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In health, emotions are integratedwith autonomic bodily responses. Emotional stimuli elicit changes in somatic
(including autonomic) bodily states, which feedback to influence the expression of emotional feelings. In
patients with spinal cord injury (SCI), this integration of emotion and bodily arousal is partially disrupted,
impairing both efferent generation of sympathetic responses and afferent sensory feedback of visceral state via
the spinal cord. A number of theoretical accounts of emotion predict emotional deficits in SCI patients,
particularly at the level of emotional feelings, yet evidence for such a deficit is equivocal. We used functional
MRI (fMRI) and a basic emotional learning paradigm to investigate the expression of emotion-related brain
activity consequent upon SCI.We scanned seven SCI patients and seven healthy controls during an aversive fear
conditioning task. Subjects viewed randomized presentations of four angry faces. One of the faces (CS + arm)
was associated with delivery of electrical shock to the upper arm on 50% of trials. This shock was painful to all
subjects. A face of the same gender acted as a ‘safe’ control stimulus (CS – arm). In both control subjects and SCI
patients, painful cutaneous stimulation of the armevoked enhanced activity within components of a central pain
matrix, including dorsal anterior cingulate, right insula and medial temporal lobe. However, SCI patients
differed from controls in conditioning-related brain activity. SCI patients showed a relative enhancement of
activity within dorsal anterior cingulate, periaqueductal grey matter (PAG) and superior temporal gyrus. Con-
versely, SCI patients showed relative attenuation of activity in subgenual cingulate, ventromedial prefrontal
and posterior cingulate cortices to threat of painful arm stimulation (CS + arm >CS – arm). Our findings provide
evidence for differences in emotion-related brain activity in SCI patients.We suggest that the observed functional
abnormalities including enhanced anterior cingulate and PAG reflect central sensitization of the pain matrix,
while decreased subgenual cingulate activity may represent a substrate underlying affective vulnerability in
SCI patients consequent upon perturbation of autonomic control and afferent visceral representation. Together
these observations may account for motivational and affective sequelae of SCI in some individuals.
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Introduction
Emotions are associated with the automatic generation of

bodily responses, notably those mediated by the autonomic

nervous system: changes in heart rate, blood pressure and

sudomotor (sweat gland) activity are themselves associated

with changes in regional cerebral activity (Critchley et al.,

2000a, b). Subjective experience of these changes in altered
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bodily states contributes to emotional feelings: coupling of

emotion with peripheral arousal is highlighted by influential

theories of emotion, such as that of James and Lange, who

argued that the central representation of bodily arousal states

provides emotional colour to otherwise emotionless sensory

experiences (James, 1884, 1894). More recently, Damasio

and colleagues have provided evidence that peripheral arousal

may influence emotion, behaviour and reasoning (Damasio,

1994, 1999; Bechara et al., 1996).

There is increasing interest in neuroanatomy supporting

interactions between affect and bodily arousal states. Lesion

studies suggest that damage to prefrontal brain regions,

particularly orbital and medial prefrontal cortex compro-

mises both generation of peripheral arousal responses and

emotional guidance of behaviour (Bechara et al., 1996).

Neuroimaging studies implicate anterior cingulate and amy-

gdala in higher order and reflexive generation of autonomic

arousal responses to emotional provoking stimuli (Fredrikson

et al., 1998; Patterson et al., 2002; Critchley et al., 2000a, b,

2003; Phelps et al., 2001) and insula and OFC in mapping the

consequential bodily responses. It is also noteworthy that all

these regions have been shown to be sensitive to visceral

changes (Craig, 2002; Critchley et al., 2001; 2002, 2004).

Brainstem regions appear to provide a tonic homoeostatic

autonomic control function (Critchley et al., 2001) and

much is known from animal studies about these autoregu-

latory centres (Spyer, 1999). However, we do not yet have

complete understanding of how peripheral arousal is integ-

rated with, and influences, human emotional behaviour. In

fact, it is likely that an integration of visceral afferent informa-

tion and motivational processes underlying emotion occurs

within a hierarchy of central structures (Damasio, 1999).

Dorsal brainstem structures such as the parabrachial nucleus

and periaqueductal grey matter (PAG) support an interface

between afferent visceral sensations (including pain), des-

cending autonomic control and ascending neuromodulatory

pathways to subcortical and cortical ‘motivational’ centres

(Tracey et al., 2002; Allen et al., 1991; Saper, 2002). Thalamus,

cingulate, insula and OFC support interoceptive representa-

tions that underlie emotional feeling states (Lane et al., 1999;

Critchley et al., 2001; 2004; Craig, 2002) and contribute to a

general ‘pain matrix’ (Tracey et al., 2002; Rainville, 2002).

Spinal cord injury (SCI) is a devastating neurological

disorder, affecting motor, sensory and autonomic systems.

