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Classification of Disease Subgroup and Correlation
With Disease Severity Using Magnetic Resonance
Imaging Whole-Brain Histograms: Application to

Magnetization Transfer Ratios and Multiple Sclerosis

J. Dehmeshki*, G. J. Barker, and P. S. Tofts

Abstract—This paper presents a new approach to characterize this causes a reduction in the magnetization of the pool of water
subtle diffuse changes in multiple sclerosis (MS) using histograms protons bound to macromolecules. The effect is to reduce the
derived from magnetization transfer ratio (MTR) images. Two  ,clear magnetic resonance (NMR) signal arising from the

major parts dominate our histogram analysis; 1) Classification of . - .
MTR histograms into control and MS subgroups; 2) Correlation mobile proton pool, by an amount determined by the size of the

with current disability, as measured by the EDSS scale (a measure Pound pool. Measurement of the magnetization transfer ratio
of disease severity). Two data reduction schemes are used to(MTR), thus, provides a measure of the structural integrity
reduce the complexity of the analysis: linear discriminant analysis of tissue. Major reductions in MTR are likely to indicate de-

(LDA) and principal component analysis (PCA). LDA is better  stryctive changes including demyelination and axonal loss, the
for the classification of MTR histograms as it takes into account pathological substrates of symptoms and disability in MS. Less

the between-class variation. By using LDA, the space of MTR L . .
histograms is transformed to the optimal discriminant space for a marked reduction in MTR might also be expected with other

nearest mean classifier. In contrast, PCA is useful for correlation Pathological changes known to occur in MS including oedema,
with current disability as it takes into account the variation within  inflammation and gliosis. MTR, thus, provides a reproducible,
each subgroup in its process. A multiple regression analysis is usedquantitative measure of brain tissue structures and their modifi-
I:/\cl)it%vta#éa(tjeegi]’gem(;jfltldﬁlseag(i)lirt rye'ﬁ‘}“R’A“SOthE?SS?Sp{t'}ZC%prz't Ca%“;ﬁ’g;ieonr:s cation by pathological change, which in MS occurs not only in
of such classification and correlation techniques to magnetic visible lesions but also in the nor_mal appearing tlssues_. There
resonance imaging histogram data. Our MTR histogram analysis have been numerous recent studies which have used histogram
approach give improved classification success and improved analysis to study the global MTR characteristics of brain tissue
correlation compared with methods that use traditional histogram  [1]-[8].

features such as peak height and peak location. Various descriptive measures have previously been used to

Index Terms—Histogram analysis, linear discriminant analysis, describe the MTR histogram and to measure change; these in-
multiple sclerosis, principal component analysis. clude histogram peak height, peak location (i.e., mode), av-
erage MTR value (i.e., mean), 25th percentile, 50th percentile,

I. INTRODUCTION and 75th percentile values [1]-[6]. These measures have been

used for two purposes: to separate controls from MS subgroups
M AGNETIC resonance imaging (MRI) techniques are gy to separate subgroups) using simple students t-tests, and
valuable way to depict the pathology of multiple scletg correlate with [expanded disability status scale (EDSS); a
rosis (MS)in vivo. By characterising the extent and nature gheasure of disability in MS] [9]. The success of any new dis-
pathological change, they offer opportunities to obtain new igase descriptor at these two tasks is influential in the process
sights into the underlying pathogenic mechanisms and a sengjigeciding whether the descriptor is likely to be useful for
tive, objective tool with which to monitor treatment effects.  characterising disease progress and its response to treatment.
Amongst an increasing number of methods applied theggywever the features listed above cannot be optimum for these
has been a major interest, in recent years, in the applicationgb distinct tasks. The former task (separation of groups) re-
magnetization transfer (MT) imaging. This approach adds @fjres features that minimize intra-group variation, while max-
additional radiofrequency pulse to a traditional MR sequenGgiizing inter-group variation. The latter task (correlation) re-
quires features that maximally represent variation within the pa-
Manuscript received March 14, 2001; revised February 14, 2002. This wdilent dataset (whether a subgroup or all the patients). For ex-
lreland: The Associate Editor responsible for Soordinating the. review of tr P1C. I (WO subgroups have the same mean EDSS, one cannot
;ISp?r énd reecommending its puinF::ation was T. TAst.eriskgi]ndicates corre- &PeCt a feature such as peak helght to S|multaneou_sly differ-
sponding author. entiate between the two subgroups and to correlate with EDSS.

