �tness depends
only on the Euclidean distance, kzk �

p
z21 + z22 + :::z2n, of the characters from the

origin. To combine the zi in this way means that they must, of course, all be
measured in the same units.
In the work of Waxman and Welch (2005) and the present work, we adopt

a more general �tness function of the form motivated by Haldane (Waxman and
Welch, 2005; Haldane, 1932), namely

w(z) = exp
�
�zTSz

�
(3)

where S is a real symmetric n � n matrix. Such a form for w(z) can be derived
from the Taylor series of ln (w(z)), by expanding to quadratic deviations in z, from
a �tness optimum (Waxman and Welch, 2005).
If selection is stabilising, as we assume, then �tness decreases as z moves away

from the �tness maximum (z = 0) in all directions in the n dimensional character
space. This follows only if S is a positive de�nite matrix. It also follows that sur-
faces of constant �tness are generally n dimensional ellipsoids (higher dimensional
analogues of an ellipse): such surfaces are the set of z values satisfying zTSz =
constant, and this last equation can, in an appropriately rotated set of coordi-
nates (z�), be written as the simplest representation of an n dimensional ellipsoid:Pn

i=1 �iz
�2
i = constant, where the �i are the eigenvalues of S.

In Figure 2 we give an example, for n = 3, of a surface of constant �tness, where
a particular parental phenotype lies (large ellipsoid). The same �gure contains
some of the possible mutational changes of the parental phenotype (partially visible
small ellipsoid).
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Figure 2

Caption

This �gure applies for the case of n = 3 characters. The large ellipsoid represents a
surface of constant �tness that contains a parental phenotype, z. Surfaces of yet higher
�tness lie inside the large ellipsoid illustrated. The small, partially visible ellipsoid
represents equiprobable mutational changes of the parental phenotype. The parts of
the small ellipsoid visible represent non-adaptive mutations, since they correspond to
mutant phenotypes that have lower �tness than the parental phenotype. The geometry
of the problem is complex, since the �tness and mutational ellipsoids can be at arbitrary
orientations and locations, relative to one another.
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3 Results/Methods

In the present work we determine a distribution characterising the selection coef-
�cients of new mutations. This distribution is derived for mutations characterised
by Eq. (1). Any notions about the size of mutations that contribute to the distri-
bution characterising selection coe¢ cients(however size is de�ned) need not need
be addressed since all mutations can make a contribution, irrespective of any of
their attributes.
To proceed, we note that a random mutational change r of parental phenotype

z results in an o¤spring with a selection coe¢ cient of

s = w(z+ r)=w(z)� 1: (4)

In the work of Waxman and Welch (2005) it was found advantageous to deal not
with the selection coe¢ cients directly, but rather with a variable Q that is closely
related to selection coe¢ cients and de�ned by

Q = ln(1 + s) � ln [w(z+ r)=w(z)] : (5)

In Eq. (5) the parental phenotype, z, is a �xed parameter but Q is a random
variable because it depends on the random mutational change r. Knowledge of
the distribution of Q is, of course, equivalent to knowledge of the distribution of s,
however the advantage in dealing with Q is that its distribution has a simpler form
than that of s. In particular, it was shown that when the distribution of mutant
e¤ects is spherically symmetric, and n � 1, the distribution of Q for mutations
with a �xed size (i.e. having a �xed value of krk) is well approximated by a normal
distribution (Waxman and Welch, 2005)).
The normal approximation for the distribution of Q is a particularly convenient

way of proceeding, since the entire distribution is determined from just two parame-
ters: the mean and the variance of Q. Furthermore, it leads to qualitatively good
predictions for properties of of direct biological interest. Consider, for example,
selection coe¢ cients of new mutations, in the simplest case of Fisher�s geometrical
model - the original formulation - where there is no variation of the size of mu-
tations and surfaces of constant �tness are spherically symmetric (Fisher, 1930).
Approximate normality of Q means that this variable has a distribution that is
(approximately) symmetric about its mean value. The distribution of selection co-
e¢ cients (commonly termed the distribution of �tness e¤ects) is not symmetric in
s yet is well captured by the normal approximation for Q. Indeed when Q has the
distribution  (q), the distribution of selection coe¢ cients is (1 + s)�1 (ln(1 + s))
and this is not generally symmetric in s. We can calculate the exact distribution of
selection coe¢ cients (for the original formulation of Fisher�s geometrical model)
and compare it with the distribution following from the normal approximation for
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Q. Taking the �worst case�of mutations of size r = 2 kzk, where no mutations
are bene�cial, and the relatively small n value, say n = 12, we obtain the Figure 3
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Figure 3