In the chronic stage, SCI is characterized by loss of motor

and sensory function below the level of injury, which also

contributes to a degree of autonomic dysfunction (Mathias

and Frankel, 2002). SCI often results in permanent physical

and emotional disabilities (Motha et al., 2003). The initial

subjective reaction to SCI is depression, despair, bitterness

and grief (Mueller, 1962). A high prevalence of anxiety and

depressive symptoms persists over the following months

(Kennedy and Rogers, 2000). If there is inadequate provision

of psychological care during SCI rehabilitation, long-term

psychiatric disturbances may ensue (Blanchard et al., 1990;

Hickling and Blanchard, 1992; Brom et al., 1993). These

emotional disturbances can reasonably be attributable only

to the trauma, disability and adjustments of SCI. However,

there is a longstanding debate as to whether the very transec-

tion of the spinal cord produces or modifies emotional experi-

ence as a consequence of decoupling brain from body. It

should be noted that descriptions of clinical dissociated defi-

cits are often confounded by mood, which renders this liter-

ature unsatisfactory in resolving this debate.

The ‘peripheral’ theory of emotion proposed by James and

Lange (James, 1884, 1894) implies that patients with complete

high SCI would show decreased emotional responsivity

reflecting the absence of ‘emotional colour’ from central rep-

resentation of bodily responses. While this view persists in

clinical anecdotes, many case reports and studies have repor-

ted an absence of impairment in SCI patients on emotional

tests (Dana, 1921; Lowe and Carroll, 1985; Chwalisz et al.,

1988; Cobos et al., 2002; O’Carroll et al., 2003). This contrasts

with growing recognition of the importance of ascending

bottom-up influences on higher neural processes including

emotion (Cameron, 2001, 2002; Bernston et al., 2003; Craig,

2003; Damasio, 1994, 1999), where there is a consensus that

the degree to which bodily responses are perceived may

modify the expression of emotional feelings in both healthy

individuals (Weins et al., 2000) and patients with SCI

(Chwalisz et al., 1988).

Our aim in this study was to examine the impact of SCI

on central mechanisms of emotional processing. Specifically,

SCI is associated with impaired generation of sympathetic

autonomic responses and disruption of spinocerebral feed-

back of states of bodily arousal. We scanned patients with

chronic SCI and healthy controls, using functional MRI

(fMRI), during performance of an emotional learning task

(fear conditioning) to test a hypothesis that absence of

afferent spinal information would modulate the expression

of brain activity associated with emotional processing.

Methods
Subjects
The study was approved by the Joint Ethics Committee of the

National Hospital for Neurology and Neurosurgery and the Institute

of Neurology and conformed to the guidelines of the Declaration of

Helsinki. All subjects gave fully informed consent and were screened

to ensure they were safe to undergo functional magnetic resonance

scanning at 1.5 T. Seven patients of the National Hospital for Neuro-

logy and Neurosurgery with documented SCI were recruited along

with seven control subjects to take part in a neuroimaging study at

the Wellcome Department of Imaging Neuroscience. Before being

scanned, SCI patients were given a complete neurological exami-

nation to determine the characteristics of their sensory and motor

impairment following the American Spinal Injury Association

(ASIA) Impairment Scale (Maynard et al., 1997). The clinical char-

acteristics of the patients are detailed in Table 1. At the time of the

experiment, autonomic dysfunction in all patients was expressed in

loss of sweat function below the level of injury. No cardiovascular

symptoms were reported at the time of the experiment, although

autonomic dysreflexia was previously documented in two patients.
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Patients did not report active neuropathic pain nor any psychological

nor psychiatric disturbances when questioned on direct interview

[scores on Hamilton anxiety and depression scales (Hamilton,

1995) did not meet criteria for mood disorder]. One of the subjects

(Patient 3) differed from the other SCI patients having suffered from

idiopathic acute transverse myelitis which is an inflammatory dis-

order of the spinal cord resulting in motor, sensory and autonomic

dysfunction (Transverse Myelitis Working Group, 2002).

Experimental design and task
A structural brain fMRI scan was performed in all subjects to exclude

possible brain abnormalities. Each participant underwent one

fMRI scanning session in which they made gender discrimination

button-press responses to randomized visual presentations of four

face stimuli, depicting two male and two female identities bearing

angry expressions. The experiment was a classical Pavlovian fear-

conditioning paradigm of faces to painful aversive stimulation.

Electrical stimulation was achieved following established methods

(Seymour et al., 2004) using a custom-built electrical stimulator

delivering 20 or 100 Hz trains of electrical pulses (4 ms square

waveform pulses, 1 s duration) through a silver chloride electrode.

Current levels (ranging between 0.1 and 6 mA) and stimulation

frequencies were tailored empirically to each subject to produce

subjective pain, but no strong withdrawal reflex.

Subjects viewed face stimuli on a projection screen during scan-

ning. Stimuli were presented for 500 ms with an inter-trial interval

of 3.2 s. A total of 240 stimuli were presented with an additional

60 null events. The design of the experiment is illustrated in Fig. 1.

