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COSMOLOGICAL MODEL SELECTION

Andrew R Liddle, Pia Mukherjee and David Parkinson
Astronomy Centre, University of Sussex, Brighton BN1 9QH

Abstract

Model selection aims to determine which theoretical modelsare most plausible given some
data, without necessarily asking about the preferred values of the model parameters. A common
model selection question is to ask when new data require introduction of an additional parameter,
describing a newly-discovered physical effect. We review several model selection statistics, and
then focus on use of the Bayesian evidence, which implementsthe usual Bayesian analysis frame-
work at the level of models rather than parameters. We describe ourCosmoNest code, which is
the first computationally-efficient implementation of Bayesian model selection in a cosmological
context. We apply it to recent WMAP satellite data, examining the need for a perturbation spectral
index differing from the scale-invariant (Harrison–Zel’dovich) case.

1 Introduction

Cosmologists are becoming very good at determining the parameters of the Universe. Within the last
few years observational results, exemplified by the microwave background anisotropy measurements
by the Wilkinson Microwave Anisotropy Probe (WMAP), have introduced precision into cosmological
modelling. Considerable sophistication is now required both in deriving theoretical predictions from
models and in carrying out data analysis procedures able to squeeze the best from the data.

Within a cosmological model, the parameters indicate the importance of different effects. For
instance, they describe the relative amounts of different types of material in the Universe, the geometry
and expansion rate of the Universe, and the properties of theinitial irregularities in the Universe which
led to the formation of structure. Such parameters are not predicted by fundamental theories, but rather
must be fit from data in order to decide which combination, if any, is capable of describing our Universe.
A variety of cosmological data are currently well fit by a model of the Universe that is homogeneous,
isotropic and spatially flat, contains cold dark matter in greater proportions than ordinary baryonic
matter, and in which tiny initial perturbations evolved under Einstein’s theory of General Relativity
into the structures of today. Current data constrain the parameters of this model rather well, many at
the 10% level or better.

However, the presence of good data leads to a different problem, one of knowing when to stop
fitting. Two different and competing models of the Universe may explain the data equally well, so how
do we choose between them? The solution is one proposed by William of Occam, that the simpler
model should be preferred. This is known asOccam’s razor. So a complicated model that explains the
data slightly better than a simple one should be penalized for the extra parameters it introduces, because
the extra parameters bring with them a lack of predictability. On the other hand, if a model is too simple,
and cannot fit certain data well, then it can be discarded. This is a rather common type of statistical
problem, both in cosmology and in other fields of astrophysics: each available parameter within a
model describes some piece of physics that might be relevantto our Universe, but until measurements
are made we don’t know which.

Cosmologicalmodel selection refers to comparing different model descriptions of the data. It
doesn’t care particularly about the actual values of parameters, but rather aims to determine whichset
of parameters gives the preferred fit to observational data.
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2 Why model select?

Model selection is an extremely widespread challenge throughout science; how do you fit to data when
you are unsure about the set of parameters that you should be deploying. You cannot just include every
parameter you can think of in a fit to data, because inclusion of extra unnecessary parameters worsens
the determination of those that are essential, so that very soon you can end up learning nothing about
anything. Moreover, you can’t just use goodness of fit to the data, because typically inclusion of a new
parameter will improve the goodness of fit even if that parameter has absolutely no actual relevance to
the Universe. Typical attempts to avoid these problems involve ad hoc criteria such as ‘chi-squared per
degrees of freedom’ arguments or the ‘likelihood ratio test’, in which arbitrary thresholds have to be
invoked to decide which way the verdict is supposed to go. Model selection aims to put this practice
on a firmer footing.

Model selection problems are ones in which the parameter setnecessary to describe a given dataset
is unknown, the question typically being whether new data justifies inclusion of a new physical param-
eter. Many of the most pressing questions in astrophysics are of this form. Cosmological examples
would include whether the spatial curvature is non-zero, whether the dark energy density evolves, and
whether the initial perturbation spectrum has an amplitudewhich varies with length scale.

3 Model selection statistics

The generic purpose of a model selection statistic is to set up a tension between the predictiveness of a
model (for instance indicated by the number of free parameters) and its ability to fit observational data.
Oversimplistic models offering a poor fit should of course bethrown out, but so should more complex
models which offer poor predictive power.

There are two main types of model selection statistic that have been used in the literature so far.
Information criteria look at the best-fitting parameter values and attach a penalty for the number
of parameters; they are essentially a technical formulation of ‘chi-squared per degrees of freedom’
arguments. By contrast, theBayesian evidence applies the same type of likelihood analysis familiar
from parameter estimation, but at the level of models ratherthan parameters. It depends on goodness
of fit across the entire model parameter space.

