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MODELLING HUMAN TEACHING TACTICS AND

STRATEGIES FOR TUTORING SYSTEMS

Benedict du Boulay and Rosemary Luckin , HumanCentred Technology Research Group,
Schoolof CognitiveandComputingSciences,University of Sussex, BN19QH,UK.
bend@cogs.susx.ac.uk,rosel@cogs.susx.ac.uk

Abstract. One of the promisesof ITSs and ILEs is that they will teachand assistlearning
in an intelligent manner. Historically this hastendedto meanconcentratingon the interface,
on the representationof thedomainandon the representationof the student’s knowledge. So
systemshave attemptedto provide studentswith reificationsbothof what is to be learnedand
of thelearningprocess,aswell asoptimally sequencingandadjustingactivities, problemsand
feedbackto besthelpthemlearnthatdomain.

We now have embodied(anddisembodied)teachingagentsandcomputer-basedpeers,and
the field demonstratesa muchgreaterinterestin metacognitionandin collaborative activities
andtools to supportthat collaboration.Neverthelessthe issueof the teachingcompetenceof
ITSsandILEs is still important,aswell asthemorespecificquestionasto whethersystemscan
andshouldmimic humanteachers.Indeedincreasinginterestin embodiedagentshasthrown
thespotlightbackonhow suchagentsshouldbehave with respectto learners.

In the mid 1980sOhlssonand othersoffered critiquesof ITSs and ILEs in termsof the
limited rangeandadaptabilityof their teachingactionsascomparedto thewealthof tacticsand
strategiesemployed by humanexpert teachers.So arewe in any betterpositionin modelling
teachingthanwewerein the80s?Are thesecriticismsstill asvalid todayasthey werethen?

This paperreviews progressin understandingcertainaspectsof humanexpert teachingand
in developingtutoring systemsthat implementthosehumanteachingstrategiesandtactics. It
concentratesparticularlyon how systemshave dealtwith studentanswersandhow they have
dealtwith motivationalissues,referringparticularlyto work carriedoutatSussex: for example,
on respondingeffectively to thestudent’s motivationalstate,on contingentandVygotskianin-
spiredteachingstrategiesandon theplausibilityproblem.This latteris concernedwith whether
tacticsthat are effectively appliedby humanteacherscan be as effective when embodiedin
machineteachers.

INTR ODUCTION

IntelligentTeachingSystemsandIntelligentLearningEnvironmentsinitially evolvedin arather
lop-sidedway. First, mucheffort wasput into developinghighly detailedmodelsof particular
domains.So, for example,SOPHIEin its variousversionsembodieda highly detailedrepre-
sentationof an electroniccircuit at variouslevels of granularity, from a singledevice suchas
a resistor, via a functionalsub-structureup to a completepower supply (Brown andBurton,
1975). It alsomodelleddiagnostictacticsandstrategy andcouldreactsensiblywhenstudents
exhibited lessthan optimal trouble-shootingbehaviour. It also had, for its time, good natu-
ral languagecapabilitiesandcould respondto a wide rangeof domainspecificquestionsand
commands(BurtonandBrown, 1977).Othersystemswereableto exploit their domainknowl-
edge,including knowledgeof misunderstandingsof thedomainin orderto make fine-grained
diagnosticjudgementsaboutstudents.For example,Debuggy (Burton,1982)andmorerecent
systemslike it werecapableof building ahighly detailed(student)modelof anindividual’s sub-
tractionbehaviour, but left it to humanteachersto embarkon appropriateremediation.Indeed
whethertherewasany valuein undertakingsuchfine-graineddiagnosiswasitself questioned,



asreteachingthewholeprocedureratherthanjust theincorrectlyunderstoodportionseemsjust
aseffective (Sleemanetal., 1989).

Second,teachinginvolves a wide variety of communicative activities suchasexplaining,
persuading,arguing,demonstrating,describingandsoon,andtheseareskills thatarealsoused
in otherthaneducationalcontexts. Onecouldimaginea teachingsystemthatimplementedthis
moregeneralcommunicative competenceandthenspecialisedit asneededfor the particular
educationalcontext at the time. The theoriesof teachingthat were implementedin machine
teachers1 werenotgroundedin suchgeneralcommunicativecompetence(becauseit wasbeyond
thestateof theart) but necessarilytreated“teaching”asan isolatedandlargely self-contained
skill.