Presentation of two of the faces (one female, one male) was coupled

with delivery of aversive stimulation (US) on half the trials. One

face was paired with electrical stimulation of the arm, which was

painful to all subjects (CS + arm). The gender/identity of this face was

counterbalanced across subjects. A face of the same gender acted

as a control (safe) stimulus and was never paired with stimulation

(CS – arm). In all the control subjects and in four of the patients a

second face was paired with electrical stimulation of the leg (CS + leg)

and there was a corresponding control (safe CS – leg) stimulus.

In fact SCI subjects, in contrast to controls, were completely unable

to feel the electrical stimulation applied to the leg. To exclude a

possibility that the ‘globally greater’ aversive experience of controls

might confound interpretation of group differences, the ‘CS + leg’

stimulus was associated to auditory (headphone) delivery of a burst

of aversive white noise [500 ms, 100 dB (Grade A)] for the remaining

three SCI patients studied (Patients 5–7; Table 1).

Physiological monitoring and post-processing
Heart rate was recorded throughout scanning from left ring finger

pulse using pulse oximetry (Nonin 8600 Pulse Oximeter; Nonin

Medical, Inc., N. Plymouth, MN, USA). The times of each pulse

and slice synchronization pulses from the scanner were logged

using the CED1401 data acquisition unit and Spike 3 software

(CED, Cambridge Electronic Design Limited, Cambridge, UK).

The output of the pulse oximeter also enabled us to index changes

in peripheral vasoconstriction of the fingers from the amplitude of

the pulse waveform. Correspondence with concurrently recorded

sympathetic electrodermal activity indicates predominantly sym-

pathetic influences on the amplitude of the pulse waveform. Physio-

logical responses were analysed post hoc using Matlab (Mathworks

Inc, Natick MA). Pulse timings and waveform were interpolated to

give continuous measures of heart rate and pulse amplitude then

resampled to give event-related waveforms. Mean values 0.5–1.5 s

following stimulus presentation were used in analyses of physio-

logical response for each stimulus type.

Functional imaging data acquisition,
pre-processing and analysis
Participants were scanned at 1.5 T (Siemens Sonata, Erlangen

Germany). T2*-weighted echoplanar images optimized for blood-

oxygenation level dependent (BOLD) contrast were acquired using a

sequence minimizing dropout effects from orbitofrontal regions

(Deichmann et al., 2003) (TE 50 ms, TRvol 2.8 s, 30� tilt, 28 ·
3.5 mm thick slices). Image pre-processing and subsequent analyses

were undertaken using statistical parametric mapping (SPM2)

(http://www.fil.ion.ucl.ac.uk/�spm/SPM2.html) on a Matlab plat-

form. Images were initially realigned and unwarped, correcting for

motion artefact. Differences in the timing of image slices across each

individual volume were corrected and each volume was transformed

Table 1 Characteristics of patients with spinal cord injury

SCI
patient

ASIA
neurological level*

ASIA
grade

Motor score
(max 100)

Sensory score Time from
injury (weeks)

Cause
of injury

Pinprick (max 112) Light touch (max 112)

P1 T3 A 50 46 43 154 RTA
P2 C6 B 32 54 42 153 Fall
P3 T4 D 100 66 66 159 TM
P4 C4 A 28 32 32 14 Fall
P5 T5 C 50 61 61 332 RTA
P6 C7 C 51 32 32 242 Sport
P7 C8 A 50 31 31 259 RTA

TM = acute transverse myelitis. RTA = road traffic accident. *Neurological level: the most caudal segment with normal sensory and motor
function. The ASIA Impairment Scale (Maynard et al., 1997) classifies patients with SCI as: A = complete, when no sensory or motor
function is preserved in the sacral segments S4-S5; B = incomplete, when sensory but no motor function is preserved below the
neurological level and includes the sacral segments S4-S5; C = incomplete, when motor function is preserved below the neurological level
and more than half of key muscles below the neurological level have a muscle grade (MRC scale) <3; D = incomplete; when motor
function is preserved below the neurological level and at least half of key muscles below the neurological level have a muscle grade �3;
E = normal, when sensory and motor functions are normal.
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into standard stereotaxic space and smoothed with a Gaussian filter

(full-width-half maximum 12 mm).

