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Analysis and computations for a model of
quasi-static deformation of a thinning sheet

arising in superplastic forming

KLAUS DECKELNICK, CHARLES M. ELLIOTT and VANESSA STYLES

Centre for Mathematical Analysis and Its Applications, School of Mathematical Sciences,

University of Sussex, Falmer, Brighton BN1 9QH, UK

(Received 5 May 2000; revised 11 September 2001)

We consider a mathematical model for the quasi-static deformation of a thinning sheet.

The model couples a first-order equation for the thickness of the sheet to a prescribed

curvature equation for the displacement of the sheet. We prove a local in time existence and

uniqueness theorem for this system when the sheet can be written as a graph. A contact

problem is formulated for a sheet constrained to be above a mould. Finally we present some

computational results.

1 Introduction

The forming of thin sheets is an important industrial process. Superplastic materials

allow very large plastic deformations with low pressures and thus vacuum molding of

a superplastic sheet can yield complex shaped pieces without welding and with little

subsequent machining. The situation is that of a sheet (known as the blank) placed over

a fixed mould (or die) in such a way that there is an enclosed gap between the sheet and

mould. The sheet is then subsequently deformed in such a way as to be pressed against the

mould and indeed to take up its shape. This is achieved by reducing the pressure in the

gap between sheet and mould. Alternatively one could increase the pressure in the external

region above the sheet. A schematic depiction of this configuration is shown in Figure 1

for a mould taking the form of a rectangular channel. Because of the large deformations

involved considerable thinning of the sheet takes place. We refer to [1, 2, 4] for more

details of the industrial applications and for finite element modelling. An important

requirement for mathematical modelling of the process is the determination of the final

sheet thickness.

In Chapman et al. [3] a simplified mathematical model is proposed for the process

of vacuum superplastic forming for thin sheets. Rather than using a power law stress

strain relation (cf [1]) the authors assume that the sheet is always in a critically plastic

state. Using an asymptotic analysis they derive a rather simple equation which balances

the curvature of the centreline of the sheet with the ratio of the applied pressure and

varying sheet thickness. This is then coupled to an evolution equation for the thickness

derived from local conservation of mass. An interesting feature of the model is its rate

independence. The shape and thickness of the sheet are independent of the rate at
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which the pressure increases. The model can also be solved backwards in time as we

describe later. This may be useful in solving the inverse problem of determining shape

and thickness. This is important in the aerospace industry process of net-shape forming

in which the final shape of the part is determined by the mould and the desired thickness

of the part is to be achieved by pre-contouring of the blank, see [4].

In order to fix ideas, let us consider an infinitely long mould with a uniform cross-

section, which is the boundary of an open set M ⊂ R2. Furthermore the cross-section of

the sheet is a curve Γ = Γ (t). We assume that Γ is fixed at two points xiM, i = 1, 2 on

the boundary of the mould ∂M and to lie above ∂M. For convenience we think of ∂M
as being extended smoothly upwards beyond the points x1M and x2M, see Figure 2. We

denote by νM(x) the unit exterior normal to ∂M for x ∈ ∂M and by τ (x), ν(x), x ∈ Γ
the unit tangent and unit normal to Γ respectively. These are oriented in such a way that

det(τ (x), ν(x)) = 1.

sheet

x=-1

z

y

x

mould

x=1

gap

Figure 1. Fixed sheet: z=u(x,t)

As long as Γ (t) is strictly above ∂M, which we shall call the mould-free case, the

authors derive in [3] the following quasi-static equation for elastic/plastic deformation

P = dκ, on Γ (t), (1.1)

where P = P (t) denotes a time dependent increasing prescribed pressure difference across

the sheet, d is the thickness of the sheet and κ is the curvature of Γ . Here we have followed

[3] and used dimensionless variables where the lengths have been scaled with respect to

a typical value L∗ for the width of the mould. Denoting by D∗ a typical thickness of

the sheet we have that ε = D∗
L∗ is a small parameter and the dimensionless thickness is

εd where d is of order one. The pressure is scaled with εσ∗, where σ∗ is the material

yield stress and is the only material parameter in the model. The model is completed by

assuming that

a) mass is conserved locally;

b) material flows normal to the curve.
(1.2)

The situation changes if material reaches the mould wall ∂M. In order to describe, how

(1.1) has to be modified, we introduce

R := (κ− F)ν(x), x ∈ Γ , (1.3)
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with F = P/d > 0. R is the difference of the normal force Fν(x) on the sheet due to the

pressure difference and the resistive force κν(x). Away from the boundaries of the mould

where the sheet is unconstrained we have for x ∈ Γ (t)

x ∈ M, R = 0 (1.4)

whereas on the boundary of the mould

x ∈ ∂M, R · νM(x) > 0. (1.5)

The second condition in (1.5) is a condition on the direction of the reaction force on the

sheet due to the mould where there is contact. Together (1.4) and (1.5) can be viewed as a

complementarity system. Finally, we make the hypothesis, suggested in [3], that once the

sheet hits the mould wall it remains attached to the mould and cannot move thereafter.

In order to study the evolution of Γ (t) analytically or numerically a suitable description

of the curve is needed. In [3] they set the position of the sheet to be given parametrically

by

x(p, t) = (x(p, t), z(p, t)), p ∈ [0, 1], (1.6)

where p parameterises the curve and t is time. In view of our choice of orientation we

have ν(x) =
x⊥p
|xp| , where a⊥ = (−a2, a1) for a = (a1, a2) ∈ R2. Then (1.1) becomes

P (t) = d
xpp
|xp|2 ·

x⊥p
|xp| , p ∈ [0, 1], t ∈ [0, T ], (1.7)

while the conditions in (1.2) translate into

∂

∂t

(
d(p, t)|xp|

)
= 0, p ∈ [0, 1], t ∈ [0, T ] (1.8)

xt(p, t) · xp(p, t) = 0, p ∈ [0, 1], t ∈ [0, T ]. (1.9)

Furthermore, appropriate boundary and initial conditions have to be added.

Γ
∂M

x2Mx1M

τν

νM

M

Figure 2. The cross-section M

Having derived (1.1) and (1.2) Chapman et al. in [3] (i) give the exact solution when d is

a given constant for all time i.e. arcs of circles, (ii) give the exact solution for thinning with

d being space-independent, again circular arcs, (iii) derive a nontrivial similarity solution

and (iv) derive a numerical discretization and perform calculations.
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In this paper we give a reformulation of the problem. The position of the sheet

is determined by the two components (x(p, t), z(p, t)). However, numerical experiments

suggest that (at least locally in time) Γ (t) can be written as a graph u(·, t). In § 2 we shall

derive the system satisfied by u and the thickness d that corresponds to the problem (1.1),

(1.2). We obtain a first order equation for d which is coupled to a prescribed curvature

equation for u. This approach has several advantages: it can easily be generalized to

fully three-dimensional sheets (see § 2.2) and there is a natural formulation of the contact

problem (1.4), (1.5) as an obstacle problem (see § 2.3). Furthermore, we are able to prove

a short time existence and uniqueness result for the one-dimensional mould-free problem.

