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Near-periodic substitution and the genetic variance
induced by environmental change

Y. Bello and D. Waxman
Centre for the Study of Evolution

School of Life Sciences
University of Sussex
Brighton BN1 9QG

Sussex UK

Abstract

We investigate a model that describes the evolution of a diploid sexual population in a
changing environment. Individuals have discrete generations and are subject to selection
on the phenotypic value of a quantitative trait, which is controlled by a �nite number of
bialleic loci. Environmental change is taken to lead to a uniformly changing optimal
phenotypic value. The population continually adapts to the changing environment,
by allelic substitution, at the loci controlling the trait. We investigate the detailed
interrelation between the process of allelic substitution and the adaptation and variation
of the population, via in�nite population calculations and �nite population simulations.
We �nd a simple relation between the substitution rate and the rate of change of the
optimal phenotypic value.
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1 Introduction

The evolution of populations rarely, if ever, takes place in a static environment. Apart
from purely abiotic changes of a physical environment, there may also be changes due
to the interaction of a population with other populations (Van Valen, 1973; or, for
recent developments, see Gavrilets, 1997). Evolution is thus inexorably in�uenced by a
changing environment and this may have implications for a variety of subjects including
the evolution of sex (Maynard Smith, 1978; Waxman and Peck 1999; Bürger, 1999).
In the present work, we consider a population characterised by a single quantitative
trait that possesses an optimal phenotypic value, because it is subject to stabilising
selection. Following previous initiatives, we model environmental change by a constant
rate of change of the optimal phenotypic value (see e.g. Charlesworth, 1993; Bürger
and Lynch, 1995; Waxman and Peck 1999; Bürger, 1999). The present work has the
closest relation with the work of Waxman and Peck (1999), which dealt with a very large
(e¤ectively in�nite) population of individuals. In that work it was found that a steady-
state situation became established, where the population tracks (with a lag) the changing
environment. It was also found that there were extremely large enhancements in the
genetic variance associated with very modest rates of environmental change. Indeed,
from the �rst two columns of Table 1 of the paper by Waxman and Peck (1999), which
applies for 10 diploid loci, it may be inferred that in a sexual population, changing the
optimal phenotypic value by a small amount, e.g. 0:01% or 0:1% of an environmental
standard deviation, each generation, leads to the genetic variance being increased to
450% or 1400% of its value in a static environment. These very large increases indicate
a signi�cant sensitivity (or lack of robustness) of the genetic variance to a changing
environment. Indeed, because of this, we can conclude that the knowledge of just the
strength of selection and the size of mutation rates may not be su¢ cient to predict the
level of genetic variance of a population.

The increase in the genetic variance, referred to above, must, ultimately, originate
from processes of allelic substitution, as the population continually adapts to the chang-
ing environment. The work of Waxman and Peck (1999) was made in the framework of
a continuum of alleles model (Crow and Kimura, 1964; Kimura, 1965), which assumes
a very large number of alleles at any locus. In the present work, we investigate the
detailed interrelation between the process of allelic substitution and the adaptation and
variation of a population in a changing environment. Accordingly, we consider a model
where the substitution process is more transparent than one with many alleles available
at each locus, and the simplest and most transparent of such models has only two alleles
at any locus. As we shall see, such work may have relevance to recent work on genetic
variation in Drosophila melanogaster by Gardener et al. (2004).

2 Model

We consider a panmictic population of sexual organisms that are diploid and dioecious.
The lifecycle of the population, that takes place in discrete generations, is: (i) random
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union of gametes to form zygotes, (ii) maturation to adulthood, with viability selection,
(iii) production of gametes by Mendelian segregation; mutation is taken to occur during
gamete production, (iv) death of adults. Census is made at the zygotic stage and at this
time, the population is in Hardy-Weinberg equilibrium.

Individuals do not exhibit any sexual dimorphism, and are characterised by a single
phenotypic trait that is additively controlled by the e¤ects of 2n alleles at n unlinked
loci. At locus j (= 1; 2; :::; n) we take there to be only two possible alleles. We label
these as Bj and bj , and they respectively contribute mj=2 and �mj=2 to the value of
the trait, where mj > 0. We shall sometimes refer to mj as the scale of allelic e¤ects of
locus j. The phenotypic value of the trait, Z, consists of a sum of its genotypic value,
G, and a statistically independent random environmental e¤ect ", thus Z = G+ ". An
individual�s genotypic value is given by

G =
Xn

j=1
mj (xj + yj)=2 (1)

where xj (yj) is a variable indicating the state of locus j of maternal (paternal) origin and
only takes the values �1. Thus G is restricted to the range �

Pn
j=1mj � G �

Pn
j=1mj .

