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Abstract

Long-tailed distributions possess an in�nite variance, yet a �nite sample

that is drawn from such a distribution has a �nite variance. In this work

we consider a model of a population subject to mutation, selection and drift.

We investigate the implications of a long-tailed distribution of mutant allelic

e¤ects on the distribution of genotypic e¤ects in a model with a continuum of

allelic e¤ects. While the analysis is con�ned to asexual populations, it does

also have implications for sexual populations. We obtain analytical results

for a selectively neutral population as well as one subject to selection. We

supplement these analytical results with numerical simulations, to take into

account genetic drift. We �nd that a long-tailed distribution of mutant e¤ects

may a¤ect both the equilibrium and the evolutionary adaptive behaviour of

a population.

2



1 Introduction

When genetic material is duplicated, during the production of o¤spring, copy-

ing errors - mutations - may occur. Non-mutated alleles are passed on iden-

tically to the next generation while mutated alleles di¤er from the parental

genes. In the present paper, we concern ourselves with fundamental proper-

ties of the distribution of mutations and exclusively address the case of a

population of asexual organisms.

Individuals are taken to be characterised by a single phenotypic trait

that is controlled by many loci. We assume that the allelic mutation rate is

su¢ ciently small that o¤spring are highly unlikely to di¤er from their parent

by two or more mutations. In this case the entire genome can be thought

of as a single haploid locus. Thus independent of the level of ploidy and

the number of loci we shall treat individuals as consisting of a single haploid

locus with a very large number of di¤erent possible alleles. We note that

results for a single haploid locus may apply to a sexual population, if the

neglect of linkage disequilibria is valid (which has to be established), since

when it is, each individual can be viewed as a collection alleles at haploid

asexual loci in a genetic background consisting of the other alleles (see e.g.

[1]).

We adopt a model with a continuum of alleles [2] and in such models,
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alleles are typically labelled by a single, continuous, real parameter, x, where

1 > x > �1. Mutant values of x are randomly chosen from a continuous

distribution and consequently can take a continuum of possible values. Since

there is zero probability of obtaining precisely the same value twice, from a

continuous probability distribution, every mutant allele di¤ers from all alleles

that were present in the population prior to the mutation. In the present

work, the value of x is interpreted as the genotypic component of a phenotypic

trait [1], [2]. On account of this, we shall refer to x as the genotypic e¤ect

(or sometimes just the e¤ect) of the allele.

If a parent, with e¤ect xp, undergoes a mutation, then the probability

that the resulting mutant has an e¤ect in the in�nitesimal range (x; x+dx) is

given byM(xjxp)dx whereM(xjxp) is the distribution of mutant e¤ects. The

function M(xjxp) is a probability density, and, as such, is non-negative and

normalised to unity: M(xjxp) � 0,
R
M(xjxp)dx = 1 (here and elsewhere, all

integrations with unspeci�ed limits cover the range �1 to 1). In general,

M(xjxp) is a weighted average (equivalently, a mixture) over the distributions

of mutant allelic e¤ects at the di¤erent loci controlling the trait and as such,

may have a very di¤erent shape from those of the underlying loci [3], [4].

We shall follow most previous analyses by taking M(xjxp) to be a uni-

modal (single peaked) function of x. In contrast to previous analyses (see

e.g. [5]), we take M(xjxp) to possess long tails. The feature - or de�ning
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property - of long-tailed distributions (also called fat-tailed or heavy-tailed

distributions in the literature) is that while the distributions are necessarily

non-negative and normalised to unity - as indicated above, such distribu-

tions always have an in�nite variance and even their expected value may

not be well de�ned [6]. We note, in passing, that discrete distributions can

also be long-tailed, so there may also be applications of such distributions to

meristic traits, such as o¤spring number or bristle number, as well as to the

continuous traits considered here.

The fact that a probability distribution has an in�nite variance does not

mean the measured variance is in�nite. Rather, we note that in a sample

consisting of a �nite number of terms taken from such a distribution, the

variance of the sample is �nite. Thus from the viewpoint of summary sta-

tistics of �nite samples, there is nothing manifestly pathological about such

distributions. Some of the ways of viewing the signi�cance of long tails in a

distribution are discussed in Appendix A.

The objective of the present work is, principally, to re-examine the equi-

librium properties of continuum of alleles models involving mutation and

selection, without making the implicit assumption that the distribution of

mutant e¤ects is short-tailed. Long-tailed distributions have been exten-

sively discussed in the past (see for example [7]). However to the best of our

knowledge a long-tailed distribution has not been introduced into the model
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or the context we discuss in the current paper and therefore its functional

role has not been addressed. Thus the whole objective of the present paper

may be summarised as looking for signi�cant di¤erences, for population ge-

netics and evolution, between the outcome of the conventional, short-tailed,

distributions of mutational e¤ects, with the outcome arising from mutational

distributions possessing long tails.