The proof and further properties of the solution will be presented in § 3. In § 4 we present

numerical discretizations for the graph formulations derived in § 2 both for the mould-free

and the contact problem. For the contact problem we encounter the difficulty that the

solution loses the property of being a graph at a certain time. Our way around this

problem is a suitable rotation of coordinates which allows us to follow the evolution in

the graph setting. An alternative method, which avoids the change of coordinates, relies

on the parametric approach. To this end, in § 5 we return to (1.4), (1.5) and rewrite it

as a complementarity system. We solve this system numerically with the help of a fixed

point iteration and compare the results with those obtained from the graph approach.

We display some computational results in § 6 and finally we present some conclusions

in § 7.

2 A graph formulation of the model

2.1 The one-dimensional mould-free model

For the one-dimensional mould-free problem we set M = {(x, z) ∈ R2 | − 1 < x < 1}
and x1M = (−1, 0), x2M = (1, 0). We assume that the sheet can be written as a graph

Γ (t) = {(x, u(x, t)) | x ∈ Ω = (−1, 1)} with u(−1, t) = u(1, t) = 0 (see Figure 1).

We set the thickness of the sheet to be d(x, t), x ∈ Ω and noting that κ =
∂

∂x

( ux√
1 + u2

x

)
we obtain from (1.1)

∂

∂x

(
ux(., t)√

1 + ux(., t)2

)
=

P (t)

d(., t)
in Ω. (2.1)

We now write

Γ (t) 3 (x, z) = Ψ (A, t) = (a(A, t), u(a(A, t), t)), (2.2)

where A defines a point on the sheet at the time t = 0 and a = a(A, t) defines the x

coordinate of this point at time t such that

a(A, 0) = A.

The unit tangent vector to the graph of u is τ = (1,ux)√
1+u2

x

. Recalling (1.2) b) we have

0 = Ψt · τ = (at, ut + uxat) · (1, ux)√
1 + u2

x

=
at + u2

xat + uxut√
1 + u2

x

,
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which implies that

v := at =
−uxut
1 + u2

x

. (2.3)

Finally since mass is conserved and the density is constant it follows that we have

conservation of area and thus for any points A1 ∈ Ω, A2 ∈ Ω we have

d

dt

∫ a(A2 ,t)

a(A1 ,t)

d(x, t)
√

1 + u2
x dx = 0.

Setting D(A, t) = d(a(A, t), t) as well as S(A, t) =
√

1 + u2
x(a(A, t), t) it follows that

d

dt

∫ A2

A1

(DSaA)(A, t) dA = 0

and therefore, since A1 and A2 were arbitrary

DtSaA + DStaA + DSaAt = 0. (2.4)

Next, differentiating (2.3) with respect to A we obtain

aAt

aA
=
−(1 + u2

x)(uxxut + uxtux) + 2u2
xutuxx

(1 + u2
x)

2
.

Combining this with (2.4) and the identity St = (1 + u2
x)
−1/2ux(uxt + uxxat) it follows that

dt + dxat = Dt = −DSt

S − D
aAt

aA

= −d ux(uxt + uxxat)

1 + u2
x

+ d
(1 + u2

x)(uxxut + uxtux)− 2u2
xutuxx

(1 + u2
x)

2

=
dutuxx

(1 + u2
x)

2
.

Inserting (1.1) and (2.3) into the above relation we arrive at

dt − uxut

1 + u2
x

dx =
dutκ√
1 + u2

x

=
utP (t)√
1 + u2

x

. (2.5)

Thus our one-dimensional evolutionary model in the absence of a mould takes the form

of (2.1), (2.3) and (2.5) together with initial and boundary data

d(x, 0) = d0(x) x ∈ (−1, 1), (2.6)

u(−1, t) = u(1, t) = 0 t ∈ (0, T ). (2.7)

If we assume that d0 is symmetric with respect to x = 0 this model can be written in the

following form

uxx

(1 + u2
x)

3/2
=
P (t)

d
x ∈ (0, 1), t ∈ (0, T ) (2.8)

ux(0, t) = 0, u(1, t) = 0 t ∈ (0, T ) (2.9)

dt − uxutdx

1 + u2
x

=
P (t)ut√
1 + u2

x

x ∈ (0, 1), t ∈ (0, T ) (2.10)

d(x, 0) = d0(x) x ∈ (0, 1). (2.11)
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Henceforth we shall use (2.8)–(2.11) when studying the one-dimensional mould-free

problem.

We also observe the following property of the above systems: suppose that P (0) = 0

and that P ′(t) > 0 for t > 0 and let t̃ = P (t) as well as (ũ, d̃)(x, t̃) = (u, d)(x, t). Then

ut = ũt̃P
′(t), dt = d̃t̃P

′(t)

and (ũ, d̃) satisfy (2.8)–(2.11) with P (t) replaced by t̃. Hence the solution is rate independent

in the sense that it depends only on the order of the values of P (t) ∈ [0, P (T ))) and not

the rate at which P (·) changes. A similar remark applies to the parametric approach.

2.2 The two-dimensional model

For the two-dimensional mould-free problem we set Ω = (0, 1) × (0, 1) and we take the

sheet to be the graph (x, u(x, t)) for all x = (x, y) ∈ Ω, with u(x, t) = 0 for all x ∈ ∂Ω
and we set its thickness to be d(x, t) for all x ∈ Ω. Note that the sheet Γ (t) is now a

two-dimensional surface and the equation (1.1) is replaced by P = dH on Γ (t) (cf. [3], p.

240), where H is the mean curvature of Γ (t). Thus we have

∇ ·
(

∇u(., t)√
1 + |∇u(., t)|2

)
=
P (t)

d
x ∈ Ω, t ∈ (0, T ). (2.12)

We now write Γ (t) 3 Ψ (A, t) = (a(A, t), u(a(A, t), t)) = (a1(A, t), a2(A, t), U(A, t)), where

A = (A1, A2), a(A, 0) = A and U(A, t) = u(a(A, t), t). Noting that the sheet evolves in the

normal direction we have

Ψt · (1, 0, ux) = 0, Ψt · (0, 1, uy) = 0.

Since Ψt = (a1t, a2t, uxa1t + uya2t + ut) this can be rewritten as(
1 + u2

x uxuy
uxuy 1 + u2

y

)(
a1t

a2t

)
=

( −uxut
−uyut

)
.

Thus,

v =

(
a1t

a2t

)
=

1

(1 + u2
x)(1 + u2

y)− u2
xu

2
y

(
1 + u2

y −uyux
−uxuy 1 + u2

x

)( −uxut
−uyut

)
=

−ut
1 + |∇u|2∇u. (2.13)

Finally since mass is conserved and the density is constant it follows that we have

conservation of volume and thus for any region M(t) at time t, where M(0) is the region

in Ω that a specified portion of the sheet occupies at t = 0, we have

d

dt

∫
M(t)

d

√
1 + |∇u|2dx = 0. (2.14)

So that the region of integration is independent of time we transform (2.14) into the initial

coordinates A to obtain
d

dt

∫
M(0)

DSdetJ dA = 0,
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where D(A, t) = d(a(A, t), t), (Jij) = ( ∂ai
∂Aj

) and S(A, t) =
√

1 + |∇u|2 =
√

1 + |J−T∇AU|2.

Noting that ∂
∂t

(detJ) = ∇ · v detJ this implies

DtS+ DSt + DS∇ · v = 0.