An exampleof one of theseisolatedand self-containedskills was SocraticTutoring, a
methodof teachingbasedon askingthestudenta seriesof carefullyconstructedquestionsthat
would leadstudentsto recognizeandfix gapsandinconsistenciesin what they know of a do-
main (Collins et al., 1975). Anotherexampleis provided by thevarioussystemsproducedby
Andersonandhiscolleagueswhichmonitoredstudents’problem-solvingin afine-grainedman-
nerandhadthecapabilityof reactingimmediatelyif thestudentdepartedfrom thepaththatan
ideal studentwould have followed (seee.g.,AndersonandReiser,1985). This endowed ma-
chineteachersof that erawith a certaincommunicative brittlenessthat could underminetheir
otherskills.

Of course,therewereattemptsto build tutorialsystemswith moreversatileeducationalcom-
municative competence.OnesuchsystemwasGUIDON (Clancey, 1982)which incorporated
rulesfor “selectingdiscoursepatterns”,for “choosingdomainknowledge” andfor “maintain-
ing the communicationmodel”. Within the category of discoursepatterntherewererulesfor
respondingto a studenthypothesis,which resembledSocraticTutoring, as well as rules for
dealingwith otheraspectsof theinteraction.

AnothersuchsystemwastheMeno-tutorwhichincorporatedaDiscourseManagementNet-
work (Woolf, 1988). Indeed,therearevarioussimilaritiesbetweenthis network andOhlsson’s
taxonomy(seeFigure1). This systemcouldmake useof thecurrentdiscoursecontext to dis-
tinguishandexecutea rangeof differentkindsof tutorial tactics(for example,briefly acknowl-
edginga student’s incorrectanswer)andstrategic rules(for example,undertakinga seriesof
shallow questionsaboutavarietyof topics).

Sooverall therewasratherunevenprogressin thefollowing areas,with mostsystemshaving
rathera restrictedrepertoireof teachingactions,andwork concentratingon (ii) below:

i. Thedevelopmentof avariedrepertoireof teachingactions.

ii. Thedevelopmentof effective strategic andtacticalmeans-endsrulesfor thedeployment
of theteachingactions.

iii. Thedevelopmentof suchbasic,communicative skills andcompetenceasexplainingar-
guing,convincing, cajoling,detectingmisunderstandings,dealingwith interruptionsand
sideissuesetc.

iv. The developmentof theoriesof motivation and affect that would enablethe judicious
changeof topic,useof a joke, impositionof a threat,offer of praiseandsoon.

Thekind of criticism thatwaslevelledat machineteacherswasthesameasthatoften lev-
elledat AI in general,namelythatthey tendedto concentrateon toy worlds(albeitoftenhighly
detailedtoy worlds)andthatthey tendedto degradebadlywhenmovedoutsidetheirown sphere

1Theterm“machineteachers”is usedasa generaldescriptionof systemsthatadjustthemselvesto theneedsof
theirstudents.Thismaymeanposingaproblem,evaluatinganansweror adjustingthelevel of help,but it couldalso
includesadjustingsomeaspectof (say)asimulationin anintelligentlearningenvironment,to increasethelikelihood
thatproductive explorationsareundertaken.

2



of competence(seee.g.,Dreyfus, 1979). This meantthat the teachingstyle of mostmachine
teacherswas gearedtowardsa rather“convergent”, “syllabus bound” teachingand diagnos-
tic style (seee.g.,Ohlsson,1987). By contrast,a humanteacheris able to integrate topics
acrosswidely differingdomains,changestyleandapproachastheoccasiondemands,appealto
common-senseknowledgeandreasoninganduseall thecommunicationandsocialskills at his
or herdisposal.A machineteacheroftenappearsploddingandrelentless,dominatedby its own
domain-specificknowledgeandunableto deploy any of thatchangeof paceandperspective that
makesgoodteachingwhatit is.