Voxel-wide changes in BOLD contrast within the smoothed

normalized images were examined using SPM. Individual design

matrices were constructed for each subject that modelled these six

trial types: (1) Face 1 + stimulation to arm (CS + arm paired), (2)

Face 1 + no stimulation (CS + arm unpaired), (3) Face 2 + stimu-

lation to leg (CS + leg paired) (three of the spinal cord

patients received white noise auditory stimulation in place of the

stimulation to leg), (4) Face 2 + no stimulation (CS + leg unpaired),

(5) Face 3 (CS – arm, (6) Face 4 (CS – leg). Each trial type was

modelled as an event convolved with a canonical haemodynamic

response function. In addition we modelled response interactions

with time, modelling exponential decay of the response to each event

over the course of the experiment. Statistical images were deter-

mined for contrasts of interest for each subject. These were then

entered into second-level random effects ANOVA (analysis of

variance) (with sphericity correction) to determine significant

effects and group differences. For clusters of 10 contiguous voxels

or more, threshold significance in these group analyses was set at

P < 0.05, corrected for whole brain (false discovery rate), though

where relevant we comment descriptively on activations above

P < 0.001, uncorrected.

Results
Behavioural and physiological findings
All subjects tolerated the scanning environment and experi-

mental procedure. Controls and SCI patients accurately

described the association between CS + arm and painful

electrical stimulation, indicating that they not only felt stimu-

lation of the arm, but that they acquired declarative know-

ledge regarding the contingent association of the CS + arm

within this partial reinforcement schedule. However, the first

four SCI patients, in contrast to controls, had no conscious

awareness of electrical stimulation of the leg (below sensory

level) and consequently, could not differentiate between CS +

leg and CS – leg stimuli. Furthermore in these SCI patients

there was no change in regional brain activation related to leg

stimulation, nor autonomic or behavioural discrimination

between CS + leg and CS – leg stimuli. To attain a degree

for overall aversive stimulation across the experiment, avers-

ive white noise was administered in place of the electrical

stimulation of the leg (with CS + leg stimulus) in the remain-

ing three SCI patients. All trials were modelled in individual

analyses. However, in second level analyses, as reported in the

rest of this manuscript, only activity related to CS + arm

(paired and unpaired) and CS – arm is considered.

In the seven control subjects, painful electrical stimulation

of arm resulted in transient bradycardia and a peripheral

vasoconstrictive vasomotor response in the fingers (Fig. 2).

Differences were also present in cardiac and vasomotor res-

ponses to the threat of arm stimulation (i.e. conditioning-

related) indexed by enhanced responses to unpaired CS + arm

compared to CS – stimuli. The mean magnitude of threat-

related bradycardia and vasoconstriction responses was inter-

mediate to that of that generated by the CS + paired (shock)

and the safe CS – stimuli.

Fig. 1 Task design. Subjects were scanned during Pavlovian aversive conditioning. Face stimuli (two female, two male, all with angry
expressions) were presented in randomized order on a video monitor and the subject judged the sex of each face via two-choice button
press response. In a 50% reinforcement schedule, two of the faces (CS + arm, CS + leg) were associated with delivery of aversive
electrical stimulation (shock) to the arm and leg, respectively. Same gender faces (CS – arm, CS – leg) represented safe trials where there
was no delivery or threat of shock. Stimuli were counterbalanced across subjects. Physiological cardiovascular responses (heart rate,
pulse amplitude) were monitored using pulse oximetry. SCI patients were unaware of leg stimulation as this was below the sensory level of
their spinal lesion. In the first four SCI patients, no behavioural conditioning to the CS + leg (or related brain activity) was demonstrated.
To exclude a possibility that the ‘globally greater’ aversive experience of controls might confound interpretation of group differences,
for the remaining three SCI patients studied the ‘CS + leg’ stimulus was associated to a headphone delivered burst of aversive white noise
[500 ms, 100 dB (A)].
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Across the seven SCI patients, there was a bradycardia to

the experience of painful arm stimulation, exceeding that

observed in controls. However, only one patient (surprisingly,

Patient 4) showed a discriminatory conditioning-related

bradycardia for the CS + arm (unpaired) versus CS – arm

and across the group there was no discrimination between CS

+ arm (unpaired) and CS – stimuli (Fig. 2). Vasoconstrictor

responses again showed no consistent discriminatory

responses across SCI patients where Patients 1 and 3 demon-

strated vasomotor responses to painful arm stimuli, but

no patients showed significant conditioning-related vaso-

constriction reflected in finger pulse amplitude (Patient 1

demonstrated a trend). These observations suggest impair-

ment across all patients in autonomic bodily reactions,

including sympathetic cardiac and electrodermal responses

and parasympathetic cardiac responses reflecting predictive

emotional learning.

Neuroimaging findings
US-related responses
The precise location of electrical stimulation to the arm

was consistent for the controls but differed on a subject

by subject basis for SCI patients, being delivered on a dermat-

ome with normal sensory perception (four patients had the

arm electrode placed on the anterior shoulder). Each SCI

patient showed lateral sensorimotor strip activation in

response to electrical stimulation in individual analyses,

with more diffuse sensorimotor activation apparent as a

group effect.

