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Abstract

In this paper we study a large, but finite population, in which mutation and selection occur

at a single genetic locus in a diploid organism. We provide theoretical results for the equilibrium

allele frequencies, their variances and covariances and their equilibrium distribution, when the

population size is larger than the reciprocal of the mean mutation rate. [[We are also able to infer

that the equilibrium distribution of allele frequencies takes the form of a constrained multivariate

Gaussian distribution.]] Our results provide a rapid way of obtaining useful information in the

case of complex mutation and selection schemes when the population size is large. We present

numerical simulations to test the applicability of our theoretical formulations. The results of

these simulations are in very reasonable agreement with the theoretical predictions.
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1. Introduction

Biological evolution depends on changes in allele frequencies and these changes can occur be-

cause of various evolutionary “forces” that include selection, mutation, and genetic drift. Un-

derstanding how these evolutionary forces combine to produce distributions of allele frequencies

is, generally, a complex task. Most progress has been made in the case of infinite populations

(Crow and Kimura, 1970), however for the more realistic case of finite populations, there has

been less progress.

In this paper we focus on the case a finite population in which mutation and selection occur

at a single genetic locus in a diploid organism with non-overlapping generations. Our main

objective is to provide results that can help in the analysis of situations that are either difficult

to approach with purely analytic methods or are highly time-consuming when simulated on a

computer. The results found can, in particular, provide useful information in the case of a

complex selection scheme where the population is too large to allow a complete study using only

computer simulations.

The primary restrictions on the applicability of our approach are that the number of alleles

is finite, hence continuum of alleles models are not included, and that the reciprocal of the

population size is small compared with the mean mutation rate. We clarify the origin of this

restriction in Subsection 6.1.

The genetic locus under consideration has n possible alleles and we describe these by the

column vector p(t) ≡ (p1(t), p2(t), ..., pn(t))T (where T denotes transpose), and the i0th element

of p(t) is the frequency of allele i at generation (i.e. time) t (= 0, 1, 2, 3...). At the time of census,

population size is fixed at N . Thus the frequency of any allele can only be one of the values
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given by

allowed allele frequencies =
0

2N
,
1

2N
,
2

2N
,
3

2N
, ...,

2N

2N
(1.1)

and there are a total of 2N+1 possible values for each element of p(t). Because a value of p(t) is

simply a specification of the value of each of the n elements of p(t), there exists a finite number

of possible values of p(t). This number would have the value (2N + 1)n if the elements of p(t)

were independent, however they are constrained to sum to unity. This results in the number of

possible values of p(t) being generally a much smaller number and given by
(2N + n− 1)!
(2N)!(n− 1)! .

In general, evolutionary biologists are most interested in the long-term outcome of evolution.

Therefore, we will concentrate on characterising p(t) for large values of t. The analysis we present

applies for the class of models where the value of p(t), in an infinite population, approaches a

unique equilibrium value at long times.

We shall focus on the calculation of the mean and variance of the various allele frequencies,

along with the covariances, over time, between allele frequencies. Our calculations hold for

the long term, once no systematic trends are exhibited by the population and only the effects of

stochastic drift are present. We shall loosely refer to this state of the population as “equilibrium”

but emphasise that there may be considerable stochasticity present. Once this equilibrium regime

is achieved, we can interpret the results of calculations that involve genetic drift in two different

ways, both of which are valid. The first way views the results for summary statistics as being

derived from an average, over a large number of replicate populations that differ from each other

due to their different stochastic histories. The second way takes the view that there is a single

population and the distributions or summary statistics arising from the calculations describe

a time average over this single population. In this work we shall generally adopt the single
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population viewpoint.

As we shall see, the quantities we calculate allow the determination of evolutionarily important

quantities that include the level of genetic variance, the level of heterozygosity, the mean fitness

and also the loss of fitness due to genetic drift (the drift load). An advantage of our work is that

dependence on population size, N , is explicitly present in the results, so comparing results for

different population sizes requires no additional calculation.

Previous theoretical studies on mutation and selection in finite populations have generally

assumed a particular pattern of fitnesses and mutations. Summary statistics, such as mean

fitness, genetic variance and the level of heterozygosity, have been found by computer simulations

and analytic approximations. Our work allows for calculation of these quantities and can readily

deal with general schemes of mutation and selection in a single framework.

We begin the presentation of the analysis with a study of the infinite-population case. This is,

essentially, a re-formulation of previous work (Crow and Kimura, 1970). We then use the results

from the infinite-population case as the basis for investigating the case of finite-populations.

2. The model

Consider a diploid organism in which generations are discrete. During each generation, the

population undergoes four phases:

1. The adults produce gametes which, by random union, form zygotes. These mature into

juveniles. We assume that a very large (effectively infinite) number of zygotes are produced.

