
Singular solutions of the diffusion equation of population genetics
A. J. McKane, David Waxman

Publication date
01-08-2007

Licence
This work is made available under the Copyright not evaluated licence and should only be used in accordance
with that licence. For more information on the specific terms, consult the repository record for this item.

Citation for this work (American Psychological Association 7th edition)
McKane, A. J., & Waxman, D. (2007). Singular solutions of the diffusion equation of population genetics
(Version 1). University of Sussex. https://hdl.handle.net/10779/uos.23311814.v1

Published in
Journal of Theoretical Biology

Link to external publisher version
https://doi.org/10.1016/j.jtbi.2007.04.016

Copyright and reuse:
This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy
and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the
version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For
more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk.
Discover more of the University’s research at https://sussex.figshare.com/

https://rightsstatements.org/page/CNE/1.0/?language=en
https://doi.org/10.1016/j.jtbi.2007.04.016
mailto:sro@sussex.ac.uk
https://sussex.figshare.com/


Accepted for publication JTB

Singular solutions of the di¤usion equation
of population genetics

A. J. McKane1 and D. Waxman2

1Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester
M13 9PL, UK.
Email: alan.mckane@manchester.ac.uk
2Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Falmer,

Brighton BN1 9QG, Sussex, UK.
Email: d.waxman@sussex.ac.uk

Abstract

The forward di¤usion equation for gene frequency dynamics is solved subject to the condition
that the total probability is conserved at all times. This can lead to solutions developing singular
spikes (Dirac delta functions) at the gene frequencies 0 and 1. When such spikes appear in solutions
they signal gene loss or gene �xation, with the �weight�associated with the spikes corresponding
to the probability of loss or �xation. The forward di¤usion equation is thus solved for all gene
frequencies, namely the absorbing frequencies of 0 and 1 along with the continuous range of gene
frequencies on the interval (0; 1) that excludes the frequencies 0 and 1. Previously, the probabilities
of the absorbing frequencies 0 and 1 were found by appeal to the backward di¤usion equation, while
those in the continuous range (0; 1) were found from the forward di¤usion equation. Our uni�ed
approach does not require two separate equations for a complete dynamical treatment of all gene
frequencies within a di¤usion approximation framework. For cases involving mutation, migration
and selection, it is shown that a property of the deterministic part of gene frequency dynamics
determines when �xation and loss can occur. It is also shown how solution of the forward equation,
at long times, leads to the standard result for the �xation probability.
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1 Introduction

In this work we focus on genetic drift � the process that occurs when there is random variation
in the number of o¤spring contributed by each adult member of a �nite population. At one locus
in the population, the number of copies of a particular gene randomly varies from generation to
generation, and undergoes a kind of random walk. The outcome is that the genetic composition of
the population �uctuates over time.
Genetic drift is an evolutionary force that has the tendency to decrease the variation in a pop-

ulation and can in�uence the e¤ectiveness of mutation and selection. One of the key mathematical
approaches to dealing with genetic drift is the di¤usion approximation. This was introduced into
population genetics by Fisher (1922), Wright (1945), and substantially extended and developed by
Kimura (1955a). Under this approximation, the proportion of individuals of a particular genetic
type is treated as a continuous random variable whose distribution obeys a di¤usion equation. This
approach has been used to derive results that lie at the very heart of population genetics (Crow
and Kimura, 1970).
Here, we aim to readdress issues that were apparently dealt with more than �fty years ago

(Kimura, 1955b) and have become part of the textbook knowledge of the subject. Our aim is
to provide a conceptually simple and consistent approach to solving the di¤usion equation. This
involves reexamining the mathematical conditions required of the solutions, as well as their nature
and interpretation.

2 Basics

Consider a single genetic locus in a population of N diploid individuals. Let us focus on one allele,
denoted A, at a given locus. The ratio of the total number of copies of allele A in the population,
to the total number of all alleles at the locus (2N), is termed the gene frequency and this can only
take the discrete values 0=(2N), 1=(2N), ..., 2N=(2N). The di¤usion approximation approximates
the gene frequency as a continuous variable, x, that lies in the range 0 to 1. It is a commonly held
view that the forward di¤usion approximation has doubtful validity when x lies within a distance
1=(2N) of the values x = 0 and x = 1 (see e.g., Chapter 10 of Gale, 1990). This is exempli�ed by
the exact solution of the di¤usion equation obtained by Kimura, for the case of a randomly mating
population, where the only evolutionary force is genetic drift (Kimura, 1955b). The solution is
taken to hold only on the interior of the possible range of x but not at the boundary values of x,
i.e. not at x = 0 and x = 1. Thus while such a solution is informative about some quantities of
interest, such as the level of heterozygosity in the population (Crow and Kimura, 1970), it su¤ers
from a lack of completeness, in the sense that it does not directly say anything about the two gene
frequencies of greatest interest. These are the frequencies corresponding to where either all copies of
allele A are lost from the population (the frequency x = 0) or where all individuals carry two copies
of allele A � corresponding to �xation (the frequency x = 1). More generally, solutions of the
forward di¤usion equation su¤er from a related problem, namely, in the absence of mutations that
take the population away from at least one of the frequencies x = 0 or x = 1 (or both), there is a loss
of probability from the region where the forward di¤usion approximation is taken to apply � i.e.,
all x excluding the boundary values x = 0 and x = 1. However, the same di¤usion approximation,
when applied in the presence of two-way mutation (i.e., mutations that go both from and to allele
A) yields a distribution that applies for the full range of x, and preserves probability for all times.
The possible phenomena that can occur at the boundaries x = 0 and x = 1 have been been
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previously investigated and classi�ed (Feller, 1952), and from these, mathematical boundary con-
ditions on solutions to the di¤usion equation have been inferred (Feller, 1954; Voronka and Keller,
1975; Maruyama, 1977; Ewens, 1979; Gardiner, 2004). Here we take an alternative approach. Our
fundamental guiding principle is that the probability of the gene frequency lying in the full range
0 � x � 1 (i.e., all x including the boundary frequencies x = 0 and x = 1) should, at all times, be
unity. We consistently take this viewpoint for all problems, irrespective of the pattern of mutation,
selection and migration. For situations where there is no mutation, the only way for the total
probability to be conserved is for probability to accumulate at the boundaries. As a consequence,
the approach we adopt can lead to solutions to the forward di¤usion problem that do not have
the property of being smooth and well behaved. Rather, the approach can lead to solutions that
possess singularities � sharp spikes (Dirac delta functions) that, when present, lie at one or other
or both boundaries. The probability associated with these singularities, combined with the proba-
bility associated with the interior range of x, lead to a net probability of unity. As we show, it is
completely natural to associate the probabilities associated with the spikes at the boundaries, when
they exist in the solution, with the probabilities of gene loss (x = 0) and gene �xation (x = 1).
Given the correctness of this association, the approach we are proposing yields a consistent and
uni�ed description of all gene frequencies, i.e., the absorbing frequencies of 0 and 1 along with the
continuous range of gene frequencies on the interval (0; 1) that excludes the frequencies 0 and 1.
This is in contrast to all previous approaches, where the probabilities of the absorbing frequencies
0 and 1 were found by appeal to the backward di¤usion equation, while those in the continuous
range (0; 1) were found from solving the forward di¤usion equation.