Observing that

St = v · ∇(√1 + |∇u|2)+
∇u · ∇ut√
1 + |∇u|2

and arguing in a similar way as for the one-dimensional case we may continue

dt + v · ∇d = Dt = −DSt

S − D∇ · v

= − d√
1 + |∇u|2 v · ∇(√1 + |∇u|2)− d∇u · ∇ut

1 + |∇u|2 + d∇ · ( ut∇u
1 + |∇u|2

)

=
d ut√

1 + |∇u|2∇ ·
(

∇u√
1 + |∇u|2

)
=

utP (t)√
1 + |∇u|2 .

In conclusion, the two-dimensional model is described by the system

∇ ·
(

∇u√
1 + |∇u|2

)
=
P (t)

d
x ∈ Ω, t ∈ (0, T ) (2.15)

u(x, 0) = 0 x ∈ Ω (2.16)

dt − ut∇u · ∇d
1 + |∇u|2 =

P (t)ut√
1 + |∇u|2 x ∈ Ω, t ∈ (0, T ) (2.17)

d(x, 0) = d0(x) x ∈ Ω. (2.18)

2.3 A graph formulation of the contact problem

In the setting of Section 2.2 where the sheet is a graph z = u(x, y, t) not in contact with

the vertical mould walls but constrained to lie above a lower mould wall z = ψ(x, y), the

conditions (1.4), (1.5) become

u > ψ, − ∇ ·
(

∇u√
1 + |∇u|2

)
+
P (t)

d
> 0

(
P (t)

d
− ∇ ·

(
∇u√

1 + |∇u|2
))

(u− ψ) = 0.

This can be posed as the following variational inequality of obstacle type∫
Ω

∇u · (∇η − ∇u)√
1 + |∇u|2 dx +

∫
Ω

P (t)

d
(η − u)dx > 0 ∀ η ∈ K, (2.19)

where

K = {η ∈ H1(Ω) : η(x) > ψ(x), ∀ x ∈ Ω, η(x) = 0 ∀ x ∈ ∂Ω}.
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Finally the equation for d remains (2.17). This means that the sheet is motionless and

does not thin when in contact with the mould. The problem in one-space dimension is

analogous.

3 Existence theory

In this section we prove a local existence result for (2.8)–(2.11). In view of the observation

made at the end of Section 2.1 we shall assume without loss of generality that P (t) = t.

Furthermore recall that

C1,1[0, 1] = {d ∈ C1[0, 1] | d′ is Lipschitz continuous}.

Theorem 1 Suppose d0 ∈ C1,1[0, 1] with d0(x) > c0 > 0 for all x ∈ [0, 1]. There exists

T = T (d0, c0) > 0 such that (2.8)–(2.11) has a unique solution (d, u) satisfying

d, u ∈ C1([0, 1]× [0, T ]), u(., t) ∈ C2([0, 1]) for all t ∈ [0, T ]. (3.1)

Proof The proof uses a fixed point argument for a contraction mapping. Consider the

metric space

B := {η ∈ C1([0, 1]× [0, T ]) : ||η||B 6 R, η(x, t) >
c0

2
, ∀ (x, t) ∈ [0, 1]× [0, T ]} (3.2)

with ||η||B = ||η||C1([0,1]×[0,T ]), where R will be determined later and

T 6
c0

2
√

2
. (3.3)

There will be additional restrictions on T in the course of the proof.

We define a mapping F : B → C1([0, 1] × [0, T ]) in the following way: given d ∈ B,

for every t ∈ [0, T ], let u(·, t) be the unique solution of

∂

∂x

(
ux(., t)√

1 + u2
x(., t)

)
=
t

d
in [0, 1], (3.4)

ux(0, t) = u(1, t) = 0. (3.5)

The solution is given by the formula

u(x, t) = −
∫ 1

x

tα(z, t)√
1− t2α2(z, t)

dz, (3.6)

where

α(x, t) =

∫ x

0

1

d(z, t)
dz.

Note that u(., t) is well-defined because

1− t2α2(x, t) > 1− 4T 2

c2
0

>
1

2
(3.7)
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by (3.3). Recalling the definition of B we can calculate the following expressions for the

derivatives of u:

ux(x, t) =
tα(x, t)√

1− t2α2(x, t)

uxx(x, t) =
t

d(x, t)
(1 + u2

x(x, t))
3/2

ut(x, t) = −
∫ 1

x

α(z, t)

(1− t2α2(z, t))3/2
dz + t

∫ 1

x

β(z, t)

(1− t2α2(z, t))3/2
dz

uxt(x, t) =
α(x, t)− tβ(x, t)

(1− t2α2(x, t))3/2
,



(3.8)

where

β(x, t) =

∫ x

0

dt(z, t)

d2(z, t)
dz.

Clearly,

sup
t∈[0,T ]

‖ux(., t)‖C1[0,1] 6 TM (3.9)

sup
t∈[0,T ]

‖ut(., t)‖C2[0,1] + sup
t∈[0,T ]

‖uxxx(., t)‖C0[0,1] 6M(1 + TR). (3.10)

Here and in what follows, M will denote a constant, which only depends on c0 and which

may change from line to line.

Next, we define e(x, t) to be the solution of the initial value problem

et + b(x, t)ex = g(x, t), x ∈ [0, 1], 0 6 t 6 T , (3.11)

e(x, 0) = d0(x), x ∈ [0, 1], (3.12)

where

b(x, t) := −ux(x, t)ut(x, t)
1 + u2

x(x, t)
, g(x, t) :=

tut(x, t)√
1 + u2

x(x, t)
. (3.13)

The existence of a unique solution e ∈ C1([0, 1]× [0, T ]) of (3.11)–(3.12) follows from the

method of characteristics, which also yields the following formula for the solution:

e(x, t) = d0(λ(0; x, t)) +

∫ t

0

g(λ(s; x, t), s)ds, (3.14)

where the characteristics λ(s) = λ(s; x, t) are defined by

λ̇(s) = b(λ(s), s), s ∈ [0, T ], λ(t) = x. (3.15)

We note that since b(0, t) = b(1, t) = 0 for all t ∈ [0, T ], it follows that λ(s) ∈ [0, 1] for all

x ∈ [0, 1] and t ∈ [0, T ].

We now define F(d) := e. Clearly (u, d) is a solution of (2.8)–(2.11) if and only if d is a

fixed point of F and u is given by (3.4), (3.5).