2. All of the adults die, leaving only the juveniles alive.
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3. Viability selection occurs. The probability that a particular juvenile will survive viability

selection depends only on their genotype.

4. We assume that the resources present in the environment are only sufficient to support

N adults, thus a non-selective thinning process occurs, where N juveniles are selected at

random. These juveniles become the adults of the next generation, while the remainder

die.

The n possible alleles at the one locus under selection are numbered 1, 2, ..., n and the i0th

allele is denoted by Ai. An individual who inherited Ai from one parent and Aj from the other

will be referred to as an individual of type (i, j). The probability that a juvenile of type (i, j)

will survive viability selection is given by Wij ≡Wji. [[Note that we do not assume any relation

between Wii, Wij and Wjj, thus no particular dominance relation is assumed between any pair

alleles.]]

It is convenient to be able to work in terms of relative fitnesses, rather than absolute fitnesses

Therefore, we define the relative fitness of type (i, j) juveniles, denoted wij, as:

wij =
Wij

Wnn
(2.1)

Thus, type (n, n) individuals are arbitrarily chosen as the reference genotype, and have a realtive

fitness of unity. It is also convenient to define the selection coefficient associated with genotype

(i, j) by

sij = wij − 1. (2.2)
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Finally, we assume that mutations occur during the production of gametes. In any given

gamete containing allele j, the probability of mutation to an allele of type i is given by µij.

We shall analyse the above model when the reciprocal of the population size, N−1, is a small

quantity in the model and allows an expansion in N−1. In particular, this means N−1 should be

much smaller than the mean mutation rate.

3. The infinite population limit

To begin the analysis, we consider the limit as population size, N , goes to infinity. In this case the

allowed allele frequencies, given in (1.1), become continuous. The equilibrium of the population

is described by the vector Λ = (Λ1,Λ2, . . . ,Λn)
T and this is assumed to be unique. Thus, many

generations after an arbitrary starting point, the frequency of allele Ai (i = 1, 2, ..., n) has a value

given by the i0th component of Λ, namely Λi. Furthermore, in the infinite population limit, the

values of the frequencies are known with certainty and have no fluctuations about their values.

We have assumed models which, when N −→ ∞, the long time limit of p, i.e. p(∞),

always achieves the same value, namely p(∞) = Λ, corresponding to the existence of a unique

equilibrium. While this is the relevant case in many situations, it is possible to choose the values

of µij and wij such that there may be multiple equilibria possible. Other possibilities are that

allele frequencies may exhibit chaotic or other complex behaviours. In this paper, we will not

consider models with these properties [[although we shall briefly comment on multiple equilibria

in SubSection 5.1]].

In special cases it is possible to write analytic expressions for the equilibrium allele frequencies,

Λ, in terms of the values of wij and µij and there is a large literature on this topic, starting in
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the early days of theoretical population genetics (Felsenstein, 1981). However we are not aware

of any general expressions for Λ. Nevertheless it is straightforward to numerically calculate Λ to

a high degree of accuracy. One simply specifies an initial set of frequencies, p(0), and iterates, to

convergence, the equation that determines the gene frequencies in subsequent generations. This

equation is

p(t+ 1) = p(t) +Ω(p(t)), (3.1)

where Ω(p) is an n component column vector with elements

Ωi(p) =
pi
hX

j
wijpj −

X
jk
wjkpjpk

i
+
X

jk

£
µijwjkpjpk − µjiwikpipk

¤
w̄(p)

(3.2)

and

w̄(p) =
X
jk

wjkpjpk. (3.3)

4. Finite populations

What is the outcome of evolution when the population is finite in size? No general answer to

this question exists, however, a great deal can be said if we restrict ourselves to the situation

where the population size, N , is sufficiently large that the allele frequencies of (1.1) can be

treated as continuous variables lying in the interval [0, 1]. In this case, we can incorporate

the most important effects of finite population size by adding the random genetic drift term

ξ(t) = (ξ1(t), ξ2(t), . . . , ξn(t))
T on the right hand side of (3.1):

p(t+ 1) = p(t) +Ω(p(t)) + ξ(t). (4.1)

8



With E denoting the expectation operator and δi,j the Kronecker delta (δi,j = 1 if i = j and is

zero otherwise), the ξi(t)
0s satisfy the standard conditional expectations

E[ξi(t) | p(t] = 0, E[ξi(t)pk(t) | p(t] = 0

(4.2)

E[ξi(t1)ξj(t2) | p(t)] = δt1,t2
pi(t1)δi,j − pi(t1)pj(t2)

2N

[[where the last result follows from a multinomial distribution.]]

The fundamental quantities we are interested in are the equilibrium allele frequencies along

with their variances and the covariances between different allele frequencies. We can use (4.1)

and (4.2) to derive approximate equation for these quantities when N is suitably large.