The random environmental e¤ect, ", is normally distributed with mean zero. Following
convention, an overall scale of units for various quantities is chosen, so that " has a
variance unity.

The values of xj and yj are, for all j, assumed to be identical to the parental values
unless a mutation occurs in the production of gametes. We assume mutations occur
independently to di¤erent alleles and that the rate (i.e. probability) of mutation at
locus j, between Bj and bj in either direction, is uj .

Fitness is taken to be determined entirely by Gaussian stabilising viability selection
on the phenotypic value of the trait. The relative �tness of individuals of genotypic value
G arises from an average of viability over environmental e¤ects (see e.g. Turelli, 1984 or
Bulmer, 1989) and is given by

w(G) = exp
h
� (G� Zopt)2 =(2Vs)

i
(2)

where V �1s (> 0) is a direct measure of the intensity of selection on genotypic values
of the trait and Zopt is the optimal phenotypic value (and also the optimal genotypic
value).

In what follows, we shall assume weak selection (V �1s � 1), as is often observed in
naturally occurring populations (Turelli, 1984). Identical or very closely related models
have been studied by Wright (1935), Barton (1986), Maynard Smith (1988), Bulmer
(1989) and a number of other authors.

3 Change in the optimal phenotypic value

Let us return to the properties of selection. As we have said in the Introduction, the
optimal phenotypic value, Zopt, may be in�uenced by interactions of the population in
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question, with other populations or by the physical environment. As a consequence, Zopt
generally depends on time, t, and we take

Zopt(t) =

8<:
�jZopt;0j; t � 0

�jZopt;0j+ �t; t > 0:
(3)

This corresponds to the optimal phenotypic value having a �xed negative value of
�jZopt;0j for times t � 0 (i.e. corresponding to a static environment), while for times
t > 0, the optimal phenotypic value changes at a constant rate of � per generation.
By virtue of the choice of units adopted (that ensure the variance of the environmental
e¤ects is unity) the quantity � represents the change in the optimal phenotypic value,
in units of the standard deviation of environmental e¤ects.

Analytical studies of related asexual models, where there are many discrete e¤ect
alleles possible at each locus are given in the work of Broom et al. (2003).

4 Results for an in�nite population

We �rst consider a very large, e¤ectively in�nite population, where e¤ects of random
genetic drift are negligible. We neglect linkage disequilibria. Investigations of the full
multilocus problem in static environments indicate that neglect of linkage disequilibria is
a very reasonable approximation when selection is weak (see e.g. Bulmer, 1989; Turelli
and Barton, 1990). In a changing environment, this neglect of linkage disequilibria
requires some discussion. The analysis presented by Bulmer (1974) for the in�nitesimal
model (see also Waxman, 2000) indicates that the chief e¤ect of linkage disequilibria,
when selection is stabilising, is the production of negative correlations that reduce the
genetic variance. The fractional reduction in genetic variance is proportional to VG=Vs
where VG is the instantaneous genetic variance (strictly, we should use the genic variance
- the genetic variance when calculated assuming linkage equilibrium) and V �1s is the
intensity of selection on genotypic values (V �1s appears in Eq. (2)). The values we �nd
for VG, below, indicate that linkage disequilibria have only a very small e¤ect on the
genetic variance, of order 1%, and hence can reasonably be neglected. Bulmer�s result
is likely to be an overestimate of the e¤ect of linkage disequilibria, when the optimum
is moving, since the lag of the mean trait value, behind the optimal trait value, means
selection has a directional aspect to it. Indeed, if �tness can be approximated as an
exponential function of trait values, then such a function is multiplicative across loci,
and does not produce any linkage disequilibria.

A consequence of Hardy-Weinberg equilibrium and the neglect of linkage disequilib-
ria, is the statistical independence of all alleles both across and between loci.