Fig. 2 Physiological responses. Bar charts in the upper panel illustrate the heart rate change (parasympathetic bradycardia) (mean 6 SE;
beats per minute) within 1.5–3.5 s from stimulus onset, the black bars representing heart rate responses to paired CS + arm (with
shock to arm), unpaired CS + arm (threat of shock to arm) and CS – arm (safe) in controls; and the red bars heart rate responses to paired
CS + arm, unpaired CS + arm and CS – arm in patients with SCI. In the lower panel are bar charts of sympathetic vasoconstrictor
responses, derived from trial-induced variability in pulse waveform amplitude, measured from finger pulse, for the same trial types
(black bars representing controls and red bars patients with SCI). The controls showed a transient bradycardia and a peripheral
vasoconstrictive vasomotor response to painful electrical stimulation of arm. Cardiac and vasomotor responses to unpaired CS + arm
compared to CS – stimuli were enhanced. The mean magnitude of threat-related bradycardia and vasoconstriction responses was
intermediate to that of that generated by the CS + paired (shock) and the safe CS – stimuli. The seven SCI patients showed a bradycardia to
the experience of painful arm stimulation that exceeded that observed in controls. Only one patient (Patient 4) showed a discriminatory
conditioning-related bradycardia for the CS + arm (unpaired) versus CS – arm and across the group there was no discrimination
between CS + arm (unpaired) and CS – stimuli. Vasoconstrictor responses again showed no consistent discriminatory responses across
SCI patients. These observations in the SCI patients suggest impairment in autonomic bodily reactions reflecting predictive
emotional learning.
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Common responses to CS + arm (paired) trials across SCI

patient and control groups revealed a time-dependent activa-

tion of an extrastriate visual region sensitive to emotionally

salient face stimuli (Noesselt et al., 2005), together with com-

ponent regions of a pain matrix including medial temporal

lobe (right anterior hippocampus), dorsal anterior cingulate

cortex, with a common region of somatomotor cortex. Activ-

ity within right insula was observed at P < 0.001, uncorrected.

(Table 2, Fig. 3).

There were no regions surviving corrected threshold that

were more active in controls in response to presentation of

CS + arm faces paired with electrical arm stimulation. How-

ever, cortical regions within left lateral occipital cortex and

right somatomotor cortex and subcortical regions of amy-

gdala and midbrain were significantly more active in the

SCI patients than controls, consistent with enhanced sen-

sitivity of visual sensory and nociceptive responses to these

aversive trials.

Conditioning-related activity
In SCI patients, robust autonomic expression of fear condi-

tioning (differential vagal bradycardia to unpaired CS + arm

and CS – arm trials) was compromised. In both SCI patients

and controls, corresponding conditioning-related brain

responses to threat (unpaired CS + arm versus CS – arm)

were observed in bilateral regions of anterior insula extending

into lateral OFC and regions including the putamen. This

activity pattern is in keeping with evidence implicating insula,

lateral OFC and putamen in processing aversive stimuli

(Seymour et al., 2004).

Differences between controls and patients
with spinal cord injury
We tested for group differences in brain activity between SCI

patients and controls during conditioning of faces to the

CS + arm: compared to controls, SCI patients demonstrated

attenuation of activity during threat (CS + arm unpaired

versus CS – arm), predominantly in midline regions including

posterior cingulate, motor cingulate, subgenual cingulate

and adjacent ventromedial prefrontal cortex. The difference

in the subgenual region is notable. Evidence suggests a pref-

erential association of this region with (vagal) autonomic

responses (Kaada, 1951; Devinsky et al., 1995). Moreover

structural and functional abnormalities of this region in

Table 2 Activity related to painful stimulation of upper
limb in patients and controls [CS + arm (paired)]

Location Side Coordinates
of peak activity

Z-score

Activity common to SCI patients and controls
Extrastriate visual cortex L �42, �62, �14 5.16
Amygdalohippocampal
junction

R 28, �12, �14 4.75

Dorsal anterior
cingulate cortex

Bilateral 2, 12, 46 4.66

Somatomotor cortex L �50, �24, 54 4.14
Anterior insula R 56, 18, �6 3.60

Controls > SCI patients – nil Z > 3.6
SCI patients > controls

Extrastriate visual cortex L �34, �78, 0 6.10
Amygdala R 24, �4, �10 4.78
Somatomotor cortex R 24, �28, 50 4.76
Midbrain Bilateral 4, �10, 8 3.90

Fig. 3 Regional brain activity to paired CS + arm in SCI patients and controls. The delivery of shock to the arm (coupled with the CS + arm
stimulus) enhanced regional brain activity within dorsal cingulate and medial temporal components of the pain matrix in both patients with
SCI and controls. Common responses to CS + arm (paired) trials also were observed within an extrastriate visual region, medial temporal
lobe (right anterior hippocampus), dorsal anterior cingulate cortex, with a common region of somatomotor cortex. The location of
common group activations within dorsal anterior cingulate, medial temporal lobe and somatomotor cortex are illustrated on parasagittal
and coronal sections of a normalized template brain scan.
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patients with mood disorder indicate a central neurobio-

logical role in the pathoaetiology of depression (Drevets,

1999; Zobel et al., 2005). Our observation of dysfunction

of this subgenual region in SCI patients during emotional

learning also supports an account that, in health, a repres-

entation of visceral arousal state within this region may guide

emotional behaviour and feeling states (Damasio, 1994;

Bechara et al., 1996; Craig, 2002) (Fig. 4, Table 3).

