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ELLIPTIC RECONSTRUCTION

AND A POSTERIORI ERROR ESTIMATES

FOR FULLY DISCRETE LINEAR PARABOLIC PROBLEMS

OMAR LAKKIS AND CHARALAMBOS MAKRIDAKIS

Abstract. We derive a posteriori error estimates for fully discrete approxi-
mations to solutions of linear parabolic equations. The space discretization
uses finite element spaces that are allowed to change in time. Our main tool is
an appropriate adaptation of the elliptic reconstruction technique, introduced
by Makridakis and Nochetto. We derive novel a posteriori estimates for the
norms of L∞(0, T ; L2(Ω)) and the higher order spaces, L∞(0, T ; H1(Ω)) and
H1(0, T ; L2(Ω)), with optimal orders of convergence.

1. Introduction

Adaptive mesh refinement methods for variational problems have been the object
of intense study in recent years. The main objective of these methods is to reduce
the computational cost in the numerical approximation of PDE solutions. Their
usefulness is especially apparent when the exact solution has strong, geometrically
localized variations or exhibits singularities. A posteriori estimates have proved to
be a particularly successful mathematical tool in devising efficient adaptive versions
of many numerical schemes. In addition, a posteriori estimates provide a new point
of view in the theoretical investigation of a scheme’s behavior. This is especially
important for problems where “reasonable discretizations” do not always perform
as expected.

In the context of finite element methods (FEM), the theory of a posteriori esti-
mates for linear stationary problems is by now rather mature [2, 30, and references].
The situation for nonlinear and time dependent problems, however, has not yet been
as thoroughly explored. Even for the linear parabolic equation, in spite of impor-
tant advances made in the early ’90s [14, 15] and subsequent ones [6, 9, 27], many
issues have yet to be tackled. Such issues are, for instance, the derivation of optimal
order estimates in various norms via the energy or other direct methods, the use of
nonresidual based estimators to control the elliptic part of the error, and estimates
for various time discretization methods.

In this paper we address some of these issues in the context of fully discrete
linear parabolic problems where mesh modification in time might occur—as it is
natural to expect in adaptive schemes for time-dependent problems. Our main tool
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in deriving the estimates is an appropriate adaptation to the fully discrete case of
the elliptic reconstruction technique introduced by Makridakis and Nochetto for
the model problem of semidiscrete finite element approximations [24]. A main
characteristic of this approach, which contrasts with other direct techniques found
in the literature, is that we can virtually use any available a posteriori estimates for
elliptic equations to control the main part of the spatial error. Thus one can take
full advantage of a well-established theory, instead of trying to adapt the estimates
case by case. This follows from the fact that, in deriving the estimates, instead
of comparing directly the exact solution with the numerical one, we construct an
appropriate auxiliary function that fulfills two fundamental properties: (i) we know
how to estimate its difference to the numerical solution via known a posteriori
results, and (ii) it satisfies a variant of the original PDE with a right-hand side that
can be controlled a posteriori in an optimal way.

In this paper, we combine the elliptic reconstruction technique with a posteriori
energy estimates for the parabolic equation. Although residual-based a posteriori
estimates using energy methods have been established [6, 9, 27], it is not imme-
diately known how to use elliptic estimates other than the residual-based ones in
them. For comparison’s sake, in this paper we will derive residual based energy
estimates; but we emphasize the fact that the techniques presented in this paper
can be relatively easily used to derive estimators for parabolic problems where the
“elliptic part” of the error is controlled by nonresidual type estimators, such as
estimators based on the solution of local subproblems, for instance.

The main new results in this paper are optimal order a posteriori estimates, via
energy techniques, in the following spaces (anticipating the notation that we will
introduce in §1.1):

(a) L∞(0, T ; L2(Ω)),
(b) L∞(0, T ; H1

0(Ω)) and H1(0, T ; L2(Ω)).
In particular, we successfully address the open problem of obtaining optimal a
posteriori error bounds via energy methods in L∞(0, T ; L2(Ω)) for fully discrete
schemes. As a by-product we also recover known results, such as optimal order
estimates for the L2(0, T ; H1

0(Ω)) norm.
Energy methods have been used by other authors for Backward Euler fully dis-

crete approximations to parabolic problems [27, 6, 9]. While these results are of
optimal order in L2(0, T ; H1(Ω)), they are not so in L∞(0, T ; L2(Ω)). Picasso [27]
and Zhiming Chen and Feng Jia [9] manage to bound, at each time step, the spatial
indicators by the error (lower bound); their technique is based on the “bubble func-
tions” technique introduced by Verfürth for elliptic problems [30]. Also Bergam,
Bernardi and Mghazli [6] have established lower bounds, and their estimators have
the additional feature of decoupling the space and the time discretization errors.

We stress that for our analysis we do not require any extraneous conditions on
the variation of the meshes and the corresponding finite element spaces, between
successive time-steps, that may be hard or impossible to enforce in practical com-
putations. In fact, our analysis allows us to even obtain estimates in the higher
order energy norms (as mentioned in (1) above). The direct approach, which works
well in deriving the lower order energy estimates [27, 9], will not work here, unless
one imposes severe mesh conditions or makes quite strong a priori assumptions.
Our approach permits to override this difficulty; see §4.10 for a technical discussion
about this point.
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Note that the elliptic reconstruction approach is not restricted by the method
used for the stability analysis—in this case it being the energy method. Indeed, in
a different paper [20] we show how the elliptic reconstruction can be used in the
context of duality techniques for parabolic equations, that were first employed by
Eriksson and Johnson [14] to derive a posteriori error estimates for the discontinuous
Galerkin schemes. The results therein are of optimal order, up to a logarithmic
factor, in L∞(0, T ; L2(Ω)), and the Backward Euler scheme—which we study here—
is the lowest order member in this class of methods.

Various other a posteriori estimates for semidiscrete and fully discrete approxi-
mations to linear and nonlinear parabolic problems in various norms are found in
the literature [1, 4, 5, 11, 16, 25, 26, 31, 32]. In particular, Babuška, Feistauer, and
Šoĺın [4] have derived estimates in L2(0, T ; L2(Ω)); see also Babuška et al. [1, 5].
Verfürth [31, 32] showed estimates in Lr(0, T ; Lρ(Ω)), with 1 < r, ρ < ∞ for certain
fully discrete approximations of certain quasilinear parabolic equations. Lakkis and
Nochetto [21] used ad-hoc geometric energy norms to derive conditional a posteriori
estimates for quasilinear equations such as the mean curvature flow of graphs. De
Frutos and Novo [11] proved a posteriori error estimates of the p-version of space
discrete schemes for parabolic equations; a similar function to the elliptic recon-
struction and its improved approximation properties is used by Garćıa-Archilla and
Titi [17]. Finally, for applications of suitable reconstructions to time discretizations
of various type, we refer to [3, 23].

1.1. Problem setting and notation. Let us now focus our discourse by intro-
ducing the fully discrete scheme which will be the object of our analysis.

We start with the exact problem. Let Ω be a bounded domain of the Euclidean
space R

d, d ∈ Z
+ and T ∈ R

+. We assume throughout the paper that Ω is a
convex polygonal domain, noting that our results could be extended to cover certain
nonconvex domains, such as domains with reentrant corners in d = 2, by using
weighted a posteriori estimates for elliptic problems [22]. Since the difficulties in the
analysis below in the case of other boundaries are mainly coming from the elliptic
part of the error, the reader interested in a posteriori error estimates for curved
boundaries is referred to Dörfler and Rumpf [12]. We will consider the problem of
finding a finite element approximation of the solution u ∈ L∞(0, T ; H1

0(Ω)), with
∂tu ∈ L2(0, T ; L2(Ω)), to the linear parabolic problem

〈∂tu, φ〉 + a (u, φ) = 〈f, φ〉 , ∀φ ∈ H1
0(Ω),

and u(0) = g,
(1)

where f ∈ L2(Ω× (0, T )) and g ∈ H1
0(Ω), and a is a bilinear form on H1

0(Ω) defined
by

(2) a (v, ψ) := 〈A∇v,∇ψ〉 , ∀v, ψ ∈ H1
0(Ω),

where “∇” denotes the spatial gradient and the matrix A ∈ L∞(Ω)d×d is such that

a (ψ, φ) ≤ β |ψ|1 |φ|1 , ∀φ, ψ ∈ H1
0(Ω),(3)

a (φ, φ) ≥ α |φ|21 , ∀φ ∈ H1
0(Ω),(4)

with α, β ∈ R
+. Whenever not stated explicitly, we assume that the data f, g,A

and the solution u of the above problem are sufficiently regular for our purposes.
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Here and subsequently, for a given Lebesgue measurable set D ⊂ R
d, we use the

common notation

〈φ, ψ〉D :=

∫

D

φ(x)ψ(x) dµ(x),(5)

‖φ‖D := ‖φ‖L2(D) := 〈φ, φ〉1/2
D ,(6)

|φ|k,D :=
∥

∥ Dkφ
∥

∥

D
, for k ∈ Z

+ (with D1φ := ∇φ, etc.),(7)

‖φ‖k,D :=

(

‖φ‖2
D +

k
∑

j=1

|φ|2j,D
)1/2

, for k ∈ Z
+,(8)

where dµ(x) is either the Lebesgue measure element dx, if D is has positive such
measure, or the (d − 1)-dimensional (Hausdorff) measure ds(x), if D has zero
Lebesgue measure. In many instances, in order to compress notation and when
there is no danger of engendering confusion, we drop altogether the “differential”
symbol from integrals; this applies also to integrals in time. We use the standard
function spaces L2(D), Hk(D), Hk

0(D) and denote by H−1(D) the dual space of
H1

0(D). We omit the subscript D whenever D = Ω. We denote the Poincaré
constant relative to Ω by C2,1 and, in view of the Poincaré inequality, we consider

|·|1 to be the norm on H1
0(Ω). The energy norm |·|a is defined through

(9) |φ|a := a (φ, φ)
1/2

, ∀φ ∈ H1
0(Ω).