Claim F(B) ⊂ B and F is a contraction, provided that T is sufficiently small.
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Using (3.10) we have

sup
t∈[0,T ]

‖b(., t)‖C2[0,1] 6M(1 + TR), sup
t∈[0,T ]

‖g(., t)‖C2[0,1] 6 TM(1 + TR) (3.16)

so that (3.14) implies

c0

2
6 e(x, t) 6 2 sup

x∈[0,1]
d0(x) (3.17)

provided that

TM(1 + TR) 6 min
(c0

2
, sup
x∈[0,1]

d0(x)
)
. (3.18)

Furthermore

ex(x, t) = d′0(λ(0; x, t))
∂λ

∂x
(0; x, t) +

∫ t

0

gx(λ(s; x, t), s)
∂λ

∂x
(s; x, t)ds (3.19)

where from (3.15) we have
∂λ

∂x
(s; x, t) satisfies

_̇

∂λ

∂x
= bx(λ(s), s)

∂λ

∂x
(s), s ∈ [0, T ],

∂λ

∂x
(t) = 1. (3.20)

From (3.13) and (3.9), (3.10) we infer∣∣∣∂λ
∂x

(s)
∣∣∣ 6 1 + T sup

[0,1]×[0,T ]
|bx| sup

τ∈[0,T ]

∣∣∣∂λ
∂x

(τ)
∣∣∣ 6 1 + TM(1 + TR) sup

τ∈[0,T ]

∣∣∣∂λ
∂x

(τ)
∣∣∣

so that

sup
s∈[0,T ]

∣∣∣∂λ
∂x

(s)
∣∣∣ 6 2 (3.21)

provided that

T sup
[0,1]×[0,T ]

|bx| 6 TM(1 + TR) 6
1

2
. (3.22)

Thus, (3.19), (3.21) and (3.10) imply

|ex(x, t)| 6 2 sup
x∈[0,1]

|d′0(x)|+ 2T sup
[0,1]×[0,T ]

|gx| 6 2 sup
x∈[0,1]

|d′0(x)|+ TM(1 + TR) (3.23)

and finally using (3.11), (3.13), (3.10) and (3.23)

|et(x, t)| 6 |g(x, t)|+ |b(x, t)| |ex(x, t)|
6 TM(1 + TR) +M(1 + TR)

(
2 sup
x∈[0,1]

|d′0(x)|+ TM(1 + TR)
)

6M sup
x∈[0,1]

|d′0(x)|+ TM(1 + TR)
(
1 + sup

x∈[0,1]
|d′0(x)|),

which implies in combination with (3.17) and (3.23)

‖e‖B 6 2 sup
x∈[0,1]

d0(x) + (M + 2) sup
x∈[0,1]

|d′0(x)|+ TM(1 + TR)
(
1 + sup

x∈[0,1]
|d′0(x)|).
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Let us first choose R > 0 so large that 2 supx∈[0,1] d0(x) + (M + 2) supx∈[0,1] |d′0(x)| 6 1
2
R.

Afterwards choose T so small that TR 6 1, (3.18), (3.22) as well as

TM(1 + TR)
(
1 + sup

x∈[0,1]
|d′0(x)|) 6 1

2
R

are satisfied. This implies that e ∈ B, so that F(B) ⊂ B.

We now prove that F is a contraction mapping. To this end let d, d̂ ∈ B with e =

F(d), ê =F(d̂) and we denote by u, û the solutions of the corresponding elliptic problems.

Furthermore, let b, g and b̂, ĝ respectively be the functions appearing in (3.13) and λ, λ̂ the

corresponding characteristics.

A short calculation shows

sup
t∈[0,T ]

‖(b− b̂)(., t)‖C1[0,1] + sup
t∈[0,T ]

‖(g − ĝ)(., t)‖C1[0,1] 6 C‖d− d̂‖B. (3.24)

Next, let us derive estimates for the difference between λ and λ̂. Clearly,

(λ̇− ˙̂
λ)(s) =

(
b(λ(s), s)− b(λ̂(s), s))+

(
b(λ̂(s), s)− b̂(λ̂(s), s)), s ∈ [0, T ]

(λ− λ̂)(t) = 0.

Thus,

|(λ− λ̂)(s)| 6 T sup
[0,1]×[0,T ]

|bx| sup
τ∈[0,T ]

|λ(τ)− λ̂(τ)|+ T sup
τ∈[0,T ]

‖(b− b̂)(., τ)‖C0[0,1]

which implies using (3.22) and (3.24)

sup
06s6T

|(λ− λ̂)(s)| 6 TC‖d− d̂‖B. (3.25)

Recalling (3.20) we have

( ˙︷ ︸︸ ︷
∂λ

∂x
− ∂λ̂

∂x

)
(s) = bx(λ(s), s)

(
∂λ

∂x
(s)− ∂λ̂

∂x
(s)

)
+
(
bx(λ(s), s)− bx(λ̂(s), s))∂λ̂

∂x
(s)

+
(
bx(λ̂(s), s)− b̂x(λ̂(s), s))∂λ̂

∂x
(s)

and (
∂λ

∂x
− ∂λ̂

∂x

)
(t) = 0.

Arguing in a similar way as above we deduce

sup
06s6T

∣∣∣∣∣∂λ∂x (s)− ∂λ̂

∂x
(s)

∣∣∣∣∣
6 TC sup

[0,1]×[0,T ]
|bxx| sup

s∈[0,T ]
|λ(s)− λ̂(s)|+ T sup

s∈[0,T ]
‖(b− b̂)(., t)‖C1[0,1]

6 TC‖d− d̂‖B. (3.26)
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In view of (3.19) we may write

ex(x, t)− êx(x, t) =
(
d′0(λ(0; x, t))− d′0(λ̂(0; x, t))

)∂λ
∂x

(0; x, t)

+d′0(λ̂(0; x, t))

(
∂λ

∂x
(0; x, t)− ∂λ̂

∂x
(0; x, t)

)

+

∫ t

0

(
gx(λ(s; x, t), s)− ĝx(λ(s; x, t), s)

)∂λ
∂x

(s; x, t)ds

+

∫ t

0

(
ĝx(λ(s; x, t), s)− ĝx(λ̂(s; x, t), s)

)∂λ
∂x

(s; x, t)ds

+

∫ t

0

ĝx(λ̂(s; x, t), s)

(
∂λ

∂x
(s; x, t)− ∂λ̂

∂x
(s; x, t)

)
ds.

Noting (3.21), (3.24), (3.10), (3.25) and (3.26)

|ex(x, t)− êx(x, t)|

6 ‖d0‖C1,1[0,1]

(
2|λ(0; x, t)− λ̂(0; x, t)|+

∣∣∣∣∣∂λ∂x (0; x, t)− ∂λ̂

∂x
(0; x, t)

∣∣∣∣∣) (3.27)

+2T sup
s∈[0,T ]

‖(g − ĝ)(., s)‖C1[0,1] + 2T sup
[0,1]×[0,T ]

|ĝxx| sup
s∈[0,T ]

|λ(s)− λ̂(s)|

+T sup
[0,1]×[0,T ]

|ĝx| sup
s∈[0,T ]

∣∣∣∣∣∂λ∂x (s)− ∂λ̂

∂x
(s)

∣∣∣∣∣
6 CT‖d− d̂‖B

for all x ∈ [0, 1], t ∈ [0, T ]. Furthermore from (3.11), (3.24) and (3.27) it follows that

|et(x, t)− êt(x, t)| (3.28)

6 |b(x, t)− b̂(x, t)||ex(x, t)|+ |b̂(x, t)||ex(x, t)− êx(x, t)|+ |g(x, t)− ĝ(x, t)|
6 CT ||d− d̂||B

for all x ∈ [0, 1], t ∈ [0, T ]. Finally, observing that

e(x, t)− ê(x, t) =

∫ t

0

(et(x, s)− êt(x, s))ds (3.29)

we deduce from (3.27)–(3.29)

||F(d)−F(d̂)||B = ||e− ê||B 6 1

2
||d− d̂||B,

provided that T is sufficiently small. Thus F is a contraction mapping and has a fixed

point in B such that d =F(d). �

Remark 1 Examination of the proof of the theorem reveals that it can be applied to give

a local existence uniqueness result backwards in time. This may be useful when studying

the inverse problem.
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Remark 2 We can derive conditions on the solution so that it can be continued in time.