Anothercriticism of machineteachersis thatthey tendedto embodyamodelof teachingin
which the teacherknows best. It wasnot that thesystemsof the time werewholly concerned
with “transmitting” knowledgeandmaintainingagency in interactionswith their users:some
excellentsystemswerearrangedaslearningenvironmentswhich reactedintelligently to moves
instigatedby users.But they werenot thekindsof systemsthatcarriedout themorefacilitating
rolesof teachers,suchashelpingstudentsto work moreeffectively together, helpingstudents
reflect on what they had learnedand doneor guiding studentsin open-endedproject work.
Thereweregoodreasonsfor this,namelythatmodellingsuchfacilitatingskills neededartificial
intelligenceabilitiesthatwere(andlargely still are)beyondthestateof theart. Soit’s not that
thedesignersof suchsystemshadanimpoverishedview of education;it wasmuchmoreacase
of doingwhatwaspossible.

This paperis divided into four moresectionsafter this Introduction. The next section(2)
expandsthe critique above by giving a brief accountof Ohlsson’s andothers’analysesof the
restrictedteachingcapabilityandversatilityof systemsbuilt upto aboutthemid-eighties.It cites
furtherexamplesfrom thatperiod.Section3 thenexaminesthreemethodologiesfor developing
teachingcapabilityandversatility. Themostimportantof thesemethodologiesis theobservation
of humanteachers,andexamplesof suchwork aredescribed,concentratingin particularonhow
teachersdealwith studenterrorsandhow teachersmotivatestudents.Teachingin all its varied
formscoversmany morefactorsthanjustthesetwo,but thesehavebeenchosenasrepresentative
of themodellingeffort of artificial intelligencein education.

In order to seewhat progresshasbeenmadesincethe mid-eighties,Section4 draws the
threadstogetherfrom thehistoricalanalysisandexaminesa numberof contemporarysystems
thatattemptto embodyclever teachingtacticsor strategies,includingonethatattemptsto deal
with motivationalissues.Theconcludingsectionofferssomethoughtsonthedegreeof progress
made.

We mustoffer two immediatedisclaimers.Thepaperdoesnot attemptto beanexhaustive
review of what is known aboutteaching,or of thosepartsof this knowledgethat have been
incorporatedinto systems,thoughit doesprovide a numberof pointersto this large literature.
Rather, it attemptsto highlight key issuesandsystems,drawn largely from work atSussex, that
exemplify thecomplexity of this task.

Theseconddisclaimerconcernstheparticularfocusof thepaperonkey aspectsof acertain
kind of teaching.We have concentratedlargely on systemsthatembodydomainknowledgeor
skills to be learned,ratherthanon moreopen-endedsystems,e.g. that facilitatedialoguebe-
tweenstudents.This appearsmore“teacher-centred”than“learner-centred”but is not intended
to expressany valuejudgementbetweenthesetwo differentwaysto conceptualiseeducational
interactions.

RESTRICTED REPERTOIRE OF TEACHING ACTIONS

Versatilehumanteachershave an enormousrepertoireof teachingactionsat their disposal.
Theserangefrom caseswherethe teachergetsthestudentto do almostall thework (“explain
this to me...”, “solve this problem...”, “write anessaycomparing...”, “chooseaprojectto ...”) to
caseswheretheteacherexercisesmoredirectagency (“this is how it is done...”, “think of it this
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way...”, “if I wereyou,I would...”), via all kindsof intermediateandindirectcases,for example
wherethe teacherorganisesan educationalsettingwhich facilitatesseveral studentsworking
togetherin an effective way. An educationalencounter, viewed asa kind of ordinaryhuman
communication,canexploit all therichnessof context, modality, interactionandcontentof or-
dinaryhumancommunicationaswe experienceit both in day to dayconversations(including
featuressuchastonesof voice,irony, humour, glances,silencesandsoon)andin lessinteractive
formssuchastelevision, theatre,books,newspapersetc. Evenin a distanceeducationcontext,
the teacherasauthorof thematerialswill be mindful of the learningsituationof thestudents.
They will probablybe isolatedandso materials(suchasvideo-clips)and activities (suchas
self-assessmentquestions)will beincorporatedto keepthelearnermotivatedandself-reflective.