*J. Dehmeshki is with the Institute of Neurology, University College Londonln addition, such measures are essentially local descriptors of

Queen Square, WC1N 3BG, London, U.K (e-mail: j.dehmeshki@ion.ac.uk). ot ; ; ;
is currently with Medicsight PLC, 46 Berkeley Square, Mayfair, London WEﬁsmgram characteristics (i.e., only one part of the histogram is

5AT (e-mail: jamshid.dehmeshki@medicsight.com). used); because they are local and are chosen arbitrarily (py Frial
G. J. Barker and P. S. Tofts are with the Institute of Neurology, Universig@nd error), they are unlikely to be optimum as much potential in-

College London, WC1N 3BG, London, U.K. i i i ;
Publisher Item Identifier S 0278.0062(02)04694-3. formation is ignored. We have recently developed an alternative
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TABLE |
CLINICAL CHARACTERISTICS OF THEPATIENTS AMONG THE DIFFERENTMS SUBGROUPS

Number of Mean Age Mean Duration of Mean EDSS

patients disease
Cco 39 35.18 £10.64 - -
BE 11 45.00 = 5.30 15.82% 6.55 241+ 0.76
SP 16 4194 £ 798 16.94 £10.91 697+ 0.95
RR 10 3540 £ 6.27 8.60 + 6.00 3.80% 1.73
PP 46 4543 £ 9.26 8.06 £ 4.71 5.08+ 1.23
MS 83 43.50 £ 8.80 10.86+ 7.65 493+ 1.80

CO = control; BE= benign; SP= secondary progressive; RR relapsing remitting; PR= primary progressive.
Values are givent standard deviations (SDs).

way of analyzing MTR histograms [7], [8] that has two majoprogressive disease (30 male, 16 female)] and 39 healthy
advantages over the existing method. First, it takes into accogontrols (19 male, 20 female).

the entire shape of the histograms, and not only just a few arPatient and control demographics are provided in Table I.
bitrary markers (whatever this is for correlation or classifica-

tion). Second, instead of performing t-tests to compare groups MRI Acquisition

of patients, pa’qents are classified bz?\ged on their |nd|\{|dual MTRMRI was carried out using a 1.5-tesla Signa Echo speed
histograms using a pattern recognition scheme. Using this EP

roach, MS patients can be classified correctly into clinical su orizon system (General Electric, Milwaukee, W1). A dual
P ’ P y pin echo sequence (28 contiguous 5-mm axial slices, TE 30/80

groups of MS. ms, TR 1720 ms, 0.75 NEX, 256256 matrix, field of view

We use linear discriminant analysis (LDA) and prlnC|paé4X 24 cm) was performed with and without presaturation

component analysis (PCA) as data reduction schemes to red Gfses (total acquisition time 20 min). The presaturation pulse

;[Qemc?mfliﬁ'g foofr TIZ r;list?ngral\r/lnfé \/r\lliestSh?;thsh?gt(t)hgifIg:;nn las a Hamming-apodised three lobe sinc pulse with a duration
ore ro ssifying 09 f 16 ms and a peak amplitude of 23.2 giving a nominal

subgroups. The latter is useful for correlation analysis as it takl?gndwidth of 250 Hz, applied 1 kHz from the water resonance
into account the yarlatlon v_wthm each subg_roup. By using the ans with and without presaturation were interleaved for each
two data reduction techniques, we provide a new approag

: . ) .. R period providing precise co-registration.
which uses t_he entire sh_ape_ of the histogram for (_:IassmcatlonMTR was calculated for each pixel by the formii&T'R =
and correlation. Classification is more appropriate than

X . . A . Mo — M;]/My) x 100 percent units (pu) wher&f, and My
simple t-test, since it works on individual paiient data, and Present signal intensities with and without presaturation re-

. X - I
T e e e et e i e Mbcily. TR s messure i unis ofp ypica values ar
pp q pu for white matter, 33 pu for grey matter and O pu for CSF

MRI histogram data. .
Our method involves a number of steps which are describgv(\ﬂhmh has no bound protons).

in more detail in the remainder of this paper. First, a morpholog-

ical technique is described to reduce the partial volume effect of Ill. PREPROCESSING

tissue adjacent to cerebro-spinal fluid (CSF), in order to mink. Partial Volume Reduction

mize the effects of atrophy. The histograms of MTR images arePartiaI volume problems arise because some voxels (size
then normalized to the residual brain tissue volume within th . .