SCI patients, in contrast to controls, showed an enhance-

ment of brain activity to the conditioned threat within dorsal

anterior cingulate cortex and PAG regions commonly activ-

ated by pain. In addition, greater activity was also observed

within visual cortices of superior temporal and lateral occipital

gyri that encode salient face stimuli and expression. Together

these findings suggest a hypersensitivity of brain responses

within the central pain matrix and affective sensory

representation to predictors of aversive stimulation (Fig. 5,

Table 3).

Discussion
To the best of our knowledge, this study represents the first

fMRI study of emotional processing in patients with SCI.

We provide evidence for abnormalities in functional activity

within brain regions associated with emotional processing.

We demonstrate differences in patterns of evoked activity

between SCI patients and controls including underactivity

of subgenual and posterior cingulate cortex and enhanced

responses within dorsal anterior cingulate cortex and PAG

during the processing of learned threat. Significantly, all these

regions are implicated in supporting emotional processes,

notably representation of subjective emotional feelings and

the control of motivational behaviour (Damasio, 1994; Craig,

2002).

Recent neuroimaging and lesion studies have highlighted the

role of insula, anterior cingulate and ventromedial prefrontal

cortical regions in the generation, representation and integra-

tion of autonomic arousal responses with emotional processes

(Critchley, 2003, 2004). The present study provides clues to

potential neural mechanisms through which a perturbation of

autonomic response and visceral feedback may account for

anecdotal reports of emotional changes in SCI patients. Addi-

tionally, our findings speak to theoretical issues by examining

neuroanatomical substrates for central representation of

spinal afferent information thereby testing the robustness of

peripheral theories of emotion (James, 1884, 1894).

Fig. 4 Conditioning-related activity: differences between controls and SCI patients. Conditioning-related activity represents the difference
between responses to CS + and CS – stimuli (i.e. learned threat–safe). We tested for group differences in brain activity between SCI
patients and controls during conditioning of faces to the CS + arm: controls showed activation of midline regions (posterior cingulate,
motor cingulate, subgenual cingulate and ventromedial prefrontal cortex). SCI patients (in red on the scatter plots), compared to controls
(in blue on the scatter plots), showed decreased activity during threat (CS + arm unpaired versus CS – arm), mainly in midline regions
including posterior cingulate, motor cingulate, subgenual cingulate and adjacent ventromedial prefrontal cortex. Group differences in
regional activity are plotted on parasagittal and coronal sections of a template brain next to scatter plots of the parameter estimates
(arbitary units, proportional to % signal change) for controls and SCI patients.
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Behaviourally, we demonstrated impairment of sympath-

etic and parasympathetic autonomic bodily responses in

SCI patients during emotional learning. This was anticipated

for responses to the threat of stimulation below the level of

lesion; if the patients could not feel the pain, they could not

learn which cues predicted the pain. Leg stimulation in four

of the seven SCI patients allowed us to test whether afferent

fibres of the vagus conveyed sensory information about local

spinal reflexes (induced below the spinal lesion) giving rise to

compensatory autonomic responses. We found no evidence

for such a process with brief cutaneous shocks, but acknow-

ledge evidence for such effects associated with deep visceral

stimulation or dysreflexic responses (Janig, 1996). More sur-

prisingly, however, was the absence of significant conditioned

autonomic responses to the threat of painful arm stimulation

in SCI patients. Both the controls and SCI patients perceived

the arm stimulation as painful and learned the association

with CS + arm face stimulus. Each group also showed a

bradycardia response to the painful stimulation of the arm

indicating intact psychophysiological responses to pain

mediated (parasympathetically) by the vagus nerve. However,

six of the seven SCI patients, in contrast to controls, did not

show a similar cardiac response to the threat of pain. This

observation suggests an underlying abnormality in SCI

patients in central emotional mechanisms supporting implicit

Table 3 Common activity related to processing of threat
during fear conditioning [CS + (arm) unpaired versus
CS – (arm)]

Location Side Coordinates of
peak activity

Z-score

Activity common to SCI patients and controls
Anterior insula
lateral OFC

R 46, 32, �6 6.25

L �44, 28, �12 6.08
Premotor cortex L �46, 0, 34 6.00
Fusiform cortex R 42, �46, �12 5.85
Inferior parietal lobule R 50, �42, 38 5.61
Putamen R 30, 10, �6 4.30