Ohlsson(1987)providedanexcellentcritiqueof Artificial Intelligencein Education(AIED)
in termsof its historicallynarrow focusonmodellinganddiagnosisattheexpenseof (theharder)
remedialactionsandteaching.He offeredananalysisof someof themany teachingoperations
thatmight beassociatedwith teachinga procedureof somekind, seeFigure1. Notethat these
werespecificallyconcernedwith teachinga procedure, thoughsomeof theseoperationsmight
alsoapply in teachinga principle or a concept. Theseoperationsincludeteachingactionsas-
sociatedwith settingthe sceneaswell aswith indicatingthe nutsandbolts of the procedure.
Settingthe scenecaninvolve clarificationof goalsaswell as justificationof individual steps
or pointing out similaritiesto similar proceduresalreadywell understoodby thestudent.It is
importantto reiteratethatteachingcanbemuchmorethanassistingthemasteryof procedures,
principlesandconcepts.

PRESENTING TARGET PROCEDURE

Define terms,
describe procedure
prompt recall

Demonstrate
interactive
prompted
annotated
applied

Practice
guided
annotated
corrected
hints
drill

PRESENTING PRECURSORS

Priming
Reviewing
Marking familiar & unfamil-
iar steps

PRESENTING PURPOSES

Giving a goal
Criticise precursors
Generalisation or replace-
ment of precursors

PRESENTING JUSTIFICATIONS

Annotating
Transparent cases
Equivalent procedure
Verification

alternative
inverse
empirical test

DEALING WITH ERRORS

Reveal
Explain
Mark

DEALING WITH SOLUTIONS

Feedback
Prompt self-check
Prompt self-review
Prompt self-annotation

Figure1: TeachingaProcedure:SomePrinciplesof IntelligentTutoring(Adaptedfrom Ohlsson
(1987))
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Perhapsthemostinterestingitemson Ohlsson’s list arethoseassociatedwith reactionsto
the studentgettinghis or her answercorrect: actionsdesignedto get the studentto checkthe
robustness,applicability, assumptionsetcof thesolution.Will it work for all cases?Supposing
the initial conditionshadbeenslightly different? Is it expressedin themostgeneralform? Is
it similar to other solutions? Are theresimilarities in the way the solution was constructed
comparedto otherproblem-solvingepisodes?Is thesolutionoptimal?Wastheproblem-solving
optimal? And so on. The difficulty of achieving this with a machineteacherarisesnot from
any difficulty of posingtheright kindsof questionto thestudent,but of beingableto undertake
any but the mostcursoryanalysisof the student’s answer. An associatedproblemhereis the
restrictedmodality (typically text anddiagramson a screen)that wasthenavailable. Thereis
somethingratherspecialaboutvoiceandgesturethatcancut throughcomplex materialto reveal
theessentialpoint. Thelatestgenerationof embodiedagentsexploit this,aswe seelater.

While it may be possibleto constrainthe languagewith which the studentrefersto the
knowledgedomainitself, it is muchharderto constrainthemeta-languagein which thestudent
makesevaluative statementsaboutsolutions.Thestandardtricks at thedomainlevel of using
semanticgrammars,menusor otherdevicesto restrictinputaremuchlesseasyto applyto meta-
languagebecausethedomainhasbeenbroadenedandthestudentis askedto makecomparisons
acrossthe domainor indeedbetweendomains.With notableexceptions,suchasCollins and
Brown (1988),thedesignersof systemstargetedby Ohlssonweremuchlessinterestthannow
in thewholeissueof metacognitionandtoolsto supportplanningandreflection(say)wereless
common.