scan slices. Using LDA, the space of the MTR histograms ?330“‘ b1x5 mm) co_ntaln more than one tlssu_e. We are
transformed to the optimal discriminant space. In this space'néer_eSted particularly in those_ that _CO”ta'T‘ a fract|on_ of CSF.
nearest-mean classifier is used to recognize pairwise the diff p_rtlal v_olume voxglshave signal intensity _dependn_wg on
ences between normal controls and the four different subgrod 5 relative pr.opprthns of the voxel occupleq by. different
of MS disease. Finally, a multiple regression analysis is usedtissues. The distribution of MTR values shown in histograms,

evaluate the multiple correlation of principal components (PCLjerefore, contains an unknown error component due to partial
of MS subgroup patients with the degree of disability in MS. volume effects. A two-stage partial volume reduction technique
(described below) was used to remove some partial volume

1. MTR | MAGES voxels from around the sulci and ventricles, which contain
) some CSF, prior to PC and LD analysis. This gave about a 5%
A. Subjects reduction in total number of voxels which could be used in the
The analysis was applied to MTR image data for 83 patiermgst of the analysis.
with MS [11 with benign (two male, nine female), ten with Two stages are sequentially used to reduce the partial volume
relapsing-remitting (four male, six female), 16 with secondasffects at the brain /CSF boundaries from the MTR images.
progressive (three male, 13 female), and 46 with primafhese are thresholding and mathematical morphology.
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Fig. 1. Morphological structures that match the edges of the brain slices.

1) Thresholding: Because partial voxels containing CSF IV. DATA REDUCTION

have “partial” intensities dependent on the amount of CSF_I_h is al ber of bins (d di th luti
contained in their pixels, their intensities are likely to be lower ereis a large number of bins (depending on the resolution

than other tissue (since CSF is O pu). Thresholding thet§) which the MTR values are stored, in our case 500 bins each

images by setting all intensities less than a specified thresh8§lw!dth 0.1 pu) in each MTR _hlstogram compared with the
(in our case, 10 pu) to zero would remove partial volurm atively small number of training data sets (i.e., the number

voxels with those intensities. MS lesions also have lower M patients used to train the classifier). Any data analysis can,

values (typically 20 pu in this image dataset) and, therefm%’erefore, erroneously focus on meaningless characteristics of

the threshold selected was such that voxels in visible Iesidﬂg'v'du?.l tlr}':unlng cas:aj Tsteac: Of. seeThg t:]e_broad ptlcturebtlhat
were not removed by this process. Other workers [l]—[és] essentiaifor geéneral dataanalysis on the training Sets probiem.

have used thresholds in a similar manner; we chose this afte!"DA and PCA are two data reduction schemes designed to

experimentation, selecting an aggressive value to reduce palrt? duce the tcomplexny of ?Inaflﬁsh's' _Tfhe putr_pose Oft thesde pro-
volume effects with CSE. cedures is to compress all of the information contained in a

2) Mathematical Morphology:in order not to remove in- 500-bin histogram into a few values. We show that PCA is useful

ternal voxels, morphological operations [10] were applied J r correlation analysis (see Section VI) as it take into account

. - .fhe variation within each subgroup in its process. In contrast, we
the thresholded images. The application of these morphologl[t T v . -
operations can be expressed as expect LDA to be better for classifying MTR histograms into

different subgroups. We have measured the success of a nearest
mean-group classification applied on LDA spaces.

M(I)=IoL Q)

for MTR image!/, morphological operation o, morphed image V. CLASSIFICATION OFMTR HISTOGRAM
M and structureL. Of the four operations; erosion, dilation, The aim of this section is to show that there are significant
opening and closing; opening is the most suitable as it removgferences in MTR histograms between patients with different
additional outlying pixels/voxels along the slice boundaries arghes of MS disease and healthy controls. There are many avail-
reinforces the boundary edges, i.e., any removed pixels/voxgisie classifiers that could be used for distinguishing between
which should have been part of the boundary are replaced. Tdiferent groups, and for developing rules for classification of
structures used for the morphological operations are shownaMTR histogram of a subject whose group is unknown. These
Fig. 1 and match the eight possible edges of the brain sligg@thods can be divided into two categories; the first category
boundaries. The morphological application of these structurgsgten called “parametric”) assumes knowledge of the under-
to the images in sequence can be expressed as lying class-conditional probability density function (in our case,
probability density function of the MTR histograms for a given
clinical group). In many applications (including our own) these
would have to be estimated from training sets (a set of correctly