3 Conservation of probability

Let f(x; t) denote the probability density of the gene frequency at time t. The interpretation of
f(x; t) is that in a very large number of replicates of a population, that all have the same initial
distribution, the fraction of such replicates where the gene frequency lies in the range a to b, at
time t, is

R b
a
f(x; t)dx.

Generally, we can write the forward di¤usion equation as

@f(x; t)

@t
+
@j(x; t)

@x
= 0 (1)

where the quantity j(x; t) is the probability current density � a quantity that characterises the �ow
of probability density. The form that j(x; t) takes for a diploid population of N randomly mating
individuals is

j(x; t) =M(x)f(x; t)� 1

4N

@

@x
[x(1� x)f(x; t)] (2)

where M(x) represents the deterministic part of gene frequency dynamics and is typically taken
as a polynomial in x whose coe¢ cients depend on mutation rates, migration rates and selection
coe¢ cients; Crow and Kimura (1970) use the notation M�x for this quantity.
The principle that probability is conserved means that for all times, the total probability does

not change, thus
d

dt

Z 1

0

f(x; t)dx = 0: (3)
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Integrating Eq. (1) over all x, and using conservation of probability, Eq. (3), yields j(1; t)�j(0; t) =
0. Given the absence of any dynamical mechanism that connects the probability current densities
at x = 0 and x = 1, we take the boundary conditions to be the zero current conditions:

j(0; t) = 0

(4)

j(1; t) = 0:

These corresponds to there being zero probability current density precisely at the boundaries, x = 0
and x = 1, and so no probability can �ow outside the region x = 0 to x = 1 and hence be lost. Such
boundary conditions were only adopted for problems with two way mutation by Crow and Kimura
(1956).
We shall solve the di¤usion equation, Eq. (1), subject to the conditions of Eq. (4). Once

such conditions are imposed, the distribution f(x; t) remains normalised for all times, in the sense
that if we start at time t = 0 with a probability distribution obeying

R 1
0
f(x; 0)dx = 1, then it

automatically follows that
R 1
0
f(x; t)dx = 1 holds for all times. There is thus no loss of probability

in this approach.

4 Pure drift

We �rst analyse the apparently simplest case, where the only evolutionary force acting on a ran-
domly mating diploid population is genetic drift. For this case, the probability current density is
given by Eq. (2) with M(x) = 0:

j(x; t) = � 1

4N

@

@x
[x(1� x)f(x; t)]: (5)

and the forward di¤usion equation reads

@f(x; t)

@t
=

1

4N

@2

@x2
[x(1� x)f(x; t)] (6)

(Crow and Kimura, 1970). We solve this equation, subject to the condition that all replicate
populations initially have the gene frequency of p, so f(x; 0) corresponds to an initial distribution
where only the single frequency p is present.
Solving Eq. (6), subject to Eq. (4) with the form for j(x; t) given by Eq. (5) then leads,

inescapably, to the solution containing spikes (Dirac delta functions) at the boundaries, after some
time. The simplest way to see this is to look at a stationary solution of Eq. (6), i.e., a solution of
the form f(x; t) = f(x). For such a solution, we integrate Eq. (5) from x = 0 to an arbitrary x.
Invoking Eq. (4) leads to x(1� x)f(x) = A (a constant).
For the set of well-behaved (i.e., non-singular functions), we note that if x(1 � x)f(x) = A,

then the solution for the distribution f(x) is the obvious one: f(x) = A=[x(1 � x)]. However, in
the theory of probability, it is allowable for distributions to contain functions that diverge (i.e., are
singular) as long as they are non-negative and integrable. The singular function that is of relevance
here is the Dirac delta function �(x � �). This is a zero-width, unit area spike, that is located at
x = � and has in�nite height (and hence is singular). Such functions naturally occur. For example,
if, on repeated measurement of a continuous random variable, the single value p is always obtained,
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then the probability density describing this is simply �(x � p), with all of the �mass�or �weight�
of the distribution located solely at x = p.
Returning to the equation for the stationary solution for the distribution f(x), namely x(1 �

x)f(x) = A, we proceed to solve it by dividing through by x(1 � x). This yields f(x) = A=[x(1 �
x)] +B�(x) + C�(1� x) where B and C are constants that multiply Dirac delta functions located
at x = 0 and x = 1. The Dirac delta functions, with undetermined constants multiplying them,
are present since x�(x) and (1 � x)�(1 � x) are identically zero (Dirac 1958) and so must, in
all generality, be included in the solution for the probability density f(x). The condition that
f(x) = A=[x(1�x)]+B�(x)+C�(1�x) is normalisable (has a �nite integral) requires A = 0 (sinceR 1
0
1=[x(1�x)]dx =1) and hence a stationary solution for f(x) consists solely of singular solutions,

namely the Dirac delta functions at x = 0 and x = 1. Imposing the condition of normalisation,R 1
0
f(x)dx = 1, on this solution yields B+C = 1. If, furthermore, we impose the condition that the

mean gene frequency, at any time, coincides with its initial value, p, since drift has no systematic
direction to it (as theory can verify; see Crow and Kimura, 1970), then we arrive at B = 1 � p
and C = p and the stationary solution for the distribution is f(x) = (1� p)�(x) + p�(1� x). The
coe¢ cients of the delta functions are precisely the probabilities of loss or �xation of the allele A.
The presence of delta functions in the solution of the forward di¤usion equation is essential, in
this case, if total probability is to add to unity. This example shows it is also entirely natural to
associate the coe¢ cients of �(x) and �(1� x) with the probability that allele A is lost or �xed.
We note that a direct numerical approach to solving the di¤usion equation, Eq. (6), will

inevitably run into problems, when Eq. (4) is imposed, since no standard numerical procedure
can handle singularities of the delta function type, that arise in the solution.

5 Solution of the pure drift equation

Given the above arguments, the di¤usion equation, Eq. (6), has solutions that
(i) consist, on the interior of the range of x, i.e., for 0 < x < 1, of a function of x that is

integrable
(ii) generally contains singularities (Dirac delta functions) at the boundaries of the range of x,

namely x = 0 and x = 1
(iii) at time t = 0, has the form �(x� p), corresponding to an initial distribution with a single

gene frequency of p being present.
The solution thus has the form (see Appendix A for mathematical details)

f(x; t) = �0(t)�(x) + �1(t)�(1� x) + fK(x; t): (7)

The quantities �0(t) and �1(t) are the probabilities that the gene frequency has achieved the values
0 and 1, respectively, by time t. They vanish at time t = 0; they also depend on p and N , however we
do not explicitly exhibit this dependence. The function fK(x; t) has the property fK(x; 0) = �(x�p)
and hence incorporates the condition that the only gene frequency that is initially present is p.
In Appendix A we determine the exact solution of Eq. (6) and show that the function fK(x; t)

can be directly identi�ed with Kimura�s solution of the problem of pure drift (Kimura, 1955b) and
for completeness, this function is reproduced in Eq. (A7) of Appendix A. The function fK(x; t)
corresponds to the solution of the di¤usion equation Eq. (6) that is normalisable and does not
posses any delta function singularities at x = 0 and x = 1.
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The functions �0(t) and �1(t) are shown in Appendix A to be given by

�0(t) =
1

4N

R t
0
fK(0; s)ds

�1(t) =
1

4N

R t
0
fK(1; s)ds:

(8)

We note that usually (4N)�1
R t
0
fK(1; s)ds is identi�ed with the �xation probability from consid-

erations of the �ow of probability density into x = 1 (Crow and Kimura, 1970). Here, such an
identi�cation is an automatic result of a calculational scheme where probability conservation is
enforced, and in this scheme �0(t) and �1(t) are the coe¢ cients of Dirac delta functions at the
boundaries, in the full solution of the problem.

Figure 1

The functions �0(t)and �1(t), are plotted against time. These functions are iden-
ti�ed as the probability of loss and �xation, by time t, as follows from the di¤usion
analysis presented in this work. For the Figure we used an initial gene frequency of
p = 0:7 and a population size of N = 10. The exact probabilities of the gene frequency
taking the value 0 and 1, as follows from an exact Markov chain treatment of a Wright
Fisher model (Fisher 1930; Wright 1931) are also given in the Figure. There is remark-
ably good agreement between the di¤usion approximation for the probability of the gene
frequency lying at the boundaries and the exact results for gene loss and gene �xation.
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In Figure 1, the probabilities �0(t) and �1(t) are plotted against time. In the same Figure,
plots are given of the exact probabilities of the gene frequency taking the value 0 and 1, as follows
from an exact Markov chain treatment of a Wright Fisher model (Fisher, 1930; Wright, 1931). For
even very small population sizes, such as the value N = 10, that was used in the Figure, there are
very small di¤erences between the di¤usion results for the weights of the delta functions, �0(t) and
�1(t), and the exact results for the probabilities of loss and �xation. For larger population sizes
there is an even smaller discrepancy between exact results and those from di¤usion analysis, with
very close agreement for N = 100.

6 General case

For a randomly mating population, that is subject to mutation, selection and migration, the function
M(x) (that occurs in the equation for the probability current density, Eq. (2)) is generally non-zero
and the forward di¤usion equation for this case takes the form

@f(x; t)

@t
= � @

@x
[M(x)f(x; t)] +

1

4N

@2

@x2
[x(1� x)f(x; t)]: (9)

We look for a solution of this equation, subject to the boundary conditions of Eq. (4), with only the
single gene frequency of p present at time t = 0. The form of the solution is taken to be that given
in Eq. (7) with the functions �0(t), �1(t) and fK(x; t) to be determined. In Appendix B we show
that for Eq. (7) to be a solution requires the following. (1) That fK(x; t) obeys Eq. (9). (2) That
fK(x; t) corresponds to the single gene frequency p being initially present (i.e., fK(x; 0) = �(x�p)).
(3) That fK(x; t) is subject to the conditions implicitly adopted by earlier workers, namely, that
the function is normalisable and does not contain any delta function singularities at the boundaries.
(4) For all t we have