Here we discuss three possible statistics. In each case, thestatistic is a single number that is a
property of the model, and having computed it the models can be placed in a rank-ordered list.

Akaike Information Criterion (AIC): This was derived by Hirotugu Akaike in 1974, and takes the
form

AIC = −2 lnLmax + 2k , (1)

whereL is the likelihood (−2 lnL is often calledχ2 though it generalizes it to non-gaussian
distributions) andk is the number of parameters in the model. The subscript ‘max’indicates that
one should find the parameter values yielding the highest possible likelihood within the model.
It is obvious that this second term acts as a kind of ‘Occam factor’; initially as parameters are
added the fit to data improves rapidly until a reasonable fit isachieved, but further parameters
then add little and the penalty term2k takes over. The generic shape of the AIC as a function of
number of parameters is therefore a rapid fall, a minimum, and then a rise. The preferred model
sits at the minimum.

The AIC was derived from information-theoretic considerations, specifically an approximate
minimization of the Kullback–Leibler information entropywhich measures the distance between
two probability distributions.
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Bayesian Information Criterion (BIC): This was derived by Gideon Schwarz in 1978, and strongly
resembles the AIC. It is given by

BIC = −2 lnLmax + k ln N , (2)

whereN is the number of datapoints. Since a typical dataset will have ln N > 2, the BIC
imposes a stricter penalty against extra parameters than the AIC.

It was derived as an approximation to the Bayesian evidence,to be discussed next, but the as-
sumptions required are very restrictive and unlikely to hold in practice, rendering the approxima-
tion quite crude.

Bayesian evidence: The Bayesian evidence looks rather different, being definedas

E =

∫

L(θ)Pr(θ)dθ . (3)

Here θ is the vector of parameters of the model, andPr(θ) is the prior distribution of those
parametersbefore the data were obtained. The prior is an essential part of the definition of a
model, upon which the evidence will ultimately depend, and might for instance be a set of ranges
within which parameters are assumed to be uniformly distributed.

The evidence of a model is thus the average likelihood of the model in the prior. Unlike the
statistics above, it does not focus on the best-fitting parameters of the model, but rather asks
“of all the parameter values you thought were viable before the data came along, how well on
average did they fit the data?”. Literally, it is the likelihood of the model given the data. Given
Bayes’ theorem

P (M |D) =
P (D|M)P (M)

P (D)
. (4)

(here M is the model, D is the data, and the vertical bar is readas ‘given’), the evidence
E ≡ P (D|M) updates the prior model probabilityP (M) to the posterior model probability
P (M |D), i.e. the probability of the model given the data.

The evidence rewards predictability of models, provided they give a good fit to the data, and
hence gives an axiomatic realization of Occam’s razor. A model with little parameter freedom
is likely to fit data over much of its parameter space, whereasa model which could match pretty
much any data that might have cropped up will give a better fit to the actual data but only in a
small region of its larger parameter space, pulling the average likelihood down.

The evidence is also known as the marginalized likelihood or, more accurately, the model likeli-
hood. The ratio of evidences for two models is known as the Bayes factor.

Of these statistics, we would advocate using, wherever possible, the Bayesian evidence which is a
full implementation of Bayesian inference and can be directly interpreted in terms of model probabil-
ities. It is computationally challenging to compute, beinga highly-peaked multi-dimensional integral,
but recent algorithm development has made it feasible in cosmological contexts. We discuss it further
in the next section.

If the Bayesian evidence cannot be computed, the BIC can be deployed as a substitute. It is much
simpler to compute as one need only find the point of maximum likelihood for each model. However
interpreting it can be difficult. Its main usefulness is as anapproximation to the evidence, but this holds
only for gaussian likelihoods and provided the datapoints are independent and identically distributed.
The latter condition holds poorly for the current global cosmological dataset, though it can potentially
be improved by binning of the data hence decreasing theN in the penalty term.
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The AIC has been widely used outside astrophysics, but is of debatable utility. Sometime after
it was first derived, it was shown to be ‘dimensionally inconsistent’, a statistical term meaning that it
is not guaranteed to give the right result even in the limit ofinfinite unbiased data. It may however
be useful for checking the robustness of conclusions drawn using the BIC. The evidence and BIC are
dimensionally consistent.