The effects of this operation are twofold: internal “missin Iassified_ s;amples). The second.c.ategory (often called *non-
voxels” (i.e., holes in the mask) caused by thresholding & gr.ametrlc )devglppsaset oneC|§|on ruIe; that uses_the data to
filled in; and a one-pixel wide strip of partial volume voxel espmate the deuspr_\ b.oundar.|es dlre(;tly WlthQUt explicit calcu-
associated with boundaries between CSF and brain tissuela@n of“the prObab”'S.t'S’ density fl.JnC'[IOI"]S. This study uses the
removed. second nonparametric” category; the hlstogram space is trans-
formed to the optimal discriminant space (which maximizes the
. o . . separation between the classes in the training set). This discrim-
B. Histogram Normalization and Noise Reduction inant space can be divided into as many regions as there are
A MTR histogram (i.e., MTR voxel intensity frequency) ofclasses. The boundary between them, the decision boundary,
whole brain was calculated for each subject. Each MTR hisan be used to assign an unknown MTR histogram to a clin-
togram was normalized to the residual brain tissue volume mal group. The decision boundaries may be linear or nonlinear.
dividing the number of counts in each sampling bin by the totilere, we use a linear LDA since this is more appropriate as the
number of voxels. Thus, the total area under the histogramnigmber of our samples is small. In general, a LDA is discrimi-
fixed at unity and the normalized histogram is, therefore, a fraant analysis with linear class boundaries using a feature vector
guency distribution. of specified dimension. The feature vector extracted from the
In order to evaluate the effect of noise on our histogram andlistogram using a multiple discriminant transformation, which
ysis, a smoothing filter (moving average) with width of 0.5 pis defined using training data set. A nearest mean classifier, ap-
was applied to the histograms for noise reduction. plied on transformed data spaces, is used for classification.

M(I)=(...(((IoL')oL*)0L?)...0L?®). 2
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A. Linear Discriminant Analysis (LDA) where the vecto@j then form the columns of the matrix

The aim of LDA is to maximize the ratio of the between- |n addition, the individual dimensions of the discriminant
group variance to the within-group variance. LDA is used tdPace created by'each e.|ger.1ve@9.r‘a're now o.rdered. The
create a nearest-mean-group classifier. A brief summary of tptween-class variances in dimensjpfs proportional to the
techniques is given here, but for more detail see [11] and [12]genvalue\;. Assuming a constant within-class variance, the

The aim of LDA is to maximize higher the between class variance of a dimension, the better the
. discriminant capacity of that dimension.
‘Wb‘ |t W9 One additional step can be taken to scale all the within-class
‘Ww‘ - o' W] (3)  variances to uniform size in the discriminant space.

The variance in dimensiop can be computed a_sj,Wij
In (3), W, is the between-class scatter mati#,, is the within- and each dimension can be scaled by replagingith

class scatter matrix, ants the transformation we are searching X ¢
for in order to form the optimal discriminant space. We can de- ¢ = —t— a7
fine the following, withh?* being the histogram of subjegtn - 1/?§Ww?j

subgroup, andn; being the number of subjects in subgraup . . . . . . .
groupr i 9 ) graup giving each new dimension uniform variance. This allows us

pi_ 1 pii to use the nearest-mean group classifier, in discriminant space,
h =— E h 4 - . iy e .

n; since this classifier does not account for differing variances be-

r tween dimensions. The decision as to whether the particular

-1 T . . .
h== Z n;h (5) MTR histogram is allocated to one subgroup or another is based
e on measuring the (Euclidean) distance between its transform
Wi — Z (hm _ Bi) (hf”i _ Bi)t ©) scores (created by LDA) and the centroids of all the subgroups
- - VAN = in discriminant space.
p
W, = Z w? (7) B. ldentifying Regions of Histogram and Images With
i Significant Between-Group Variation. (LDA-Based
i\ (7i 7\ Eigenvectors and Eigenimages
Wy =3"m (&' - 1) (B 1) . ® genimages)

The largest elements of each eigenvector derived from (16)
show which regions of a histogram contribute most to the vari-
ationbetween groupThese regions of significant variation can
also be highlighted in the brain slice using the eigenvectors. This
fvolves mapping the MTR values (intensity values) in the brain
slice images through the eigenvectors and displaying the result.

Equation (4) computes subgroup meamgpsubjects in sub-

groupt. Both the within-class scatté¥,, and the between-class

scattefV;, are analogous to their respective covariance matric
In looking for ¢, we can define

y=¢'h (9) This is described by
Pt = {Qi |E € ithgToup,gi = (/)t/_LZ} Ejlz,y] = |QJ[I[37ay]]| (18)
L1 Z (10) for eigenimagek; and image! (of the individual subject)
4 Cni MQ with points ,y) and using eigenvectar;. Thus, I(x,y) is
g the MTR value at a particular voxel in the image (location
7 :1 ngv (11) (z,v)); v;l{(z,y)] is the value of the eigenvectar; at this
-one MTR value (i.e.,v; indexed by the MTR value). The positive
v . it and negative extrema of the eigenvector as discussed earlier
We _Z Z (g Y ) (g —Y ) (12) will give the significant regions. The absolute value of these
R b ovew ‘ ‘ . give high intensity values for these significant regions and,
W, :Z”i (gZ —g) (gZ —g) . (13) therefore, eigenimages formed from mapping through the
i absolute eigenvector highlight significant regions as being
It follows from this that bright areas.
W =¢' W (14) VI. CORRELATION WITH CURRENTDISEASESEVERITY (EDSS)
Wy, =¢' Wi, (15)