We note that Barlett (1978) has presented calculations for the leading effects of finite popu-

lation size on a one locus, two allele model. His work exploits the fact, as does this work, that

N−1 may be used as an expansion parameter in the calculations.

4.1. Equations that determine the mean allele frequencies and their variances and

covariances

To determine the approximate means, variances and covariances, we first take the unconditional

expectation of (4.1). In equilibrium (where t arguments are omitted) we obtain

E [Ωi(p)] = 0. (4.3)
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Denoting the mean value of p in equilibrium by p̄:

E [p] = p̄ (4.4)

we subtract p̄ from (4.1) yielding pi(t+ 1)− p̄i = pi(t)− p̄i + Ωi(p(t)) + ξi(t). We combine this

equation with the corresponding equation where i is replaced by j by multiplying the i and j

equations together and take expectation values to obtain

E [(pi(t+ 1)− p̄i) (pj(t+ 1)− p̄j)]

= E [(pi(t)− p̄i) (pj(t)− p̄j)] +E [(pi(t)− p̄i)Ωj(p(t))]

+E [Ωi(p(t)) (pj(t)− p̄j)] +E
£
ξi(t)ξj(t)

¤
. (4.5)

In equilibrium this reduces to

E [(pi − p̄i)Ωj(p) + Ωi(p) (pj − p̄j)] = −E
£
ξi(t)ξj(t)

¤
. (4.6)

Using (4.3) and (4.4), we can write (4.6) as

E [(pi − p̄i) (Ωj(p)− Ωj(p̄)) + (Ωi(p)− Ωi(p̄)) (pj − p̄j)]

= −E £ξi(t)ξj(t)¤ . (4.7)

10



Equations (4.3) and (4.7) are, as they stand within our model, exact. Let us now use them to

obtain approximations for the allele frequency means along with their variances and covariances.

4.2. Approximation

In order to derive useful approximations, we must make certain plausible assumptions (assump-

tions 1-3 below). We will test the accuracy of these assumptions shortly. Note that assumptions

1-3 are consistent with Eqs. (4.3) and (4.7), in the limit of very large N .

The assumptions are:

1. The mean allele frequencies, p̄, consist of Λ (the N =∞ deterministic equilibrium result)

plus a correction whose leading term is of order N−1.

2. The variances and covariances of the various allele frequencies, E [(pi − p̄i) (pj − p̄j)] are of

order N−1.

3. Higher order correlations such as E [(pi − p̄i) (pj − p̄j) (pk − p̄k)] are of order N−2 or higher

order in N−1.

We determine p̄ and E [(pi − p̄i) (pj − p̄j)] up to and including terms of order N−1. To

proceed, let us introduce the quantities Bi and Cij which are defined via

E [pi] ≡ p̄i = Λi +Bi/N +O
¡
1/N2

¢
, (4.8)

E [(pi − p̄i) (pj − p̄j)] = Cij/N +O
¡
1/N2

¢
(4.9)
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thus B is an n component column vector and C is an n× n matrix and both are independent of

N .

It is natural to first determine Cij and we do this by expanding Ω(p̄) in (4.7) about p = p̄

to first order in (p− p̄). Thus E [(pi − p̄i) (Ωj(p)− Ωj(p̄))] in (4.7) yields

E [(pi − p̄i) (Ωj(p)− Ωj(p̄))]

=
X

k
E [(pi − p̄i) (pk − p̄k)]

∂Ωj(p)

∂pk

¯̄̄̄
p=p

+O(1/N2)

=
X

k

Cik

N

∂Ωj(p)

∂pk

¯̄̄̄
p=Λ

+O(1/N2) (4.10)

the last equality following from the assumption of (4.8), that p̄ is, to leading order in N−1, equal

to Λ. Additionally, the right-hand-side of (4.7) has

E (piδij − pipj)

2N
=

p̄iδij − p̄ip̄j −E [(pi − p̄i)(pj − p̄j)]

2N

=
Λiδij − ΛiΛj

2N
+O(N−2) (4.11)

the last equality using (4.8) and (4.9). Thus the introduction of [[N independent matrices Γ and

A given by]]

Γij
def≡ Λiδij − ΛiΛj

2
(4.12)
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and

Ajk
def≡ − ∂Ωj(p)

∂pk

¯̄̄̄
p=Λ

(4.13)

(4.10) leads to the matrix equation that determines C:

AC + CAT = Γ. (4.14)

Once C is known, we can determine B by similarly expanding the left-hand-side of (4.3) to second

order in p− p̄. This yields the equation

X
j

∂Ωi(p)

∂pj

¯̄̄̄
p=Λ

Bj +
1

2

X
j,k

∂2Ωi(p)

∂pj∂pk

¯̄̄̄
p=Λ

Cjk = 0. (4.15)

4.3. Calculation of B and C

Here we give a prescription by which B and C can be calculated. The rationale underlying this

is given in Appendix A.