Therealsotendedto beabasicasymmetrybetweenstudentandmachineteacherin thatthe
complexity of the textual or diagrammaticoutputfrom themachineteacherwasusuallyfar in
excessof thecomplexity of typedinput from thestudentthat could beunderstoodby thema-
chineteacher. Sometimessystemsallowedstudentsto typein freeform text, but typically this
waseitherignoredor only partially comprehendedby the system.Of course,a studentcould
bemonitoredinteractively while building up a complex object(e.g. suchasa Lisp programin
theLisp tutor: AndersonandReiser,1985)or be provided with a posthocanalysisof a com-
plex objectthatheor shehasbuilt (suchasa Pascalprogramin Proust:JohnsonandSoloway,
1987),but in generalmachineteachersmademuchhigherdemandson thelanguageandimage
understandingof their studentsthantheir studentsmadeof them. If thestudentthoughtabout
thedomainin a differentway from themachineteacher, or solvedproblemsin anidiosyncratic
mannertherewasusuallynowaythatthestudentcouldtell themachineteacherthatthiswasthe
caseor any wayfor themachineteacherto beableto makeanevaluative,comparative comment
aboutthestudent’s view or methodin comparisonwith its own.

AlthoughwehaveconcentratedonOhlsson’s (1987)critique,hewasnot theonly researcher
to have calledinto questionthe teachingcapabilityof thatgenerationof machineteachers.In
anothercritical analysisof Intelligent ComputerAssistedInstruction(ICAI), Ridgway (1988)
summedup theactivities missingfrom machineteacher’s repertoireas:

1. Encouragingexplanationsfrom pupilsto eachotherandto theteacher.

2. Groupwork thatfacilitatesmetacognitive activities andis itself inherentlyvaluable,

3. Metacognitive skills suchasself-explanationandself-evaluation.

Although concernedwith a wider classof systems,namelyadvice-giving expert systems,
Carroll andMcKendree(1987)2 criticisedmany approachesthenusedfor machineteachersas
lackingin empiricaljustificationor generalisabilityacrossdomains.For example,with respect
to SocraticTutoring,they wrote:

2Many of thequestionsraisedin thiswide-rangingsurvey of thefield arestill relevanttoday.
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“It is likely thatthis is aneffective stylefor interactive tutoringin many situations,
but it is alsosignificantthatno evidenceis offeredto supportthisassumption.The
possibility exists that the Socraticstyle is often adoptedfor tutorially irrelevant
reasons.Giving the systemcontrol of the dialogueallows a simplequestion-list
knowledgestructure.”

(Carroll andMcKendree,1987,page15)

In summary, thecriticismsabovecanbereducedto two majorissues.First,tutoringsystems
have focusedon too narrow a rangeof typesof educationalinteraction,i.e. taking rathera
teacher-centredview of the enterpriseand not attemptinga more learner-centredfacilitating
role. Second,even within a teacher-centredframework, mostsystemshave adoptedrathera
narrow rangeof teachingtacticsandstrategies.

So in principle how could the issuesraisedin thesecriticisms, especiallythe second,be
dealtwith?

DEVELOPMENT OF TEACHING STRATEGIES

Thereare threeprincipledmethodologiesfor developing the teachingexpertisein AIED sys-
tems.First is theobservationof humanteachersfollowedby anencodingof effective examples
of theseteacher’s expertise,typically in theform of rules.Thesecondis basedon learningthe-
ory andderivesa teachingtheoryfrom that. Thethird is basedon observationsof realstudents
or onarunnablesimulationmodelof thestudentandderivesateachingtheoryfrom experiments
with suchstudentsor modelsof students.

Derived from expert human teachers

An influential earlyexampleof themethodologyof learningfrom expert humanteacherswas
SocraticTutoring(Collins et al., 1975).SocraticTutoringprovidesa numberof detailedteach-
ing tacticsfor eliciting from andthenconfrontinga learnerwith her misconceptionsin some
domain.A generalisationof thisapproach,“Inquiry Teaching”is offeredby CollinsandStevens
(1991).A morerecentexampleof thegeneralmethodologyis providedby Lepperet al. (1993)
who analysedthe methodsthat humanteachersuseto maintainstudentsin a positive motiva-
tionalstatewith respectto their learning.