This section demonstrates that MTR histograms provide a

Taking the determinant of a scatter matrix is equivalent @JoPal measure of tissue structural change that corresponds
finding the product of the eigenvalues, which corresponds #PSely to the degree of disability (EDSS) in MS. The EDSS
the product of the variance. As may be seen with referencei$oused by clinicians as a “gold standard” measure of disease
(3), by maximizing this ratio, we are looking for a transforn$everity in MS, although it has several shortcomings. It has
¢ that maximizes the between-class variance with respecta@ly discrete values (0.5-10 in steps of 0.5), with an inter-ob-
the within-class variance. The solution of (3) can be shown §&rver agreement of about 1.0, it is nonlinear, and is biased
correspond to the generalized eigenvectors of toward locomotor disability, largely ignoring other symptoms
such as neuropsychiatric ones. Nonetheless, the acceptance
Wb% = )‘J'Ww?j by the clinical community of new MRI surrogate markers of
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(@) (b)

Fig. 2. The removal of partial volume voxels using thresholding and mathematical morphology. (a) Brain slice with highlighted lesions. (b) pattedte
volume voxels.

disease is largely dependent on being able to show correlatioThen, eigenvalues and eigenvectors = (vy,vs,...,vN)

of these markers with EDSS [13]. We have used a multiptd this matrix are evaluated

linear regression analysis to evaluate the correlation between W= v (20)

the first few PCs and EDSS. PC analysis was used to reduce =

the dimensionality of the MTR histogram, while retaining a¥he m most significant (largest) eigenvalues and their corre-
much of the variation present in the histogram set as possit#ponding eigenvectors are selected to characterize the variation
Therefore, the first few PCs were introduced as global featur@$.each patient group. The percentage variatiBiif (m)) cov-
which represent the most useful information within the MTRred by these: significant components is calculated as follow.

histogram. This multiple correlation analysis is appropriate, as m
the individual PCs were essentially uncorrelated. The F test ;1 Aj
was used to test for the significance of the multiple correlation PV(m) = J;, x 100% (22)
coefficient [14]. SN
j=1
A. Principal Component Analysis (PCA) where N is number of bins in MTR histogram, andg are the

Data reduction can be achieved by extracting the PCs [15]@jfenvalues.
the covariance matrix of MTR histograms, computed by treating The percentage variation allows us to choose the number of
the histograms as replicates aVavariate observationY isthe PCs () to be used for our further MTR histogram analysis.
number of bins in each MTR histogram). The PCs are uncorfdote that the PCg, of each histogram are linear combination
lated with each other and are ordered in decreasing proport(@@t product) of the eigenvectors and the histogram
of variation present in all of the prigina_I_MTR his_to_grams. p=vh=uvhi+voho+- - +vnhn. (22)

PCs capture the characteristic significant variations for each
of the patient groups. These characteristic variations are in the
form of eigenvalues and eigenvectors evaluated from the M'gl
histogram data [15]. The process of evaluating the eigenval Rtogram and Eigenimages)
and eigenvectors is described below. First, covariance matrix of's

Identifying Regions of Histogram and Images With
Ignificant Within-Group Variation. (PC-Based Shading

MTR histogramsh? = {h?, ... h%} is evaluated The largest elements of each eigenvector show which regions
of a histogram contribute most to the variatioithin a group
Wiy = wig = 1 Z (hi _ ﬁk) (hf _ 7”) ) (19) (Notg that this is distinct from thbetween—grogphfferencgs
n highlighted by LDA). These regions can be highlighted in the

brain slice using the PCA eigenvectors in a similar manner to

Where (18).
— 1
hae =— > VIl. RESULTS
| " . A. Partial Volume Reduction
u “n zpzhl Images illustrating the reduction of partial volume effects

using thresholding and mathematical morphology can be seen
andn stands for number of patientghat comprises the training in Fig. 2.
set,k and! are elements in the indeX whereV is the number  An example of a MT image with circled lesions is shown in
of bins in histogram. Fig. 2(a) along with partial volume voxels extracted [Fig. 2(b)]
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Fig. 3. MTR histograms (after CSF removal and normalization) among the five groups; @trol; PP= Primary progressive; RR: Relapsing Remitting;
Be = Benign; SP= Secondary Progressive.