Controls > SCI patients
Motor cingulate cortex R 14, �8, 38 5.90
Extrastriate visual cortex R 20, �88, 4 5.26
Posterior cingulate cortex R 10, �38, 28 5.18
Precuneus R 10, �66, 34 4.95
Subgenual cingulate /
ventromedial
prefrontal cortex

Bilateral 6, 24, �8 4.50

SCI patients > controls
Superior temporal gyrus L �46, �16, 0 7.34
Periaqueductal grey Bilateral �2, �22, 0 5.29
Dorsal anterior
cingulate cortex

Bilateral 6, 6, 44 5.22

Lateral occipital cortex L �48, �56, �16 4.99

Fig. 5 Conditioning-related activity: differences between SCI patients and controls. SCI patients (in red on the scatter plots), in contrast to
controls (in blue on the scatter plots), demonstrated enhanced brain activity to the conditioned threat [CS + arm (unpaired) > CS – arm]
within dorsal anterior cingulate cortex and periaqueductal grey (PAG), regions commonly activated by pain. Greater activity was also
observed within visual cortices of superior temporal and lateral occipital gyri that encode salient face stimuli and expression. These findings
imply a hypersensitivity of brain responses within the central pain matrix and affective sensory representation to predictors of aversive
stimulation. Group differences in regional activity are plotted on parasagittal and coronal sections of a template brain next to scatter plots
of the parameter estimates (arbitary units, proportional to % signal change) for controls and SCI patients.
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emotional learning and its psychophysiological expression.

It is worth noting that no patient generated a significant

conditioning-related vasomotor (vasoconstriction) response,

perhaps indicating disruption of paravertebral sympathetic

outflow (yet puzzlingly two patients appeared to respond

to the painful US, indicative of intact sympathetic responses

to pain).

The above psychophysiological findings extend observa-

tions from studies indexing sympathetic function by electro-

dermal activity (sympathetic skin response, SSR). The SSR is a

non-invasive electrophysiological technique to study efferent

sympathetic cholinergic pathways to sweat glands of hand and

foot (Shahani et al., 1984). In SCI patients, stimuli applied

above the level of lesion can evoke an SSR only where there

is preserved sympathetic innervation, whereas there is no

SSR (in hand or foot) to stimulation below the level of

lesion where sympathetic innervation is impaired (Cariga

et al., 2002). As predicted, our SCI patients had absent

SSRs when the stimulus was applied below the level of lesion.

The SCI patients also showed abnormal generation of SSRs

following stimulation above lesion level, even in the two

patients with vasomotor responses. These findings suggest

efferent sympathetic impairment across noradrenergic vaso-

motor and cholinergic electrodermal sympathetic subaxes.

Our functional neuroimaging study first confirmed com-

mon activation within components of the pain matrix in

patients and controls by the arm stimulation, including dorsal

anterior cingulate cortex and medial temporal lobe (amyg-

dalohippocampal region). These brain areas are known to be

sensitive to the absence of peripheral arousal responses

(Critchley et al., 2002) and are implicated in generating auto-

nomic responses to pain and threat (LeDoux et al., 1998;

Phelps et al., 2001; Asahina et al., 2003). It is noteworthy

that SCI patients did not share with controls pain-induced

activation of insular cortex, a region implicated in the central

mapping of bodily arousal responses. This suggests abnormal-

ities in the wider pain matrix but further experiments are

warranted to clarify the implications.

Our principal findings relate to differences between SCI

patients and controls in conditioning-related brain activity,

since they highlight abnormalities in emotion-related pro-

cessing consequent upon the partial uncoupling between

body and brain. These analyses refer exclusively to compar-

isons of the ‘threat’ (unpaired CS + arm) with ‘safe’ (CS –

arm) stimuli. During fear conditioning the controls showed

predictable patterns of brain activation including activation

of cingulate, insula and amygdala to the threat of shock.

In contrast, SCI patients showed significantly attenuated

activity compared to controls in subgenual and posterior

cingulate cortices when processing threat. The subgenual cin-

gulate and adjacent ventromedial prefrontal cortical region

is implicated in self-referential processing and monitoring

(Gusnard et al., 2001) and lies adjacent to orbitofrontal

and insular cortex involved in central mapping of visceral

arousal states (Craig, 2002). This medial frontal region is

crucially implicated in motivational behaviour including

learning and decision-making following punishing outcomes

(Bechara et al., 1996; Damasio, 1994) and representation of

reward and positive social signals (O’Doherty et al., 2003).

Significantly, dysfunction of subgenual cingulate and ventro-

medial prefrontal cortex is associated with depressive symp-

toms and vulnerability (Drevets, 2000). Thus, the abnormal

activity of this region observed in SCI patients during threat

may underlie a predisposition to depressive symptoms arising

from maladaptive responses to aversive predictors.