Thereis an issuein usingexpert teachersasa source.Typically they will have beeninflu-
encedto agreateror lesserextentby thetheoriesof teachingandlearningthey wereexposedto
during training,so thereis a dangerthatonemight besimply observingthesetheoriesfiltered
throughtheir applicationby thechosenexperts. Anotherissueis that therearemany different
stylesandphilosophiesof teaching,further fragmentedby individual personalitydifferences
anddomainnorms.Finally whatteacherssaythey doandwhatthey actuallydomaybeatodds
with eachother, seeBlisset al. (1996),describedlater.

Therearemany waysto examinethe issueof what constitutesexpert humanteachingbe-
haviour. Oneway is to have regard for the literatureon expertiseandanalysethe ways that
expertteachersaresimilar to expertsin otherfields.For example,Sternberg andHorvath(1995)
reviewedwork onthestructureof expertteacherknowledge.Typically, this is foundto bemuch
morehighly structuredthanthat of novice, or even experiencedteachers.They looked at the
“efficiency” with whichthesekindsof expertsolvedproblemsin theirdomain.They foundthat,
aswith otherexperts,automaticitylendsspeed.They alsolooked at “insight” issuesandcon-
cludedthatexpertteachershaveabetterinsightinto thedeepratherthanthesurfacestructureof
learningandteachingsituations.

Althoughnot concernedto assistthe implementationof machineteachers,theanalysisby
Schoenfeld(1998)of how teachers’context-specificbeliefs,goalsandknowledgeareactivated
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andinteractin classroomsettingsis couchedin the languageof cognitive science.Theauthor
analysesa numberof mathematicslessonsin enoughdetailto demonstratehow far we yethave
to go in orderto duplicateskilled humanteachingandto offer hints towardsa framework for
suchanenterprise.

Another way is to look at the fine structureof how humanteachersdeal with particular
issues,suchasmaintainingstudents’motivation(e.g.,LepperandChabay,1988),offering cor-
rective feedback(e.g.,Fox, 1991),or detectingandrepairingdialoguefailures(Douglas,1991).
In the latter case,Douglasfound in herstudyof teachersthat “Expert andnovice tutorsmade
aboutthesamenumberof [communication]failures,but theexpertwasmarkedly betterat de-
tectingandrepairingthem.” — an observation that supportsSternberg andHorvath’s (1995)
analysisof teachingexpertise,above.

Amongthemany studiescitedby Sternberg andHorvath(1995)wasanempiricalanalysis
of expertandnoviceteachersin theareaof mathematics(LeinhardtandGreeno,1991).Echoing
Ohlsson’s (1987)critique,they foundthat

“The expertteachershad,with theclass,a largerepertoireof routines,usuallywith
severalformsof eachone.In somecases,weobservedteachersapparentlyteaching
new routinesto their classes.Themainfeaturesof thesemutuallyknown routines
werethat (a) they werevery flexible, (b) ordercould be shiftedandpiecestaken
from onesegmentandappliedto another, (c) little or no monitoringof execution
wasrequired,and(d) little or no explanationwasrequiredfor carryingthemout.
Theseroutineshadsimple,transparentobjectives: to increasetheamountof time
that studentsweredirectly engagedin learningor practicingmathematicsandre-
ceiving feedback,to reducethe cognitive load for the teacher, and to establisha
framethatpermittedeasytransmissionof informationin mutuallyknown andrec-
ognizedsettings.”

(LeinhardtandGreeno,1991,page265)

More recently, in a seriesof studiesGraesseret al. (2000) studiedboth expert teachers
andnon-expert humantutors3. They found that even untrainedhumantutorswereextremely
effectiveandthattheirmethodsdid notseemto correspondto any of thestandardmethodologies
suchasSocraticTutoring(Collins et al., 1975),erroridentificationandcorrection(Corbettand
Anderson,1992)or sophisticatedmotivationaltechniques(Lepperet al., 1993). However they
concludedthat

“Tutorsclearly needto be trainedhow to usethe sophisticatedtutoring skills be-
causethey donotroutinelyemergein naturalistictutoringwith untrainedtutors.We
believe thatthemosteffective computertutor will bea hybrid betweennaturalistic
tutorial dialogandidealpedagogicalstrategies”

(Graesseretal., 2000,page51)

Theway thatexperthumanteachersinterweave a wide rangeof actionsthatdealwith cog-
nitive, metacognitive andaffective issuesis exemplifiedby Lajoie et al.’s (2000)observation
of anexpertmedicalinstructor. They observedhow theinstructorassignedrolesto eachof the
participantsin thesmallgroupof first yearmedicalstudentsdiscussingpatients.