With Λ assumed known from numerical or analytic methods, explicit calculations require the

form of Aij = − ∂Ωi(p)/∂pj|p=Λ and also ∂2Ωj(p)/∂pk∂pl|p=Λ. For completeness, we state the

results in the case of frequency-independent selection:

Ajk = − 1

w(Λ)

n
δj,k

³P
r wjrΛr − w(Λ)−Pr,s µrjwrsΛs

´

+Λj

¡
wjk − 2

P
r wkrΛr −

P
r µrjwjk

¢

+
P

r µjrΛrwrk + µjk
P

r wkrΛr

ª
,

(4.16)
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∂2Ωi(p)

∂pr∂ps

¯̄̄̄
p=Λ

=
1

w(Λ)

n
2Ais

P
j wrjΛj + 2Air

P
j wsjΛj

+δi,s
³
wir − 2

P
j wrjΛj −

P
j µjiwir

´

δi,r
³
wis − 2

P
j wsjΛj −

P
j µjiwis

´

+µirwrs + µiswrs − 2Λiwrs

o
.

(4.17)

The solutions for B and C are written in terms of ψi and χTi , which are the right and left

eigenvectors of the matrix A associated with eigenvalue λi, i = 1, 2, ..., n. These are selected to

obey

Aψi = λiψi, χTi A = λiχ
T
i , χTi ψj = δi,j. (4.18)

Then the matrix C can be written as

C =
Xn

i,j=1

ψiχ
T
i Γχjψ

T
j

λi + λj
. (4.19)

For the vector B it is simpler to write out the components rather than give an expression for the

entire vector. The i0th component of B is given by

Bi =
1

2

Xn

j,k,l=1

¡
A−1

¢
ij

∂2Ωj(p)

∂pk∂pl

¯̄̄̄
p=Λ

Ckl. (4.20)

With these expressions, we have, via (4.8) and (4.9) the means and variances or covariances

of allele frequencies to order N−1.
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5. Expressions for some biologically relevant quantities

Various quantities of biological interest may be expressed in terms of the mean allele frequencies

and their covariances. Using (4.8) and (4.9), these may, if desired, be expressed in terms of B

and C.

5.1. Probability distribution

Perhaps the most fundamental quantity we can approximately determine is the stationary prob-

ability density, Φ(p), which has the interpretation that Φ(p)dp1dp2...dpn is the probability that

p1 lies in the range (p1, p1 + dp1), p2 lies in the range (p2, p2 + dp2) . . .. It can be shown that

the following distribution yields mean allele frequencies and covariances that are, to order N−1,

identical to the results (4.8) and (4.9):

Φ(p) = Zδ(F Tp− 1) exp
·
−N
2
(p− p̄)T [C]−1(p− p̄)

¸
(5.1)

In (5.1), Z is a constant that ensures the integral of Φ(p) over all allele frequencies is unity,R
dp1dp2...dpnΦ(p) = 1, as is required of a probability density. The quantity δ(•) denotes a

Dirac delta function (which satisfies
R∞
−∞ δ(x− a)g(x)dx = g(a) for g(x) an arbitrary function).

The quantity F is an n component column vector with all elements equal to 1: F = (1, 1, 1, . . .)T

and [C]−1 denotes the pseudo-inverse of the matrix C. [[We note that from Eq. (4.9), C contains

all information, to O(N−1), about all variances and covariances of allele frequencies.]]

The form of (5.1) can be understood as follows. The factor δ(F Tp − 1) ≡ δ(
Pn

i=1 pi − 1)

ensures that Φ(p) is only non-zero at frequencies that sum to unity. The remaining factor is a

multivariate Gaussian corresponding to a mean lying at p = p̄, and the Gaussian is characterised
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by fluctuations about the mean, i.e. variances and covariances, that are of order N−1. In the

limit N → ∞, Φ(p) in (5.1) collapses to δ(p − Λ), which corresponds to a distribution with

sharply defined allele frequencies given by the components of Λ.

[[It seems very plausible that in the event of multiple, well-separated, equilbria, Eq. (5.1)

describes a population that is trapped in the vicinity of the particular equilibrium located at

p = p̄. One can also envisage a population that makes drift induced transitions between nearby

equlibria, or other movement between equilibria, however the analysis of these lies well beyond

the present work.]]