Caption

The exact distribution of �tness e¤ects is plotted, as a function of selection coe¢ cient,
s, for the original formulation of Fisher�s geometrical model (solid curve)). Also plotted
is the corresponding distribution that follows from the normal approximation of the
distribution of Q, that the current work is based upon (broken curve). For the case
plotted, the number of characters is n = 12 and the size of mutations is r = 2 kzk,
where no mutations are bene�cial. A very reasonable qualitative agreement of the two
distributions is obtained over a wide range of s and increased agreement follows for larger
values of n.
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indicating a very reasonable qualitative agreement of the two distributions over
a wide range of s. The agreement increases with increasing n, and the relatively
small value of n was only adopted to provide a �gure with discernible di¤erences
between the two distributions. We note that for the case plotted, where r = 2 kzk
(and no mutations are bene�cial), the proportion of bene�cial mutations predicted

by the normal approximation adopted in the present work is erfc
�p

n=2
�
=2 �

exp(�n=2)=
p
2�n and this is � 10�5 for n � 20, indicating that there are some,

but really rather few bene�cial mutations predicted. In the less extreme case
r = kzk =2 we obtain a proportion of bene�cial mutations, following from the
normal approximation for Q, that di¤ers from the exact result (of approximately
0:1372) by less than 4%, when n � 20.
Going beyond the original formulation of Fisher�s geometrical model, we �nd

the distribution of Qthat besides incorporating non spherically symmetric �tness
functions (Waxman and Welch, 2005), also incorporates the wide class of mutation
distributions that are not spherically symmetric - as outlined in Eq. (1). This
involves, however, an extra level of averaging compared with the results of Waxman
andWelch (2005) because here all mutations, without restriction, contribute to the
distribution of Q. As a consequence of this, the probability density of Q, which we
write as  (q), takes the approximate form of an average of a Gaussian distribution
(see Appendix B for details)

 (q) =

Z 1

0

s
1

2�v(R)
exp

�
�(q � �(R))2

2v(R)

�
F (R)dR: (6)

Here F (R) is a non-negative function associated with the distribution of mutations,
i.e. associated with the function f(r) of Eq. (1) and is arbitrary, apart from two
conditions: Z 1

0

F (R)dR = 1 (7)

1

n

Z 1

0

R2F (R)dR = 1: (8)

The �rst of these two conditions, Eq. (7), ensures normalisation of f(r) while the
second, Eq. (8), is a �scaling�requirement that ensures C coincides precisely with
the variance-covariance matrix of mutational changes on di¤erent traits. If, for
example, the distribution of mutant e¤ects is the multivariate Gaussian f(r) /
exp(� (r� b)T C�1 (r� b) =2) then F (R) _ Rn�1 exp(�R2=2). If we wish to
specialise to spherically symmetric mutations with �xed magnitude r (cf. Fisher,
1930) then we need to take F (R) = �(R�

p
n) and C = r2I=n where �(�) denotes

12



a Dirac delta function and I is the n by n identity matrix. Other forms of F (R)
are, of course, possible. Indeed if eF (r) is any non-negative function satisfyingZ 1

0

eF (R)dR = a and
Z 1

0

R2 eF (R)dR = b then F (R) = � eF (�R)=a with � =p
b=(na) satis�es Eqs. (7) and (8) and hence is an acceptable function with which

to characterise mutations.
The quantities �(R) and v(R) appearing in Eq. (6) are given by

�(R) = �
�
2zTSb+ bTSb+

R2

n
Tr (CS)

�
(9)

v(R) =
4R2

n
(z+ b)T SCS (z+ b) +

2R4

n(n+ 2)

 
Tr (CSCS)� [Tr (CS)]

2

n

!
:

(10)

For the class of mutation distributions considered here, there is no guarantee that
the R2 term in Eq. (10) is larger than the R4 term (cf. Waxman and Welch, 2005).
With the results of Eqs. (6), (9) and (10), we can provide results for any

quantity that involves an average over selection coe¢ cients of new mutations.
For example, the fraction of all mutations that are bene�cial, Pben, is simply the
probability thatQ > 0, i.e. the area under  (q) where q > 0, and can be written as
Pben =