It seems to us that the objection that: because the genome is �nite, the

distribution of mutant e¤ects has �nite moments of all orders and hence is,

necessarily, short-tailed, is not compelling. The number of di¤erent possible

mutations is an astronomically large number, and the overwhelming propor-

tion of mutations will never be observed. Thus, for practical purposes, the

distribution of mutant e¤ects could have all the appearances of a long-tailed

distribution - out to a large but �nite cuto¤ value - that is never likely to be

even remotely approached and observed. Therefore, we view questions about

the form of the distribution of mutant e¤ects - such as whether it possesses

long tails or not - as meriting further theoretical and experimental investiga-

tion, rather than simply being decided a priori. In the case where mutations

are observed, whose e¤ects are a number of standard deviations (say three

or more) from the mean of the sampling distribution, one might suspect that

a short-tailed distribution of mutant e¤ects may not be an appropriate de-

scription. We note that there are general ways to assess whether a �nite
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data sample collected from experiments is best described by a long-tailed

distribution, for example, by using the Hurst index [8].

2 Form of the distribution of mutant e¤ects

To perform an investigation of reasonable length into the implications of a

distribution of mutant e¤ects, M(xjxp), that has long-tails, we are forced to

make restrictions on the form this distribution can take. The restrictions

we adopt still allow, however, a variety of di¤erent forms of M(xjxp). In

particular, we do not consider the most general long-tailed distribution, but

base our analysis on a family of non-negative, normalised, symmetric and

unimodal functions, f(x), whose form we shall shortly give. There are several

di¤erent forms that M(xjxp) can take even within this class, namely (i)

M(xjxp) = f(x � xp) [1], [2]. Because of the dependence of M(xjxp) on

x � xp, this can be termed a �translationary� invariant distribution, since

the same translation (i.e. shift) in both x and xp leads to the distribution

being unaltered; (ii) M(xjxp) = f(x) [9]. The �nal state of a mutation, x, is

unrelated to the parental e¤ect, xp, and this is termed the �House of Cards�

model of mutation, in analogy to the �nal, demolished state of a house of
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cards being unrelated to its initial, ordered, state; (iii)

M(xjxp) = f(x� xp) (1)

[10] where 1 �  � 0. This is called the �regression�model of mutation, in

view of the apparent connection of the argument of f(�) with linear regres-

sion. Clearly the regression model of mutation can interpolate between the

House of Cards and translationary invariant models of mutation, by choosing

the �regression�parameter  to be 0 or 1 and we shall carry out most of our

investigations in terms of this model for general values of .

In principle we could incorporate a systematic mutational bias into mu-

tation, by incorporating a parameter b (where 1 > b > �1) into the argu-

ment of f(�), so that e.g. in the regression mutation model, we would have

f(x� xp � b). However there has been some recent studies of the interplay

between biased mutation and selection [11], [12] and we shall not deal with

the considerable added level of complexity associated with bias here, except

as an aside, for the case of selective neutrality. We could also incorporate an

asymmetry of the function f(�) about its maximum, that cannot be simply

expressed as a mutational bias, but shall not do so here.

The form of f(x) adopted here is characterised by two parameters, namely
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m and �, which appear in a Fourier integral representation of f(x):

f(x) =

Z
exp(�ikx)g(k)dk

2�
; g(k) = exp (�m�jkj�) (2)

where 1 > m > 0 and 2 > � > 0: Since g(�k) = g(k) and g(0) = 1, the

function f(x), as de�ned above, is manifestly real, symmetric and normalised

to unity. However it is by no means obvious that f(x) is non-negative, as

it necessarily must be to be a probability density, and unimodal, as we have

assumed. It has been established, however, that an f(�) of the form of Eq.

(2) is indeed non-negative and unimodal [13] and is an example of a �Levy

stable distribution�.

The parameter � in Eq. (2) controls aspects of the shape of the distrib-

ution but only a few values of � lead to an integral in Eq. (2) that can be

evaluated in a relatively simple form. The cases � = 1 and � = 2 lead to

straightforward integrations, and yield the well-known distributions associ-

ated with Cauchy and Gauss and are given in Appendix B. Some other values

of � lead to integrals which may be evaluated in terms of special functions

and examples of these may also be found in Appendix B (where a total of four

representative forms for f(x) are given). In Fig. 1 we plot the distribution,

f(x) of Eq. (2), as a function of x, for a range of � but with the parameter

m set to unity.
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Figure 1

The function f(x) that is used in distribution of mutant e¤ects, Eq. (2), is plotted

as a function of genotypic e¤ect, x, and �shape�parameter �. The parameter m,

which is a measure of the width of the distribution, has been set to unity.
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The parameter � also determines the asymptotic behaviour of the family

of distributions given in Eq. (2):

f(x) � A�jxj���1; for jxj �! 1; (2 > � > 0)