5.2. Mean heterozygosity

The mean heterozygosity is the average proportion of individuals that are heterozygous. A

particular population, with allele frequencies given by the elements of p, has the fraction of

heterozygotic individuals given by
P

i,j (i6=j) pipj = 1 −
P

i p
2
i ≡ 1 − pTp . Time averaging this

quantity yields the expected mean heterozygosity, H:

H = E
£
1− pTp¤ = 1− p̄T p̄+Tr [C] /N

= 1− ΛTΛ+ 2ΛTB/N +Tr [C] /N (5.2)

where Tr [C] ≡PiCii.
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5.3. Genetic variance

Let the column vector x = (x1, x2, ..., xL)
T contain the effects of the different alleles. The

variance of allelic effects of a population whose allele frequencies are p, at a particular time, is

2
£P

i pix
2
i − (

P
i pixi)

2¤. The expected genetic variance is the time average of this quantity:
Vg = 2E

hX
i
pix

2
i −

X
i,j
pipjxixj

i

= 2
hX

i
p̄ix

2
i −

X
i,j
(p̄ip̄j + Cij/N)xixj

i

= 2
hX

i
Λix

2
i −

X
i,j
ΛiΛjxixj

i

+
1

N

hX
i
Bix

2
i − 2

X
i,j
BiBjxixj +

X
i,j
Cijxixj

i
. (5.3)

5.4. Drift load

The drift load is the fraction of the population that die each generation due to genetic drift

causing some individuals to have a fitness that is less than the optimum. With w̄(p) defined in

(3.3), E [w̄(p)] is the expected (i.e. time averaged) mean fitness of the population in equilibrium.

Furthermore, in an infinite equilibrium population, the allelic frequencies are precisely given by

Λ (with no deviations about this value), thus w(Λ) is the mean equilibrium fitness of an infinite

population. Therefore the expected drift load is given by
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Ldrift =
w̄(Λ)−E [w̄(p)]

w̄(Λ)
. (5.4)

Using (4.8) and (4.9) we find w̄ =
X

j,k
wjk

µ
p̄j p̄k +

Cjk

N

¶
=X

j,k
wjk

µ
ΛjΛk +

ΛjBk +BjΛk + Cjk

N

¶
hence

Ldrift =
1

N

−Xj,k
wjk (2ΛjBk + Cjk)X
j,k

wjkΛjΛk

 . (5.5)

6. Comparison with results for 2 alleles

Having derived estimates for the mean allele frequencies and their covariances from a large N

approximation of diffusion analysis, we now compare these with a diffusion analysis results for

the case of 2 alleles. This serves to make clear the domain of validity of our approximate results.

Following Ewens (1969) we use the notation

µ21 = u, µ12 = v

(6.1)

w11 = 1 + s1, w12 = 1 + s2, w22 = 1

with s1, s2, u, v ¿ 1 [[but no particular relation between s1, 1 and s2, so allelic effects are,

in general, neither additive nor multiplicative.]] Then diffusion analysis, (Ewens, 1969), gives
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f(x)dx as the probability that the frequency of allele A1 will lie in the range (x, x+ dx), where

f(x) =
x4Nv−1(1− x)4Nu−1 exp [4Ns2x+ 2N(s1 − 2s2)x2]R 1

0
dy y4Nv−1(1− y)4Nu−1 exp [4Ns2y + 2N(s1 − 2s2)y2]

.

(6.2)

The mean frequency of allele A1 is thus given, in the diffusion approximation, by

p̄1 =

Z 1

0

dxx f(x) (6.3)

and the mean frequency of allele A2 is p̄2 = 1− p̄1. The covariance of the frequencies of A1 and

A2 is, in the diffusion approximation,

cov(p1, p2) ≡ E(p1 − p̄1, p2 − p̄2) =

Z 1

0

dxx(1− x) f(x)− p̄1(1− p̄1)

= −
µZ 1

0

dx x2f(x)− p̄21

¶
(6.4)

6.1. Selectively neutral case

In the case where both s1 and s2 are zero, p̄1 and cov(p1, p2), as given by (6.3) and (6.4) may be

evaluated in closed form. They are

p̄1 =
v

u+ v

cov(p1, p2) = − 1

4N

uv

(v + u)2
¡
v + u+ 1

4N

¢


results of standard

diffusion analysis.
(6.5)
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If we specialise the results given for the calculations of B and C in (4.19) and (4.20) to the n = 2

case, we obtain, after some work,

p̄1 =
v

u+ v

cov(p1, p2) = − 1

4N

uv

(v + u)3


results of large N

analysis of this work.
(6.6)

A comparison of cov(p1, p2) from (6.5) and (6.6) indicates that the two results are approximately

equal only if N−1 ¿ 4 (u+ v). This appears to be the typical limitation of our approach and

we shall conservatively take this to mean that N−1 must be much smaller than the mean allelic

mutation rate. This is not a strict criterion. If we consider the 2 allele case, it is evident that

the probability density will only be similar to a Gaussian (i.e. will be a unimodal distribution)

when the factor x4Nv−1(1− x)4Nu−1 in (6.2) does not result in sharp peaks at x = 0 and x = 1,

corresponding to quasi-fixation of alleles in the vicinity of their boundary-value frequencies. A

unimodal distribution will be obtained when 4Nv − 1 > 0 and 4Nu− 1 > 0. We infer that the

large N results of the present work are applicable when, apart from N being sufficiently large,

the pattern of mutation probabilities, µij, is such that the population cannot get irreversibly

“trapped” at some alleles. To make stronger theoretical statements concerning this seems to be

formidably hard. Let us therefore discuss the numerical work and simulations we have performed.