R1
0
 (q) dq. Similarly, the fraction of all mutations that are both bene�cial

and �x in the population, P�x (cf. Kimura, 1983) is P�x =
R1
0
�(eq � 1) (q) dq

where �(s) is the �xation probability of mutations with selection coe¢ cient s. As
a last example, the rate of change of log �tness in a single-mutant adaptive walk,
which �gures prominently in the �cost of complexity�(Orr, 1998) can be written
as the expectation of ln(1 + s)�(s) (see Eq. 2 of Welch and Waxman (2003). The
expectation for the rate of change of log �tness can again be written in terms of
 (q) as E[� lnw =

R1
�1 q�(e

q � 1) (q) dq. With the introduction of

�(R) = ��(R)=
p
v(R) (11)

13



we obtain, using Eq. (6), and the substitution t = (q � �(R))=
p
v(R),

Pben '
Z 1

0

�Z 1

�(R)

exp (�t2=2)p
2�

dt

�
F (R)dR;

P�x '
Z 1

0

�Z 1

�(R)

�(e
p
v(R)(t��(R)) � 1)exp (�t

2=2)p
2�

dt

�
F (R)dR;

E[� lnw] '
Z 1

0

p
v(R)

�Z 1

�(R)

(t� �(R))�(e
p
v(R)(t��(R)) � 1)exp (�t

2=2)p
2�

dt

�
F (R)dR:

Simpler results emerge in the last two results if the important q contributing to
the integral are � 1 in which case we can make the additional approximations
�(eq � 1) ' �(q) ' 2q.

3.1 Additional approximation

The Gaussian approximation of Eq. (6), supplemented by Eqs. (9) and (10),
indicates a somewhat complicated result for the distribution of Q. To obtain
signi�cantly simpler, and more readily interpretable results, we shall make some
additional approximations, beyond large n, that are based on additional plausible
assumptions.
We note that the functions �(R) and v(R) appearing in Eqs. (9) and (10) are

not rapidly changing functions of R. Additionally, the scaling relation of Eq. (8)

indicates that the mean value of R2 equals n:
Z 1

0

R2F (R)dR = n. This makes it

plausible that the typical value of R is close to
p
n. In particular, if for all positive

k, the mean value Rk is close to nk=2 in the senseZ 1

0

RkF (R)dR = nk=2 � (1 +O(n�1) (12)

then this implies, amongst other things, that the variance of R is O(n0), which is
much smaller than the mean value of R, which is O(n1=2). It may be veri�ed that
the multivariate Gaussian form of f(r) considered previously, which corresponds

to F (R) / Rn�1 exp(�R2=2), yields
Z 1

0

RkF (R)dR = 2k=2� ((n+ k) =2) =� (n=2),

where � (�) is Euler�s gamma function (Abramowitz and Stegun, 1970) and this
last result has precisely the property of Eq. (12) when n � 1. Thus the set of
functions satisfying Eq. (12) includes reasonable forms for F (�).
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We shall proceed, assuming Eq. (12) applies, and make the additional approx-
imations of (i) neglecting deviations of all powers of R from their mean value (by
replacing any power of R by its expected value) and (ii) discarding terms of relative
order n�1. For example the term R4=(n(n+2)), which appears in v(R), is replaced
by its expected value

R1
0
R4F (R)dR=(n(n+ 2)) = n2 � (1 +O(n�1)) =(n(n+ 2)).

This simpli�es to 1+O(n�1) and is then approximated by unity. This approxima-
tion scheme leads to Eq. (6) reducing to the simple, explicitly normal form

 (q) '
r

1

2�v
exp

�
�(q � �)2

2v

�
(13)

where

� = �
�
2zTSb+ bTSb+ Tr (CS)

�
(14)

v = 4 (z+ b)T SCS (z+ b) + 2

 
Tr (CSCS)� [Tr (CS)]

2

n

!
: (15)

An example of the e¤ectiveness of this approximation, for the distribution  (q) is
given in Figure 4.
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Figure 4

Caption

In this �gure, we plot the approximation of  (q) given in Eq. (13) against q (solid
curve). In the same �gure a histogram is plotted that illustrates the results of numerical
simulation. For n = 10 characters, the matrices C and S and the vectors z and b were
independently generated at random and for the �gure presented, kzk =r ' 2. Holding C,
S, z and b �xed, we generated 105 di¤erent mutational changes and hence 105 di¤erent
values of Q. The value of � following from Eq. (14) is �4:6579 � 10�4 while the
mean value of Q resulting from from the simulations is �4:6577 � 10�4. The value of
v following from Eq. (15) is 8:8443 � 10�8 while the variance of Q resulting from the
simulations is 8:8850� 10�8.
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The same approximation leads (with the substitution t = (q � �)=
p
v) to