It is equivalent to the norm |·|1 on the space H1
0(Ω), in view of (3) and (4). In

particular, we will often use the following inequality:

(10) |φ|1 ≤ α−1/2 |φ|a , ∀φ ∈ H1
0(Ω).

In order to discretize the time variable in (1), we introduce the partition 0 = t0 <
t1 < · · · < tN = T of [0, T ]. Let In := (tn−1, tn], and we denote by τn := tn − tn−1

the time steps. We will consistently use the following “superscript convention”:
whenever a function depends on time, e.g., f(x, t), and the time is fixed to be
t = tn, n ∈ [0 : N ], we denote it by fn(x). Moreover, we often drop the space
dependence explicitly, e.g., we write f(t) and fn with reference to the functions in
the previous sentence.

We use a standard FEM to discretize the space variable. Let (Tn)n∈[0:N ] be
a family of conforming triangulations of the domain Ω [8, 10]. These triangula-
tions are allowed to change arbitrarily from a timestep to the next, as long as they
maintain some very mild compatibility requirements. Our use of the term “com-
patibility” is precisely defined in Appendix A; it is an extremely mild requirement
which is easily implemented in practice.

For each given triangulation Tn, we denote by hn its meshsize function defined
as

(11) hn(x) = diam(K), where K ∈ Tn and x ∈ K,

for all x ∈ Ω. We also denote by Sn the set of internal sides of Tn. These are
edges in d = 2 or faces in d = 3 that are contained in the interior of Ω. The interior
mesh of edges, Σn, is then defined as the union of all internal sides

⋃

E∈Sn
E. We

associate with these triangulations the finite element spaces:

Ṽ
n := {φ ∈ H1(Ω) : ∀K ∈ Tn : φ|K ∈ P

ℓ} and V
n := Ṽ

n ∩ H1
0(Ω),(12)
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where P
ℓ is the space of polynomials in d variables of degree at most ℓ ∈ Z

+.

Given two successive compatible triangulations Tn−1 and Tn, we define ĥn :=

max (hn, hn−1) (see Appendix A and B). We will also use the sets Σ̂n := Σn∩Σn−1

and Σ̌n := Σn ∪ Σn−1. Similarly, in §4, we will use
ˆ̂
Σn := Σn ∩ Σn−1 ∩ Σn+1,

ˇ̌Σn := Σn ∪ Σn−1 ∪ Σn+1,
ˆ̂
hn := maxi∈[−1:1] hn+i.

1.2. Definition (fully discrete scheme). The standard backward Euler–Galerkin
method for the discretization of problem (1) associated with the finite element
spaces V

n, leads to the following recursive fully discrete scheme:

let U0 := I0u(0),

for each n ∈ [1 : N ] find Un ∈ V
n such that

τ−1
n

〈

Un − Un−1, φn

〉

+ a (Un, φn) = 〈fn, φn〉 , ∀φn ∈ V
n.

(13)

Here the operator I0 is some suitable interpolation or projection operator from
H1

0(Ω), or L2(Ω), into V
0.

In the sequel we shall use the continuous piecewise linear interpolant in time of
the sequence (tn, Un) which we denote by U(t) for t ∈ [0, T ] (see §2.4 for the precise
definition).

1.3. A posteriori estimates and reconstruction operators. Our method con-
sists in associating with U an auxiliary function ω : [0, T ] → H1

0(Ω), in such a way
that the total error

(14) e := U − u

can be split as

e = ρ − ǫ,(15)

where

ǫ := ω − U, ρ := ω − u(16)

satisfy the following two properties:
1. The error ǫ is easily controlled by a posteriori quantities of optimal order.
2. The error ρ satisfies a modification of the original PDE whose right-hand

side depends on ǫ and U . This right-hand side can be bounded a posteriori in an
optimal way.

In order to successfully apply this idea we shall choose the function ω to be a
suitable reconstruction of U . The choice of this reconstruction is dictated by the
elliptic operator at hand, and the precise definition of this elliptic reconstruction
process is given in §2.2. We reap the benefits of our choice of ω by deriving optimal
order estimators for the error measured not only in L2(0, T ; H1(Ω)), but also in
L∞(0, T ; L2(Ω)), as well as in L∞(0, T ; H1

0(Ω)) and H1(0, T ; L2(Ω)). All the effects
of mesh modification will be reflected in the right-hand side of the equation for
ρ. In addition, our choosing ω as the elliptic reconstruction will have the effect of
separating the spatial approximation error from the time approximation as much
as possible. We show that the spatial approximation is embodied in ǫ which will
be referred to as the elliptic reconstruction error, whereas the time approximation
error information is conveyed by ρ, a fact that motivates the name main parabolic
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error for this term. The splitting (15)–(16) of the error is already apparent in the
spatially discrete case [24].

The PDE satisfied by ρ can be written in the following variational form.

1.4. Lemma (Main parabolic error equation). For each n ∈ [1 : N ], and for each
φ ∈ H1

0(Ω),

〈∂tρ, φ〉 + a (ρ, φ) = 〈∂tǫ, φ〉 + a (ω − ωn, φ)

+ 〈Pn
0 fn − f, φ〉 + τ−1

n

〈

Pn
0 Un−1 − Un−1, φ

〉

on In.
(17)

Here Pn
0 denotes the L2-projection into Ṽ

n.

A proof of this result is given in §2.6.

1.5. Deriving the estimates: A general overview. Identity (17) along with
the properties of the elliptic reconstruction will allow us to obtain a posteriori error
estimates in different norms. We start from the aforementioned splitting of the
error

(18) ‖e(t)‖X ≤ ‖ǫ(t)‖X + ‖ρ(t)‖X ,

where X is any suitable space of functions on Ω. The choice of X depends on
the applications that are in mind, and on the ability to bound the terms on the
right-hand side. In this respect, the following two observations are fundamental.

1. The first term, ‖ǫ(t)‖X = ‖ω(t) − U(t)‖X , can be bounded by appropriate
a posteriori error estimates for elliptic problems. To see why this is possible we first
observe that, at a fixed time tn, the elliptic reconstruction, ωn = ω(tn), is defined
so that it is the exact solution of the elliptic problem

(19) find v ∈ H1
0(Ω) s.t. − div (A∇v) = AnUn,

where AnUn is the result of the discrete elliptic operator An on Un with respect to
the subspace V

n (see §2.1 for the detailed definitions).
Second, we observe that Un is the finite element solution in V

n of the same
elliptic problem (19). Note that, while Anv is not straightforward to compute for a
general v ∈ V

n, it becomes so when v = Un. In fact, the “right-hand side” AnUn

of the elliptic problem can be expressed via known terms, by using the discrete
parabolic equation (see (41) further), as follows

(20) AnUn = Pn
0 fn −

(

Un − Pn
0 Un−1

)

τ−1
n .

Therefore, to obtain an a posteriori estimate for this term, it is enough to as-
sume that a posteriori error estimates for problem (19) are provided for the X-norm,
through estimator functions that depend on Un, AnUn, the triangulation parame-
ters and the polynomial degree—many such estimator functions are available from
standard a posteriori error analysis for elliptic problems [2, 7, 8, 30, e.g.]. Note that
‖ǫ(t)‖X exclusively contains spatial error effects which motivates our choice of the
name “elliptic reconstruction error” for ǫ.

2. The second term, ‖ρ(t)‖X = ‖ω(t) − u(t)‖X , is estimated by an appropriate
use of (17) and techniques inspired from the analysis of parabolic PDE’s. In this
paper we will illustrate the use of energy methods, leaving the study of duality
methods to a subsequent paper [20]. The right-hand side suggests that the resulting
estimators will include quantities measuring the space error, the time error, the
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variation of f , and the effect of mesh changes with respect to n. Since all the time
effects are included in this term, we refer to ρ as the “main parabolic error”.

1.6. Comparison with the direct approach. Identity (17) can be appreciated
if we compare it with the error equation that one obtains from a direct comparison
of u and U . In the direct approach the error relation is given by

(21) 〈∂te, φ〉 + a (e, φ) = 〈∂tU, φ〉 + a (Un, φ) − 〈f, φ〉 + a (U − Un, φ) .

Using the fact that U is the solution of the fully discrete scheme, one sees that

〈∂te, φ〉 + a (e, φ) = 〈∂tU, φ − φn〉 + a (Un, φ − φn)

− 〈fn, φ − φn〉
− 〈f − fn, φ〉 + a (U − Un, φ) , for φn ∈ V

n.

(22)

A comparison between (17) and (22) demonstrates the two main differences in
the corresponding approaches. Equation (22) has all the information from the
numerical scheme “built-in”, in particular it satisfies the Galerkin orthogonality
property; therefore the error (and stability) analysis is dictated by the choices of
both φ and φn. In the case of elliptic reconstruction, the Galerkin orthogonality
property is not used explicitly in the analysis. The fact that U is a solution of the
discrete scheme is used only implicitly through the reconstruction ω: it is used first
to estimate ǫ and ∂tǫ (this estimate comes “for free” from the elliptic a posteriori
theory precisely because of the definition of ω); second, it is used to derive (17),
which then allows us to estimate ‖ρ‖X and ‖∂tρ‖X , in terms of time and data
approximation estimators, and spatial estimators dictated only by ǫ.