“One studentwasasked to presentan actualpatientcaseto thegroup,describing
thepatient’s relevant medicalhistoryandcurrentsituation. A secondstudentwas

3Thedistinctionbetween“teaching”and“tutoring” is opento debate.In referringto humanteachers,wewill use
theterm“tutor” to imply someonewith lessformal trainingin pedagogythana“teacher”.Theliteratureof Artificial
Intelligencein Educationusesthe terms“tutor” and“teacher” interchangeablyirrespective of the expertiseof the
systemsodesignated.
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then asked to summarizethe samecasebasedon the verbal accountof the first
student.Next, a third studentwasasked to producea problemlist for the patient
at the blackboardwith the assistanceof the otherstudentsin the group. Finally,
the fourth studentwasasked to leadthe groupin developinga list of differential
diagnosesfor thecase.”

(Lajoie etal., 2000,page59)

Throughtheorganizationof thestudent’s rolesandthroughbothspecificandgeneralfeed-
backthe instructorwasableto dealwith a numberof issuessimultaneously. At thecognitive
level, boththedivisionof labourandhis feedbackprovidedscaffolding for thecomplex, cogni-
tive taskof arriving at a diagnosis.At themetacognitive level theinteractionbetweenstudents
andtheir feedbackprovidedmodelsfor reflective self-criticalexaminationof how datawasbe-
ing usedandhow decisionswerebeingarrived at. At the affective level, encouragementwas
beingprovidedwhenneeded.And finally, at the“communityof practice”level, studentswere
beingapprenticedinto medicallyacceptedwaysof behaving.

It is unrealisticto expectthatan all-embracing,prescriptive theoryof teachingwill easily
emerge given the complex, socialnatureof the enterprise.It would be like expectinga pre-
scriptive theoryof “beinga politician” or “beinganactor”. Of coursein eachof theseactivities
thereareguidelineswhich thenovice teacher(or politician or actor)canmake useof andsome
theoriesandpracticaltips on, say, how to beconvincing, how to explain effectively or how to
reflecton performance.For example,in the latter case,it canbe very useful for a teacherto
seea videotapeof a lessonhe or shehastaughtandto discussthe performancewith a more
experiencedperson.

But thesetheoriescannever be entirely prescriptive in that the activities do not occur in
a vacuumbut often dependfor their effectivenesson the personalitiesof the participants.An
authoritarian,disciplinedteachermaybejust aseffective (alongcertaindimensions)asa more
easy-goingpersonwith a laissez-faireapproach.It dependson how well theindividual teacher
canexploit his or herown personalitytraitsfor thejob in hand(Rutteret al., 1979).Theabove
shouldnotbetakento meanthatthetheoreticalstudyof teachinginteractionsis misguided,only
thatsocialphenomenaareenormouslysubtle.

Within the overall spaceof possibleteachingsituations,let us examinetwo in particular:
dealingwith motivationalissuesanddealingwith errors.Thesetwo have beenchosenbecause
they interactwith eachotherandalsobecausethey nicely illustratea polarisationof emphasis
betweensystemsthat Ohlsson(1987) criticised and what hasbeenachieved sincethen. Of
course,thevery notionof “dealingwith errors”betraysanexpectationof correctandincorrect
answers,andthiswill applyonly in a limited kind of learningsituation.

In orderto maintainthesenseof historiccontinuity, theissueof dealingwith errorsis taken
first. This issuehasbeencentralin thedevelopmentof machineteachers.