Let pj (qj � 1� pj) denote the frequency of the allele Bj (bj) of maternal origin at
locus j in a particular generation and p0j (q

0
j) the corresponding frequency in the following

generation. Apart, possibly, from the initial generation, the frequency of paternal origin
alleles coincides with that of maternal origin and we shall henceforth assume this.
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Given that the intensity of selection, V �1s , is small, the analysis presented in e.g.
(Bulmer, 1989) then applies. Let p = (p1; p2; :::; pn) denote the set of frequencies of the
B allele at the di¤erent loci. The dynamical equations determining the change of allele
frequencies can be written for j = 1; 2; :::; n as

p0j = pj +
1

2
pjqj

@

@pj
�(p) (4)

where, equivalent to Eqs. 9 and 13 of (Bulmer, 1989), we may take

�(p) = ln (E[w(G)]) +
Xn

j=1
2uj ln [pj (1� pj)] : (5)

The �rst term in �(p) arises from selection and involves E[w(G)], which denotes the
mean (or expected value) of relative �tness, while the second term arises from mutation.

With E[G] and VG denoting the mean genotypic e¤ect and the genetic variance, we
establish, in Appendix A, that when VG=Vs � 1 and (E[G]� Zopt)2 =Vs � 1, it is a
good approximation to replace ln (E[w(G)]) in Eq. (5) by E[ln (w(G))] (which is given
in Eq. (11) of Appendix A)

Since VG � nm2=2, wherem2 =
Pn
j=1m

2
j=n is the mean square scale of allelic e¤ects,

the condition VG=Vs � 1 can be expressed as nm2=(2Vs) � 1. As typical parameter-

values, we take n = 10,
p
m2 = 0:2, uj � 10�5and Vs = 20 (Turelli, 1984; see also Lynch

and Walsh, 1998, Chapter 12) so VG=Vs � 1 is well satis�ed. The value of
p
m2 adopted

corresponds to a standard deviation of mutant e¤ects of order 0:2. Additionally, for the
parameter values adopted we have found that virtually all variation in allele frequencies
(the pj) occurs where (E[G]� Zopt)2 =Vs � 1 and hence using E[ln (w(G))] in place of
ln (E[w(G)]) is justi�ed. The explicit form of Eq. (4) may be found by carrying out
the di¤erentiations in this equation and coincides with the sum of Eqs. (12) and (13) of
(Bulmer, 1989).

When Zopt has a constant value, Barton (1986) has found that there are multiple
equilibrium solutions of Eq. (4) and that these have di¤erent genetic variances associated
with them. This indicates that the interplay between selection and mutation, in this
biallelic system, results in multiple equilibria; there is more than one local maximum
of �(p) of Eq. (5). The same nonlinear forces manifest themselves when Zopt changes
with time, according to Eq. (3), leading to a complex dynamical behaviour of the allele
frequencies (the pj).

It is tempting, as a �rst approach, to consider the case of equivalent loci (also called
interchangeable loci), where the scale of allelic e¤ects at all loci are identical: mj = m
and where there are the same allelic mutation rates at all loci: uj = u. For this case,
we iterated the dynamical equation, Eq. (4) from a large negative time, �T , and took
�jZopt;0j su¢ ciently negative that up to time t = 0, only b alleles were selectively
favourable at every locus. Provided �T was su¢ ciently large and negative, it was found
that irrespective of the initial state of the population, all loci were essentially �xed at
the b allele (i.e. all qj ' 1), by the time t = 0 was reached. As a consequence of this and
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the equivalence of all loci, all allele frequencies were completely synchronised for times
t > 0. The result for the allele frequencies is displayed in Figure 1.

Figure 1

We view this as a spurious synchronisation of allelic e¤ects that is not of biological
interest. It arises from the extreme symmetry of the problem: the complete equivalence
of all n loci and the fact that all B alleles had identical frequencies at time t = 0. Indeed,
such a model could be analysed in the framework of the hypergeometric model (Barton,
1992; Shpak and Kondrashov, 1999; Barton and Shpak 2000), where the solutions are
unstable for many forms of selection. There are other cases in the literature where
equivalence of loci leads to unrepresentative e¤ects (Welch and Waxman, 2002; Waxman
and Welch, 2003; Waxman and Peck, 2003). Let us therefore consider a more realistic
situation where there is some variation of the scale of allelic e¤ects across loci. We
have thus drawn the mj at random from a uniform distribution centred on 0:2 (see the
Caption to Figure 2 for further details). This yields a very di¤erent pattern of changing
allele frequencies, as seen in Figure 2, indicating that the original pattern in Figure 1
is unstable to small deviations from equivalence of loci. In Figures 3 and 4 we plot the
corresponding mean genotypic value and genetic variance against time.