A second important difference between these two approaches is the presence of
the term a (Un, φ − φn), which is suboptimal in L2(Ω), in (22). Because of this
term, the direct approach fails to provide optimal order a posteriori estimators in
L∞(0, T ; L2(Ω)), [9, 27]; the same problem can appear also in a different context
[6]. On another hand, it is interesting to note that, the presence of this term is also
the reason why the direct approach fails to lead satisfactory a posteriori results in
the higher order energy norms; see §4.10 for the details.

Concerning the time discretization error, note that the term a (U − Un, φ) in
(22) is very similar to the term a (ω − ωn, φ) in (17).

1.7. Outline. The rest of the paper is organized as follows. We introduce the
necessary discrete and continuous operators in order to define the reconstruction ω
in §2 and state some of its basic properties needed in the sequel.

In §3 we provide the a posteriori analysis in L∞(0, T ; L2). The estimators in
Theorem 3.2 are of optimal order and residual type. We carry out the analysis
with a particular class of “elliptic” estimators in mind. As mentioned earlier, other
choices are possible, but in order to use them, the arguments related to the terms
involving mesh-change effects must be appropriately adapted.

Next, in §4, we show a posteriori estimates of optimal order in the higher order
energy norms L∞(0, T ; H1

0(Ω)) and H1(0, T ; L2(Ω)). This case is of particular inter-
est as a simplified situation for a class of nonlinear degenerate parabolic problems
where lower order energy estimates are not available [21]. In this section, we also
discuss briefly why the direct approach cannot be applied successfully in this case
(§4.10).
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Finally, in §5 we complement the theory with some numerical experimentation.
In particular, we show that the estimators derived in §3 have the expected, optimal,
experimental order of convergence in the numerical test.

In the Appendix we collect some useful facts about the concept of compatible
triangulations in §A, elliptic regularity inequalities in §B.1, interpolation operators
and inequalities in §§B.2–B.3, and our convention on the constants labeling in §B.4.

We refer the reader interested in the practical aspects of our estimators to a
forthcoming paper in which detailed numerical experiments, including comparisons
with estimators derived by duality methods, as well as numerical investigation of
the effect of mesh modification via a posteriori estimators, are included [20].

2. The elliptic reconstruction: Definition and preliminaries

We introduce basic tools and the elliptic reconstruction. Although the definitions
in the first part of this section are independent of the time discretization and could
be applied to any finite element space, we still use the space V

n defined in the
Introduction.

2.1. Definition (Representation of the elliptic operator, discrete elliptic operator,
projections). Suppose a function v ∈ V

n. The bilinear form can then be represented
as

(23) a (v, φ) =
∑

K∈Tn

〈− div (A∇v) , φ〉K +
∑

E∈Sn

〈J [v], φ〉E , ∀φ ∈ H1
0(Ω),

where J [v] is the spatial jump of the field A∇v across an element side E ∈ Sn

defined as

(24) J [v]|E (x) = �A∇v�E (x) := lim
ε→0

(A∇v(x + ενE) − A∇v(x − ενE)) · νE ,

where νE is a choice (which does not influence this definition) between the two
possible normal vectors to E at the point x.

Since we use the representation (23) quite often, we now introduce a practical
notation that makes it shorter and thus easier to manipulate in convoluted compu-
tations. For a finite element function, v ∈ V

n (or more generally for any Lipschitz
continuous function v that is C2(int(K)), for each K ∈ Tn), denote by Aelv the reg-
ular part of the distribution − div (A∇v), which is defined as a piecewise continuous
function such that

(25) 〈Aelv, φ〉 =
∑

K∈Tn

〈− div (A∇v) , φ〉 , ∀φ ∈ H1
0(Ω).

The operator Ael is sometimes referred to as the elementwise elliptic operator, as it
is the result of the application of − div (A∇·) only on the interior of each element
K ∈ Tn. This observation justifies our subscript in the notation. We shall write
the representation (23) in the shorter form,

(26) a (v, φ) = 〈Aelv, φ〉 + 〈J [v], φ〉Σn
, ∀φ ∈ H1

0(Ω).

Let us now recall some more basic definitions that we will be using. The discrete
elliptic operator associated with the bilinear form a and the finite element space V

n

is the operator An : Ṽ
n → Ṽ

n defined by

(27) 〈Anv, φn〉 = a (v, φn) , ∀φn ∈ Ṽ
n,
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for v ∈ V
n. The L2-projection operator is defined as the operator Pn

0 : L2(Ω) → Ṽ
n

such that

(28) 〈Pn
0 v, φn〉 = 〈v, φn〉 , ∀φn ∈ Ṽ

n,

for v ∈ L2(Ω); and the elliptic projection operator Pn
1 : H1

0(Ω) → V
n is defined by

(29) a (Pn
1 v, φn) = a (v, φn) , ∀φn ∈ V

n.

The elliptic reconstruction, which we define next, is a partial right inverse of the
elliptic projection [24]. (We note that similar operators have been introduced by
Heywood and Rannacher [18, 19] and Garćıa-Archilla and Titi [17].)

2.2. Definition (Elliptic reconstruction). We define the elliptic reconstruction op-
erator associated with the bilinear form a and the finite element space V

n to be the
unique operator Rn : V

n → H1
0(Ω) such that

(30) a (Rnv, φ) = 〈Anv, φ〉 , ∀φ ∈ H1
0(Ω),

for a given v ∈ V
n. The function Rnv is referred to as the elliptic reconstruction.

The single most crucial property of Rn is that v − Rnv is orthogonal, with
respect to a, to V

n:

(31) a (v − Rnv, φn) = 0, ∀φn ∈ V
n.

From this property and recalling that Ω is assumed to be a convex polygonal, we
obtain the following result whose proof uses standard techniques in a posteriori
error estimates for elliptic problems [2, 7, 30].

2.3. Lemma (Elliptic reconstruction error estimates). For any v ∈ V
n the following

estimates hold true:

|Rnv − v|1 ≤ C3,1

α
‖(Aelv − Anv)hn‖ +

C5,1

α

∥

∥

∥
J [v]h1/2

n

∥

∥

∥

Σn

,(32)

‖Rnv − v‖ ≤ C6,2

∥

∥(Aelv − Anv)h2
n

∥

∥ + C10,2

∥

∥

∥
J [v]h3/2

n

∥

∥

∥

Σn

,(33)

where the constants Ck,j are defined in Appendix B.

2.4. Definition (Discrete time extensions and derivatives). Given any discrete
function of time—that is, a sequence of values associated with each time node
tn—e.g., (Un), we associate to it the continuous function of time defined by the
Lipschitz continuous piecewise linear interpolation, e.g.,

(34) U(t) := ln−1(t)U
n−1 + ln(t)Un, for t ∈ In and n ∈ [1 : N ];

where the functions l are the hat functions defined by

(35) ln(t) :=
t − tn−1

τn
1In

(t) − t − tn+1

τn+1
1In+1

(t), for t ∈ [0, T ] and n ∈ [0 : N ],

with 1X denoting the characteristic function of the set X. The time-dependent
elliptic reconstruction of U is the function

(36) ω(t) := ln−1(t)R
n−1Un−1 + ln(t)RnUn, for t ∈ In and n ∈ [1 : N ].

We observe that ω is a Lipschitz continuous function of time.
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We introduce the following definitions whose purpose is to make notation more
compact:

(a) Discrete (backward) time derivative

(37) ∂Un :=
Un − Un−1

τn
,

Note that ∂Un = ∂tU(t), for all t ∈ In, hence we can think of ∂Un as being the value
of a discrete function at tn. We thus define ∂U as the piecewise linear extension of
(∂Un)n, as we did with U .

(b) Discrete (centered) second time derivative

(38) ∂2Un :=
∂Un+1 − ∂Un

τn
.

(c) Averaged (L2-projected) discrete time derivative

(39) ∂Un := Pn
0 ∂Un =

Un − Pn
0 Un−1

τn
, ∀n ∈ [1 : N ] .

The reason we introduce this notation is that ∂Un, in general, does not belong to
the current finite element space, V

n, whereas ∂Un does.
(d) The L2-projection of fn

(40) f
n

:= Pn
0 fn.

Since this is a discrete function of time, consistent with notation (34), we denote

by f the piecewise linear interpolation of (f
n
)n.

2.5. Remark (Pointwise form). The discrete elliptic operator An can be employed
to write the fully discrete scheme (13) in the following pointwise form:

(41) ∂Un(x) + AnUn(x) = f
n
(x), ∀x ∈ Ω.

Indeed, in view of ∂Un + AnUn − f
n ∈ Ṽ

n, (13), and (27), we have

〈

AnUn + ∂Un − f
n
, φ

〉

=
〈

AnUn + ∂Un − f
n
, Pn

0 φ
〉

= a (Un, Pn
0 φ) +

〈

τ−1
n (Un − Un−1) − fn, Pn

0 φ
〉

= 0,

(42)

for any φ ∈ H1
0(Ω). Thus the function ∂Un + AnUn − f

n
must be zero.