(3)

A� =
1

�
m� sin

���
2

�
�(1 + �)

[6] where �(�) denotes Euler�s gamma function [14] and we shall make use of

these results later. The small x properties of f(x) are contained in the �rst

few non-zero derivatives at the origin:

f(0) =
�(1=�)

��m
; (4)

d2

dx2
f(x)

����
x=0

= ��(3=�)
��m3

� � 1

m2

�(3=�)

�(1=�)
f(0): (5)

All distributions of the form Eq. (2), with � < 2, have an in�nite vari-

ance, since we can write Var(x) =
R
x2f(x)dx = �[d2g(k)=dk2]k=0 and this

diverges. Equivalently, the absence of a �nite variance for � < 2 arises be-

cause of the slow power-law decrease of the distributions at large jxj, Eq. (3),

so e.g. the large jxj contribution is proportional to
R1

x2 x���1dx, which

diverges. It is precisely in this sense that the distributions of the type in Eq.

11



(2) with � < 2 have long tails.

The parameter m controls the range of x over which f(x) changes appre-

ciably. There are several, informative ways of seeing this. (i) The maximum

value of f(x) occurs at x = 0 andmaxx f(x) = f(0) is given above in Eq. (4).

The dependence ofmaxx f(x) onm�1 indicates that increasingm reduces the

maximum value of f(x), and because of normalisation and unimodality of

f(x), this decrease can only arise because of a resultant broadening of the

tails of the distribution. (ii) From Eq. (5), it follows that in the vicinity

of x = 0, we have f(x) ' f(0) �
�
1� 1

2
(x
`
)2 + :::

�
where the characteristic

scale of variation (i.e. the �range�) of f(x) is ` and ` = m
p
�(1=�)=�(3=�).

Note that ` is an increasing function of � and writing ` = `(�) we have

`(1=2) ' 0:09m, `(1) ' 0:71m and `(2) ' 1:41m, i.e. for � & 1, ` is O(m).

(iii) From the analytical forms for f(x) in Appendix B, we have the following

results. When � = 1, m equals the �half width at half height� - i.e. the

value of x that results in the distribution having half its maximum value.

For � = 2, the variance of the distribution equals 2m2. (iv) Since, for � < 2,

we cannot classify the distributions of Eq. (2) by their variance, we could

characterise them by the region around the maximum where an appreciable

proportion of mutations lie. The range of x, around x = 0, where 50% of

the normalisation of f(x) resides can be written jxj � c(�)m. In Table 1 the

results of numerical calculation for c(�) are presented.
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� c(�)

0:50 1:28

0:75 1:07

1:00 1:00

1:25 0:98

1:50 0:97

1:75 0:96

2:00 0:95

Table1

The range of x, around x = 0, where 50% of the normalisation of the function

f(x) of Eq. (2) resides can be written as jxj � c(�)m. The Table give the results

of numerical calculation of c(�)
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Evidently, 50% of mutant e¤ects lie within a range � m of x = 0, again

pointing to m as a useful indicator of the scale of x over which f(x) changes

appreciably.

A common choice made in the literature for the distribution of mutant

e¤ects is a Gaussian (corresponding, in Eq. (2), to � = 2). The variance

of the Gaussian is an empirically determined quantity, which varies from

trait to trait and from species to species. A typical value of the variance

is 2m2 � 0:05 i.e. m � 0:2 [15] and although we do not study a Gaussian

distribution here, we shall use the value m = 0:2 for all of the numerical

studies presented below.

3 Neutral case

A long-tailed distribution of mutant e¤ects manifests itself most strongly

in a situation where mutation is the only evolutionary force acting on a

population. We therefore consider a large (e¤ectively in�nite) population

of haploid asexual organisms with one locus, where there is no genetic drift

and individuals are not subject to selection. The lifecycle of the population,

that takes place in discrete generations, begins with newly born individuals

(juveniles) and is: (i) maturation of juveniles to adulthood, but with no

selection operating, (ii) production of o¤spring by adults, followed shortly
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by the death of all adults. Mutation is taken to occur during the production

of o¤spring.

We adopt the somewhat �exible model of mutation given by the regression

model described above, and summarised in Eq. (1).