M(0)�0(t) = 0

(10)

M(1)�1(t) = 0:

The two conditions in Eq. (10) yield four separate cases that govern the presence of Dirac delta func-
tions in the solution for f(x; t). With jK(x; t) = M(x)fK(x; t) � (4N)

�1
@ [x(1� x)fK(x; t)] =@x

we have
(i) M(0) 6= 0, M(1) 6= 0, leading to �0(t) = 0 = jK(0; t) and �1(t) = 0 = jK(1; t).
(ii) M(0) = 0, M(1) 6= 0, leading to �1(t) = 0 = jK(1; t) and �0(t) obeying d�0(t)=dt =

�jK(0; t).
(iii) M(0) 6= 0, M(1) = 0, leading to �0(t) = 0 = jK(0; t) and �1(t) obeying d�1(t)=dt =

jK(1; t).
(iv) M(0) = 0, M(1) = 0, leading to �0(t) and �1(t) obeying d�0(t)=dt = �jK(0; t) and

d�1(t)=dt = jK(1; t).
Case (i) corresponds to the deterministic part of gene frequency dynamics (i.e., M(x)) being

able to move gene frequencies away from the boundary values x = 0 and x = 1, so neither loss nor
�xation occurs. The outcome is that the distribution f(x; t) does not develop Dirac delta functions
at the boundaries. In cases (ii) and (iii) the vanishing of M(x) at one boundary, as a result of
vanishing deterministic dynamics there, allows gene frequencies to reach the boundary and for
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Dirac delta functions to become established, over time, at that boundary. Case (iv), which includes
the pure drift problem analysed above, as a special case, corresponds to a vanishing of deterministic
dynamics at both boundaries. The result is that gene frequencies can reach both boundaries and
both gene loss and �xation occur over time, as signalled by two delta functions that develop in
f(x; t) at the boundaries.

7 Continuity of solutions

The conventional approach to solving the forward di¤usion equation imposes di¤erent boundary
conditions in di¤erent cases, depending on the nature of mutation (see e.g., Crow and Kimura,
1956). In the present work we have consistently imposed the same type of boundary conditions,
Eq. (4), and hence do not have di¤erent cases. We have not, however, discussed how the approach
presented here allows a solution to transcend what are, in the conventional approach, di¤erent cases.
To consider this aspect, we have investigated a time dependent solution of the di¤usion equation
that is normalised for all times and which does not, for the pattern of mutation adopted, ever
develop delta functions at boundary values of x. The issue is how such a solution behaves when
the character of mutation is altered, such that e.g., the loss of allele A can occur with non-zero
probability. To this end, consider the situation where the only evolutionary processes occurring are
mutation and drift. Mutations are taken go in both directions, i.e., both from and to the allele A,
with probabilities of u and v. In this case, the function M(x) takes the form M(x) = v(1�x)�ux
(see e.g., Ewens, 1979). If, at time t = 0 only the gene frequency p occurs, the form of the
solution which conserves probability at all times (because probability current density vanishes at
both boundaries) is known (see Eqs. (8.5.8) and (8.5.9) of Crow and Kimura 1970). Given such a
solution, it is possible to change the pattern of mutation, by allowing (at �xed time) �rst u and then
v to tend to zero. In doing so, the solution develops into one that has delta function singularities
at the boundaries. Exact calculations (not given here) directly show that such a solution coincides
with the singular solution of the pure drift case, given above. Thus, for example, the original
solution of Crow and Kimura, which has no singularity at x = 0, becomes a solution with a delta
function, at x = 0, whose weight coincides precisely with the form for �0(t) that was found in the
the pure drift case.
We note that the analogue of the delta function that occurs, at e.g. x = 0, in the resulting

solution, when the scaled mutation rate, V = 4Nv, is small but non-zero, is the function

�(x) = V xV�1: (11)

This is a normalised probability density over 0 � x � 1 i.e.,
R 1
0
�(x)dx = 1. Its shape is very

dependent on the value of V . If V < 1 then �(x) decreases as x is increased from x = 0. For
V � 1 this is a relatively slow decrease, but when V � 1 the function has a rapid decrease � see
Figure 2. Furthermore, for V � 1 the mean and variance of �(x) are both of order V . It is only as
V ! 0 that the function �(x) formally approaches a Dirac delta function, �(x) (see Eq. (1.2.15) in
Barton 1989) and for small, but �nite V , the function �(x) represents the distribution of replicate
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populations where allele A is �nearly lost.�

Figure 2

The function �(x), of Eq. (11), is the precursor of the delta function, �(x), that
becomes present in time dependent solutions of the di¤usion equation when the scaled
mutation rate V is taken to zero (see main text for details). Two examples of the
function �(x) are plotted against x.
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We infer from this example that there are not multiple types of boundary condition, depending
on the nature of mutation, or more generally, depending on the form of the function associated with
the deterministic aspect of frequency dynamics, M(x). Rather, there is a single type of boundary
condition, Eq. (4), and on modi�cation ofM(x), time dependent solutions of the di¤usion equation
can be freely converted between solutions of apparently di¤erent types, i.e., converted between
solutions that yield �xation and/or loss and those that do not exhibit this property. Thus the
boundary condition of Eq. (4) covers all such cases.
We note that previously, the probabilities of the exact discrete terminal class frequencies (x = 0

and x = 1) have been associated with the probability, calculated from di¤usion analysis, of the
frequency falling into the ranges 0 < x < 1=(2N) and 1 � 1=(2N) < x < 1 (Gale, 1990; pp.
281-284). We note however that in the absence of mutation, the exact solution of the di¤usion
equation leads to Dirac delta functions at x = 0 and x = 1. This corresponds to the range of
the terminal classes being in�nitesimal (the width of the delta functions) under the continuous
frequency di¤usion approximation. We also note that when mutation is �nite, the function that
becomes the delta function, at x = 0, is given in Eq. (11) with V = 4Nv. Since this function has
a mean and variance of order V , it follows that when

p
V � 1=(2N) we again �nd that not all of

the interval 0 < x < 1=(2N), of the continuous x di¤usion problem, contributes signi�cantly to the
probability of being in the terminal class; only a fraction

p
V =(2N) contributes.