2.6. Proof of Lemma 1.4. The definitions in Definition 2.4 and (41) yield

〈∂Un + AnUn − Pn
0 fn, φ〉 − τ−1

n

〈

Pn
0 Un−1 − Un−1, φ

〉

=
〈

∂Un + AnUn − f
n
, φ

〉

= 0,
(43)

for each φ ∈ H1
0(Ω) and n ∈ [1 : N ]. In view of the elliptic reconstruction definition

we obtain

(44) 0 = 〈∂Un, φ〉 + a (ωn, φ) − 〈Pn
0 fn, φ〉 − τ−1

n

〈

Pn
0 Un−1 − Un−1, φ

〉

.

On the other hand (1) implies

〈∂tρ, φ〉 + a (ρ, φ) = 〈∂tω, φ〉 + a (ω, φ) − 〈f, φ〉 ,(45)

from which we subtract equation (44) and obtain (17). �
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2.7. Definition (Residuals). The residuals constitute the building blocks of the
a posteriori estimators used in this paper. We associate with equations (1) and
(41) two residual functions: the inner residual, which is defined as

R0 := AelU
0 − A0U0,

Rn := AelU
n − AnUn = AelU

n − f
n

+ ∂Un, for n ∈ [1 : N ] ,
(46)

and the jump residual, which is defined as

(47) Jn := J [Un].

We note that, with Definition 2.1 in mind, the inner residual terms can be written
in the following, more familiar but also more cumbersome, fashion:

(48) 〈Rn, φ〉 =
∑

K∈Tn

〈

− div (A∇Un) − Pn
0 f(tn) +

Un − Pn
0 Un−1

τn
, φ

〉

K

.

3. A posteriori error estimates in the L∞(L2) and L2(H
1) norms

We start by introducing the following error estimators that are local in time.
The full estimators, that will appear in Theorem 3.2, are accumulations in time of
these local estimators. The accumulations, which can be of L1, L2 or L∞ type, are
anticipated by the first subscript in the estimators.

3.1. Definition (L∞(L2) and L2(H
1) error estimators). We introduce, for n ∈

[0 : N ], the elliptic reconstruction error estimators

ε∞,n := C6,2

∥

∥h2
nRn

∥

∥ + C10,2

∥

∥

∥
h3/2

n Jn
∥

∥

∥

Σn

,(49)

ε2,n :=
C3,1

α
‖hnRn‖ +

C5,1

α

∥

∥

∥
h1/2

n Jn
∥

∥

∥

Σn

,(50)

and, for n ∈ [1 : N ], the space error estimator

η1,n := C6,2

∥

∥

∥
ĥ2

n∂Rn
∥

∥

∥
+ C10,2

∥

∥

∥
ĥ3/2

n ∂Jn
∥

∥

∥

Σ̂n

+ C14,2

∥

∥

∥
ĥ3/2

n ∂Jn
∥

∥

∥

Σ̌n\Σ̂n

,(51)

the data approximation error estimators for space and time respectively

γ2,n :=
C3,1√

α

∥

∥

∥

∥

hn(Pn
0 − I)

(

fn +
Un−1

τn

)
∥

∥

∥

∥

, β1,n :=
1

τn

∫ tn

tn−1

‖fn − f(t)‖ dt,(52)

and the time error estimator

θ1,n :=

⎧

⎨

⎩

1
2

∥

∥

∥
∂(f

n − ∂Un)
∥

∥

∥
τn for n ∈ [2 : N ],

1
2

∥

∥

∥
f

1 − ∂U1 − A0U0
∥

∥

∥
for n = 1.

(53)

We refer to Appendix B for an explanation of the constants Ck,j involved here.
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3.2. Theorem (L∞(L2) and L2(H
1) a posteriori error estimates). For each m ∈

[1 : N ] the following error estimates hold:

max
t∈[0,tm]

‖u(t) − U(t)‖ ≤
∥

∥R0U0 − u(0)
∥

∥ + max
n∈[0:m]

ε∞,n + 4
(

E 2
1,m + E 2

2,m

)1/2
,(54)

(
∫ tm

0

|u(t) − U(t)|21
)1/2

≤
∥

∥R0U0 − u(0)
∥

∥ +

(

m
∑

n=1

(

ε2
2,n + ε2

2,n−1

)

τn

)1/2

+ 4
(

E 2
1,m + E 2

2,m

)1/2
,

(55)

where

E1,m :=

m
∑

n=1

(θ1,n + β1,n + η1,n) τn,(56)

E 2
2,m :=

m
∑

n=1

γ2
2,nτn.(57)

Proof. Following the general strategy of §1.5 the error is decomposed as follows:

(58) ‖U(t) − u(t)‖ = ‖e(t)‖ ≤ ‖ǫ(t)‖ + ‖ρ(t)‖ .

To bound the first term, which is the elliptic reconstruction error, we apply Lemma
2.3. For the estimate in (54) we use (33) as follows:

‖ǫ(t)‖ =
∥

∥ln−1(t)ǫ
n−1 + ln(t)ǫn

∥

∥ ≤ max
(

‖ǫn‖ ,
∥

∥ǫn−1
∥

∥

)

≤ max
n∈[0:m]

‖ǫn‖ ≤ max
n∈[0:m]

ε∞,n,

for all t ∈ In and all n ∈ [1 : m]. In an analogous way, we use (32) to obtain the
estimate of the elliptic reconstruction error for (55).

The second term on the right-hand side of (58), which is the main parabolic
error, will be estimated via Lemma 3.3 which we establish next. �

3.3. Lemma (L∞(L2) a posteriori estimate for the main parabolic error). For each
m ∈ [1 : N ], the following estimate holds:

(

max
[0,tm]

‖ρ(t)‖2 + 2

∫ tm

0

|ρ(t)|2a dt
)1/2

≤
∥

∥ρ0
∥

∥ + 4
(

E 2
1,m + E 2

2,m

)1/2
.(59)

We divide the proof of this result in several steps which constitute the paragraphs
§§3.4–3.8.

3.4. The basic estimate. To obtain L∞(L2) and L2(H
1) estimates we employ

standard energy techniques. We replace φ in (17) by the main parabolic error
ρ = ω − u, and we integrate in time; thus we have

1

2
‖ρm‖2 − 1

2

∥

∥ρ0
∥

∥

2
+

∫ tm

0

|ρ(t)|2a dt

≤
m

∑

n=1

∫ tn

tn−1

|〈∂tǫ(t), ρ(t)〉| + |a (ω(t) − ωn, ρ(t))|

+
∣

∣

〈

Pn
0 fn−fn+τ−1

n

(

Pn
0 Un−1−Un−1

)

, ρ(t)
〉
∣

∣+|〈fn−f(t), ρ(t)〉| dt

=:

m
∑

n=1

(

I 1
n + I 2

n + I 3
n + I 4

n

)

=: Im.

(60)
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If we denote by tm∗ ∈ [0, tm] the time for which

(61) max
t∈[0,tm]

‖ρ(t)‖ = ‖ρ(t∗m)‖ =: ‖ρm
∗ ‖ ,

we deduce that

(62)
1

2
‖ρm

∗ ‖2 − 1

2
‖ρ0‖2

+

∫ t∗
m

0

|ρ|2a ≤ Im.

Consequently we have

(63)
1

2
‖ρm

∗ ‖2
+

∫ tm

0

|ρ|2a ≤ 1

2
‖ρ0‖2

+ 2Im.

We proceed by estimating each of the summands I i
n appearing on the right-hand

side of (60).

3.5. Time error estimate. In order to bound I 2
n in (60), which accounts for the

time discretization error, we use directly the elliptic reconstruction definition (30)
as follows:

I 2
n =

∫ tn

tn−1

|a (ω(t) − ωn, ρ(t))| dt

=

∫ tn

tn−1

∣

∣a
(

ln−1(t)R
n−1Un−1 + ln(t)RnUn − RnUn, ρ(t)

)
∣

∣ dt

=

∫ tn

tn−1

ln−1(t)
∣

∣a
(

Rn−1Un−1 − RnUn, ρ(t)
)
∣

∣ dt

=

∫ tn

tn−1

ln−1(t)
∣

∣

〈

An−1Un−1 − AnUn, ρ(t)
〉∣

∣ dt.

Therefore

I 2
n ≤

∫ tn

tn−1

ln−1(t)
∥

∥An−1Un−1 − AnUn
∥

∥ ‖ρ(t)‖ dt,(64)

which leads to

(65)
m

∑

n=1

I 2
n ≤ ‖ρm

∗ ‖
m

∑

n=1

θ1,nτn.

3.6. Spatial error estimate. To estimate the term I 1
n on the right-hand side

of (60), which measures the space error and mesh change, we will exploit the
orthogonality property of the elliptic reconstruction (31). Observe that for each
n ∈ [1 : N ] we have

I 1
n =

∫ tn

tn−1

|〈∂tǫ(t), ρ(t)〉| dt

= τ−1
n

∫ tn

tn−1

∣

∣

〈

RnUn − Rn−1Un−1 − Un + Un−1, ρ(t)
〉∣

∣ dt.