Figure 2

Figure 3

Figure 4

The behaviour exhibited in Figures 2 - 4 are complicated, nevertheless, some general
features are apparent, or can be inferred from these Figures or the underlying data.

1. Di¤erent loci generally undergo substitutions at di¤erent times (Figure 2).

2. There does not seem to be a simple pattern connecting the size of mj (the scale of
allelic e¤ects of locus j) and the time (or order) of substitution of locus j. Thus,
the size of mj , relative to the scale of allelic e¤ects at other loci, does not allow an
obvious prediction of the when locus j will undergo substitution.

3. The substitutions allow the mean genotypic value, E[G], to follow the changing
optimum, albeit with a slightly variable lag (Figure 3.). This process can continue
until all genetic variation is exhausted.

4. Genetic variation is exhausted at a time slightly larger (due to the lag) than the
time tmax given by �jZopt;0j + �tmax =

Pn
j=1mj . For times appreciably larger

than tmax the population will go extinct if the environmental change persists.

5. The contribution to the genetic variance from locus j is 2m2
jpj(1 � pj) and has a

maximum value of m2
j=2, at pj = 1=2 (the value of pj corresponding to maximum
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polymorphism). Thus the peaks in the genetic variance that are evident in Figure
4, for t > 0, result from the frequency of the B alleles passing through the value of
p = 1=2. When substitutions occur close together, the resulting features in the ge-
netic variance are, because of linkage equilibrium, simply the sum of contributions
from di¤erent loci. Because of this additive property, the height of peaks in the
genetic variance can be appreciably larger than m2

j=2 if a number of substitutions
contribute to the same peak.

5 Results for a �nite population

In addition to numerical iteration of the dynamical equation, Eq. (4) we have performed
numerical simulations of �nite populations. In contrast to the in�nite population calcu-
lations of the previous Section, numerical simulations do not neglect linkage disequilibria.
Thus, in the simulations, linkage disequilibria are fully incorporated into the dynamics.

The lifecycle is as outlined, in Section 2, with each individual producing an average
of 1:5 o¤spring each generation and a �xed number of N = 10; 000 adults were main-
tained, each generation (by non selectively thinning the population, after stage (ii) of
the lifecycle). We have found it makes little di¤erence whether the scale of allelic e¤ects
(the mj) are the same for every locus or whether we use the range used for Figures 2 -
4. Accordingly, we have taken all mj to have the same value: mj = m = 0:2.

It is possible to provide an estimate of the expected time-interval between substitu-
tions. We specify the time of a substitution, at locus j, as that time at which pj = 1=2.
We then reason that as a result of a substitution�

change in optimal
phenotypic value

�
=

�
change of e¤ect of the locus

that underwent the substitution

�
:

With � denoting the mean rate of substitutions and ��1 denoting the mean time between
substitutions, we have that the change in optimal phenotypic value is (rate of change of
optimum) �(time between substitutions), which is � � ��1. We also note that substi-
tution of both b alleles (each with e¤ect �m=2), at a locus, by two B alleles (each with
e¤ect +m=2) results in a net change of e¤ect on the trait of 2m. Equating the change
in optimal phenotypic value to the change in e¤ect of the trait: �� ��1 = 2m, leads to
a mean rate of substitutions of

� =
�

2m
: (6)

Thus � is proportional to the rate of change of the optimal phenotypic value.
We have performed numerical simulations for a population size of 10; 000 individuals

and explored the behaviour of the population when the rate of change of the optimal
phenotypic value takes the values � = 0:5� 10�4, 1� 10�4, 2� 10�4 and 3� 10�4.

Figure 5

Figure 6
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Figure 7

In Figure 5 we plot the changing allele frequencies, as a function of time, when the rate
of change of the optimum is � = 10�4. In Figures 6 and 7 we plot the corresponding
mean genotypic value and genetic variance as functions of time.

It is clear, from Figure 6 that the mean genotypic value closely tracks the moving
optimum, as it did when the population was e¤ectively in�nite.