Pben '
Z 1

�

exp (�t2=2)p
2�

dt; (16)

P�x '
Z 1

�

�(e
p
v(t��) � 1)exp (�t

2=2)p
2�

dt; (17)

E[� lnw] '
p
v

Z 1

�

(t� �)�(e
p
v(t��) � 1)exp (�t

2=2)p
2�

dt (18)

where � is given by
� = ��=

p
v: (19)

We can interpret the value of � as a dimensionless measure of the typical size of a
mutation that naturally emerges from the model under consideration (cf. (Fisher,
1930; Orr, 1998)), but there is no guarantee that it is a positive quantity (see
later).

3.2 Compatible mutation and selection

The expressions for �, v and � above can be thought of as consisting of geometrical
invariants formed from z, b, S and C that encapsulate key aspects of the geometry
of the problem. These invariant quantities are unchanged by replacements which
represent a rotation of coordinate axes. Such replacements can be written as
z ! z� = Oz, b ! b� = Ob, S ! S� = OSOT and C ! C� = OCOT where O
is a real n� n orthogonal matrix (which has the property OT = O�1).
A particularly simple case occurs when mutation and selection are compatible

in the sense that a choice for the orthogonal matrix O can be found where the
above forms for S� and C� are both diagonal matrices (i.e. both have vanishing
elements o¤ the main diagonal). Generally, this is possible only when SC = CS
(Strang, 1988). Assuming this condition holds, and that the diagonal elements
of S� and C� are �i and m2

i respectively, for i = 1; 2; :::; n, it then follows that
the �tness function of Eq. (3) takes the form w(z) = exp (�n�1

Pn
i=1 �iz

�2
i ). The

distribution of mutant e¤ects is a function only of A (Eq. (1)) and setting r� = Or,
we have A =

Pn
i=1m

�2
i (r

�
i � b�i )

2.
Since the relation between z and z� means we can write z�i = Oi1z1+Oi2z2+ :::

the interpretation we can give to z�i is as a set of �composite� traits that inde-
pendently a¤ect �tness and are linear combinations of the original traits. For the
special case of compatible mutation and selection, the quantities � and v take the
forms � = �

Xn

i=1
�i (2b

�
i z
�
i+b

�2
i +m2

i ),
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v =
Pn

i=1

�
4�2im

2
i (z

�
i + b�i )

2 + 2
�
�im

2
i � 1

n

Pn
j=1 �jm

2
j

�2�
and � = ��=

p
v. From

these results we can infer that � need not be positive when mutation is biased
(b 6= 0). For example, in the special case where z� = �b� the numerator of �, i.e.
��, is

Xn

i=1
�i (m

2
i � b�2i ) and this will be guaranteed negative if b

�2
i > m2

i for all
i.

4 Discussion

In this work we have presented further theoretical developments of Fisher�s geomet-
rical model of evolutionary adaptation. In particular, we have extended Fisher�s
model to incorporate a distribution of mutant e¤ects that includes (i) correlations
between mutational e¤ects on di¤erent traits, (ii) mutational biases on di¤erent
traits and (iii) a class of distributions of mutant e¤ects that have the property that
surfaces of constant probability density are ellipsoids. This includes a multivariate
Gaussian as a special case, but covers more general distributions.
The above was made in the context of �tness functions that were not spherically

symmetric.
Making additional assumptions about moments of the distribution of mutant

e¤ects and exploiting the large number of traits, n, allowed us to obtain a simple
Gaussian form for the distribution of the random variable Q � ln(1 + s), where s
is the selection coe¢ cient of a new mutation. Simulations, based on a multivariate
Gaussian form for the distribution of mutant e¤ects suggest a very reasonable
accuracy of the approximation even for values of n as as small as n = 10 (see
Figure 4).
Out of the analysis, the quantity � = ��=

p
v naturally arose (where � and v are

given in Eqs. (14) and (15)). Such a ratio has, for mutations that are spherically
symmetric, been interpreted as a dimensionless measure of size of a mutation
(Waxman and Welch, 2005). In the presence of mutational bias, the defect with
this interpretation was that the quantity � may be negative. Exact calculations
(not presented) indicate that negative � can arise simply from mutational bias
(b 6= 0), in the absence of correlations between mutational e¤ects on di¤erent
traits. A negative value of � has very signi�cant implications, since e.g. by Eq.
(16), this implies that the proportion of bene�cial mutations can be > 0:5 if it
occurs; this follows since we can write Eq. (16) as Pben = 1