(66)

Since RnUn−Un is orthogonal to V
n with respect to a (·, ·), the first term inside the

brackets is orthogonal to V
n ∩V

n−1. We can therefore use standard residual-based
a posteriori estimation techniques. Let ψ : [0, T ] → H1

0(Ω) be such that

(67) a (χ, ψ(t)) = 〈ρ(t), χ〉 , ∀χ ∈ H1
0(Ω), t ∈ [0, T ].
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By (31), Definition 2.1, and the use of the interpolation operator Π̂n defined in
§B.3, it follows that

〈RnUn − Rn−1Un−1 − Un + Un−1, ρ(t)〉
=a

(

RnUn − Rn−1Un−1 − Un + Un−1, ψ(t)
)

=a
(

RnUn − Rn−1Un−1 − Un + Un−1, ψ(t) − Π̂nψ(t)
)

=
〈

AnUn − An−1Un−1 − Ael(U
n − Un−1), ψ(t) − Π̂nψ(t)

〉

+
〈

Jn − Jn−1, ψ(t) − Π̂nψ(t)
〉

Σ̌n

,

(68)

for each t ∈ In. Using the pointwise form of the fully discrete scheme (41) we can
rewrite these terms in a more compact form,

AnUn − An−1Un−1 − Ael(U
n − Un−1) =

(

(∂ + Ael)(U
n − Un−1) − f

n
+ f

n−1
)

= τn

(

∂
(

(∂ + Ael)U
n − f

n
))

= τn∂Rn,

(69)

on each interval In. Here Rn := (∂ + Ael)U
n − f

n
is the internal residual function

at time tn. Likewise we have

(70) Jn − Jn−1 = τn∂Jn.

Whence, with j ∈ Z
+ being at our disposal, in view of the interpolation inequalities

in §B.2 we may conclude that

I 1
n ≤

(
∫ tn

tn−1

|ψ(t)|j
)

×
(

C3,j

∥

∥

∥
ĥj

n∂Rn
∥

∥

∥
+ C5,j

∥

∥

∥
ĥj−1/2

n ∂Jn
∥

∥

∥

Σ̂n

+ C7,j

∥

∥

∥
ĥj−1/2

n ∂Jn
∥

∥

∥

Σ̌n\Σ̂n

)

.

(71)

Since ℓ ≥ 1, we may take j = 2 in (71) and use the elliptic regularity (127) to get

(72) I 1
n ≤ max

t∈In

‖ρ(t)‖ η1,nτn,

where η1,n is given by (51). Hence

m
∑

n=1

I 1
n ≤ ‖ρm

∗ ‖
m

∑

n=1

η1,nτn.(73)

3.7. Data approximation and mesh change estimates. We now bound the
term I 3

n in (60). Here we exploit the orthogonality of the L2-projection. Since
V

n ⊂ ker(Pn
0 − I) we have

I 3
n =

∫ tn

tn−1

∣

∣

〈

(Pn
0 − I)(fn + τ−1

n Un−1), ρ(t) − Πnρ(t)
〉
∣

∣ dt

≤
∫ tn

tn−1

∣

∣

〈

hn(Pn
0 − I)(fn + τ−1

n Un−1), h−1
n (ρ(t) − Πnρ(t))

〉
∣

∣ dt

≤ α−1/2C3,1τ
1/2
n

∥

∥hn(Pn
0 − I)(fn + τ−1

n Un−1)
∥

∥

(

∫ tn

tn−1

|ρ(t)|a dt

)1/2

.

(74)
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We can thus conclude that

(75)

m
∑

n=1

I 3
n =

m
∑

n=1

(

∫ tn

tn−1

|ρ|2a

)1/2

γ2,nτ1/2
n .

We conclude this paragraph by estimating the fourth term on the right-hand
side of (60) in a simple way as follows:

(76) I 4
n ≤

(

max
t∈In

‖ρ(t)‖
)

∫ tn

tn−1

‖fn − f(t)‖ dt.

Thus

(77)

m
∑

n=1

I4 ≤ ‖ρm
∗ ‖

m
∑

n=1

β1,nτn.

3.8. Proof of Lemma 3.3: last step. What remains to be done in order to
conclude the proof is to appropriately combine the results from §§3.5–3.7 with
inequalities (60) and (63). We can write

1

2
‖ρm

∗ ‖2 +

∫ tm

0

|ρ|2a ≤1

2
‖ρ0‖2 + 2 ‖ρm

∗ ‖
m

∑

n=1

(θ1,n + β1,n + η1,n) τn

+ 2
m

∑

n=1

(

∫ tn

tn−1

|ρ|2a

)1/2

γ2,nτ1/2
n .

(78)

We can now apply the elementary fact that, for a = (a0, . . . , am), b = (b0, . . . , bm)
∈ R

m+1, and c ∈ R, if

(79) |a|2 ≤ c2 + a · b,

then

(80) |a| ≤ |c| + |b| .
In particular, in reference to (78), we take

a0 =
1√
2
‖ρm

∗ ‖ , an =

(

∫ tn

tn−1

|ρ|2a

)1/2

, c =
1√
2

∥

∥ρ0
∥

∥ ,(81)

b0 = 2
√

2
m

∑

n=1

(θ1,n + β1,n + η1,n) τn, bn = 2γ2,nτ1/2
n ,(82)

for n ∈ [1 : m], and obtain (59), which concludes the proof of the lemma. �

3.9. Remark (Relation to the semidiscrete case). The spatial error estimators con-
taining η’s should be compared with the ones corresponding to the (space) semi-
discrete scheme given by

(83)

(

∥

∥h3∂t((∂t − Ael)uh − f)
∥

∥

2
+

∥

∥

∥
h5/2∂tJ [uh]

∥

∥

∥

2

Σh

)1/2

,

where one triangulation Th is given for all (continuous) time t ∈ [0, T ] [24, Equation
(4.4)].
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3.10. Remark (Mesh change). We interpret the presence of the coarsest meshsize ĥn

in the estimator as a reflection of the discrepancy between the finite element spaces
V

n−1 and V
n, which might be different in general. Mesh change, a delicate issue in

evolution problems, can lead to nonconvergent schemes despite the global meshsize
going to zero. This happens in an example by T. Dupont [13, §4] for which

(84) max
n

sup
Ω

hn → 0

(

but max
n

sup
Ω

ĥn �→ 0

)

,

yet the discrete solution does not converge to the exact solution.

4. A posteriori error estimates in higher order norms

In this section we derive estimates in the seminorms corresponding to the spaces
H1(0, T ; L2(Ω)) and L∞(0, T ; H1(Ω)). The exposition of this section parallels that
of §3. We start by introducing a posteriori error estimators that are local in time
and which will be used in the subsequent main result. We warn the reader that
although some symbols for error estimators in this section are the same as those of
§3, the estimators themselves are changed; this notation is valid only in this section.

4.1. Definition (Error estimators for the L∞(H1)and H1(L2) seminorms). We in-
troduce the elliptic reconstruction error estimator

ε∞,n :=
C3,1

α
‖hnRn‖ +

C5,1

α

∥

∥

∥
h1/2

n Jn
∥

∥

∥
,(85)

ε2,n := C6,2

∥

∥

∥
ĥ2

n∂Rn
∥

∥

∥
+ C10,2

∥

∥

∥
ĥ3/2

n ∂Jn
∥

∥

∥

Σ̂n

+ C14,2

∥

∥

∥
ĥ3/2

n ∂Jn
∥

∥

∥

Σ̌n\Σ̂n

,(86)

the space error estimator

η2,n := C6,2

∥

∥

∥
ĥ2

n∂Rn
∥

∥

∥
+ C10,2

∥

∥

∥
ĥ3/2

n ∂Jn
∥

∥

∥

Σ̂n

+ C14,2

∥

∥

∥
ĥ3/2

n ∂Jn
∥

∥

∥

Σ̌n\Σ̂n

,(87)

the data space approximation error estimators

γ1,n := α−1/2C3,1

∥

∥

∥
ĥn∂

(

(Pn
0 − I)(fn − τnUn−1)

)

∥

∥

∥
,(88)

γ∞,n := α−1/2C3,1

∥

∥hn(Pn
0 − I)(fn − τnUn−1)

∥

∥ ,(89)

and the data time approximation error estimator and the time error estimator

β2,n :=

(

1

τn

∫ tn

tn−1

‖fn − f(t)‖2
dt

)1/2

, θ2,n =
1√
3

∥

∥∂t(f − ∂U)
∥

∥ τn.(90)

We refer to Appendix B for the definition of constants Ck,j involved above.

4.2. Theorem (L∞(H1)∩H1(L2) a posteriori estimates). Suppose the exact solution
u of (1) satisfies

∂tu ∈ L2(0, T ; L2(Ω)),(91)

∂tu(t) ∈ H1
0(Ω) for a.e. t ∈ [0, T ],(92)

∇u ∈ L2(0, T ; H1(Ω)).(93)
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Then the following a posteriori error estimates hold:

(
∫ tm

0

‖∂t (U(t) − u(t))‖2 dt

)1/2

≤
∣

∣R0U0 − u(0)
∣

∣

a

+ 4
(

E 2
1,m + E 2

2,m

)1/2
+ ε′m

(94)

max
t∈[0,tm]

|U(t) − u(t)|a ≤
∣

∣R0U0 − u(0)
∣

∣

a
+ 4

(

E 2
1,m + E 2

2,m

)1/2
+ εm,(95)

where

E1,m := 2 max
n∈[1:m]

γ∞,m +
m

∑

n=2

γ1,nτn,

E 2
2,m :=

m
∑

n=1

(

θ2
2,n + β2

2,n + η2
2,n

)

τn,

εm := max
n∈[0:m]

ε∞,n, and (ε′m)2 :=

m
∑

n=1

ε2
2,n.