6.2. More general 2 allele case

We have carried out numerical comparisons of the predictions of diffusion analysis given in (6.3)

and (6.4) and the results of this work summarised in (4.19) and (4.20). We have restricted
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selection coefficients to be small to allow the use of diffusion results. We find that when N−1 is

reasonably smaller than the allelic mutations rates, the agreement is extremely good, as Table 1

illustrates.

Table 1

7. Standardised selection/mutation scheme

As a further application of our results, we consider a single set of mutation rates and two different

choices for the fitnesses. We refer to these as Standard Set 1 and 2 and compare the results with

numerical simulations. We take, for both Standard Set 1 and 2, a population size of 2000 with

10 alleles segregating at the locus in question, thus

N = 2000, n = 10. (7.1)

7.1. Results for Standard Set 1

Mutation rates and fitnesses µstd and wstd are given in Appendix B. The maximummutation rates

were of chosen to be of order 10−3. This very large value was chosen to speed up the approach to

equilibrium of the numerical simulations. The fitnesses of Standard Set 1 correspond to relatively

small selection coefficients.

We present the results of the approximation of this work (“large N approximation”) and nu-

merical simulations of the life-cycle of the one-locus randomly mating diploid organism considered

in this work for the standard set of fitnesses and mutation rates.
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7.1.1. Mean allele frequencies

Using (4.8),and (4.20), the approximation of this work yields, for the mean allele frequencies,

p̄ = 10−1 × (0.810, 1.182, 1.244, 0.902, 1.026, 1.099, 1.124, 0.804, 0.690, 1.118)T| {z }
Result of large N approximation

(7.2)

while the numerical simulations produced

p̄ = 10−1 × (0.810, 1.182, 1.244, 0.902, 1.025, 1.099, 1.126, 0.804, 0.691, 1.119)T| {z }
Result of numerical simulation

(7.3)
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7.1.2. Covariances

From (4.9) and (4.19), the matrix of covariances is given by C/N where C is a symmetric matrix,

whose independent elements are

C

= 10−1 ×

3.604

−1.181 7.694

−0.013 −2.846 7.099

−0.127 −0.884 −0.149 3.187

−0.220 −0.842 −0.227 −0.533 5.405

−0.798 −0.489 −1.007 −0.480 −1.038 5.129

−0.501 −0.738 −0.719 −0.353 −1.052 −0.445 4.679

−0.139 −0.146 −0.611 −0.254 −0.354 −0.366 −0.511 3.168

−0.328 0.105 −1.014 0.083 −0.370 −0.340 −0.016 −0.234 2.585

−0.299 −0.673 −0.514 −0.490 −0.769 −0.166 −0.343 −0.552 −0.471 4.277


| {z }

Result of large N approximation

(7.4)
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The quantity that C can be directly compared with from the numerical simulations is

N ×matrix of covariances

= 10−1 ×

3.672

−1.213 7.674

−0.008 −2.811 7.346

−0.145 −0.809 −0.270 3.328

−0.243 −0.901 −0.173 −0.556 5.562

−0.767 −0.540 −1.166 −0.425 −1.018 5.210

−0.551 −0.777 −0.695 −0.399 −1.109 −0.379 4.818

−0.137 −0.012 −0.591 −0.267 −0.358 −0.373 −0.530 3.176

−0.295 0.047 −1.082 0.086 −0.390 −0.332 −0.0032 −0.239 2.618

−0.313 −0.658 −0.550 −0.545 −0.813 −0.211 −0.345 −0.668 −0.382 4.484


| {z }

Result of numerical simulation

(7.5)

7.1.3. Comparison

There is very good agreement between (7.2) and (7.3). This is not surprising since the result is

primarily the N =∞ result,

Λ = 10−1 × (0.809, 1.183, 1.241, 0.901, 1.026, 1.099, 1.126, 0.806, 0.691, 1.119)T . (7.6)
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We have previously expressed p as Λ plus an O(N−1) correction term, (4.8). However for the

population sizes considered, the O(N−1) correction term is hard to extract and compare with

theory because statistical errors in p̄ cannot be disentangled from this term.

By contrast, the leading term in the covariances is not O(N0) but the O(N−1) term C/N

and consequently this term is far more readily observable than the O(N−1) terms in p̄. We have

presented C in (7.4) and N× (the matrix of covariances from the simulations) in (7.5). There

is a reasonably good agreement between the approximation of this work and the result of the

simulations, thereby suggesting that the covariances do scale as N−1 for large N when selection

is weak.