Suppose that the solution (u, d) exists on [0, t0) and that

inf
x∈[0,1]

d(x, t) > c1 > 0, t0

∫ 1

0

1

d(z, t)
dz 6 q < 1 for all t < t0. (3.30)

Then there exists δ = δ(c1, q) > 0 such that the solution can be continued to [0, t0 + δ).

Proof We only sketch the argument leaving the details to the reader. By (3.30) and

the formula (3.6) for u we can derive bounds analogous to (3.9), (3.10) and (3.16) with

constants depending on c1, q and t0. Combining these estimates with the representation

d(x, t) = d0(λ(0; x, t)) +

∫ t

0

g(λ(s; x, t), s)ds

(g as in (3.13)) we are then able to prove that ‖d(., t)‖C1,1[0,1] 6 C uniformly in t < t0.

In view of Arzela’s theorem there exists a sequence (tj)j∈N, tj ↗ t0 and d̄ ∈ C1,1[0, 1]

such that d(., tj) → d̄ in C1[0, 1] as j → ∞. Clearly, d̄(x) > c1 for all x ∈ [0, 1] and

t0
∫ 1

0
1
d̄(z)
dz 6 q, so that we can use the arguments of Theorem 1 to solve (2.8)–(2.11) for

t > t0 with initial data d̄. q

Remark 3 We note that the condition t
∫ 1

0
1

d(x,t)
dt being less than 1 is equivalent to a

bounded slope for ux at x = 1. The condition ux(1, t) = ∞ is associated with the flattening

of the sheet against the vertical mould wall and hence with contact of the sheet on the

wall x = 1. In order to continue with the physical solution we would need to impose a

contact condition for the sheet at x = 1. We discretize a version of this in Section 4.2.

Remark 4 As the sheet stretches it thins globally and a simple condition on the initial

thickness (satisfied by a uniform initial sheet) can be given which guarantees pointwise

thinning for all time. If we assume that d′0(x) > 0 for all x ∈ [0, 1] we obtain

dt(x, t) 6 0, ∀ (x, t) ∈ [0, 1]× [0, T ].

Proof We use the same proof as for Theorem 1 replacing the set B by

B̃ := {d ∈ B, dt(x, t) 6 0 ∀ (x, t) ∈ [0, 1]× [0, T ]}.
We only have to verify that F(B̃) ⊂ B̃. Let d ∈ B̃, since dt 6 0 the formulae (3.8) yield

ux > 0, ut 6 0, utx > 0 (3.31)

and therefore in view of (3.13) and (3.8)

b(x, t) > 0, g(x, t) 6 0, gx(x, t) > 0. (3.32)

Since ∂λ
∂x
> 0 using (3.19) we conclude ex(x, t) > 0 for all (x, t) ∈ [0, 1]× [0, T ] and hence

et(x, t) = g(x, t)− b(x, t)ex(x, t) 6 0,

so that again e =F(d) ∈ B̃. q
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Remark 5 We define below a Tmax which we expect to be the time at which the solution

fails to exist and derive lower and upper bounds for it. Let d0(x) = 1 for x ∈ [0, 1] and

define

Tmax := sup
{
t | inf

x∈[0,1]
d(x, t) > 0, t

∫ 1

0

1

d(z, t)
dz < 1

}
.

Then Tmax ∈ ( 1√
3
, 1).

Proof Let us first show that Tmax >
1√
3
. To this end define

t̄ := sup
{
t > 0 | d, u ∈ C1([0, 1]× [0, t]) solve (2.8)− (2.11) and inf

x∈[0,1]
d(x, t) >

2

3

}
.

Clearly, t̄ > 0, and assume that t̄ < 1√
3
. Since t̄

∫ 1

0
1

d(z,t)
dz 6 1√

3

3
2
< 1 for all t < t̄, Remark

2 implies that the solution (d, u) exists beyond t̄, so that we must have infx∈[0,1] d(x, t̄) = 2
3
.

Using (3.14) and (3.13) and observing that d0(x) = 1, x ∈ [0, 1] we may write for t < t̄

d(x, t) = 1 +

∫ t

0

g(λ(s; x, t), s)ds = 1 +

∫ 1

0

s
ut(λ(s; x, t), s)√

1 + u2
x(λ(s; x, t), s)

ds.

Since ut 6 0, utx > 0 by Remark 4, we further conclude

d(x, t) > 1 +

∫ t

0

sut(λ(s; x, t), s)ds > 1 + t

∫ t

0

ut(λ(s; x, t), s)ds

> 1 + t

∫ t

0

ut(0, s)ds = 1 + tu(0, t) = 1− t
∫ 1

0

tα(z, t)√
1− t2α2(z, t)

dz

by (3.6) and since u(x, 0) = 0, x ∈ [0, 1]. Since infx∈[0,1] d(x, t) >
2
3

for t < t̄ we obtain

α(z, t) =

∫ z

0

1

d(s, t)
ds <

3

2
z, t < t̄,

and therefore

d(x, t) > 1− t
∫ 1

0

3
2
tz√

1− t2( 3
2
z)2

dz = 1− 2

3

(
1−

√
1− t2(

3

2
)2
)

=
1

3
+

2

3

√
1− t2(

3

2
)2.

If we let t↗ t̄ and recall that infx∈[0,1] d(x, t̄) = 2
3

we obtain

2

3
>

1

3
+

2

3

√
1− t̄2(

3

2
)2 >

1

3
+

2

3

√
1− 1

3
(
3

2
)2 =

2

3
,

which is a contradiction. This proves that t̄ > 1√
3

and using Remark 2 again, the solution

(d, u) can be extended to some interval [0, 1√
3

+ δ). As a result Tmax >
1√
3
.

Finally, observing that d0(x) = 1, x ∈ [0, 1] and that dt 6 0 by Remark 4, we infer

t
∫ 1

0
1

d(z,t)
dz > t so that Tmax 6 1. q

4 Numerical discretization of the graph formulation

In this section we present discretizations of the models derived in Section 1 and 2.
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4.1 The one-dimensional mould-free graph formulation

We begin with a discretization of the one-dimensional mould-free model (2.8)–(2.11). Let

xj = jh, j = 0, . . . , J be a uniform grid with mesh size h = 1/J and tn = n∆t, where ∆t > 0

is the time step. We denote by (dnj , u
n
j ) the approximations to (d(xj, tn), u(xj, tn)). Suppose

(dnj , u
n
j ) is given, then un+1

j , j = 0, . . . , J is found with the help of standard semi-implicit

finite differences

un+1
j+1 − un+1

j

hqn+1
j+1

− un+1
j − un+1

j−1

hqn+1
j

=
hP (tn+1)

dnj
∀ j ∈ [0, J − 1] (4.1)

un+1
−1 = un+1

1 , un+1
J = 0 (4.2)

where

qnj =

√
1 +

(unj − unj−1

h

)2 ∀ j ∈ [0, J].