Proof. Following the general strategy of §1.5 the error is decomposed as follows:

(96) |U(t) − u(t)|Y = |e(t)|Y ≤ |ǫ(t)|Y + |ρ(t)|Y ,

where Y is either H1(0, tm; L2(Ω)) or L∞(0, tm; H1
0(Ω)) and |·|Y is the correspond-

ing seminorm.1 The first term on the left-hand side of (96), which is the elliptic
reconstruction error, can be estimated in the residual-based context via Lemma 2.3,
as to obtain

(97) |ǫ(t)|Y ≤
{

ε′m, if Y = H1(0, tm; L2(Ω)),

εm, if Y = L∞(0, tm; H1
0(Ω)).

The second term on the left-hand side of (96) is estimated with the help of Lemma
4.3, which we state and prove next. �

4.3. Lemma (L∞(H1) ∩ H1(L2) estimates for the main parabolic error). For each
m ∈ [1 : N ] the following a posteriori estimate is valid:

(

max
t∈[0,tm]

|ρ(t)|2a + 2

∫ tm

0

‖∂tρ‖2

)1/2

≤
∣

∣ρ0
∣

∣

a
+ 4

(

E 2
1,m + E 2

2,m

)1/2
,

(98)

with reference to the notation of Theorem 4.2.

1In this section we deliberately use |·|
a

instead of |·|1 as the norm for H1
0(Ω) in order to keep

the exposition clear. The changes to replace |·|
a

by |·|1 are straightforward.
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As in §3, the proof of this lemma is subdivided into several steps that constitute
§§4.5–4.9. Since the arguments are very similar to those of §3, we condense the
discourse and stress only the main differences. To motivate the proof, we first
discuss the following semidiscrete case.

4.4. The spatially discrete case. The estimates of Theorem 4.2 are based on
the energy estimate in higher order norms for problem (1) which reads

(99)

(

|u(t)|2a + 2

∫ t

0

‖∂tu‖2

)1/2

≤ |u(0)|a +
√

2 ‖f‖L2(0,t;L2(Ω)) .

This estimate can be obtained by testing the PDE with ∂tu and integrating in time.
For this case more regularity of u is required than in the lower order norms case of
§3. Sufficient regularity requirements on u are given by conditions (91)–(93).

We stress that in some particular situations these stronger energy norms can play
an important role. For instance, an estimate that is based on nonlinear quantities
similar to these higher order norms has been derived from the error related to the
mean curvature flow of graphs [21]; in that situation there is no reasonable way to
obtain estimates by testing the solution. The only approach that works is testing
with the time derivative of the solution.

Let us now turn our discussion toward the use of this energy estimate in the
semidiscrete case; namely only spatially discrete, with V

h as a finite element space.
The semidiscrete case is simpler than, and motivated by, the more involved fully
discrete case which we will deal with in the next paragraphs. The semidiscrete
case has been extensively studied by Makridakis and Nochetto for the usual (lower
order) norms [24]. We further simplify our discussion by also assuming that f ∈ V

h.
The starting point of the error estimate is, as in §3, the semidiscrete analog of

(17) which is given by

(100) 〈∂tρ, φ〉 + a (ρ, φ) = 〈∂tǫ, φ〉 , ∀φ ∈ H1
0(Ω).

(Compare with [24, Equation (3.2)].) Taking this identity with φ = ∂tρ—which is
why we need to assume the extra regularity properties (91)–(93)—and integrating
in time we obtain

∫ T

0

‖∂tρ‖2 +
1

2
|ρ(T )|2a − 1

2
|ρ(0)|2a =

∫ T

0

〈∂tǫ, ∂tρ〉 .(101)

We now have the choice to control the right-hand side in two different ways.
(a) We use a straightforward L2(0, T ; L2(Ω)) estimate that leads to

∫ T

0

〈∂tǫ, ∂tρ〉 =

(

∫ T

0

‖∂tǫ‖2

)1/2 (

∫ T

0

‖∂tρ‖2

)1/2

=

(

∫ T

0

E [Vh, Ah∂tuh; L2(Ω)]2

)1/2 (

∫ T

0

‖∂tρ‖2

)1/2

,

(102)

where E [·] is an elliptic error estimator function [24]. This could be, for instance,
but not necessarily so, the residual based estimators of Lemma 2.3.

(b) An alternative estimate that is often useful when quadratic or higher finite
elements are employed or when only the energy norm |ρ|a can be controlled—in a
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nonlinear setting, for instance—involves an integration by parts in time as follows:

∫ T

0

〈∂tǫ, ∂tρ〉 − 〈∂tǫ(0), ρ(0)〉

= 〈∂tǫ(T ), ρ(T )〉 −
∫ T

0

〈

∂2
t ǫ, ρ

〉

≤ C max
[0,T ]

|ρ|a

(

max
[0,T ]

E [Vh, Ah∂tuh; H−1(Ω)] +

∫ T

0

E [Vh, Ah∂2
t uh; H−1(Ω)]

)

.

(103)

The extra time differentiation will not affect the order of convergence of the right-
hand side because the elliptic reconstruction error ε is purely elliptic in nature.
We note, however, that in order to make estimate (103) rigorous, it is necessary to
impose extra time-regularity assumptions on the approximate solution and to have
an H−1(Ω)-norm elliptic error estimator function E [·, ·; H−1(Ω)] available. Such
estimators can be obtained with optimal order, using the duality technique, under
the assumption that the domain is smooth. This is an issue that is beyond the
scope of this paper, so we will limit our analysis to the first alternative.

4.5. The basic estimate for the fully discrete case. We now proceed with the
proof of Lemma 4.3. The first step consists of taking φ = ∂tρ in identity (17) and
integrating by parts in time as follows:

∫ tm

0

‖∂tρ‖2 +
1

2
|ρm|2a =

1

2

∣

∣ρ0
∣

∣

2

a

+
m

∑

n=1

∫ tn

tn−1

〈∂tǫ, ∂tρ(t)〉 + a (ω(t) − ωn, ∂tρ(t))

+
〈

Pn
0 fn − fn + τ−1

n (Pn
0 Un−1 − Un−1), ∂tρ(t)

〉

+ 〈fn − f(t), ∂tρ(t)〉 dt

=:
1

2
|ρ(0)|2a +

m
∑

n=1

(I 1
n + I 2

n + I 3
n + I 4

n ) =: Im.

(104)

Introduce t∗m ∈ [0, tm] such that

(105) |ρm
∗ |a := |ρ(t∗m)|a = max

t∈[0,tm]
|ρ(t)|a .

Let m∗ ∈ [1 : m] be the index for which t∗m ∈ Im∗ . We can write

∫ t∗
m

0

‖∂tρ‖2
+

1

2
|ρm

∗ |2a =
1

2
|ρ(0)|2a +

m∗

∑

n=1

(

J 1
n + J 2

n + J 3
n + J 4

n

)

,(106)

where

(107) J i
n =

{

I i
n for n ∈ [1 : m∗ − 1] ,

∫ t∗
m

tm∗
−1

Ii
n(t) dt for n = m∗,

with Ii
n being the same integrand as that of I i

n. To prove the lemma we must

bound
∑m

n=1 I k
n and

∑m∗

n=1 J k
n for each k ∈ [1 : 4].
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4.6. Time error estimate. We estimate the term due to time discretization. By
the definition of elliptic reconstruction (30) we have

I 2
n ≤

∫ tn

tn−1

|a (ω(t) − ωn, ∂tρ(t))| dt

=

∫ tn

tn−1

ln−1(t)
∣

∣

〈

An−1Un−1 − AnUn, ∂tρ(t)
〉
∣

∣ dt

≤
(

∫ tn

tn−1

‖∂tρ(t)‖2 dt

)1/2
√

1/3
∥

∥An−1Un−1 − AnUn
∥

∥ τ1/2
n .

It follows that

(108)
m

∑

n=1

I 2
n ≤

m
∑

n=1

(

∫ tn

tn−1

‖∂tρ‖2

)1/2

θ2,nτ1/2
n .

The same bound applies to
∑m∗

n=1 J 2
n .

4.7. Spatial error estimate. The spatial error estimator term can be bounded in
a similar way to the one in §3.6. First introduce the auxiliary function ψ : [0, T ] →
H1

0(Ω) such that

(109) a (χ, ψ(t)) = 〈∂tρ(t), χ〉 , ∀χ ∈ H1
0(Ω).

Noting that ∂tǫ is a piecewise constant function of time, and in view of (31),
(128)–(130) (with j = 2), and (127), we can write

I 1
n =

∫ tn

tn−1

a (∂tǫ
n, ψ(t)) dt

=

∫ tn

tn−1

a
(

∂tǫ
n, ψ(t) − Π̂nψ(t)

)

dt

=

∫ tn

tn−1

〈

∂Rn, ψ(t) − Π̂nψ(t)
〉

+
〈

∂Jn, ψ(t) − Π̂nψ(t)
〉

Σ̌n

dt

≤
(

∫ tn

tn−1

‖∂tρ(t)‖2

)1/2

η2,nτ1/2
n ,

(110)

where η2,n is defined in (87). Thus, upon summing in time, we conclude that

(111)

m
∑

n=1

I 1
n ≤

m
∑

n=1

(

∫ tn

tn−1

‖∂tρ(t)‖2

)1/2

η2,nτ1/2
n .

The same estimate holds for
∑m∗

n=1 J 1
n .