By contrast to the in�nite population results, it is clearly seen, in Figure 7, that
the substitutions occur in a very regular, near-periodic manner. For n = 10 loci, there
are 10 substitutions possible (assuming all pj ' 0 at time t = 0; as occurs if �jZopt;0j
is su¢ ciently negative). For a time interval a little larger than 10��1 all substitutions
occur. This is very di¤erent behaviour to a Poisson point process, which is substantially
noisier. A Poisson point process, over any time interval where the expected number of
substitutions is k, would lead to the order of k�

p
k substitutions (since the variance in

the number of substitutions equals the expected number itself, in such a process).
We can provide a quantitative measure of how regularly the substitutions occur by

considering the index of dispersion of the substitution process, R, which, for a given
time interval, is the ratio of the variance in the number of substitutions that occur, to
the mean number of substitutions. It seems most relevant to determine R over a time
interval where the population is closely tracking the changing optimum. Accordingly,
we have carried out 20 independent simulations and determined R for the time interval
ranging from 2� 104 generations to 4� 104 generations; from Figures 3 or 6, this time
interval is wholly contained in the time region where the population closely tracks the
changing optimum. A Poisson process would lead to a value of R of unity; whereas
we �nd values of R that are substantially smaller than unity, thereby indicating that
the random process underlying the present model is substantially more periodic (or less
random) than a Poisson process. In particular, when all of the mj�s have identical values
(mj = 0:2) or when the mj�s di¤er from locus to locus, (we used the set 0.1693, 0.2182,
0.1803, 0.2042, 0.1651, 0.2198, 0.1878, 0.2360, 0.2354, 0.2094), we �nd values for the
index of dispersion, R, that are smaller than 0:1.

The simulations used to determineR (where themj�s di¤ered from locus to locus) also
allowed us to determine if there is any pattern in the order of substitutions at di¤erent
loci and the sizes of the mj . For example, is the locus with the largest (or smallest)
value of mj the �rst (or last) locus to undergo a substitution in a �nite population? We
observed no such pattern. On di¤erent simulation runs, a variety of di¤erent loci were
the �rst (and last) to undergo substitution.

In addition to the above, we have tested how well Eq. (6) operates by determining
the mean time interval between substitutions, from the numerical simulations, and the
prediction of the equation that this time interval is ��1 = 2m=�. Results were calculated
by averaging the 9 time intervals between substitutions and are summarised in Table 1.

Table 1

In order to see the stochastic e¤ects of genetic drift and if there any signi�cant
consequences of di¤erent rates-of-change of the optimal phenotypic value, �, we have
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centred all allele frequencies around the time of substitution, tsubs (i.e. the time where
p = 1=2). These are illustrated in Figure 8 and to produce the Figure, all 10 centred
frequency pro�les were, for a single value of �, centred and also numerically averaged.

Figure 8

It is evident from Figure 8 that there is a reasonable level of similarity of the centred
frequency pro�les.

6 Conclusion

In this work we have investigated how a changing optimal phenotypic value of a quan-
titative trait a¤ects the process of substitution at the di¤erent loci controlling the trait.
During the process of substitution of the two alleles at any locus, the genetic variance
is greatly enhanced above levels associated with mutation selection balance, even taking
into account the range of genetic variances that are possible (Barton, 1986).

A striking feature of the numerical simulation for a �nite population, is how peri-
odically the substitutions occur (Figure 7). This is far more regular than if there is a
little heterogeneity in the properties of loci, in an in�nite population (Figure 4). The
regularity associated with a �nite population leads to the maximum value of the genetic
variance (which �uctuates over time) being lower than the maximum value in an in�nite
population, because with an in�nite population, a number of substitutions occur very
close to each other and their combined contributions to the genetic variance add, under
the approximation of linkage equilibrium. Indeed if substitutions are well separated in
time, the maximum genetic variance associated with a substitution, at just one locus, is
m2=2, where m is the scale of allelic e¤ects associated with the locus. Because mutation,
when it occurs, results in an allele of opposite e¤ect, compared with the pre-mutated
allele, the quantity m2 can also be interpreted as the variance in mutant e¤ects. The
value m ' 0:2 is often taken as a �typical�value and used in published work; it follows
from Lande�s (1976) extrapolation of the data of Russell et al. (1963). Accordingly,
a maximum genetic variance associated with a single, non-overlapping, substitution is
� 0:02. If substitutions are not well separated in time, or if the duration of a substi-
tution is comparable with the time interval between substitutions, the genetic variance
can be greater than m2=2. In Figure 7, the genetic variance �uctuates (over periods of
thousands of generations) but is in the vicinity of 0:05 for much of the time and given
the reasonable separation of substitutions, this value of the genetic variance arises from
the appreciable duration of the substitutions; see Figure 8.