using the technique described in Section IlI-A. The final brain TABLE I
slice image retains all of its internal tissue including Iesion?,UCCngRSCEECFTOSRE'ﬁ’:'FéYTV%;’ES'sC')FL'J‘;gT'SgSg‘?DC’AF giggﬁgfﬁgﬁ No.
but has a “cleaner” boundary as a result of the partial volume

removal. Training Classification
. result

B. Group Mean Histograms Set 1 Set 2 Leave-one-out
Fig. 3 displays the mean MTR histograms for the MS sub- CO BE 43/50
groups and controls, showing clear differences in peak height CO SP 50/55
and location, indicating that there are differences between con- gg I;g ‘712;‘;2

trol and MS subgroups. This shifting of the peak position may

be significantly influenced by pixels that are not in visible le- gg I\S/IS lg(l)ggz

sions but in the normal appearing brain. This shifting of the BE RR 1721

peaks downward and to the left indicates that the MS subgroups BE PP 41/57

in general have a lower fraction of high density tissue (healthy SP RR 18/26

tissue) or, in other words, a higher fraction of low density tissue Sp PP 40/62

(lesion and deteriorated tissue) than the control group does. RR PP 37/56

CO = control; BE= benign; SP= secondary progressive; RR relapsing remitting;

C. Classification Results PP = primary progressive.

Ideally, the classifier should compare a clinically unknown
MTR histogram with a pre-existing database of the MTR highe classifier should not attempt to answer whether the subject
tograms and classify it to one of several possible groups, witthas that particular form of MS).
indication of the degree of certainty of the classification. How- 1) Binary Classification ResultsTable Il shows the result of
ever, total validation of this system requires large databasesadjinary classification of patients into the different groups using
preclassified MTR histograms. It will take some time to con:DA classifier applied on the MTR histograms. To avoid the
struct these databases and consequently obtain a complete“gallection bias” problem, due to the fact that the number of pa-
idation of our automatic system. In the meantime, because tients is not large enough, the leave-one-out method is used for
currently have only a small database, we restrict our classifientalidation [16], [17]. The number of correctly classified samples
a binary distinguishing between pairs of clinical MTR groups, iand the total number of samples involved in each binary com-
order to provide a preliminary test of our system. However a kjparison are given in the Table Il. Using LDA, the success rate
nary or three-way classification may often be sufficient, since, & binary classification was 86%—-92%, depending on which MS
use the system optimally, the clinical question being asked mgsbups were being compared with control.
guide a potential restriction on the number of possible classe®) Comparison of LDA Scores With Conventional Histogram
(e.g., there may be prior information that the possibility of a paRarameters: In order to make a convincing comparison of our
ticular subgroup MS has already been excluded, in which cdd8A score method with conventional histogram parameters,
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Fig. 4. Sample scatter plots for (a) the distribution of discriminant scores (created by MDA analysis) and two established features [(b) peak(bpaerage
MTR] Note that the MDA scores relate to binary comparisons, so that the each control has a score which differs according to what comparison is being made

TABLE Il
PERFORMANCE OFLDA SCORE AND CONVENTIONAL HISTOGRAM PARAMETERS IN SEPARATING MS SUBGROUPS ANDCONTROL. p VALUES FOR STUDENT ¢-TEST
ARE SHOWN. NOTE THAT THE LDA p-VALUES ARE ALWAYS LOWER THAN THOSEACHIEVED BY ANY OTHER PARAMETERS, USUALLY BY A LARGE FACTOR

Conventional features LDA
AVMTR PH PL MTR25% MTR50% MTR75% score
CO-BE 0.02 NS NS 0.03 NS NS 0.0003
CO-SP 0.0001  0.013 NS 0.0001 0.0009 0.004 Se-6
CO-RR 0.0001  0.027  0.008 0.002 0.0001 0.007 0.00002
CO-PP 0.0001 NS 0.002 0.0001 0.0001 0.0001 le-12
BE-SP NS 0.061 NS NS 0.06 0.07 0.001
BE-RR NS NS 0.04 NS NS NS 0.008
BE-PP NS NS 0.018 NS 0.03 0.02 0.002
SP-RR NS NS NS NS NS NS 0.002
SP-PP NS NS NS NS NS NS 0.002
RR-PP NS NS NS NS NS NS 0.004

AVMTR = Average brain MTR; PH= peak height, Pl= peak location: MTR25%, MTR50%, MTR75%: MTR AT THE 25TH, 50TH, 75TH PERCENTAGE; C&: control; BE
= benign; SP= secondary progressive; RR relapsing remitting; PR= primary progressive. NS not significant.