3.1 Equilibrium distribution of an in�nite population

The distribution (probability density) of genotypic e¤ects in one generation

is denoted by '(x) and in the following generation, is denoted by '0(x). It

satis�es

'0(x) = (1� u)'(x) + u

Z
f(x� y)'(y)dy (6)

where the trait mutation rate is u. Equation (6) follows directly from con-

siderations of genes being perfectly transmitted to the next generation with

probability 1 � u (�rst term on the right-hand-side) and being imperfectly

transmitted - i.e. containing a mutation, with probability u (second term on

the right-hand-side).

Let us de�ne moments of '(x) by xn =
R
xn'(x)dx, and use a prime to

denote the corresponding moment in the following generation. For any value

of � < 2, long-tailed distributions do not yield a dynamical equation for x2

that is meaningful. To see this, multiply Eq. (6) by x2 and integrate over

all x. This involves the quantity
R R

x2f(x � y)'(y)dxdy and this can be
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shown to diverge because
R
x2f(x)dx diverges. By contrast, a meaningful

equation for �x can be de�ned for � > 1: namely �x0 = [1� u(1� )] �x. This

equation coincides with previously found results [10] and �x approaches an

equilibrium value of 0 when  < 1. However, the equation for �x is generally

not meaningful when the shape parameter, �, appearing in the distribution

of mutant e¤ects, Eq. (2), lies in the range � � 1. The problem arises

because we cannot give a de�nite value to
R
xf(x)dx when � � 1. It may be

tempting, because of symmetry of f(�), to take
R
xf(x)dx = 0 but if f(�)

is long-tailed, and possesses a non-zero level of asymmetry, then for � � 1,R
xf(x)dx could actually diverge.

Despite the divergence of some or all of the moments arising from Eq.

(6), we have established that in a continuous time approximation to Eq.

(6), the distribution '(x) equilibrates for any  < 1 (see Appendix C). The

equilibrium distribution is independent of the trait mutation rate u - although

the time taken to achieve equilibrium does depend on u. In Appendix C, it is

shown that the exact equilibrium solution to Eq. (6), for the family of f(�)

given in Eq. (2), is

'̂(x) =

Z
eikx exp

�
� m�

1� �
jkj�

�
dk

2�
: (7)

Thus the mutation distributions of Eq. (2) lead, at equilibrium, to a dis-
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tribution of genotypic e¤ects with the same shape parameter �, but with a

�scale�parameter changed fromm, in the mutation distribution, to �(�; )m

in the distribution of genotypic e¤ects, where

�(�; ) =
1

(1� �)1=�
: (8)

Note that for any  > 0 and any � > 0, we have �(�; ) > 1, thus, in

accordance with intuition, the model of mutation adopted leads to an equi-

librium distribution of genotypic e¤ects that is broader than the distribution

of mutant e¤ects. Furthermore, because the equilibrium distribution of geno-

typic e¤ects is characterised by the same shape parameter, it has the same

asymptotic power-law behaviour as the distribution of mutant e¤ects, Eq.

(3). Figure 2 contains a plot of the �width�of the equilibrium distribution

of allelic e¤ects, �(�; ), as a function of �, for several values of .
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Figure 2

The parameter �(�; ) of Eq. (8) is plotted as a function of the �shape�

parameter �. The quantity �(�; )m is a measure of the width of the equilibrium

distribution of genotypic e¤ects in the selectively neutral case.
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It is possible to include mutational bias in the selectively neutral case

of this Section. A distribution of mutant e¤ects of the form f(x � y � b)

with non-zero bias parameter, b, leads, using the method of Appendix C, to

an equilibrium distribution of genotypes e¤ects given by '̂(x � b=(1 � ))

where '̂(x) is the distribution of an unbiased problem given in Eq. (7). The

modi�ed argument of '̂(x) simply corresponds to a shift in position of the

maximum of the distribution from x = 0 to x = b=(1� ).

3.2 Equilibrium distribution of a �nite population

The in�nite population results illustrate some consequences of a long-tailed

distribution of mutant e¤ects. However, the resulting distribution of geno-

typic e¤ects does have an in�nite variance. This means the in�nite population

results cannot be directly used to make predictions for large but �nite popu-

lations, in contrast to the results following from a short-tailed distributions

of mutant e¤ects. To understand the implications of long-tailed distribu-

tions in �nite populations, we have investigated the behaviour of a large but

�nite population, from individually based numerical simulations. For the

population size and mutation rates considered, the speed of the underlying

dynamics are largely determined by the mutation rate. The population was

thus simulated over a time interval that is large compared with the inverse of
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the mutation rate, u�1. Over such a time interval the population approaches

a highly stochastic �equilibrium�state associated with a �nite population.