In a previous work a related model was analytically investigated for a very large
population with a continuum of alleles possible at every locus (Waxman and Peck, 1999).
In Eq. (A13) of that work an approximation was given for the genetic variance, which,
in the notation of the present work reads

VG '
p
2n�mVs

�
8 ln

�
m2

2u Vs

���1=4
(7)
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(we do not distinguish here between Vs and Vs�1). It is interesting to compare this value,
with the value that has been observed in the present work. Using the parameter values
n = 10, � = 10�4, Vs = 21, u = 10�5 we �nd Eq. (7) yields a value of VG ' 0:037, which
is in the vicinity of genetic variances we have obtained here from numerical simulation,
from populations with 10; 000 individuals.

We �nish, by returning to the recent work we mentioned in the Introduction, by
Gardener et al. (2004), in which they investigated the genetic variation for total �tness
by carrying out experiments on replicate, caged populations of Drosophila melanogaster.
They found results for variation in relative �tnesses over time that �could be due to sub-
tle changes in external environment common to all cages.�Indeed, they also stated that
the �high variability we see is incompatible with the �classical�view, in which genetic
variation is maintained by an equilibrium between deleterious mutations and selection�.
As we have already stated in the Introduction of the present paper, knowledge of the
strength of selection and the size of mutation rates may not, alone, be su¢ cient to pre-
dict the level of genetic variance of a population. Thus the results we have presented
here may have some bearing on the �ndings of Gardener et al. (2004), since, for exam-
ple, environmental change may cause signi�cant deviations from �classical�results. We
note that since environmental change, in the form of a moving �tness optimum induces
substitutions (i.e. in�uences the rate of evolution) which in turn causes enhancements
in the genetic variance, it would be interesting to see if a value of the rate of change of
the optimal phenotypic value, �, exists that is simultaneously compatible with observed
levels of genetic variance and observed rates of evolution (the latter, via Eq. (6)).
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Appendix A
In this Appendix, we determine when the quantity ln (E[w(G)]) can be accurately

approximated by E[ln (w(G))].
We proceed by �rst determining E[w(G)]. Using an identity following from a Gaussian

integral, we can write the �tness function of Eq. (2) as

w(G) =

r
Vs
2�

Z 1

�1
exp

�
ik (G� Zopt)� Vsk2=2

�
dk: (8)

To �nd E[w(G)] from this result, it is necessary to evaluate E [exp (ikG)], which can be
found in closed form, assuming Hardy Weinberg and Linkage equilibrium. Using Eq. (1)
we have

E [exp (ikG)] =
Yn

j=1
E [exp (ikmj(xj + yj)=2)]

=
Yn

j=1

��
pje

ikmj=2 + qje
�ikmj=2

�2�

= exp
�
2
Xn

j=1
ln
�
pje

ikmj=2 + qje
�ikmj=2

��
: (9)

We note that the factor exp
�
�Vsk2=2

�
in Eq. (8) only allows values of k satisfying

jkj . 1=
p
Vs to contribute to the integral. Accordingly, as long as mj=

p
Vs � 1, for

all j, we can expand the exponentials in Eq. (9) and keeping terms in the exponent to
quadratic order in k yields

E [exp (ikG)] ' exp
�
ikE[G]� k2VG=2

�
(10)

where E[G] and VG are the mean and variance of G: E[G] = 2
Pn
j=1mj

�
pj � 1

2

�
,

VG = 2
Pn
j=1m

2
jpj(1 � pj). Using Eq. (10) in Eq. (8) quickly yields ln (E[w(G)]) '

� (E[G]� Zopt)2 = [2 (Vs + VG)] � 1
2 ln (1 + VG=Vs). Thus providing VG/Vs � 1 and if,

for all t of interest, (E[G]� Zopt)2 � Vs, we have

ln (E[w(G)]) ' �(E[G]� Zopt)
2 + VG

2Vs
� E[ln (w(G))]: (11)

We have thus established when ln (E[w(G)]) may be approximated by the analytically
more convenient quantity E[ln (w(G))].
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Figure Captions

Figure 1
The frequencies pj of the B alleles at the 10 di¤erent loci are plotted against time

t. The �gure was produced by numerically iterating the dynamical equation, Eq. (4).
The parameter values adopted were: u = 10�5, � = 10�4, �jZopt;0j = �3 and Vs = 21.
The scale of allelic e¤ects were taken as mj = 0:2, for all j. The results displayed are for
the allele frequencies after transients have died away and so for the initial time shown,
t = �2� 104, all pj were close to 0. All allele frequencies are synchronised.