4 Computing and interpreting the evidence

Computing the evidence in realistic problems is challenging, particularly in cosmology where evaluat-
ing theoretical predictions at just a single parameter point requires several seconds of CPU time with
state-of-the-art codes such ascmbfast or camb. Markov chain Monte Carlo (MCMC) methods are
now commonplace in cosmological parameter estimation, andefficiently trace the posterior probability
distribution of the parameters of a model in the vicinity of the best-fit region. However a different sam-
pling strategy is needed to evaluate the evidence. It can receive a large contribution from the tails of the
posterior distribution of the parameters, because even though the likelihoods there are small, this region
occupies a large volume of the prior probability space. Therefore the sampling strategy must effectively
sample the entire prior volume to evaluate the integral (Eqn3) accurately. Until recently, the best avail-
able strategy for evidence calculation, known as thermodynamic integration or simulated annealing,
required around107 likelihood evaluations for an accurate answer for a five-parameter cosmological
model, placing the problem at the limit of current supercomputer power.

Fortunately, a powerful new algorithm for evidence evaluation, known asnested sampling, was
recently invented by John Skilling (2004). At Sussex we haveimplemented this algorithm for cosmol-
ogy in a code namedCosmoNest, which we recently made publically available. It has provento be
one to two orders of magnitude more efficient than thermodynamic integration, meaning that evidence
calculations can now be run on a small computing cluster.

To set up the algorithm, the evidence integral is first recastas a one-dimensional integral in terms of
the prior massX, wheredX = Pr(θ) dθ with X running from 0 to 1. [A mental image to accompany
this is to consider the prior parameter space as a cube, and tosmash it with a large hammer. The
fragments are then arranged in a line in order of increasing likelihood.] The algorithm samples the
prior a large number of times, assigning a ‘prior mass’ to each sample. The samples are ordered by
likelihood, and the integration follows as the sum of the sequence,

E =

∫

L(X)dX =
m

∑

j=1

Ej , Ej =
Lj

2
(Xj−1 − Xj+1) . (5)

This is shown in Figure 1.
In order to compute the integral accurately the prior mass islogarithmically sampled. We start by

randomly placing a set ofN points within the prior parameter space, where in a typical cosmological
applicationN ≃ 300. We then iteratively discard the lowest likelihood pointLj , replacing it with a new
point uniformly sampled from the remaining prior mass (i.e.with likelihood greater thanLj). Each time
a point is discarded the prior mass remaining,Xj , shrinks by a factor that is known probabilistically,
and the evidence is incremented accordingly. In this way thealgorithm works its way towards the
higher likelihood regions. The process is illustrated in Figure 2. Additional details of the algorithm
are in Mukherjee, Parkinson & Liddle (2006a). The algorithmis simple, works accurately even in high
dimensions, and should be generally applicable in a number of areas even outside of astrophysics.

Although the evidence gives a rank-ordered list of models, it is still necessary to decide how big a
difference in evidence is needed to be significant. If the prior probabilities of the models are assumed
equal, the difference in log(evidence) can be directly interpreted as the relative probabilities of the
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Figure 1: A schematic of the nested sampling algorithm. The two-dimensional parameter space is
shown at the top right. The points within it are considered torepresent contours of constant likelihood,
which sit within each other like layers of an onion (there is however no need for them to be simply
connected). The volume corresponding to each thin shell of likelihood is computed by the algorithm,
allowing the integral for the evidence to be accumulated as shown in the graph.

models after the data. Even if people disagree on the relative prior probabilities, they will all agree
on the direction in which the data, represented by the evidence, has shifted the balance. The usual
interpretational scale employed is due to Sir Harold Jeffreys (from his classic 1961 book ‘Theory of
Probability’), which, given a difference∆ ln E between the evidencesE of two models, states that

∆ ln E < 1 Not worth more than a bare mention.
1 < ∆ ln E < 2.5 Significant.
2.5 < ∆ ln E < 5 Strong to very strong.

5 < ∆ ln E Decisive.

In practice we find the divisions at 2.5 (corresponding to posterior odds of about 13:1) and 5 (corre-
sponding to posterior odds of about 150:1) the most useful.

When should model selection be deployed? If the data indicates something strongly enough, it
doesn’t really matter how the statistical analysis is done.The main zone of interest is where a new
parameter is ‘detected’ at between two and four ‘sigmas’ viaparameter estimation techniques. These
overestimate the significance of a detection because they ignore model dimensionality, and there is a
well-known (in the statistics literature anyway) phenomenon called Lindley’s paradox, whereby model
selection considerations can overturn an analysis based ona ‘number of sigmas’ argument. A nice
discussion of Lindley’s paradox is given in Trotta (2005).