We solve (4.1)–(4.2) at each time step by an iterative procedure; we take an initial guess

for qnj and then we use successive over relaxation to solve (4.1) as a linear system with

qnj evaluated using the values of unj from the previous iteration. We then use a standard

upwinding explicit finite difference scheme to approximate (2.10) resulting in the following,

dn+1
j − dnj

∆t
+ [vnj ]+

dnj − dnj−1

h
+ [vnj ]−

dnj+1 − dnj
h

= fnj j ∈ [0, J] (4.3)

where [a]+ = max(a, 0), [a]− = min(a, 0)

vnj = − (unj+1 − unj−1)(un+1
j − unj )

2h (q̂nj )
2 ∆t

, fnj =
(un+1
j − unj )P (tn)

q̂nj ∆t
,

while

q̂nj =

√
1 +

(unj+1 − unj−1

2h

)2 ∀ j ∈ [0, J − 1].

Note that vn0 = vnJ = 0, fnJ = 0 by (4.2). For the initial data (2.11) we set

u0
j = 0, d0

j = d0(xj), ∀ j ∈ [0, J]. (4.4)

For stability of the scheme (4.3) we impose the usual stability condition for a first order

equation,

∆t

h
max
j∈[0,J]

|vnj | 6 1. (4.5)

If the spatial differences in (4.3) are evaluated at the level n+ 1 then the scheme would be

unconditionally stable. The resulting linear equations would be easily solvable using the

specific tridiagonal structure. In all the computations shown in § 6 we ensure that (4.5) is

satisfied.

4.2 The one-dimensional graph formulation of the contact problem

In this section we numerically solve (2.19) in one space dimension for P (t) = t, d0(x) =

1, x ∈ [0, 1] and an obstacle ψ which is given as a negative constant. Clearly, the solution of

this problem will initially coincide with the solution to the mould-free problem. Numerical
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calculations show that if we choose ψ = −1, then the sheet hits the obstacle at some

time t1 before the slope at the right endpoint becomes infinite (which occurs say at time

t2 > t1). At time t = t2 the solution looses the property of being a graph and in order

to follow the evolution for t > t1 in a graph setting we rotate our coordinate system as

indicated in Figure 3, writing

(ξ, η) =
1√
2

(x+ y + 1,−x+ y + 1).

Note that in Figure 3 the dotted lines denote the horizontal and vertical walls of a

rectangular mould.

0

-1

1
x

ξ

η

u(·, t)
obstacle

Figure 3. Change of variables

Since x 7→ u(x, t1) is strictly increasing and −1 6 u(x, t1) 6 0 for all x ∈ [0, 1], for every

ξ ∈ [0,
√

2] there exists a unique x = x(ξ) ∈ [0, 1] with ξ = 1√
2
(x + u(x, t1) + 1). Letting

d̃1(ξ) := d(x(ξ), t1), ξ ∈ Ω̃ = [0,
√

2] we set up the following transformed problem for

t > t1: ∫
Ω̃

ũξ√
1 + ũ2

ξ

(η̃ξ − ũξ) +

∫
Ω̃

t

d̃
(η̃ − ũ) > 0 ∀ η̃ ∈ K̃, t > t1 (4.6)

ũξ(0, t) = −1, ũ(
√

2, t) = 0 ∀ t > t1 (4.7)

d̃t + ṽd̃ξ =
tũt√
1 + ũ2

ξ

∀ ξ ∈ Ω̃, t > t1 (4.8)

d̃(ξ, t1) = d̃1(ξ) ∀ ξ ∈ Ω̃ (4.9)

where

K̃ = {η̃ ∈ H1(Ω̃) | η̃(ξ) > ψ̃(ξ) ∀ ξ ∈ Ω̃, η̃(
√

2) = 0}
and

ṽ = − ũξũt

1 + ũ2
ξ

, ψ̃(ξ) =

{
−ξ 0 6 ξ 6

√
2

2

ξ −√2
√

2
2
< ξ 6

√
2.
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Next we describe our numerical method starting with the discretization of (2.19) in one

space dimension. We use the same notation as in § 4.1 as well as

unh(x) =

J∑
j=0

unj χj(x), dnh(x) =

J∑
j=0

dnj χj(x),

where χj(x) is the standard piecewise linear basis function. A numerical scheme for (2.19)

in one space dimension takes the form: given (dnh, u
n
h), solve first∫

Ω

un+1
hx (ηx − un+1

hx )√
1 + (un+1

hx )2

dx+

∫
Ω

Ih

( tn+1

dnh
(η − un+1

h )
)
dx > 0 ∀η ∈ Kh (4.10)

un+1
−1 = un+1

1 , un+1
J = 0, (4.11)

where Ih is the usual Lagrange interpolation operator and

Kh = {η ∈ Sh : η(xj) > ψ(xj), ∀ j = 0, . . . , J − 1, ηJ = 0}.
It is well known that the solution of the discrete obstacle problem (4.10), (4.11) can be

obtained in the following way; first we calculate an explicit update ūn+1
h by solving (4.4)

with un+1
j replaced by ūn+1

j . Then, un+1
h =

∑J
j=0 u

n+1
j χj with

un+1
j = max (ūn+1

j , ψj), j ∈ [0, J] (4.12)

is a solution of (4.10), (4.11). Afterwards we use (4.3) in order to calculate dn+1
h from

unh, u
n+1
h . This is done until we reach a point T̃ = Ñ∆t at which the sheet hits the obstacle

for the first time. This happens at the left endpoint of our interval, so that uÑ0 = −1. Now

we proceed just as described at the beginning of this section, transforming our problem to

new coordinates, in which the solution remains a graph. In the discrete setting we define

ξj =
1√
2

(xj + uÑj + 1), j = 0, . . . , J.

Clearly, ξ0 = 0, ξJ =
√

2 but in general these gridpoints will not be equally spaced. We

therefore introduce the points ξ̃j = jh̃, j = 0, . . . , J, h̃ =
√

2
J

and set for j ∈ [0, J]

(d̃Ñj , ũ
Ñ
j ) := α(dÑk , u

Ñ
k ) + (1− α)(dÑk+1, u

Ñ
k+1) if ξ̃j = αξk + (1− α)ξk+1, α ∈ [0, 1].

The calculation is continued in the same way as above, the only difference being that

the discretization of (2.19) in one space dimension is replaced by the corresponding

discretization of (4.6)–(4.9).

5 The parameterised contact problem

5.1 Formulation

In what follows we assume that ∂M ∈ C2. It is well-known that there exists ρ > 0 such

that the signed distance function

dM(x) :=

{ −dist(x, ∂M), x ∈ M
dist(x, ∂M), x ^M
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is in C2(Nρ), where Nρ := {x ∈ R2 | dist(x, ∂M) < ρ}. Furthermore, for every x ∈ Nρ \M
there exists a unique y ∈ ∂M such that

x = y + dM(x)νM(y), (5.1)

and ∇dM(x) = νM(y). Using this last relation we may write (1.4), (1.5) in complementarity

form as

dM(x)R = 0, dM(x) 6 0, R · ∇dM(x) > 0, x ∈ Γ . (5.2)

A fixed point formulation of the system is obtained by introducing the projection PM :

N(M) =M∪Nρ → R by

PM(x) :=

{
x, x ∈ M
y, x ∈ N(M)\M, y as in (5.1).