2
erfc(�=

p
2) where

erfc(�) is the complementary error function (Abramowitz and Stegun, 1970) and
1
2
erfc(�=

p
2) > 0:5 for � < 0. Thus under some circumstances mutational bias

may not be a trivial aspect of the problem.
The analysis also lead to explicit result for the distribution of Q that involved

a number of di¤erent geometrically invariant quantities, indicating the way the
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di¤erently �orientated�matrices representing selection (S) and mutation (C) and
the various vectors in the problem describing phenotype and mutational bias (z
and b) combine together. It is one of the jobs of theory to focus attention on
the important quantities underlying a model and without the detailed calculations
presented here, it would be very hard to predict the combinations of geometrically
invariant quantities that are actually present in the �nal results.
Overall, we view the results obtained here as a step towards a more complete

theory of evolutionary adaptation, based on Fisher�s geometrical model. Given
that Fisher�s model has begun to be applied in a variety of contexts of interest
to evolutionary biologists (Orr, 1998, 1999, 2000; Hartl and Taubes, 1996, 1998;
Burch and Chao 1999, Peck et. al. 1997; Poon and Otto, 2000; Barton, 2001;
Welch and Waxman, 2003; Rice, 1990; Whitlock et. al. 2003; Waxman and
Welch, 2005), it would be interesting to investigate the extent to which empirical
data can be used to determine or constrain the values of the quantities appearing
in e.g., Eqs. (15) and (16).
After submission of the original version of this paper I became aware of some

very recent work that has taken some interesting steps in this direction. In this
work, which addressed the implications of general trends in the distribution of
�tness e¤ects, an unbiased Gaussian distribution of mutant e¤ects was adopted.
Furthermore, additional mathematical approximations were made, including a key
one of averaging over the various matrices, assuming they were random. One key
biological assumption was also made, that gene number of an organism has an
appreciable positive correlation with the number of quantitative traits, n (Martin
and Lenormand, 2006).
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Appendix A

In this work we have assumed that the distribution of mutant e¤ects, f(r),
depends on r in only a speci�c combination A = (r� b)T C�1 (r� b), with C a
positive de�nite matrix. In this Appendix, we establish that when only a single
requirement on the A dependence of f(r) is made (beyond that of normalisation),
the matrix C is the variance-covariance matrix of mutational changes.
To proceed, we introduce a non-negative function F (R) that satis�es just two

conditions: Z 1

0

F (R)dR = 1 (A1)

1

n

Z 1

0

R2F (R)dR = 1 (A2)

but is otherwise arbitrary. With hindsight, we write the distribution of mutant
e¤ects in terms of the somewhat arbitrary function F (�) as

f(r) =
1p

Det(C)

F (
p
A)

NnA(n�1)=2
(A3)

whereNn = 2�n=2=�(n=2) is the surface area of a unit radius sphere in n dimensions
and �(�) denotes Euler�s Gamma function (Abramowitz and Stegun, 1970).
With all integrals with unspeci�ed limits covering the full, �1 to1, range of

all integration variables, normalisation of f(r), i.e.
R
f(r)dnr = 1, automatically

follows from Eq. (A1) when the following change of variables from r to R is made:
R = C�1=2 (r� b). The same change of variables in

R
rf(r)dnr yields a mean

mutational change of b.
The variance-covariance matrix can then be written as

R
(r� b) (r� b)T f(r)dnr

and with the same change of variables, becomesC1=2
�R

RRT F (kRk)
Nn kRkn�1

dnR

�
C1=2.

By symmetry, the bracketed quantity has the value I�� where I is the n�n identity
matrix and � equals n�1

R 1
0
R2F (R)dR, which equals unity by Eq. (A2). Hence

when F (�) is subject to Eq. (A2), the variance-covariance matrix is C1=2 � I �
C1=2 � C. The imposition of Eq. (A2) on F (�) is thus su¢ cient to give C the
unique identi�cation as the variance-covariance matrix of mutational changes.
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Appendix B

In this Appendix we present arguments for probability density of Q, namely
 (q), having the approximate weighted Gaussian form given in Eq. (6).
For the purposes of this Appendix, we shall initially write the distribution of

mutant e¤ects as G((r� b)T C�1 (r� b)) for some non-negative function G(�)
that leads to an f(r) that is normalised:

R
f(r)dnr = 1.