One of the bugbears of Bayesian methods is the requirement tospecify priors explicitly, with the
evidence depending on the choice of priors. If the data have low informative content (technically
defined via the ratio of prior and posterior parameter volumes), this can be a serious issue, but it
becomes less so if the data are constraining so that the posterior is well localized within any conceivable
prior. In that case the evidence becomes proportional to theprior volume, and quite a substantial change
in volume is needed to move models significantly around the Jeffreys scale.
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Figure 2: A sequence of snapshots of a toy-model evidence calculation, using a two-dimensional gaus-
sian likelihood. As the computation progresses the clusterof points, initially distributed throughout the
parameter space, drifts towards the region of high likelihood at the centre.

5 Applications of model selection

There are several areas of application of model selection techniques, the main two being as follows:

Application to data: With real data, one can assess the viability of different models under considera-
tion. In this case one simply computes the evidence for each model of interest and ranks them.

Model selection forecasting: This application aims to compare the power of different experiments be-
fore they are carried out. Many proposed experiments seek toanswer model selection questions,
but their capabilities are often quantified using parameterestimation projections, such as Fisher
matrix forecasting. For instance, a dark energy experimentmay be advertized as able to measure
the equation of state parameterw with an uncertainty of±0.05, the aim being to detect devia-
tions ofw from−1, which characterizes the cosmological constant or vacuum zero-point energy.
One can instead forecast experiments’ ability to carry out model selection tests. In this case data
must be simulated for a range of different assumed models, inorder to investigate where in the
available parameter space a given experiment can make a strong or decisive model comparison
between a dynamical dark energy model and the cosmological constant. This gives a powerful
tool for comparing the statistical power of competing experiments. It should also be possible to
extend this concept to survey optimization, whereby one tunes survey parameters to optimize the
ability to carry out model selection tests, but it is less clear that this will be fruitful.

We have extensively discussed the philosophy of model selection forecasting, with specific application
to dark energy experiments, in Mukherjee et al. (2006b). In Pahud et al. (2006) we applied these ideas
to determination of the nature of the primordial power spectrum of density perturbations, focussing on
the ability of the Planck Satellite mission to perform modelselection of this type. In this article we will
focus on applications to real data.

5.1 A toy model

To help understand what is going on, we can carry out a simple toy model investigation into the spatial
curvature of the Universe. According to the three-year datafrom WMAP (henceforth WMAP3), the
total density, in units of the critical density, isΩ = 1.003 ± 0.015 (where we took the liberty of
symmetrizing the uncertainty and where the Hubble Key project determination of the Hubble parameter
is also used). Given this, how likely is it that the Universe is flat? For simplicity we’ll assume a gaussian
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Figure 3: A composite map of the cosmic microwave background(CMB) as measured by three years
of WMAP observations. The colour scale indicates the CMB temperature and the whole sky is shown
in Hammer–Aitoff projection in galactic coordinates. Measurements at different frequencies have used
to model out non-CMB contributions, particularly galacticemission. [Image courtesy NASA/WMAP
Science Team.]

likelihood corresponding to this measurement, and ignore dependence on other parameters, so we have

L = L0 exp

[

−
(Ω − 1.003)2

2 × 0.0152

]

(6)

We also have to choose a prior range forΩ; let’s say0.1 < Ω < 2 representing some plausible range
people might have considered long before precision data emerged. Now the calculation, remembering
that the evidence is just the average likelihood over the prior.

Flat model: We just have to evaluate the likelihood atΩ = 1. It is E(flat) = 0.98L0.

Curved model: Now we have to integrate the likelihood over the prior, beingsure to normalize the
prior properly. This givesE(curved) = 0.02L0.

The conclusion is that, under these assumptions, the flat model is preferred at odds of approximately
50:1.

That example was pretty boring, sinceΩ = 1 lies almost in the middle of the measured range. But
suppose the result had beenΩ = 1.045 ± 0.015, a putative three-sigma detection of spatial curvature.
The evidence for the curved model is unchanged (it doesn’t care what the measured value is provided
it is well within the prior) while that of the flat model shrinks. Nevertheless, the end result is an odds
ratio of only 2:1 in favour of the curved model. In this case, three-sigma is nowhere near enough to
convincingly indicate that space is curved. Physically, the evidence is allowing for it beinga priori
very unlikely thatΩ could be so close to one as to give such a low-confidence ‘detection’, yet still not
be equal to one. Put another way, the∆ ln E would be 0.7 which according to Jeffreys is hardly worth
mentioning.