4.8. Data approximation and mesh change estimates. We conclude the es-
timates in this section by bounding the last two terms in (104) regarding data
approximation and mesh changes.
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The data space approximation error can be bounded as follows:
m

∑

n=1

I 3
n =

m
∑

n=1

∫ tn

tn−1

〈

(Pn
0 − I)(fn − τnUn−1), ∂tρ

〉

=

m
∑

n=1

〈

(Pn
0 − I)(fn − τnUn−1), ρn − ρn−1

〉

=

m−1
∑

n=1

〈

(Pn
0 − I)(fn − τnUn−1) − (Pn+1

0 − I)(fn+1 − τn+1U
n), ρn

〉

+
〈

(Pm
0 − I)(fm − τmUm−1), ρm

〉

−
〈

(P 1
0 − I)(f1 − τ1U

0), ρ0
〉

=

m
∑

n=2

〈

∂
(

(Pn
0 − I)(fn − τnUn−1)

)

, ρn−1 − Π̂nρn−1
〉

τn

+
〈

(Pm
0 − I)(fm − τmUm−1), ρm − Πmρm

〉

−
〈

(P 1
0 − I)(f1 − τ1U

0), ρ0 − Π0ρ0
〉

.

(112)

Owing to (128) and (10) we may thus conclude that

(113)

m
∑

n=1

I 3
n ≤ |ρm

∗ |a

(

γ∞,m +

m
∑

n=2

γ1,nτn + γ∞,1

)

,

where the estimators γi,n are defined in (88) and (89) for i = 1 and ∞, respectively.
Likewise we obtain the following bound:

(114)

m∗

∑

n=1

J 3
n ≤ |ρm

∗ |a

(

γ∞,m∗ +

m∗

∑

n=2

γ1,nτn + γ∞,1

)

.

The last term in (104) is handled in a straightforward way, as in §3.7, and the
following bound is readily derived:

(115)

m
∑

n=1

I 4
n ≤

m
∑

n=1

(

∫ tn

tn−1

‖∂tρ‖2

)1/2

β2,nτ1/2
n .

Also here, the same bound applies to
∑m∗

n=1 J 4
n .

4.9. Proof of Lemma 4.3: Last step. As in §3.8, we appropriately collect the
results from the preceding paragraphs, and we use (104) and (106). We thus have

1

2
|ρm

∗ |2a +

∫ tm

0

‖∂tρ‖2 ≤ 1

2
|ρ0|2a + 2 |ρm

∗ |a E1,m

+ 2

m
∑

n=1

(

∫ tn

tn−1

‖∂tρ‖2

)1/2

(θ2,n + β2,n + η2,n) τ1/2
n .

(116)

We can now proceed by using the same elementary fact used in §3.8, with

a0 =
1√
2
|ρm

∗ |a , an =

(

∫ tn

tn−1

‖∂tρ‖2

)1/2

, c =
1√
2

∣

∣ρ0
∣

∣

a
,(117)

b0 = 2
√

2E1,m, bn = 2 (θ2,n + β2,n + η2,n) τ1/2
n ,(118)

for n ∈ [1 : m]. Some simple manipulations yield estimate (98). �
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4.10. The difficulty with the direct approach. We conclude this section by
exhibiting the main problem with the direct approach to derive energy estimates
in higher norms.

To see this we go back to equation (22) which we now take with φ = ∂te and
integrate in time. We are thus required to estimate the term

(119)
m

∑

n=1

∫ tn

tn−1

a (Un, ∂te − Πn∂te) .

Since the only practical way to proceed seems to be by decreasing the number
of derivatives acting upon e − Πe—integration by parts in space being of no help
here—we perform a “summation by parts” in time as follows:

m
∑

n=1

(

a (Un, en − Πnen) − a
(

Un, en−1 − Πnen−1
))

= a (Un, em − Πmem) − a
(

U0, e0 − Π1e0
)

+
m−1
∑

n=1

a
(

Un − Un+1, en − Πnen
)

−
m−1
∑

n=1

a
(

Un, (Πn − Πn+1)en
)

.

The difficulty, which should be apparent now, is how to control the last term. There
seems to be no practical way to do this without imposing strong assumptions on
(Πn − Πn+1)en. Note that this term vanishes if there is no mesh change.

5. Numerical results

We present the results of a series of numerical experiments to exemplify some
of the practical aspects of the a posteriori estimates of Theorem 3.2. The main
goal here is to approximate the asymptotic behavior of the various estimators and
compare this behavior with that of the norms.

5.1. Benchmark solutions. We perform the numerical experiment by approxi-
mating in each case either one of the following two exact solutions:

(120) u(x, t) =

{

sin(πt) exp(−10 |x|2) (slow),
1
10 sin(20πt) exp(−10 |x|2) (fast).

These solutions are used as benchmarks for the problem with A = [ 1 0
0 1 ]. The

right-hand side f of the problem is thus easily calculated by applying the parabolic
operator to each u. Therefore the exact errors are computable, and we can compare
them with the error estimators. The domain on which we compute this solution is
the square [−1, 1]2, and the time interval is [0, 1]. Note that the boundary conditions
are not exactly zero but of the order of 10−6 so that special care has to be taken
with very small numbers. The initial conditions are exactly zero in both cases, and
there is no initial error to be computed.
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Table 1.

simulation problem ℓ k h1 τ1 I (runs) Figure

1 slow 1 2 0.5 0.04 6 1

2 fast 1 1 0.25 0.01 5 2

3 slow 1 3 0.125 0.08 4 3

4 fast 2 2 0.125 0.02 4 4

5.2. Choice of parameters. Since we are interested in understanding the
asymptotic behavior of the estimators, we conduct tests on uniform meshes with
uniform timestep. For each numerical experiment we choose a sequence of mesh-
sizes (h(i) : i ∈ [1 : I]), to which we couple a sequence of stepsizes (τ (i) : i ∈ [1 : I]),
τ (i) = c0h(i)k, with k equal either 1 or 2 and I, the number of runs, ranging from
4 to 6 in each of the 4 cases that we run. Table 1 summarizes the choice of the
various parameters for each of the 4 simulations.

5.3. Computed quantities. Note that we report numerical results for the esti-
mates of §3 only. For each simulation and for each run i ∈ [1 : I], we calculate the
following quantities:

• the error norms

‖e‖L∞(0,tm;L2(Ω)) and |e|L2(0,tm;H1(Ω)) ,

• the reconstruction error estimators

m
max

0
ε∞,n and (τ (i)

m
∑

1

ε2
2,n)1/2,

• the space estimator

τ (i)

m
∑

1

η1,n,

• and the time estimator

τ (i)

m
∑

1

θ1,n,

for each time tm ∈ [0 = t0 : τ (i) : tN = 1]. Of course, all the errors and estimators
depend on the run i, but for the sake of conciseness we do not add this index.
We deliberately ignore the estimators for data approximation (and mesh change),
β1,n and γ2,n, as our examples are designed so as to make these estimators either
negligible or comparable with respect to one of those calculated. Indeed, we take
the mesh and stepsizes small enough as to resolve the data, and we keep the mesh
unchanged across timesteps. Therefore, γ2,n can be shown to be of order h2, and
β1,n to be of order τ since the function f is smooth enough [20].

For each computed norm or estimator we look at its experimental order of con-
vergence (EOC). The EOC is defined as follows: for a given finite sequence of
uniform triangulations {Th(i)}i=1,...,I of meshsize h(i), the EOC of a correspond-
ing sequence of some triangulation-dependent quantity E(i) (like an error or an
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estimator) is itself a sequence defined by

(121) EOC E(i) =
log(E(i + 1)/E(i))

log(h(i + 1)/h(i))
.

Since the timesteps τ (i) are coupled to h(i), this is well defined.
Finally we look at the inverse effectivity index for each error-estimator pair,

defined by

maxn∈[0:m] ‖e(tm)‖
maxn∈[0:m] ε∞,n + τ (i)

∑m
n=1 (η1,n + θ1,n)

,(122)

(

τ
∑ |e(tm)|21

)1/2

(

τ
∑m

n=0 ε2
2,n

)1/2
+ τ (i)

∑m
n=1 (η1,n + θ1,n)

.(123)

The initial estimator is zero in this case, and the data approximation and the mesh
change estimators are dropped from this study.

5.4. Remark (Effectivity index). Note that we prefer using the inverse rather than
the straight effectivity index; the reason for this choice is twofold. First, from
a practical aspect, since the effectivity index tends to be quite high in an initial
transient time, its inverse is nicer to visualize. Second, and more importantly, since
we are interested in obtaining a numerical realization for the constant C appearing
in the estimates of the type ‖e‖ ≤ CE , where e is the error and E the estimator,
‖e‖ /E is a more straightforward indicator for C than E / ‖e‖, which is the (straight)
effectivity index.

We also observe that we take all the constants involved in the estimators, in-
cluding the interpolation constants, to be equal to 1. This, of course, is not true,
and a fine tuning of constants should be performed, but since our purpose here is
mainly to check that the asymptotic behavior of the error and the estimator is the
optimal one, the (inverse) effectivity index is to be understood only qualitatively in
this paper. Note also that the time estimator, involving θ1,n, is in the denominator
of (122) and (123).

Finally, we point out that from the theory, the inverse effectivity index must have
an upper bound that is independent of the problem at hand (i.e., of the solution).
In each numerical simulation, though, this upper bound is not necessarily reached
(in fact this happens only in the worst-case scenario), so different problems (i.e.,
different solutions of u) can lead to different inverse effectivity indexes in practice.

5.5. Conclusions. The main conclusion of our numerical tests is that the estima-
tors have the optimal rate of convergence which matches that of the error’s norm.
It is important to note that, in order to exhibit the optimality of the estimators for
different norms, a different coupling of the meshsize h and the stepsize τ must be
chosen: for P

1 elements, it is necessary to take τ ≈ h2 to see that the L∞(L2) error
norm has EOC 2 while the L2(H

1) norm has EOC 1 (Figure 1). If the coupling
τ ≈ h is taken, for a problem where the time discretization error dominates, such
as (120 fast), then both errors have EOC 1 (Figure 2).