It follows that if for any µ > 0 and R such that x + µR ∈ N(M) a solution of the fixed

point problem

x = PM(x + µR) (5.3)

satisfies the complementarity system (5.2). This holds because PM(N(M)) =M and since

x ∈ M ⇒ x = x + µR ⇒ R = 0,

x ∈ ∂M ⇒ x + µR ∈ N(M) \M ⇒ µR · νM(x) > 0,

which implies (5.2).

Writing the curve Γ as x(p, t), p ∈ [0, 1] we observe that

R =
1

|xp|
∂

∂p

(
xp
|xp|

)
− P (t)

d(p, t)

x⊥p
|xp| , p ∈ (0, 1) (5.4)

where a⊥ = (−a2, a1) for a = (a1, a2) ∈ R2. The equation for mass conservation is given

by (1.8) while the condition that the sheet evolves in the normal direction is given by (1.9).

In the case of contact with the mould when the material reaches the mould wall further

movement is prevented and to model this we use the same approach as in Chapman

et al. [3] and assume that the material sticks to the mould on contact and does not move

thereafter.

From (1.8) we infer

dt

d
= − 1

|xp|2 xp · xpt
and differentiating (1.9) with respect to p implies

xp · xpt = −xt · xpp.
We combine these equations to yield

dt

d
=

1

|xp|2 xt · xpp, (5.5)

which gives the evolution equation for the thickness of the sheet. The problem is then to
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find {x, d} such that (5.3), (5.4), (5.5) hold together with the boundary conditions

x(0, t) = (−1, 0), x(1, t) = (1, 0), t ∈ [0, T ] (5.6)

and the initial conditions

x(p, 0) = x0(p) = (−1 + 2p, 0), d(p, 0) = d0(p), p ∈ [0, 1]. (5.7)

5.2 Discretization

Consider a discrete approximation {xnj , dnj }j=Jj=0 to {x(p, tn), d(p, tn)} where tn = n∆t. The

initial and boundary conditions (5.7) and (5.6) are approximated by

x0
j =

(
−1 +

2j

J
, 0

)
, d0

j = d0

(
j

J

)
, j ∈ [0, J] (5.8)

xn0 = (−1, 0), xnJ = (1, 0). (5.9)

We set

hnj =
1

2
|xnj+1 − xnj−1|, hnj+1/2 = |xnj+1 − xnj |

and

Rn
j =

1

hn−1
j

(
xnj+1 − xnj

hn−1
j+1/2

− xnj − xnj−1

hn−1
j−1/2

)
− Pn

dn−1
j

(
(xnj+1)⊥ − (xnj−1)⊥

2hn−1
j

)
=: αnjx

n
j + βnj x

n
j−1 + γnj x

n
j+1 + δnj (x

n
j−1)⊥ + εnj (x

n
j+1)⊥.

We wish to find a solution of :-

xnj = PM(xnj + µRn
j ) (5.10)

and then update dn−1
j by the discretization of (5.5)

dnj − dn−1
j

∆t
= dn−1

j

(xnj − xn−1
j )

∆t
· (xnj+1 − 2xnj + xnj−1)

h2
j

. (5.11)

In order to solve (5.10) we use the projected Gauss–Seidel iteration

x̃k+1
j = xkj − 1

αnj

(
αnjx

k
j + βnj x

k+1
j−1 + γnj x

k
j+1 + δnj (x

k+1
j−1)⊥ + εnj (x

k
j+1)⊥

)
xk+1
j = PM(x̃k+1

j ),
(5.12)

where we suppress the time step index and xkj represents the kth iterate. If this iteration

converges then the limit xnj satisfies the complementarity problem

xnj = PM(xnj − 1

αnj
Rn
j )

which also yields a solution of (5.10), since αnj < 0. In order to solve (5.12) we formulate

a fixed point iteration for the nonlinear equations which define PM(x̂k+1
j ) in the case of

the lower part of the mould being the graph {y = ψ(x)}. Furthermore in the calculations

we use the hypothesis that once the sheet hits the mould wall it remains attached to

the mould so if xnj ∈ ∂M we fix its position on the mould for all subsequent time steps.
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Figure 4. The sheet uh together with (uh(1, t))x plotted against t.

We note that this is a semi-implicit scheme. Since locally in space (5.5) is an ordinary

differential equation for d, we use a standard condition for the explicit Euler method

∆t 6
|xnj − xn−1

j |
∆t

|xnj+1 − 2xnj + xnj−1|
h2
j

,

to ensure dnj decreases in time. Note that this essentially says that ∆t is sufficiently small

independent of the spatial mesh but dependent on the solution of the problem. It is just

as convenient to replace dn−1
j in the right hand side of (5.11) with dnj . The numerical

discretization in Chapman et al. [3] involves a finite difference approximation of (1.7)

and (1.9). Moreover d is eliminated by integrating (1.8) with respect to time. The discrete

version of (1.7) and (1.9) becomes the equation for the components of xnj . The scheme

is again semi-implicit and the authors report that stability of the scheme is not an

issue.

6 Numerical results

In this section we display numerical approximations of solutions to the models presented

in Sections 1 and 2. Without loss of any information we take P (t) = t. In all one-

dimensional simulations we use the discretizations derived in § 4 with, unless otherwise

stated, J = 201 ⇒ h = 1/200 and ∆t = 1/800 for the graph discretizations and J =

201 and ∆t = (1/100)2/40 for the parametric discretizations. Furthermore we always

take the initial thickness to be a uniform constant for which we take a scaling such

that d0 = 1 without loss of generality. The choice of time step is guided by accuracy

rather than stability considerations. This is because the evolutionary equation is either

a first order partial differential equation or an ordinary differential equation. In our

computations the breakdown of the numerical solution was due to the loss of existence

of solutions.

We display four sets of results. The first set, Figures 4–7, are simulations obtained

using the one-dimensional discretizations of the graph formulation given in § 4.1 and 4.2.
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Figure 5. The sheet uh and its thickness dh evolving in time with no obstacle.
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Figure 6. The sheet uh and its thickness dh evolving in time with obstacle ψ(x) ≡ −1.

The second set, Figures 8 and 9, are simulations obtained using the one-dimensional

discretization of the parametric formulation given in § 5. We note that on the scales

shown comparing the graph simulations in Figures 4–7 with the corresponding parametric

simulations gives almost identical results and hence we do not include these parametric

results. The third set, Figure 10 displays a backwards in time simulation of the one-

dimensional mould-free set-up obtained by setting ∆t = −∆t in the discretization presented

in § 4.1. The last set, Figures 12 and 13, are two-dimensional simulations of the graph

formulation of the contact problem obtained using a discretization of (2.19) similar to

that described in § 4.2 for one dimension.



424 K. Deckelnick et al.

0 0.5 1
−1

−0.5

0
t=0.8

0 0.5 1
−1

−0.5

0
t=1.0

0 0.5 1
−1

−0.5

0
t=1.5

0 0.5 1
−1

−0.5

0
t=3.0

Figure 7. The sheet and its scaled thickness in the normal direction with obstacle ψ(x) ≡ −1.