5.2 Real cosmology

Now we turn to a real cosmological example. The new three-year data from WMAP (see Figures 3
and 4) is for the most part uncontroversial from a model selection point of view, with parameters either
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Figure 4: Upper panel: the CMB temperature power spectrum measurements from WMAP3 (black
dots, with error bars) shown against a model power spectrum that provides a good fit (red curve).
Bottom panel: the CMB temperature–polarization cross-correlation measurements from WMAP (blue
dots with error bars) shown against the predictions of the same model as above (green curve). [Image
courtesy NASA/WMAP Science Team.]

being definitely required or clearly unnecessary. The exception is the scale dependence of primordial
density perturbations, defined by the spectral indexnS. These perturbations are usually considered to
have been generated by inflation, a period of rapid acceleration in the early Universe. As well as solving
some of the problems with the traditional hot big bang model,inflation also generically predicts the
kind of observations that we now see. The many models of inflation predict a wide range of possible
values fornS, which one should then try and fit from the data.

However, a decade before inflation was invented, Harrison and Zel’dovich independently proposed
that nS should be precisely one, corresponding to perturbations whose amplitude is independent of
scale. At least until this year’s publication of the three-year WMAP data, the Harrison–Zel’dovich
spectrum always gave a good fit to existing data. From a model selection perspective it benefits from
having one parameter less than a model wherenS varies, and indeed we showed in a paper last year

8



predating WMAP3 that the Harrison–Zel’dovich model had thehighest evidence, though other models
including varyingnS were not strongly excluded.

WMAP3 gave, for the first time, indications thatnS might be less than one, with their main pa-
per quoting the results (from WMAP3 data alone)nS = 0.951+0.015

−0.019, which thus appears to be over
3-sigma away from unity. A similar result is found when WMAP data is combined with other indepen-
dent datasets, such as the power spectrum of the large-scaledistribution of galaxies and the redshift–
luminosity relation of distant type Ia supernovae. So far, parameter estimation analyses performed on
available data taken together seem to indicate thatnS 6= 1 at about 3 to 4-sigma.

This significance level is exactly where Lindley’s paradox is at its strongest, making the use of
model selection techniques imperative, as acknowledged inthe WMAP3 papers. We have carried out
such an analysis. We chose a prior onnS uniform between 0.8 between 1.2; most inflationary models
give nS in this range and this is what was believed to be the possible range for it before the data came
along. Evidences were computed usingCosmoNest, with the calculations taking a few days on a
multi-processor cluster.

According to our model selection analysis, the evidence forthenS varying model is significant, but
not strong or decisive. WMAP3 data on its own gives a Bayes factor of only 0.34 ± 0.26, indicating
that this data alone is unable to distinguish the two models.When WMAP3 data are used together
with external data sets we estimate a∆ ln E of 1.99 ± 0.26, corresponding to an odds ratio of 8 to 1
in favour of thenS varying model. Adding the external datasets improves the constraining power on
nS, as they significantly extend the scales over which the primordial power spectrum affects the data.
Nevertheless, the support for varyingnS is clearly tentative rather than compelling.

There is additional reason for some caution at present because there may be residual systematics
in the data that could affect our conclusions regardingnS; the evidence calculation concerns statistical
uncertainties only. For example, the effect of varyingnS in determining the power spectra shown in
Figure 4 is somewhat degenerate with the signature of the relatively recent reionization of the Universe,
which is mainly inferred from polarization data which is difficult to handle. There are also uncertainties
associated with the modelling of the instrument beam profiles, and in whether one should attempt to
model out a possible contribution to the CMB anisotropies from the Sunyaev–Zel’dovich effect. The
situation will be improved with higher signal-to-noise data from additional years of WMAP observa-
tions and future experiments.

6 Conclusion

Many of the most interesting cosmological questions are ones of model selection, not parameter es-
timation. With the growing precision of cosmological data,it is imperative to deploy proper model
selection techniques to extract the best robust conclusions from data.

Application to the post-WMAP3 cosmological data compilation continues to indicate that the data
can be well fit by quite minimal cosmological models. Five fundamental parameters are definitely
required, and WMAP3 has provided suggestive indications that a sixth, the density perturbation spectral
index, needs to be added to the set. According to the Bayesianevidence, however, the case for inclusion
of the spectral index has yet to become compelling.

As the data improve in sensitivity we expect new model selection based questions to be both raised
and answered in the next decade. These may be about the natureof dark energy, the model for reion-
ization, the nature of inflation, the case for primordial gravitational waves, or the nature of cosmic
topology. Model selection, of course, will have further applications in astrophysics and beyond.
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