The same observations are valid for tests with P
2 elements, albeit the couplings

are τ ≈ h3 and τ ≈ h2, respectively, in this case (see Figures 3 and 4).
In a different article [20] we conduct a more thorough numerical experimentation,

where mesh changes and data approximation effects are included.
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Figure 1. Numerical results for a problem with an exact solution
((120) slow) with P

1 elements and τ ≈ h2. The abscissa represents
time which ranges in [0, 1]. In the topmost row we plot the vari-
ous estimators, and in the second row we show the corresponding

EOC’s. Note that max ε∞,n has EOC 2 whereas
(

τ
∑

ε2
2,n

)1/2
has

EOC 1. These are the leading terms in the total estimators (the 3
and 4 plots in the 3rd row) and match in EOC, respectively, the
L∞(L2) error and the L2(H

1) error, as shown in the first 2 plots
of the 3rd and 4th rows. Thus (54) and (55) are seen to be sharp
and optimal. The last two plots in the 4th row are the inverse
effectivity indexes for each norm.
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Figure 2. Simulation with P
1 elements and τ ≈ h. Dominant

time discretization error is created by taking the problem with a
fast time-oscillating exact solution ((120) fast). The abscissa rep-
resents time which ranges in [0, 1]. In the topmost row we plot the
various estimators, and in the second row we show the correspond-
ing EOC’s. Note that τ

∑

θ∞,n has EOC 1—reflecting the fact
that the error due to time discretization is of order 1—as opposed
to 2 in the previous example. This is now a leading term in both
total estimators (plots 3 and 4 in the 3rd row) which both have
EOC 1. This EOC matches that of the L∞(L2) error and of the
L2(H

1) error, as shown in plots 1 and 2 of the 3rd and 4th rows.
Thus (54) and (55) are both sharp. The last two plots in the 4th
row are the inverse effectivity indexes for each norm.
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Figure 3. Numerical results for a problem with an exact solution
((120) slow) with P

2 elements and τ ≈ h3; i.e., with an error due to
space discretization dominant. The abscissa represents time which
ranges in [0, 1]. In the topmost row we plot the various estimators,
and in the second row we show the corresponding EOC’s. Note that

max ε∞,n has EOC 3, whereas
(

τ
∑

ε2
2,n

)1/2
has EOC 2. These are

the leading terms in the total estimators (plots 3 and 4 in the 3rd
row) and match in EOC, respectively, the L∞(L2) error and of the
L2(H

1) error, as shown in plots 1 and 2 of the 3rd and 4th rows.
Here the estimates (54) and (55) are both sharp and optimal. The
last two plots in the 4th row are the inverse effectivity indexes for
each norm.



1654 OMAR LAKKIS AND CHARALAMBOS MAKRIDAKIS

0 0.5 1
10

−7

10
−3

10
1

||e||
L

∞
(0,t;L

2
(Ω))

0 0.5 1
10

−7

10
−3

10
1

|e|
L

2
(0,t;H

1
(Ω))

0 0.5 1
10

−7

10
−3

10
1

τΣ
n
η

1,n

0 0.5 1
10

−7

10
−3

10
1

max
n
 ε

∞,n

0 0.5 1
10

−7

10
−3

10
1

τΣ
n
θ

1,n

0 0.5 1
10

−7

10
−3

10
1

(τΣ
n
ε
2,n

2
)
1/2

0 0.5 1
0

1

2

3

4

EOC[||e||
L

∞
(0,t;L

2
(Ω))

]

0 0.5 1
0

1

2

3

4

EOC[|e|
L

2
(0,t;H

1
(Ω))

]

0 0.5 1
0

1

2

3

4

EOC[τΣ
n
η

1,n
]

0 0.5 1
0

1

2

3

4

EOC[max
n
 ε

∞,n
]

0 0.5 1
0

1

2

3

4

EOC[τΣ
n
θ

1,n
]

0 0.5 1
0

1

2

3

4

EOC[(τΣ
n
ε
2,n

2
)
1/2

]

0 0.5 1
10

−7

10
−3

10
1

Total estimator for L
∞

(L
2
)

0 0.5 1
10

−7

10
−3

10
1

Total estimator for L
2
(H

1
)

0 0.5 1
0

0.12

0.24

Inv. Eff. Ind. for L
∞

(L
2
)

0 0.5 1
0

0.12

0.24

Inv. Eff. Ind. for L
2
(H

1
)

Figure 4. Simulation with P
2 elements and coupling τ ≈ h2. The

time discretization error is dominant because the exact solution is
((120) fast). The abscissa represents time which ranges in [0, 1]. In
the topmost row we plot the various estimators, and in the second
row we show the corresponding EOC’s. Note that τ

∑

θ∞,n has
EOC 2, as opposed to 3 in the previous example, because of the
different coupling of the mesh and step sizes. The time estimator
is now a leading term in both total estimators (plots 3 and 4 in
the 3rd row), each having EOC 2. This EOC matches that of the
L∞(L2) error and of the L2(H

1) error, as shown in plots 1 and 2
of the 3rd and 4th rows. Thus (54) and (55) are both sharp. The
last two plots in the 4th row are the inverse effectivity indexes for
each norm.
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Appendix A. Compatible triangulations

Each triangulation Tn, for n ∈ [1 : N ], is a refinement of a macro-triangulation
M which is a triangulation of the domain Ω that satisfies the same conformity
and shape-regularity [8] assumptions made on its refinements in §1. A refinement
procedure is admissible if it satisfies the following criteria:

1. the refined triangulation is conforming;
2. the shape-regularity of an arbitrarily deep refinement depends only on the

shape-regularity of the macro-triangulation M ;
3. if T and T ′ are both refinements, then for any two elements K ∈ T and

K ′ ∈ T ′,

(124) K ∩ K ′ = ∅ or K ⊂ K ′ or K ′ ⊂ K.

Refinement procedures that satisfy these criteria exist. For example, the refinement
by bisection described in the ALBERT manual [28], which is known to work for
the space dimensions d = 1, 2, 3, 4, is admissible for simplex triangulations. All the
refinements by bisection of the macro-triangulation M can be stored in a single
binary tree whose nodes represent a simplex.

We say that two triangulations are compatible if they are refinements of the
same macro-triangulation. A set of compatible triangulations can be endowed with
a partial order relation: namely, given two compatible triangulations T and T ′

we write T ≤ T ′ if T ′ is a refinement of T . This partial ordering permits us to
define in the natural way the coarsest common refinement of T and T ′, which we
denote by T ∨T ′, and the finest common coarsening, which we denote by T ∧T ′.
An immediate property of these definitions is

(125) ĥ = max (h, h′) and ȟ = min (h, h′) ,

where h, h′, ĥ, ȟ denote the meshsize of T , T ′, T ∨ T ′, T ∧ T ′, respectively.

Appendix B. Inequalities

B.1. Elliptic regularity. The a posteriori estimates based in the L2(Ω) norms are
based on the duality argument of Aubin and Nitzsche and the elliptic regularity.
We therefore assume the coefficient matrix A defining the bilinear form a to be
regular enough and Ω to be a convex polygonal as to ensure that there exists a
constant C2,2 such that if φ ∈ L2(Ω) and ψ ∈ H1

0(Ω) are functions related by the
(dual) elliptic problem

(126) a (χ, ψ) = 〈φ, χ〉 , ∀χ ∈ H1
0(Ω),

then

(127) ψ ∈ H2(Ω) and |ψ|2 ≤ C2,2 ‖φ‖ .

B.2. Interpolation inequalities. We will use the Clément-type interpolation op-
erator Πn : H1

0(Ω) → V
n introduced by Scott and Zhang [29] which, under the
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needed regularity assumptions of ψ and finite element polynomial degree ℓ, satisfies
the following interpolation inequalities for j ≤ ℓ + 1:

∥

∥h−j
n (ψ − Πnψ)

∥

∥ ≤ C3,j |ψ|j ,(128)
∥

∥

∥
h1/2−j

n (ψ − Πnψ)
∥

∥

∥

Σn

≤ C5,j |ψ|j ,(129)

where the constants C3,j and C5,j depend only on the shape-regularity of the family
of triangulations.

B.3. Interpolation and mesh change. Since the triangulations Tn and Tn−1

can be different when adaptive mesh refinement strategies are employed, we in-
troduce Π̂n, the Clément-Scott-Zhang interpolator relative to the finest common

coarsening of Tn and Tn−1, T̂n := Tn ∧ Tn−1, whose meshsize is given by ĥn :=
max (hn, hn−1). Then the following inequality holds:

(130)
∥

∥

∥
ĥ1/2−j

n (ψ − Π̂nψ)
∥

∥

∥

Σn∪Σn−1\Σn∩Σn−1

≤ C7,j |ψ|j ,

where the constant C7,j depends on the shape-regularity of the triangulations and
on the number of refinement steps (bisections) necessary to pass from Tn to Tn−1.

B.4. Combining constants. We often use a combination of the constants intro-
duced in this Appendix or throughout the paper. Since many constants appearing
in theorems are products of basic constants, our convention is that whenever a con-
stant Ck,j appears with the index k being a nonprime integer, then Ck,j = Ci,jCl,j

where k = il. If the index k is a prime, then the constant is a “basic” one and is
defined in the text. E.g., C6,2 = C3,2C2,2, etc.
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