A further important observation was a more widespread

enhancement, in response to threat, of cortical and subcortical

activity in SCI patients compared to controls. This hyper-

activity was particularly observed within dorsal anterior cin-

gulate, PAG and regions of extrastriate and temporal visual

cortices. While this dorsal anterior cingulate region cortex is

implicated in high-level cognitive functions, it is also activated

by emotional, notably during pain, processing (Rainville,

2002; Tracey et al., 2002). The same region participates in

conscious processing of emotional feelings, correlating auto-

nomic indices of emotional intensity with cingulate activity

(Lane et al., 1999) and is functionally integrated with peri-

pheral autonomic arousal response (Critchley et al., 2000a,

2003). In patients with peripheral autonomic denervation,

leading to an absence of peripheral autonomic response dur-

ing stress, there is compensatory enhancement of anterior

cingulate activity (Critchley et al., 2000b). The latter obser-

vation suggests that abnormal feedback of autonomic

response may also account for heightened activity in dorsal

anterior cingulate, which we observed in the SCI patients.

However, it is noteworthy that we also observed enhanced

activity of PAG (and, at a lower threshold, thalamus) in SCI

patients during threat processing suggesting a sensitization

of pain related pathways in this patient group. Whether sens-

itization is directly attributable, at a neural level, to dimin-

ished afferent spinal information flow, or a consequence of

psychological and emotional adjustment, remains to be cla-

rified. Of interest in this regard was a ‘hypersensitive’ response

within visual areas for processing threat which suggests

an increasing gain to threat stimuli in these patients that is

arguably more in keeping with a psychologically mediated,

than neurophysiological, process. Psychological factors, such

as attention, distraction, stress and arousal modulate the

perception of pain both in normal subjects and in patients.

Valet et al. (2004) showed that the PAG and posterior

thalamus receive influences from fronto-cingulate cortices

that enable the gating of pain during distraction conditions.

Altered descending inhibition and facilitatory modulation

of nociceptive responses from PAG and brainstem may rep-

resent a plausible mechanism underlying chronic somatic and

visceral pain syndromes (Dunckley et al., 2005). Tracey et al.

(2002) demonstrated activation changes in PAG can be

induced by attention to painful stimulation and, in this con-

text, the magnitude of PAG activity correlated with perceptual

decreases in pain intensity. Our observations therefore suggest

abnormalities within the pain matrix and attentional/

emotional systems in patients with SCI during processing
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of threat, even in the absence of a clinically reported pain

syndrome. These functional changes may ultimately reflect a

failure in integration of external emotional information

with afferent viscerosensory (spinal) signals for emotional

self-reference and are ultimately attributable to high spinal

lesion.

A number of technical and logistical factors were addressed

during the course of this first fMRI study of emotional

processing in SCI patients. Nevertheless, the relatively small

number of SCI patients studied represents a limitation and the

results raise many more questions. We did not in this instance

pursue the analyses of individual subject difference to relate to

the different clinical characteristics of the patients. However,

the effects observed and plotted do not suggest a simple rela-

tionship between emotion-related brain activity and ASIA

score or lesion level. Deficits in autonomic and sensory func-

tion may provide a better account of observed group differ-

ences in activity, but such inferences generated by our findings

may require further exploration in a larger, more homogen-

eous patient group. Combining neuroimaging, visual task,

aversive electrical stimulation and autonomic monitoring

in SCI patients represented a technical challenge. Naturally

enhanced consideration of body position and maintained

posture was required to prevent involuntary contractions

and dysreflexic responses from confounding data acquisition

and interpretation. In spite of these extra demands, our study

demonstrated the feasibility and usefulness of functional brain

neuroimaging with fMRI as a means to gain valuable clinical

insight into emotional functioning in an important patient

population.

We did not directly address mood or affective behaviour

in patients with SCI. This area of research is fraught with

confounds, while emotional deficits are clearly subtle in an

experimental setting (Lowe and Carrol, 1985; Chwalisz et al.,

1988; Bermond et al., 1991; Cobos et al., 2002). Individual

differences in emotional sensitivity to bodily reactions may

determine the expression of emotional changes (Wiens et al.,

2000; Critchley et al., 2004) and be overlooked in group

investigations of SCI patients. Our findings highlight poten-

tial neural mechanisms through which abnormalities in

autonomic control and feedback of bodily spinal information

may modulate emotional function. This evidence extends our

understanding of emotional (and autonomic) consequences

of SCI and may thus inform therapeutic strategies and

provision of psychological support for SCI patients.

In conclusion, our study tested for differences between SCI

patients and healthy controls to understand how emotional

processing may be modulated by the relative absence of feed-

back from the body following SCI. Our findings highlight

abnormalities in brain regions implicated in emotional con-

trol and depressive vulnerability and components of the pain

matrix, suggestive of sensitization of central pain regulation.

We also observed a more general impairment in emotion-

related generation of autonomic bodily responses that sug-

gests dysfunction of implicit emotional learning in patients

with SCI. Development of these early findings can inform

programming psychological support to prevent the occur-

rence of emotional dysfunction in SCI.
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