Generally, we note that under a continuous frequency di¤usion approximation, there are no dis-
crete frequency classes and we infer that detailed questions concerning particular discrete frequency
classes may not be reliably answerable under such an approximation. In particular, precisely deter-
mining the range of x corresponding to a given discrete frequency class along with the associated
probability, may not be unambiguously determined. Fortunately, many questions for which dif-
fusion analysis is used are associated with averages of smooth functions of x, and these are well
captured by the approximation.

8 Discussion

In this work we have considered the di¤usion approximation of population genetics to gene frequency
dynamics. We note that doubt has persisted about validity of the solutions of the forward di¤usion
equation when gene frequencies are a distance � 1=(2N) from the boundaries x = 0 and x = 1 (see
e.g., Chapter 10 of Gale, 1990). An analysis of the phenomena at the boundaries x = 0 and x = 1
was performed originally by Feller (1952). However solutions of the forward di¤usion equation
containing singularities i.e., Dirac delta functions (Dirac, 1958; Lighthill, 1958) at the boundaries
were not considered then or in the ensuing literature on the subject. In the present work we
have analysed the di¤usion equation under a single type of boundary conditions, Eq. (4), that
follows from the requirement that probability be conserved at all times, and consequently applies,
independent of whether mutation is present or absent from the equation. Consistently taking this
approach can lead to singularities (Dirac delta functions) in the solution at the boundaries, that
may be identi�ed as the distributions characterising loss or �xation of allele A. The weights of the
Dirac delta functions correspond to remarkably accurate approximations for the probabilities of loss
and �xation (see Figure 1). Thus the di¤usion approach contains essentially complete information
about the full range of gene frequencies in a more consistent manner than has been previously
recognised.
The present work has implicitly emphasised that the forward di¤usion equation provides a

complete dynamical description of all gene frequencies. In the literature there is often recourse
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to the backward di¤usion equation to derive some important results. Of these, one of the most
important is probably the long time �xation probability, which is written �1(1), in the notation
of the present work. It is interesting and instructive to see how such a result is obtained from
the solution to the forward di¤usion equation. To derive �1(1) we assume that the solution
to the forward di¤usion equation has the form f(x; t) =

P1
n=0 �n(x) n(p)e

��nt i.e., a spectral
sum, where �n(x) and  n(p) are, respectively, eigenfunctions of the forward and backward di¤usion
operators that are associated with eigenvalue �n (see Appendix C for further details). At long times,
the only part of the solution that persists is associated with vanishing eigenvalues, �n = 0, hence
f(x;1) =

P0
n �n(x) n(p), where the prime on the sum indicates that it only includes eigenfunctions

associated with vanishing eigenvalues. The eigenfunctions associated with zero eigenvalue can be
straightforwardly found (see Appendix C) with the result that the �n(x) are singular (contain
Dirac delta functions), while the  n(p) are not. The �n(x) are necessarily singular, since a solution
of the form f(x; t) =

P1
n=0 �n(x) n(p)e

��nt has to be compatible with the singular solutions of
Eq. (9). The coe¢ cient of �(1 � x) in f(x;1) has the interpretation as the long term �xation
probability, �1(1), and we �nd the standard result �1(1) =

R p
0
e�H(q)dq=

R 1
0
e�H(q)dq where

H(q) = 4N
R q
0
M(y)=[y(1� y)]dy.

In summary, we have presented a uni�ed and consistent approach to solving the forward di¤usion
equation. We believe this has cleared away some of the ambiguities in the literature concerning the
nature of the boundary conditions that need to be imposed on solutions of the forward di¤usion
equation. We have demonstrated that the solutions may contain singular parts, involving Dirac
delta functions, that ensure conservation of probability and which are informative about gene
�xation and loss. We have given a simple classi�cation scheme of the boundaries (in terms of the
function M(x)) that straightforwardly determines when �xation and loss can be expected to occur
and shown how standard results, that previously have been derived from the backward di¤usion
equation, are contained in the solution of the forward di¤usion equation.
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Appendix A
In this Appendix we give mathematical details of the solution of the di¤usion equation for

the pure drift case, Eq. (6). The basic message will be that explicit calculations lead to Dirac
delta functions developing at the boundaries x = 0 and x = 1. These delta functions ensure that
probability is conserved for all times.
To correctly capture the singular (delta function) parts of any solutions, we solve the di¤usion

equation via the technique of Fourier transformation, since the Fourier transform of a Dirac delta
function is non-singular. The Fourier transformed equation turns out to be simpler to solve than
the original equation, since it does not involve hypergeometric functions.
Let us begin by introducing the quantity � = t=(2N), which measures time in units of 2N

generations, so that the factor of 2N is absent from most parts of this Appendix. We shall solve for
the characteristic function  (k; �), which is the Fourier transform of the probability distribution
function f(x; t):  (k; �) =

R 1
0
eikxf(x; t)dx. Using Eq. (6), and the boundary condition, Eq. (4),

we �nd, on integrating twice by parts, that  (k; �) satis�es

@

@�
 (k; �) = �k

2

2

�
@2

@k2
� i @

@k

�
 (k; �): (A1)