Using the �tness function of Eq. (3), the quantity Q of Eq. (5) takes the form
Q=�2zTSr� rTSr. The probability density of Q is given by  (q) = E [�(q �Q)]
where �(�) denotes a Dirac delta function and the expectation E[:::] is taken over
all mutations, i.e.

 (q) =

Z
�
�
q + 2zTSr+ rTSr

�
G((r� b)T C�1 (r� b))dnr:

We simplify this result by expressing it in terms of a linearly transformed muta-
tional change, R, de�ned by R = C�1=2 (r� b). This leads to

 (q) =

Z
�(q +�+ �TR+RTMR)G(kRk2)

p
Det (C)dnR (B1)

where Det (:::) denotes the determinant of a matrix and

� = 2zTSb+ bTSb+
kRk2

n
Tr(C1=2SC1=2) (B2)

� = 2C1=2S (z+ b) (B3)

M = C1=2SC1=2 � I

n
Tr(C1=2SC1=2): (B4)

The integral in Eq. (B1) can be written as

 (q) =

Z 1

0

�(q)F (R)dR (B5)

where
�(q) =



�(q +�+ �TR+RTMR)

�
(B6)

and the angular bracket, h:::i, denotes isotropically averaging over all directions
of R with its magnitude �xed at R and the function F (R) / Rn�1G(R2) coin-
cides with the function F (R) of Appendix A. In particular, it is de�ned so thatR1
0
F (R)dR = 1.
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We shall concentrate, here, on the function �(q) and establish an approximate
Gaussian dependence upon q. Since we shall go further than the work of Waxman
and Welch (2005) we give independent and slightly extended arguments for the
reason for this dependence.
We note that �(q) is the probability density for the random variable

Y = �(� + �TR+RTMR) (B7)

where the direction of R is random, but its magnitude is �xed at R. We can
write Y = ���

Pn
i=1 �iRi �

Pn
i;j=1MijRiRj and as such, it is a sum of random

variables which are not all independent, since
Pn

i=1R
2
i has the �xed value of R

2.
If, despite this non-independence a central limit sort of behaviour is operating, so
that the distribution of Y is near normal then

h�(q � Y )i '
s

1

2�v(R)
exp

�
�(q � �(R))2

2v(R)

�
(B8)

where �(R) and v(R) are the mean and the variance of Y and are obtained by
averaging over all directions of R when kRk is held �xed at R.
We use results for spherical averages, such as E[Ri] = 0 and E[RiRj] = R2�ij=n

etc. where �ij is a Kronecker delta that equals 1 when i = j and is zero otherwise,
and obtain

�(R) = hY i = �� = �
�
2zTSb+ bTSb+

R2

n
Tr (CS)

�
:

Similarly

v(R) =


Y 2
�
� hY i2 =

D�
�TR

�2E
+
D�
RTMR

�2E
=
R2

n
�T�+

2R4

n(n+ 2)
Tr
�
M2
�

=
4R2

n
(z+ b)T SCS (z+ b) +

2R4

n(n+ 2)

 
Tr (CSCS)� [Tr (CS)]

2

n

!
:

De�ning �j =
D
(Y � �(R))j

E
, we note that approximate normality also implies

�23= [v(R)]
3 � 1 and �4= [v(R)]

2 � 3 � 1 and these inequalities should hold for a
range of R. Exact analytical expressions for the ratios �23= [v(R)]

3 and �4= [v(R)]
2

(results not shown) are expressible in terms of a single vector, � = 2C1=2S (z+ b),
and a single matrix, M = C1=2SC1=2 � I

n
Tr(C1=2SC1=2). These expressions allow

investigation of �23= [v(R)]
3 and �4= [v(R)]

2 � 3, and in the absence of detailed
information about S and C, we have carried out this investigation using randomly
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generated values of � and M. We took elements of � to be independent and
identically distributed standard normal random variables (i.e. with mean zero and
variance unity). Furthermore, to determineM we set C1=2SC1=2 = ATA where A
is an n�n matrix whose elements are also independent and identically distributed
standard normal random variables. Writing C1=2SC1=2 in terms of the matrix A,
in the form shown, is consistent with the positive de�niteness of C1=2SC1=2. We
�nd, for n = 50 (100) and R in the range (0;

p
n), that typically �23= [v(R)]

3 and
�4= [v(R)]

2 � 3 are . 0:2 (0:1). It is thus plausible that large enough n leads to
an approximately normal distribution of q, Eq. (B6), and hence to Eq. (6) of the
main body of this paper.
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