This approach is illustrated in Fig. 3.
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Figure 3

A histogram of frequencies of di¤erent genotypic e¤ects is plotted as a function

of genotypic e¤ect, x, and time t (measured in generations). This �gure shows the

behaviour of the distribution of genotypic e¤ects, '(x), over a time interval that

is long compared with the inverse of the trait mutation rate, u�1, when there is no

selection acting. The histogram was determined from a numerical simulation of a

�nite population of individuals and is normalised, at each time, so the area under

the histogram is unity. Also plotted on the same �gure is the distribution describing

an in�nite population at equilibrium (solid curve). The parameter values used were

u = 10�2, m = 0:2,  = 0:5, N = 104 and the x values, at time t = 0, were

21



drawn from a Gaussian distribution, with mean 2 and variance of 0:1.

22



Although the population approaches a peaked distribution at long times,

there are always a small fraction of outliers, as exempli�ed by the line of bins

that rapidly develop at the extremities of the x range (at x = �5). Increasing

the range of x values, at �xed bin widths, is observed to not change the

existence of outliers, but merely cause a reduction in their frequency.

4 Inclusion of selection

We now investigate the implications of a non-zero level of selection acting

in the model considered above. Selection acts on viability, which depends

on a single phenotypic trait characterising individuals and whose genetic

component is determined by the allele at the single locus in question. Fitness

is taken to be of a stabilising viability type. The viability, w(x), of individuals

of a particular trait value x arises from an average, over environmental e¤ects,

of viability as a function of phenotype (see e.g. [5]). We take [16]

w(x) = exp
�
�sx2

�
(9)

where s is a positive parameter that is a measure of the intensity of selection

and the optimal allelic value - the one leading to the maximum of w(x) - has

been taken to lie at x = 0. Selection acts during the maturation stage (i) of
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the lifecycle given in Section 3.

The dynamical equation describing the evolution of the distribution of

genotypic e¤ects follows from Eq. (6) by replacing '(x) on the right-hand-

side of this equation by the distribution after selection: w(x)'(x)=
R
w(x)'(x)dx,

hence

'0(x) =
(1� u)w(x)'(x) + u

R
f(x� y)w(y)'(y)dyR

w(x)'(x)dx
: (10)

We have investigated the behaviour of a �nite population, from individually

based numerical simulations and the results, at long times, are illustrated in

Fig. 4 for the case � = 1.
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Figure 4

A histogram of frequencies of di¤erent genotypic e¤ects is plotted as a function

of genotypic e¤ect, x, and time t (measured in generations). This �gure shows the

behaviour of the distribution of genotypic e¤ects, '(x), over a time interval that

is long compared with the inverse of the trait mutation rate, u�1, when selection

is acting on the population. The histogram was determined from a numerical

simulation of a �nite population of individuals and is normalised, at each time, so

the area under the histogram is unity. The parameter values used were u = 10�2,

m = 0:2,  = 0:5, s = 0:025, N = 104 and the x values, at time t = 0, were

drawn from a Gaussian distribution, with mean 2 and variance of 0:1.
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The distribution is observed to be far more narrowly peaked than the

corresponding distribution in the neutral case (s = 0) that was considered

in Section 3.1 and illustrated in Fig. 4. As a consequence of the narrowness

of the distribution, it is hard to see any evidence, at the extremes of the

range of allelic value, of the long tails of the distribution of mutant e¤ects,

in contrast to what was seen in the neutral case, when the population was

�nite.

Let us analyse the properties of the equilibrium solution arising from Eq.

(10). The equilibrium solution obeys

'̂(x) = u

R
f(x� y)w(y)'̂(y)dy

�w � (1� u)w(x)
; �w =

Z
w(x)'̂(x)dx: (11)

We can estimate the behaviour of the solution of Eq. (11), when mutation

is weak compared with selection, as characterised by u�(1=�)=(��m2)� s.

When this applies, the House of Cards approximation [17] yields '̂(0) /

�ms=(u�(1=�)), i.e. in this case, '̂(0) is very large, and the bulk of the

normalisation of '̂(x) lies very close to x = 0. Thus in contrast to the

neutral case, the shape of the equilibrium distribution of allelic e¤ects, '̂(x),

in the presence of selection, does not generally take a similar pro�le to f(x).

The behaviour in the opposite limit, where selection is weak compared with

mutation, is much harder to estimate, however we can note that in this case
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the form of '̂(x) will not be approximately Gaussian , in contrast to what is

found when f(�) has a �nite second moment [1], [18].

Apart from the approximate local behaviour of '̂(x), we can determine

its leading asymptotic behaviour. To obtain this, note that when jxj �

1=
p
s, we can neglect w(x) appearing in the denominator on the right-

hand-side of Eq. (11). We shall assume 1=
p
s � m, as is often typi-

cal in quantitative traits [15]. Then, when jxj � 1=
p
s, we can replace

f(x�y) by its asymptotic form, Eq. (3). It follows that '̂(x) ' uA�
R
jx�

yj���1w(y)'̂(y)dy= �w ' uA�jxj���1
R
w(y)'̂(y)dy= �w, i.e.