The boundary terms, i.e., limx!0;1 x(1 � x)f(x; t), vanish because f(x; t) is normalisable for all t,
hence it cannot contain su¢ ciently strong power law divergences at the boundaries.
The characteristic function satis�es the usual conditions  (0; �) = 1 and j (k; �)j � 1 for all k and � ,

and if the initial condition is that we begin with the single frequency, x = p, then f(x; 0) = �(x�p)
and so  (k; 0) = eikp.
Assuming a separable form,  (k; �) = �(k)e��� , for the solution of Eq. (A1) yields�

d2=dk2 � id=dk � 2�=k2
�
�(k) = 0. Solutions of this equation may be written down in terms of

the Bessel functions J and Y (Abramowitz and Stegun, 1965): �(k) = Aeik=2
p
k=2Jp1+8�=2(k=2)

+Beik=2
p
k=2Yp1+8�=2(k=2) where A and B are constants. Given that �(k) is, up to factors, the k

dependent part of a characteristic function where all moments exist (since x only ranges over a �nite
interval), it must contain only integer powers of k, hence

p
1 + 8�=2 = n+ 1=2 with n = 0; 1; 2; :::

i.e., � only takes the discrete values �n = n(n+1)=2, n = 0; 1; 2; : : :. In the analogous calculation for
f(x; t), this condition comes about because of boundary conditions on a hypergeometric function.
The full solution of Eq. (A1) is the linear combination

 (k; �) =
P1

n=0 e
ik=2e��n�

p
k=2

�
AnJn+1=2(k=2) +BnYn+1=2(k=2)

�
. Since  (k; �) is a character-

istic function, it is bounded (j (k; �)j � 1), which requires Bn = 0 for n � 1. It also satis�es
 (0; �) = 1, which requires B0 = �

p
�=2. Therefore

 (k; �) = eik=2 cos

�
k

2

�
+

1X
n=0

eik=2
p
k=2AnJn+1=2(k=2)e

��n� : (A2)

We determine A0 by di¤erentiating (A2) with respect to k and then set both k and � equal to zero:
ip = @ (k; �)=@kjk=0;�=0 = i=2

+A0 d
hp

k=2J1=2(k=2)
i
=dk

���
k=0

= i=2 + A0=
p
2�. Thus A0 =

p
2�i(2p � 1)=2. The remaining

unknown An could also be obtained by using the initial condition  (k; 0) = eikp, since the solution
in Eq. (A2) can be expressed in terms of spherical Bessel functions jn(k) =

p
�= (2k)Jn+1=2(k),

which form an orthogonal set. However it is simpler to �rst transform back to x dependent functions
and then determine the An.
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We note that the probability density, f(x; t), was de�ned on the interval 0 � x � 1, and given
boundary conditions and initial data appropriate to this interval. However solving the di¤usion
equation via Fourier transformation, for the function  (k; �) and then taking the inverse Fourier
transform of  (k; �) has the e¤ect of arti�cially extending the range of x to �1 < x < 1. The
boundary conditions and initial data ensure no probability density ever starts outside 0 � x � 1,
nor can ever get outside this range. An automatic consequence is that the solution for f(x; t) is zero
outside the interval 0 � x � 1, as the calculations below show. This is indicated, in the solution,
by the presence of the Heaviside step function, �(x), which has the value of unity for x > 0, and
vanishes otherwise.
Proceeding, the inverse Fourier transformation of Eq. (A2) yields

f(x; t) =

Z 1

�1
e�ikx (k; �)

dk

2�

=
1

2
[�(1� x) + �(x)] + i d

dx

1X
n=0

Ane
��n�

Z 1

�1
e�ir(2x�1)r�1=2Jn+1=2(r)

dr

2�
: (A3)

The integral appearing above may be evaluated in terms of Legendre polynomials Pn(x) (Abramowitz
and Stegun, 1965)

R1
�1 e�iwrr�1=2Jn+1=2(r)dr = (�i)n

p
2�Pn(w)�

�
1� w2

�
. Noting that the

derivative of the Heaviside step function, �(x), is the Dirac delta function, �(x), we �nd, on carrying
out the di¤erentiation in Eq. (A3), that

f(x; t) =
1

2
[�(1� x) + �(x)] +

1X
n=0

in+1Anp
2�

e��n� [� (x)� (�1)n� (1� x)]

+
1X
n=1

in+1Anp
2�

e��n�� (x) � (1� x) d
dx
Pn(1� 2x); (A4)

with n � 1 in the last sum since P0(x) = 1. The expression for f(x; t) may be simpli�ed by intro-
ducing the Gegenbauer polynomial (Abramowitz and Stegun, 1965) C(3=2)n�1 (y) = (d=dy)Pn(y), for
n > 0 and setting an = �2(i)n+1An=

p
2�. This implies a0 = (2p� 1) and gives the result

f(x; t) = [p�(1� x) + (1� p)�(x)]� 1
2

1X
n=0

an+1e
��n+1� [� (x) + (�1)n� (1� x)]

+
1X
n=0

an+1e
��n+1�C(3=2)n (1� 2x)� (x) � (1� x) : (A5)

The constants an+1 may be determined by using the initial condition f(x; 0) = �(x � p) together
with the orthogonality of the Gegenbauer polynomials:

R 1
0
x(1�x)C(3=2)m (1�2x)C(3=2)n (1�2x)dx =

(n+1)(n+2)�nm=[4(2n+3)]. Multiplying f(x; 0), as given by Eq. (A5), by x(1� x)C(3=2m (1� 2x)
eliminates the contributions from the delta functions at x = 0 and x = 1, and on integrating

14



between x = 0 and x = 1 yields p(1 � p)C
(3=2)
m (1 � 2p) = (m + 1)(m + 2)am+1= [4(2m+ 3)], for

m � 0. Substituting this back into Eq. (A5) gives

f(x; t) = �(x)(1� p)
"
1�

1X
n=0

2p(2n+ 3)