It should be noted that once Λ is known, the results of this work for p̄ and cov(pi, pj) were

calculated, for any N , w and µ on a standard PC in seconds, while the numerical simulation

results took an appreciable amount of computer time.

7.2. Results for Standard Set 2

Mutation rates for this set were identical to those of Standard Set 1. The fitnesses wstd for this

set are given in Appendix C and correspond to quite large selection coefficients.

7.2.1. Mean allele frequencies

Using (4.8),and (4.20), the approximation of this work yields, for the mean allele frequencies,

p̄ = 10−1 × (0.060, 6.468, 0.046, 0.100, 0.110, 2.056, 0.268, 0.506, 0.173, 0.213)T| {z }
Result of large N approximation

(7.7)
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while the numerical simulations produced

p̄ = 10−1 × (0.060, 6.468, 0.046, 0.100, 0.110, 2.057, 0.268, 0.505, 0.172, 0.213)T| {z }
Result of numerical simulation

(7.8)

7.2.2. Covariances

From (4.9) and (4.19), the matrix of covariances is given by C/N where C is a symmetric matrix,

whose independent elements are

C

= 10−1 ×

0.021

0.012 8.226

0.000 −0.132 0.0253

0.000 −0.103 0.002 0.047

0.002 0.238 −0.004 −0.004 0.216

−0.040 −7.906 0.118 0.066 −0.487 9.288

0.000 −0.232 0.001 −0.001 −0.010 −0.025 0.273

0.006 0.166 −0.011 −0.007 0.059 −1.104 −0.010 0.948

0.000 −0.059 0.000 0.001 0.000 −0.029 0.002 −0.011 0.099

0.000 −0.210 0.003 0.001 −0.010 0.119 0.001 −0.036 −0.003 0.136


| {z }

Result of large N approximation

(7.9)
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The quantity that C can be directly compared with from the numerical simulations is

N ×matrix of covariances

= 10−1 ×

0.033

0.007 8.736

−0.001 −0.136 0.034

−0.001 −0.109 0.001 0.064

0.003 0.237 −0.005 −0.003 0.254

−0.046 −8.183 0.116 0.055 −0.521 9.629

−0.002 −0.268 0.002 0.000 −0.013 −0.027 0.321

0.007 0.037 −0.013 −0.008 0.066 −1.110 −0.014 1.083

0.000 −0.066 0.000 0.000 −0.004 −0.046 −0.001 −0.010 0.129

0.000 −0.256 0.002 0.000 −0.013 0.132 0.002 −0.038 −0.003 0.174


| {z }

Result of numerical simulation

(7.10)

7.2.3. Comparison

Again there is very good agreement between (7.7) and (7.8) and for completeness we state the

N =∞ result:

Λ = 10−1 × (0.060, 6.461, 0.046, 0.100, 0.109, 2.064, 0.268, 0.506, 0.173, 0.213)T . (7.11)

The leading term in the covariances, for large N , is given by C/N and a comparison of C
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in (7.9) and N× (the matrix of covariances from the simulations) in (7.10) indicates that the

covariances do depend on N−1 to a reasonable approximation when selection is strong. [[Beyond

this factor of N−1 that is present in the covariances, and arises as the leading term in N−1, from

multinomial sampling of the population, the evidence is that there is also good agreement in the

general pattern of covariances predicted by the methods of this work.]]

8. Summary

In this work we have investigated some of the equilibrium properties of a finite population in

which selection and mutation occur at a single genetic locus of a diploid organism. The theoretical

results presented are an approximation that allows the rapid determination of allele frequencies

along with covariances between them and are able to determine this information for complex

mutation and selection schemes.

Our results show that covariances between allele frequencies can be quite substantial, even

when mutation rates are low and population size is quite large. [[It is important to recognise

that in an infinite population the equilibrium covariances between allele frequencies would all

be zero. The finding of non-zero covariances under the regime that we have studied therefore

represents a qualitative difference from the infinite-population case.]]

[[For large population sizes the amount of load generated by genetic drift is quite small for

any given locus, considered in isolation. However, eukaryotic organisms typically have many

thousands of genes, and each gene can have many stretches of nucleotide sequence that are

maintained by selection. Thus, over the entire genome it may be possible to generate very

substantial amounts of drift load, even when the population is large (Kondrashov, 1995; Peck et
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al. 1997).]]

We note that the methods presented here can only be used when population size is large in

comparison to the inverse of the allelic mutation rate. Thus in sexual DNA-based organisms,

where allelic mutation rates tend to be small, the methods presented here will be of most interest

for the calculation of quantities whose leading term is of order N−1, such as the covariances

between allele frequencies. However in RNA-based organisms, where mutation rates are much

higher, the methods presented here can be useful for calculating a variety of different statistics.