'̂(x) � uA�jxj���1 � u� asymptotic form of f(x): (12)

The general result of Eq. (12), for the tails of the distribution of '̂(x), has

two implications. (i) At large jxj, the distribution '̂(x) approaches 0 with

an identical power-law behaviour to that of f(x), and since this large jxj

behaviour is responsible for the in�nite variance of f(x), it follows that '̂(x)

is, itself, a long-tailed distribution and, as an automatic consequence, has

an in�nite variance. (ii) The strength of the long tails, i.e. the coe¢ cient,

u, of f(x) in Eq. (12), can be small. Typical mutation rates in asexual

populations, where u represents the mutation rate of the trait, can be of

order 10�2 (while in sexual populations, where u corresponds to the allelic

27



mutation rate, u can be of order 10�5) [15]. Thus while the long tails are

present in '̂(x), they are present with low weight, since selection rapidly

removes such extreme individuals. A value of x, that is randomly picked from

the distribution '̂(x), will lie in the region where Eq. (12) is applicable, with a

probability that is substantially smaller than u. As a consequence, it requires

a population of size much larger than u�1 in order to have an appreciable

number of individuals in the tails of the distribution and corresponding to

outliers of the distribution. This is the reason the result of the long time

simulations illustrated in Fig. 4 do not exhibit any signi�cant outlier e¤ects

associated with the in�nite variance of the distribution.

Let us note that in the case where selection is weak, in the sense s� 1,

we cannot generally make the quadratic approximation to the �tness function

of Eq. (9), that is commonly made in the literature, namely w(x) ' 1� sx2.

The reason is that this approximation leads, in Eq. (11), to the asymptotic

form, �(x) � constant �jxj���3, i.e. a result that corresponds to a �nite

second moment and is thus incompatible with the exact leading behaviour

of Eq. (12), which yields an in�nite second moment.

We end this Section by noting that census, in Eq. (10), is taken to

occur after mutation has occurred, but before selection. If we censused im-

mediately after selection, then the distribution describing the population is

w(x)'(x)=
R
w(x)'(x)dx and, because of the factor w(x), this is a short tailed
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distribution. Thus every generation, the distribution that describes the pop-

ulation alternates between being long-tailed and short-tailed and here we

have concentrated on the anomalous, long-tailed aspect, of this.

5 Summary and discussion

Distributions of mutant e¤ects with long tails have, as we have pointed out,

in�nite variances. We have indicated how a long-tailed distribution of mutant

e¤ects determines the asymptotic properties of the equilibrium distribution of

allelic e¤ects describing an in�nite population, and how this distribution will

also have long tails - and hence an in�nite variance associated with it. In the

case of a �nite population, it has been seen that when stabilising selection

is operating, extreme individuals are rapidly removed by section and the

tails of the distribution will not be signi�cantly populated, and hence not

signi�cantly contribute to variance, unless (population size)�u is not small

compared with unity.

Apart from the in�uence that long-tailed distributions of mutant e¤ects

have on the equilibrium distribution of allelic e¤ects, there may also be dy-

namical implications of such mutation distributions. In particular, it is in-

teresting to ask whether long-tailed distributions of mutant e¤ects have a

substantial e¤ect on the rate of adaptation of evolving populations. The na-
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ture of the �tness landscape is likely to a¤ect the answer to this question

- whether the landscape is rugged or smooth. Here, we shall only give the

results of a very preliminary investigation, for the smooth, stabilising �tness

function of Eq. (9).
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Figure 5

A plot of the mean genotypic e¤ect, E[X], as a function of time, for two

populations that were subject to stabilising selection of identical strength. Both

populations had, initially, the same distribution of allelic e¤ects. The populations

di¤ered in the distribution of mutant e¤ects; one had a short tailed (Gaussian)

distribution while the other had a long-tailed (Cauchy) distribution. The �gure was

obtained from individual based simulations of the two populations. The parameter

values used were u = 10�3, m = 0:2,  = 0:5, s = 0:025 and N = 104. The

di¤erent rates of adaptation exhibited in the �gure are due to the di¤erent values

of the shape parameter, �, of the two mutation distributions, and e.g. replacingm
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in just the short-tailed distribution by 0:8m or 1:2m does not qualitatively a¤ect

the slower rate of adaptation associated with this distribution.
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In Fig. 5 we plot the mean genotypic e¤ect, E[X], as a function of time,

t, for simulations of two populations. Initially, both populations were iden-

tically distributed, but one has a short-tailed distribution of mutant e¤ects,

while the other has a long-tailed distribution. The populations have an initial

mean genotypic e¤ect that is some distance from the �tness optimum (which

lies at x = 0) and are thus maladapted. The �gure indicates that the range

of the tails of the distribution of mutant e¤ects can have a signi�cant e¤ect

on the rate of evolutionary adaptation of a population.