(n+ 1)(n+ 2)
C(3=2)n (1� 2p)e��n+1�

#

+ �(1� x)p
"
1�

1X
n=0

2(1� p)(2n+ 3)
(n+ 1)(n+ 2)

(�1)nC(3=2)n (1� 2p)e��n+1�
#

+ �(x)�(1� x)p(1� p)
1X
n=0

4(2n+ 3)

(n+ 1)(n+ 2)

� C(3=2)n (1� 2p)C(3=2)n (1� 2x)e��n+1� : (A6)

The last term in Eq. (A6) coincides with the result Kimura obtained by solving the di¤usion
equation (6) directly (Kimura, 1955b). To see this we use the relation between the hypergeometric
function and the Gegenbauer polynomials (Abramowitz and Stegun 1965): F (�n; n + 3; 2;x) =
[2=(n + 1)(n + 2)]C

(3=2)
n (1 � 2x). Then, omitting the Heaviside functions, �(x)�(1 � x), which are

irrelevant for x con�ned to the range 0 to 1, this third term reads

fK(x; t) = p(1� p)
1X
n=0

(2n+ 3)(n+ 1)(n+ 2)

� F (�n; n+ 3; 2; p)F (�n; n+ 3; 2;x)e��n+1� (A7)

which is equivalent to the result found by Kimura (1955b).
To prove the results of Eq. (8) in the main text, �rst considerZ t

0

fK(0; s)ds = 2Np(1� p)
1X
n=0

4(2n+ 3)

(n+ 1)(n+ 2)

� C
(3=2)
n (1� 2p)C(3=2)n (1)

�n+1

h
1� e��n+1t=(2N)

i
: (A8)

We note that C(3=2)n (1)=�n+1 = 1 since C(3=2)n (1) = (n + 1)(n + 2)=2 . The t independent sum
may be carried out by using the generating function for Gegenbauer polynomials, which is given by
(Abramowitz and Stegun, 1965)

1X
n=0

C(3=2)n (y)zn =
1

(1� 2yz + z2)3=2
: (A9)
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From this we can deduce that

1X
n=0

�
1

n+ 1
+

1

n+ 2

�
C(3=2)n (y) =

Z 1

0

1 + z

(1� 2yz + z2)3=2
dz =

1

1� y : (A10)

Therefore Eq. (A8) becomesZ t

0

fK(0; s)ds = 4N(1� p)� 2Np(1� p)
1X
n=0

4(2n+ 3)

(n+ 1)(n+ 2)

� C(3=2)n (1� 2p)e��n+1t=(2N) (A11)

which is 4N times the coe¢ cient of �(x) in Eq. (A6), as required. The analogous result at the
x = 1 boundary can be proved in a similar fashion. The only di¤erence is that the term C

(3=2)
n (1)

in Eq. (A8) is replaced by C(3=2)n (�1) = (�1)nC(3=2)n (1). The extra factor of (�1)n is equivalent to
replacing y by �y in Eqs. (A9) and (A10). This allows us to show that

R t
0
fK(1; s)ds is 4N times

the coe¢ cient of �(1� x) in Eq. (A6).
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Appendix B
In this Appendix we consider solutions of the general di¤usion equation, Eq. (9), that incor-

porates mutation, selection and migration. We note that the solution, f(x; t), is de�ned on the
interval 0 � x � 1. However, noting that the method adopted for solving the di¤usion equation in
Appendix A (Fourier transformation, followed some steps later, by inverse Fourier transformation)
has the e¤ect of arti�cially extending the range of x to �1 < x < 1, we adopt this extended
range of x here. Given that no probability density ever starts outside the interval 0 � x � 1, nor
can ever get outside this range, we look for a solution of the form

f(x; t) = �0(t)�(x) + �1(t)�(1� x) +D(x)fK(x; t): (B1)

Here the function fK(x; t) is normalisable over 0 < x < 1 and does not contain singularities at
x = 0 and x = 1. The function D(x) = �(x)�(1� x) has the value unity for 0 < x < 1 and is zero
outside this range. The presence of the function D(x) in Eq. (B1) ensures the solution vanishes
outside the interval 0 � x � 1. Note that a property of D(x) is that its derivative is �(x)� �(1�x).
In the main text, we omit D(x) from the solutions, since for 0 < x < 1 the function D(x) has

the value of unity.
We proceed by deriving equations that determine the functions �0(t), �1(t) and fK(x; t) that

appear in Eq. (B1), sometimes using a prime, 0, or an overdot, �, on a function to denote di¤eren-
tiation with respect to x or t.
The di¤usion equation takes the form given in Eq. (9). Substituting the solution of the form

Eq. (B1) into Eq. (9) leads to a left hand side of
�
fK(x; t) +

�
�0(t)�(x) +

�
�1(t)�(1� x).

The right hand side of the di¤usion equation obtains a contribution from the pure drift term of
(4N)

�1 @
@x

��
@
@x [x(1� x)fK(x; t)]

�
D(x)

+x(1� x)fK(x; t)�(x)� �(1� x)]. The second term in this expression is identically zero given
limx!0;1 x(1�x)fK(x; t) = 0, since fK(x; t) cannot contain su¢ ciently strong power law divergences
at the boundaries that would prevent it being normalisable.