The same is true for asexual organisms, where the entire genome can be treated as a single locus

where the relevant mutation rate tends to be substantial.
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Appendices

A. Solutions of the B and C equations

In this appendix, we indicate how (4.14),

AC + CAT = Γ (A.1)

and (4.15), X
j

∂Ωi(p)

∂pj

¯̄̄̄
p=Λ

Bj +
1

2

X
j,k

∂2Ωi(p)

∂pj∂pk

¯̄̄̄
p=Λ

Cjk = 0 (A.2)

may be solved for C and B.

We begin using the properties of left and right eigenvectors of A

Aψi = λiψi, χTi A = λiχ
T
i (A.3)

χTi ψj = δij,
X
i

ψi χ
T
i = I (unit L× L matrix) (A.4)

Operating on (A.1) with χTi from the left and χj from the right and using the eigenvalue equation,

(A.3), it follows that χTi Cχj = χTi Γχj
±
(λi+λj). Then using (A.4) yields an explicit solution to

(A.1):

C =
X

i,j

ψiχ
T
i Γχjψ

T
j

λi + λj
. (A.5)

(4.15) is then solved by
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Bi =
1

2

X
j,k,l

¡
A−1

¢
ij

∂2Ωj(p)

∂pk∂pl

¯̄̄̄
p=Λ

Ckl. (A.6)

Thus combining (4.19), (4.20) leads to explicit predictions for the mean allele frequencies

along with their covariances in the limit of large N , for an arbitrary number of alleles.

B. Standard set 1

In this Appendix, we give a set of mutation rates and fitnesses that were generated randomly.

Results for the mean allele frequencies and the matrix of covariances are calculated from these

and in the main text, the results are compared with numerical simulations.

We take

Number of alleles n = 10 (B.1)

Population size N = 2000 (B.2)
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and

µstd = 10
−3 ×



0 5 5 3 1 2 5 5 6 8

0 0 1 6 6 5 3 9 7 4

7 0 0 8 9 9 1 1 7 8

7 4 4 0 3 9 9 8 10 3

9 1 7 4 0 1 1 8 9 4

4 4 9 2 8 0 5 8 2 5

5 7 8 10 5 5 0 1 3 5

8 6 3 7 2 5 3 0 4 3

0 9 0 8 3 3 9 7 0 2

1 8 7 7 4 10 5 9 6 0



(B.3)

wstd = 10
−3 ×



943 918 963 954 955 921 918 954 945 946

918 984 942 939 986 989 965 987 945 951

963 942 976 984 956 923 960 986 920 949

954 939 984 941 945 939 905 933 980 929

955 986 956 945 951 937 931 971 947 943

921 989 923 939 937 975 970 963 966 964

918 965 960 905 931 970 911 973 967 961

954 987 986 933 971 963 973 919 923 918

945 945 920 980 947 966 967 923 918 914

946 951 949 929 943 964 961 918 914 915



(B.4)
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C. Standard Set 2

In this Appendix, we give a second set of mutation rates and fitnesses that correspond to strong

selection. Results for the mean allele frequencies and the matrix of covariances are calculated

from these and in the main text, the results are compared with numerical simulations.

We take the same number of alleles population size and mutation rates as used in Standard

Set No. 1, i.e. as given by (B.1), (B.2) and (B.3).

The matrix of fitnesses is now given by

wstd = 10
−2 ×



43 18 63 54 55 21 18 54 45 46

18 84 42 39 86 89 65 87 45 51

63 42 76 84 56 23 60 86 20 49

54 39 84 41 45 39 5 33 80 29

55 86 56 45 51 37 31 71 47 43

21 89 23 39 37 75 70 63 66 64

18 65 60 5 31 70 11 73 67 61

54 87 86 33 71 63 73 19 23 18

45 45 20 80 47 66 67 23 18 14

46 51 49 29 43 64 61 18 14 15



(C.1)
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Table 1

N s1 s2 u v

diffusion

result
p̄1

large N

approx
p̄1

diffusion

result

cov(p1, p2)

large N

approx

cov(p1, p2)

104 0.000 0.000 0.00040 0.00080 0.6667 0.6667 0.0045 0.0046

104 0.001 0.000 0.00040 0.00080 0.7759 0.7757 0.0030 0.0030

104 0.001 0.002 0.00040 0.00080 0.6683 0.6683 0.0030 0.0030

105 0.001 0.002 0.00004 0.00008 0.6676 0.6676 0.0007 0.0007

105 0.010 −0.010 0.00004 0.00008 0.9980 0.9980 3× 10−7 3× 10−7

Table 1 Caption

A set of results comparing the standard diffusion results and the large N approximate results

of this work, for the case of a locus with two alleles.
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