We can therefore conclude that the length of tails of the distribution of

mutant e¤ects can a¤ect both equilibrium and dynamical properties of a

population, but the latter requires further investigation.
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Appendix A

In this Appendix we give a number of ways of viewing probability distri-

butions that possess so-called long tails.

Firstly, if we repeatedly draw random numbers (i.e. x�s) from such a

distribution, then while many of the numbers will be close to the mode

of the distribution, some of the numbers will have substantial deviations

from the mode. This is in sharp contrast to a Gaussian distribution, or any

other distribution with a �nite variance, where virtually none of the random

numbers picked from this distribution deviate from its mode by more than a

few standard deviations.

Another way of looking at long-tailed distributions is to consider the

statistics of the sample mean, Sn =
Pn

i=1 xi=n of a �nite number of x�s that

are independently drawn from such a distribution. If, for increasingly larger

sample sizes, n, the distributions of the Sn, are compared, then long-tailed

distributions result in anomalous behaviour, compared with short-tailed (i.e.

�nite variance) distributions. In particular, the sample means of a long-tailed

distribution may not settle down (converge) to a de�nite value as the sample

size, n, is increased. Similarly when the variances of the Sn are compared,

for increasing values of n, they will not generally decrease with sample size

n, as 1=n, as they do for a short tailed distribution.

A third feature of long tailed distributions is that a sum of independently
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chosen random variables from such a distribution will not approach a normal

distribution as the number of terms in the sum is increased. Thus the Central

Limit Theorem (i.e. the asymptotic approach of the distribution of a sum of

random variables to a Gaussian) breaks down for such distributions. There

are, however, extensions of the Central Limit Theorem which indicate the

way suitably scaled sums of random variables from a long-tailed distribution

may have a distribution that approaches a limiting form [6].

Appendix B

In this Appendix we give four representative forms for the function f(x)

of Eq. (2) of the main text. The cases � = 1 and 2 lead to straightforward

integrations. We have found that writing f(x) of Eq. (2) in the equiva-

lent form f(x) =
R1
0
cos(kX) exp (�k�) dk=(m�) with X = x=m, leads to

integrals which for some values of � may be evaluated with the computer

algebra package Maple r. These values include � = 1=2, 4=3, 3=2, 5=3, ...

although some of the resulting expressions are long. The values � = 1=2 and

� = 4=3 are relatively simple and are given below. With C(z) and S(z) Fres-

nel integrals and 2F2(a; b; c; d; z) generalised hypergeometric functions [14]

and with

X = jxj=m; F (X) = mf(x)
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we have

F (X) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

4p
2�

�
1

4X

�3=2
cos

�
1

4X

�"
1� 2C

 r
2

�

1

4X

!#

+
4p
2�

�
1

4X

�3=2
sin

�
1

4X

�"
1� 2 S

 r
2

�

1

4X

!#
;

� = 1=2;

1

�

1

1 +X2
; � = 1;

3�(3=4)

4
2F2(

7

12
;
11

12
;
1

2
;
3

4
;
27X4

256
)

� 15
128

p
2�X2

�(3=4)
2F2(

13

12
;
17

12
;
5

4
;
3

2
;
27X4

256
);

� = 4=3;

1p
4�
exp

�
�X

2

4

�
; � = 2:

Appendix C

In this Appendix, we provide some theoretical results that are used in the

main text.

We begin with Eq. (6) which we Fourier transform, by multiplying by

eikx and integrating over all x. With  (k) =
R
eikx'(x)dx the characteristic

function associated with '(x), we �nd

 0(k) = (1� u) (k) + ug(k) (k) (13)
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where g(k) =
R
eikxf(x)dx.

Eq. (13) has a unique equilibrium solution,  ̂(k), which satis�es  ̂(k) =

g(k) ̂(k). It is natural to solve this equation by iteration. The �rst few

iterates, starting from an arbitrary initial characteristic function,  0(k), are:

 1(k) = g(k) 0(k),  2(k) = g(k) 1(k) = g(k)g(k) 0(
2k). Continuing

in this way, we obtain  N(k) =
hQN

n=0 g(
nk)
i
 0(

Nk). Since, for all  <

1, limN!1  0(
Nk) =  0(0) = 1 by virtue of  0(k) being a characteristic

function, it follows that  ̂(k) = limN!1  N(k) =
1Q
n=0

g(nk). Thus the

equilibrium distribution of genotypic e¤ects, '̂(x), is thus given by

'̂(x) =

Z
eikx (k)

dk

2�
=

Z
eikx

" 1Y
n=0

g(nk)

#
dk

2�
: (14)

Using g(k) of Eq. (2) in this equation quickly leads to Eq. (7) of the main

text.