Carrying out the second di¤erentiation yields (4N)�1
�
@2

@x2 [x(1� x)fK(x; t)]
�
D(x) +

(4N)
�1 � @

@x [x(1� x)fK(x; t)]
�
[�(x)� �(1� x)]. The right hand side of the di¤usion equation also

obtains a contribution from the term in the di¤usion equation involvingM of�
�
@
@x [M(x)fK(x; t)]

�
D(x)�

M(x)fK(x; t) [�(x)� �(1� x)] � [M(0)�0�0(x) +M(1)�1�0(1� x)].
The result of substituting Eq. (7) into Eq. (9) can be written

�
fK(x; t)D(x) +

�
�0(t)�(x) +

�
�1(t)�(1� x)

= �j0K(x; t)D(x)� [jK(0; t)�(x)� jK(1; t)�(1� x)]

� [M(0)�0(t)�0(x)�M(1)�1(t)�0(1� x)] (B2)

where jK(x; t) is the probability current density of Eq. (2) with fK(x; t) used in place of f(x; t).

A comparison of the terms in Eq. (B2) indicates that generally fK(x; t) obeys
�
fK(x; t) =

�j0K(x; t) which is of identical form to the general di¤usion equation Eq. (9). Furthermore, to avoid
unbalanced derivatives of delta functions, it is necessary that M(0)�0(t) = 0 and M(1)�1(t) = 0.
These are conditions that determine whether delta functions can be present in the solution. When
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M(0) 6= 0 we require �0(t) = 0 and jK(0; t) = 0 but when M(0) = 0 we have
�
�0(t) = �jK(0; t).

Similarly, when M(1) 6= 0 we require �1(t) = 0 and jK(1; t) = 0, but when M(1) = 0 we have
�
�1(t) = jK(1; t).
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Appendix C
In this Appendix, we derive an expression for the �xation probability at long times, from solution

of the forward di¤usion equation, Eq. (9). The long time �xation probability is usually derived
only from the backward di¤usion equation.
The analysis presented in this Appendix is restricted to the case M(0) = 0 = M(1), so that

both gene �xation and gene loss can occur.
We begin by assuming, without proof, a solution to Eq. (9) in the form

f(x; t) =
1X
n=0

�n(x) n(p)e
��nt (C1)

i.e., a spectral sum where the functions �n(x) and  n(p) obey

d

dx
[M(x)�n(x)]�

1

4N

d2

dx2
[x(1� x)�n(x)] = �n�n(x) (C2)

�M(p) d
dp
 n(p)�

p(1� p)
4N

d2

dp2
 n(p) = �n n(p) (C3)

and so are eigenfunctions of forward and backward di¤usion operators and are both associated with
eigenvalue �n. We make the further assumption that the smallest value of the �n is zero.
For Eq. (C1) to be a solution of the general di¤usion equation, Eq. (9) the �n(x) must inherit

the properties of f(x; t) of having vanishing probability current at x = 0 and x = 1, i.e.,

limx!0;1

�
M(x)�n(x)� (4N)�1 d [x(1� x)�n(x)] =dx

�
= 0 and also having the normalisability

property limx!0;1 x(1 � x)�n(x) = 0. The required condition on the  n(p) is simply that they
remain bounded.
For large times, we arrive at f(x) � f(x;1) =

P0
n �n(x) n(p) where the prime on the sum

indicates that it only includes eigenfunctions associated with vanishing eigenvalues. Since this long
time solution consists solely of eigenfunctions of the forward equation associated with vanishing
eigenvalues, we have d [M(x)f(x)] =dx�(4N)�1 d2[x(1�x)f(x)]=dx2 = 0. Integrating this equation
from x = 0 to an arbitrary x and noting that the probability current density vanishes at x = 0
yieldsM(x)f(x)�(4N)�1 d[x(1�x)f(x)]=dx = 0. To solve this equation, we introduce the function
g(x) = x(1 � x)f(x), which obeys dg(x)=dx = 4NM(x)g(x)=[x(1 � x)]. This equation has the
solution g(x) = A exp(H(x)) where A is independent of x and

H(x) = 4N

Z x

0

M(y)

y(1� y)dy: (C4)

It follows that x(1 � x)f(x) = A exp(H(x)) and as discussed in Section 4, the solution for f(x)
consists of the regular part A exp(H(x))=[x(1� x)] and a singular part involving Dirac delta func-
tions, i.e., f(x) = A exp(H(x))=[x(1� x)] +B�(x) + C�(1� x) where B and C are independent of
x. We note that because H(0) and H(1) are �nite, normalisation of the solution requires A = 0
and B = 1� C hence f(x) has the form

f(x) = (1� C)�(x) + C�(1� x): (C5)

The coe¢ cient C in this equation is generally a function of p: C = C(p) and as a function of p it
must be associated with vanishing eigenvalues of Eq. (C3). Thus it must obey �M(p)dC(p)=dp�
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(4N)
�1
p(1� p)d2C(p)=dp2 = 0 with the bounded solution C(p) = DG(p) +E where D and E are

constants and

G(p) =

Z p

0

e�H(q)dq: (C6)

Thus f(x) = (1�DG(p)� E)�(x) + (DG(p) + E) �(1� x).
Lastly, we note that when p = 0 we must have f(x) = �(x) so E = 0, similarly, when p = 1 we

must have f(x) = �(1� x) so D = 1=G(1) hence the overall solution is

f(x) =

�
1� G(p)

G(1)

�
�(x) +

G(p)

G(1)
�(1� x): (C7)

As established in this work, the long time �xation probability is the coe¢ cient of �(1 � x) in
the solution of the forward di¤usion equation, i.e., G(p)=G(1), which is the standard result (Crow
and Kimura, 1970).
As it stands, Eq. (C7) does not appear to be of the form

P0
n �n(x) n(p), however it turns

out that there are two eigenfunctions of Eqs. (C2) and (C3) that are associated with vanish-
ing eigenvalues. Thus the right hand side of Eq. (C7) can be written �0(x) 0(p) + �1(x) 1(p)
and a possible choice of the eigenfunctions is �0(x) = 2�1 [�(x) + �(1� x)],  0(p) = 1, �1(x) =
2�1 [�(x)� �(1� x)] and  1(p) = 1� 2G(p)=G(1).
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