6.1 One dimensional results

The left-hand plot in Figure 4, shows the evolution of the sheet uh in the mould-free set-up

with monotone increasing pressure. We see that as t increases from t = 0 to t = 0.68 (the

top three curves) the sheet begins to sink in the middle at a uniform rate, however as t

increases during the short interval from 0.68 to 0.6829 (the third and fourth curves) the

speed at which the sheet sinks in the middle increases dramatically. The right-hand plot

in Figure 4 shows the gradient of the approximate solution uh at the boundary x = 1,

plotted against t, calculated using numerical integration of the formula for ux in (3.8). We

see that the slope of the graph remains finite for 0 6 t 6 0.65, but as t approaches 0.68

it soon becomes infinite. In the computations displayed in Figure 4 we set h = 1/200 and

∆t = h2/40. We note that the value 0.68 is in accord with the bound on Tmax in Remark 5

in § 3.

In Figure 5 we see the evolution of the sheet uh and its thickness dh in a mould-free

configuration. We plot the solutions at the four values t = 0.15, 0.3, 0.45 and 0.6.

In Figure 6 we see the evolution of a sheet uh and its thickness dh plotted at times

t = 0.4, 0.6, 0.8, 1.0, 1.5 and 3.0 in a configuration with a mould defined by ψ ≡ −1.

These solutions are obtained from solving the discretization of the contact problem (2.19)

in one space dimension until the approximate solution unh(0) hits the mould ψ = −1 at

which point we solve the discretization of the change of variables problem (4.6)–(4.9)
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Figure 8. The sheet xh and its thickness dh evolving in time with obstacle ψ(x) = 0.2− 0.1x2.
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Figure 9. The sheet and its scaled thickness in the normal direction with obstacle

ψ(x) ≡ 0.2− 0.1x2.

with Ω̃ = [0,
√

2]. Where necessary the approximate solutions have been changed back to

the initial configuration. In Figure 7 we plot the sheet uh against x (bold line) together

with its scaled thickness in the normal direction. This gives a clearer idea of the actual

thickness of the sheet in the mould.
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Figure 10. The sheet and its scaled thickness evolving backwards in time.
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Figure 11. The sheet −uh, evolving in time with obstacle

ψ(x, y) = −5.1 +
√

25− (x− 0.5)2 − (y − 0.5)2.

In Figures 8 and 9 we see the evolution of the sheet and its thickness for the contact

problem with obstacle ψ(x) = −0.2 − 0.1x2, obtained using the discretization of the

parametric approach. The left-hand plot in Figure 8 displays the sheet (dashed line)

together with the obstacle (bold line) at times t = 0.3, 0.5, 1, 2, 3, 4 and 6 while the

right-hand plot displays its thickness. In Figure 9 we plot the sheet (bold line) together

with its scaled thickness in the normal direction and the obstacle (dashed line) at times

t = 0.3, 0.5, 2 and 4. Note that in Figures 8 and 9 although we solve the discretization on

the interval [−1, 1], due to the symmetry of the problem and in keeping with the graph

simulations, we only display the approximate solutions on the interval [0, 1].
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Figure 12. Cross-sectional plots of the sheet uh, evolving in time with obstacle

ψ(x, y) = −5.1 +
√

25− (x− 0.5)2 − (y − 0.5)2.

For illustrative purposes, we conclude the one-dimensional computations with Figure 10

which displays a backward in time simulation of the sheet (lefthand subplot) and its

thickness (righthand subplot) in the mould-free set-up. We take the final sheet to be an

arc of a circle with uniform thickness by setting P (t) = t, the final time to be 0.45 and

the final thickness to be 1. The solutions are plotted at times t = 0.45, 0.35, 0.25, 0.15 and

0.05. Note that since the applied pressure is zero at t = 0 the sheet is flat at this time

whereas the thickness is non-uniform.

6.2 Two dimensional results

We conclude with some two-dimensional results for the contact problem (2.19) with

Ω = (0, 1) × (0, 1). The symmetry of the set-up enables us to solve our discretization on

one quarter of the domain. The results displayed were solved on a uniform grid with

h = 1/200, ∆t = h2/40 and ψ = −5.1 +
√

25− (x− 0.5)2 − (y − 0.5)2. Figure 11 displays

the sheet at times t = 3.125 and t = 10, in this figure instead of plotting the sheet uh we

plot −uh for the simple reason that this gives a better view of the sheet’s contact with the

mould.

For the two-dimensional results we display four cross-sectional plots, at y = 0.5,

y = 0.625, y = 0.75 and y = 0.875, of the evolution of the sheet and its thickness. In

Figure 12 we display the obstacle (a bold line) together with the sheet uh(x, t) at times



428 K. Deckelnick et al.

0.5 0.75 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y=0.5

0.5 0.75 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y=0.625

0.5 0.75 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y=0.75

0.5 0.75 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y=0.875

Figure 13. Cross-sectional plots of the sheet’s thickness dh, evolving in time with obstacle

ψ(x, y) = −5.1 +
√

25− (x− 0.5)2 − (y − 0.5)2.

t = 0.625, t = 3.125 and t = 10 (dashed lines) while Figure 13 displays the sheets thickness

dh(x, t) at the aforementioned times. In these calculations the sheet does not make contact

with the vertical mould wall.

7 Conclusion

We studied a mathematical model for the moulding of a superplastic sheet (due to

Chapman et al. [3]) based on the assumptions that

(1) the deformation is quasi-static and the sheet is always in a critical plastic state

leading to (1.1),

(2) the material in the sheet flows in a normal direction,

(3) upon contact with the rigid surface of the mould the sheet ceases to flow.

Using the local conservation of mass an evolution equation for the thickness of the sheet

was derived. The mathematical problem was then formulated in both a parametric and a

graph representation of the sheet as a coupled system of an elliptic equation for the surface

and a first order evolution equation for the thickness of the sheet. This mathematical

model is a significant simplification of the full system considered, for example, in [1, 2, 4],

and should be more amenable to mathematical analysis and understanding. Indeed for
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the graph formulation we were able to prove a local existence and uniqueness result as

long as the sheet was not in contact with the mould. The proof was based on a fixed

point argument using the contraction mapping principle.

In our numerical computations we employ both the parametric and graph formulations.

For the simple one-dimensional problems we considered in which the sheet remains a

graph we discovered that the numerical methods gave essentially identical results for

fine meshes. The graph formulation has the advantage of simplicity, the existence of a

mathematical analysis and is computationally less expensive since it requires just one

function to define the curve. On the other hand the parametric formulation allows the

sheet to lose its graphlike property and hence is more generally applicable. However in

the case of the contact problem one has to be careful in its implementation. It is not as

straightforward as the discretization of the obstacle problem for a graph. The projection

onto the admissable set of displacements leads to a nonconvex problem and hence a loss

of global uniqueness. Also in the evolution process we found it convenient to fix the sheet

once it was in contact with the mould.

From the mathematical point of view it would be interesting to:-

(1) develop the parametric formulation and its numerical discretization in three space

dimensions,

(2) develop an existence theory for the parametric formulation and the contact problem,

(3) study the inverse problem in which one asks what is the initial shape and thickness

of a sheet which yields a given final thickness and shape.

Furthermore since this mathematical model leads to a relatively simple computational

problem with significantly fewer material parameters and constitutive relations it would

be interesting from the point of view of industrial applications to compare the use of this

model with experiments and other computational simulations.
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