Fig. 4 shows some sample scatter plots for the distribution fadation) and two established features (peak height and average
discriminant scores (created by LDA analysis in binary clas$¥dTR). This figure clearly shows the power of discriminant anal-
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Fig. 6. MDA-Shaded histograms for binary comparisons between each MS subgroup and controls.

ysis in differentiating subgroups using their MTR characteris- 3) LDA-Based Eigenvector and Eigenimagekhe eigen-

tics. It is apparent also that conventional measures provide avactors created by LDA analysis contain information from the
less clear differentiation. Student t-tests were also carried autiole histogram, in a way that has been optimized to place
between some subgroups to compare our LDA score methodst emphasis on those parts that contribute most to separating
with conventional histogram parameters (peak height and dkie groups. Fig. 5 shows the LDA eigenvectors derived from
erage MTR value) (Table Ill). We investigated whether the LDAinary comparison between MS group and control group, along
score would provide better separation between the groups (iveith the histogram of a typical patient from that group. The
lower p-values). In separating the different clinical subgroupgositive and negative extrema of the eigenvectors are the region
LDA was always better then conventional MTR histogram pa&f that group’s histograms that contribute the most to group
rameters. separation (i.e., between each MS subgroup and control). Fig. 6
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Control and relapsing remitting Control and secondary progressive

Fig. 7. MDA Eigen images relating to binary comparisons between each MS subgroup and control. Bright areas correspond to tissues whose ihtensities in
original MTR images fall within the ranges which best discriminate the groups. A typical image from each subgroup is mapped through the eigen&dtor (F
produce an intensity dependent on the amplitude of the eigenvector at that value of MTR. The gray scale is arbitrary.

shows shaded histograms which qualitatively illustrate these4) Effects of Age and Atrophyin a previous study [19]
significant regions with dark regions contributing the least twe measured the effect of age on the mean MTR of normal
group separation (between each MS subgroup and control) avidte matter. The reduction is extremely small (about 0.23
bright regions contributing the most. pu/decade); this is too small to explain the significant re-
Fig. 7 shows eigenimages [see (18)] which highlight théuctions we saw for MS. In addition we divided the normal
pixels in the original MTR image whose intensity fall withingroup into the youngest and oldest halves (mean ages 25.78
regions of the histogram corresponding to significant diffef+5.0 SD] and 44.1045.5 SD] years respectively). LDA
ences between the groups; regions that contribute most to Wees applied in an attempt to classify the subjects from their
separation between the two groups are very bright while thdsistograms. The success rate was 23/39 (i.e., 59%); if the
with little or no contribution are dark. It is interesting to notegroups overlapped completely we would expect a success rate
the distribution pattern of the bright regions in the primargf 50% from chance. Thus, we conclude that LDA is unlikely
progressive eigenimages; the variations seen over the whiée significantly influenced by age in this study.
images may reflect the more diffuse nature of the disease
in these patients [18]. Note that the elggnvector hgs beSF‘ Correlation Result: Multiple Regression Analysis (EDSS)
calculated globally, and shows areaspotentialabnormality; Results
thus, it is not surprising that some tissue that is highlighted,
such as the choroids plexus, could be normal and still caught inOther workers [1]-[6] have previously reported good correla-
the range of MTR values that have most variation. tion of histogram parameters such as the peak height with EDSS.
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Fig. 8. PCA eigenvector. (a) Relapsing onset (RO) Histogram along with first two PC eigenvector. (b) Primary progressive group histogram atstiyweith f

PC eigenvectors. Note that (unlike the MDA example above, which relates to a binary comparison of groups) we are here extracting informatiarbfeats all s
within a particular group, so multiple eigenvectors can be created (limited only by the number of bins in the histogram). Here, we display thénfiost two
significant) eigenvectors.