Figure 2
The frequencies pj of the B alleles at the 10 di¤erent loci are plotted against time t.

The Figure was produced by numerically iterating the dynamical equation, Eq. (4). The
parameter values adopted were: u = 10�5, � = 10�4, �jZopt;0j = �3 and Vs = 21. The
scale of allelic e¤ects at di¤erent loci (themj), were independently drawn at random from
uniformly distributed numbers over [0:15; 0:25]. The results displayed are for the allele
frequencies after transients have died away. For the earliest time shown, t = �2 � 104,
all pj were close to 0.

Figure 3
The mean genotypic e¤ect, E[G], is plotted against time (solid line). The �gure was

produced by numerically iterating the dynamical equation, Eq. (4) and corresponds to
the allele frequencies of Figure 2. Parameter values are those given in the Caption of
Figure 2. Also plotted in the same Figure is the optimal phenotypic value, Zopt (dashed
line).

The genotypic values of the trait range from approximately �2 to 2. When the
optimal phenotypic value lies within this range, the population tracks the changing
optimum, with a small but non-zero lag: E[G] < Zopt.

Figure 4
The genetic variance, VG, is plotted against time. The �gure was produced by

numerically iterating the dynamical equation, Eq. (4) and corresponds to the allele
frequencies of Figure 2. Parameter values are those given in the Caption of Figure 2.

The horizontal row of black dots represent the times at which di¤erent substitutions
occurred. There should be 10 dots visible, corresponding to substitutions at the 10 loci,
however some of the dots overlap, since some substitutions occurred within a very short
time of one another.

Figure 5
The frequencies pj of the B alleles at the 10 di¤erent loci are plotted against time

t. The Figure was produced by numerically simulating a population of N = 10; 000
individuals, with each adult producing a mean number of 1:5 o¤spring each generation.
The other parameter values adopted were: u = 10�5, � = 10�4, �jZopt;0j = �3 and
Vs = 21. The scale of allelic e¤ects at all loci were taken as mj = 0:2. The results
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displayed are for the allele frequencies after transients have died away. For the earliest
time shown, t = �2� 104, all pj were close to 0.

Figure 6
The mean genotypic e¤ect, E[G], is plotted against time (solid line). The �gure was

produced by numerically simulating a population, as described in the Caption to Figure
5. Also plotted in the same Figure is the optimal phenotypic value, Zopt (dashed line).

Figure 7
The genetic variance, VG, is plotted against time. The �gure was produced by

numerically simulating a population, as described in the Caption to Figure 5. There
is very close agreement with the genetic variance calculated from the allele frequencies
at di¤erent loci, assuming linkage equilibrium, VG = 2m2

Pn
j=1 pj(1� pj).

The horizontal row of black dots represent the times at which di¤erent substitutions
occurred.

Figure 8
To obtain the panels making up this Figure, all allele frequencies (that were obtained

from numerical simulation, as described in the Caption to Figure 5) were centred around
the time, tsubs, when a substitution occurred. The centred allele frequencies are plotted
as faint lines against the di¤erence in time from the substitution time, tsubs. The thick
black line, paverage, is the average of the centred allele frequencies and represents the
frequency history associated with a typical substitution.
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Figure 8d

Table 1

� ��1 =
2m

�

time-interval (simulation):
mean� standard deviation

0:5� 10�4 8:0� 103 (7:7� 2:3)� 103
1:0� 10�4 4:0� 103 (4:2� 1:3)� 103
2:0� 10�4 2:0� 103 (1:9� 1:6)� 103
3:0� 10�4 1:3� 103 (1:2� 0:6)� 103

Table 1 Caption

Table 1 compares the prediction, that the mean time-interval between substitutions
is ��1 = 2m=�, (as follows from Eq. (6)), with the results of numerical simulation. The
quantity � is the rate of change of the optimal phenotypic value and m is the scale of
allelic e¤ects of all loci. In the simulations, the population size was 10; 000 individuals,
with each adult producing a mean number of 1:5 o¤spring each generation. Parameter
values adopted were: u = 10�5, m = 0:2, �jZopt;0j = �3 and Vs = 21 (see text for a
description of these).
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