To establish convergence of Eq. (13) to the equilibrium solution, we

approximate this equation by a continuous time equation: @ (k; t)=@t =

�u (k; t) + ug(k) (k; t). Setting T = ut,  (k; t) = e�T�(k; T ) we �nd

�(k; T ) obeys @�(k; T )=@T = g(k)�(k; T ) with solution �(k; T ) = �(k; 0)+

g(k)
R T
0
�(k; s1)ds1. Iterating yields �(k; T ) = �(k; 0) + g(k)T�(k; 0) + :::

Proceeding in this way, we infer that �(k; T ) =
P1

j=0Cj(k) (T
j=j!)�(jk; 0)

where C0(k) = 1 and for j > 0, Cj(k) =
Qj�1
h=0 g(

hk): We can thus write
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the solution for  (k; t) as  (k; t) = e�ut
P1

j=0Cj(k) [(ut)
j=j!] (jk; 0). and

this may be veri�ed to solve Eq. (13). Since limj!1  (
jk; 0) = 1 and

since
��Q1

h=0 g(
hk)
�� < 1 we have a convergent series solution for  (k; t).

For large t the series is dominated by large j, in which case  (k; t) !

C1(k)e
�utP1

j=0(ut)
j=j! = C1(k) �  ̂(k) and we have convergence to the

equilibrium solution.
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Figure captions

Figure 1

The function f(x) that is used in distribution of mutant e¤ects, Eq. (2),

is plotted as a function of genotypic e¤ect, x, and �shape�parameter �. The

parameter m, which is a measure of the width of the distribution, has been

set to unity.

Figure 2

The parameter �(�; ) of Eq. (8) is plotted as a function of the �shape�

parameter �. The quantity �(�; ) � m is a measure of the width of the

equilibrium distribution of genotypic e¤ects in the selectively neutral case.

Figure 3

A histogram of frequencies of di¤erent genotypic e¤ects is plotted as a

function of genotypic e¤ect, x, and time t (measured in generations). This

�gure shows the behaviour of the distribution of genotypic e¤ects, '(x), over

a time interval that is long compared with the inverse of the trait mutation

rate, u�1, when there is no selection acting. The histogram was determined

from a numerical simulation of a �nite population of individuals and is nor-

malised, at each time, so the area under the histogram is unity. Also plotted

on the same �gure is the distribution describing an in�nite population at equi-

librium (solid curve). The parameter values used were u = 10�2, m = 0:2,
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 = 0:5, N = 104 and the x values, at time t = 0, were drawn from a

Gaussian distribution, with mean 2 and variance of 0:1.

Figure 4

A histogram of frequencies of di¤erent genotypic e¤ects is plotted as a

function of genotypic e¤ect, x, and time t (measured in generations). This

�gure shows the behaviour of the distribution of genotypic e¤ects, '(x), over

a time interval that is long compared with the inverse of the trait mutation

rate, u�1, when selection is acting on the population. The histogram was

determined from a numerical simulation of a �nite population of individuals

and is normalised, at each time, so the area under the histogram is unity. The

parameter values used were u = 10�2, m = 0:2,  = 0:5, s = 0:025, N = 104

and the x values, at time t = 0, were drawn from a Gaussian distribution,

with mean 2 and variance of 0:1.

Figure 5

A plot of the mean genotypic e¤ect, E[X], as a function of time, for two

populations that were subject to stabilising selection of identical strength.

Both populations had, initially, the same distribution of allelic e¤ects. The

populations di¤ered in the distribution of mutant e¤ects; one had a short

tailed (Gaussian) distribution while the other had a long-tailed (Cauchy)

distribution. The �gure was obtained from individual based simulations of
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the two populations. The parameter values used were u = 10�3, m = 0:2,

 = 0:5, s = 0:025 and N = 104. The di¤erent rates of adaptation exhibited

in the �gure are due to the di¤erent values of the shape parameter, �, of

the two mutation distributions, and e.g. replacing m in just the short-tailed

distribution by 0:8m or 1:2m does not qualitatively a¤ect the slower rate of

adaptation associated with this distribution.

Table caption

The range of x, around x = 0, where 50% of the normalisation of the

function f(x) of Eq. (2) resides can be written as jxj � c(�)m. The Table

give the results of numerical calculation of c(�).
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