TABLE IV tween the MTR histogram and disability in the two subgroups
RESULTS OFCORRELATION ANALYSIS BETWEEN EACH SUBGROUPS ANDEDSS (PP RO)

1) PCA-Based Eigenvector and Eigenimagésg. 8 shows

. . RO s the first two eigenvectors for each group, along with the
AVMIR NS NS -0.25(p=0.01) histogram of a typical patient from that group. The positive
PH' NS -041(p=0.01)  -0.25(p=0.01) and negative extrema of the eigenvectors are the regions of that
PL" NS NS NS group’s histograms that contribute the most to its variation.
MTR25%" NS L0.46(p=0.004)  -0.25(p=0.02) F.Ig. 8 shows' that Igwlrleglons of the h|§tograms in general

. did not contribute significantly to the variation in the MTR
MTRS0% NS 034(p=003)  -021(p=0.04)  pistogram data within an MS subgroup. Shaded histograms
MTR75%" NS -0.35(p=0.03)  -0.25(p=0.02)  qualitatively illustrate these significant regions with dark

PCs (Multi)" 0.40 (p<0.025)  0.51 (p<0.005)  0.30 (p<0.01)  regions contributing the least to within group variation and
bright regions contributing the most (Fig. 9).

AVMTR = avrage brain MTR; PH= peak height, PL= peak location: MTR25%,
MTR50%, MTR75%:= MTR AT THE 25TH, 50TH, 75TH PERCENTAGE. P& pri-
mary progressive; RR= relapsing remitting; BE= benign; SP= secondary progressive; VIII. CONCLUSION

RO = RR + BE + Sp. (x) traditional MTR parameters: the spearman’s rank correlation . . .
analysis was used:H) PCs: the f test is used for the significance of the multiple correlation ) This SFUdY e.xplores and demonstrates the appllcatloln of the
coefficient. NS= not significant. Linear Discriminant transform and PCA to MTR images in MS,

and has shown that these techniques may be used to characterize
It is to be expected that any results obtained using previous grious subtypes of MS. This alternative way of analyzing MTR

rameterizations may be less optimal than results obtained us gograms hgs two major advanFages overthg existing methods.
PC analysis [using the first three PCs as these cover 90% of {HEt it takes into account the entire shape of histograms, and not
variability based on (21)], which is more general and not r(g_nlyjustrflfew arbltraryfeatgres (e.g., peak location and height).
stricted to this subset of parameterizations. However, it wouRECONd, instead of performing t-tests to compare groups of pa-
be interesting to compare such measures with those providiédits: Patients are classified based on their individual MTR his-
by PCA. Therefore, a Spearman’s rank correlation analysis wegrams using LDA. Using this method, MS patients could be
used to evaluate the relationship between each of the traditiofi@ssified reasonably accurately into clinical subgroups of MS.
MTR parameters (peak height, peak location, average MTHRI measurements are increasingly being used as surrogate
MTR at the 25th, 50th, and 75th percentile) and EDSS. Table [arkers in drug trials; this work implies that LDA and PCA-de-
shows the correlation between EDSS and traditional MTR hidved features will be more sensitive and specific at predicting
togram parameters for all patients and for the PP subgroups &#logical and clinical change than existing features are.
relapsing onset (RO) (because of small numbers within the BE LDA of MTR histograms has been shown to provide effective
RR, and SP groups it was considered appropriate to combitassification of disease subgroups and controls. Even a perfect
them into the single larger RO group for disability correlation)lassifier might not achieve 100% success, since we do not have
In the PP group, there was no correlation between individualperfect ‘Gold Standard’ description of the class of each sub-
conventional MTR parameters and EDSS, but using multipject; the clinical subgroups may not have been assigned com-
correlation analysis there was a significant correlation with theetely correctly, and some of the patients may even be in tran-
PCs of the histogramr(= 0.40). In the RO group, moderate sition between groups.

associations were seen between a number of conventional MTRPCA has been shown to provide good correlation per-
parameters and EDSS, the strongest being with the 25th plefmance relating MTR histogram features to disability, as
centile MTR ¢ = —0.46). However a still stronger correlation quantified using the EDSS. This has been shown by the good
was seen with the PCs (& 0.51). It can be seen from Table IV correlation between the PCs and EDSS. The EDSS scale is
that multiple PC analysis revealed more robust correlation kg-nonlinear categorical (discontinuous) scale that combines
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several aspects of disability, thus, it would be very surprising if [2]
we achieved 100% correlation [13].

The analysis methods used here have been chosen to be op-
timal for correlation and classification; they make no attempt to
give a biological interpretation of the data. Indeed this is a well- 3]
known characteristic of PCA—optimal correlation is obtained
but interpretation is not advanced. Nonetheless, the eigenvector,
and the consequent images, do give an indication of the spatiatlll]
location of the biological abnormalities (variation).

The proposed approaches to MTR histogram data appear
robust and offer relevant information that should allow moni- 5
toring of MS in multicenter studies. For this to be implemented
successfully, retraining of the method will be initially required
using control and patients subjects studied at the differentg)
sites. However, this offers new potential for standardization
of quantitative data. As such, this technique deserves further
investigation. 7]
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