Dealingwith errors

Many machineteachershave addressedtheissueof dealingwith studenterrors,so it is natural
thatdesignersof suchsystemshave lookedto humanexpert teachersfor insight. An important
teachingcontroversy aroundsuchsystemsis the issueof the tactical vs. the strategic value
of providing immediatehelp whenerrorsaredetected.Tactically the studentis helpedat the
point wherethey have thebestchanceof understandingandexploiting thathelp. Strategically,
however, they maybebeingdeniedopportunitiesto figureout for themselveswhatwentwrong
andwhatto donext.

A review of theliteratureonthecomparisonbetweenexperthumanteachersandthesekinds
of intelligent tutoring systemsis provided by Merrill et al. (1992b). They notedthatdifferent
expertsadopteddifferentstylesof tutorial feedback:
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“Fox (1991)andLepperet al. (1991)arguedthat tutorsusevery subtlefeedback
uponerrorsorobstaclestomaximisestudents’problemsolvingsuccess.TheMcArthur
et al. (1990) resultsalsosuggestthat tutors follow students’solutionsvery care-
fully, but indicatethat this feedbackcanbevery directive. McArthur et al. argued
that tutorsgive explicit feedback,sometimeseven telling studentshow to solve a
problem,andcarefullystructurestudents’tasksby remindingthemof theproblem
goals.Littmanetal. (1990)andMerrill etal. (1992a)arguedthatthecontext of the
erroris critical in determiningfeedback”

(Merrill etal., 1992b,page283)

Thereare clearly differing stylesof teachingthat position themselves at different points
in the trade-off betweenproviding too muchhelp (thuspotentiallyinhibiting thedevelopment
of problem-solvingstrategies), and providing too little help (thus risking the possibility that
studentsbecomelost anddemotivated). For example,in thecontext of industrialtraining, the
Recovery Boiler Tutorofferedthetraineeanumberof “precautionarymessages. . .whena full-
scaledisasteris imminent” ratherthanspecificallynegative feedbackstatements.Thesemight
redirectthestudent:Haveyouconsidered. . . ; or, draw theirattentionto anunobservedrelation-
ship: Did younoticethe relationshipbetween. . . ; or, confirmthoseactionswhich arehelpful
(Woolf, 1988).

An importantfacetof the issueof how muchspecifichelp to offer is the degreeto which
studentsare in fact sufficiently self-aware to know when they do in fact needhelp (seee.g.,
AlevenandKoedinger,2000).

Merrill et al. (1992b)provide a critical comparisonof a rangeof model-basedtutoringsys-
temsin relationto theabove findingsfrom humantutors. An interestingissuethat is explored
aspartof this discussionis theway that theinterfaceto thesystemcanbea crucialelementin
helpingthestudentunderstandthenatureof theproblem-domain,overandbeyondany feedback
thata tutormight additionallyprovide (Reiseretal., 1992).

In comparinghumanandcomputer-basedtutors’ waysof dealingwith errors,Merrill et al.
(1992b)notesomesimilarities,e.g. bothhelp“studentsdetectandrepairerrorsandovercome
impasses”.However, they alsonotea numberof differences.Humantutorsoffer less“explicit
verbalizationsof thestudent’s misconception”thanmachineteachers;they aremoreflexible in
thetiming andthenatureof their feedback;andthey aremoresubtlein indicatingto thestudent
thatanerrorhasoccurred,e.g.via slight pausesor intakesof breath.

Motivatingstudents

An importantaspectof humanteachingexpertisethatfiguresonly weakly in Ohlsson’s (1987)
criticismcentresaroundskills employedby teachersto build andmaintainstudents’engagement
with thetaskandtheirmotivationto learn.

Accordingto Lepperetal. (1993)thefocusfor many expertteachersis not justoncognitive
issues,suchaswhattaskto teachnext or whaterrorthestudenthascommitted.They alsofocus
stronglyon affective issues.How canthestudentbestimulatedandchallenged?How canthe
student’s confidenceandsenseof controlover thelearningsituationbemaintainedor improved.
In pursuit of theseaffective goals,humanteachersareoften indirect in their way of helping
studentsto setgoalsor in reactingto theirerrors:“Now tell mehowyou got that6?”.

In thetricky issueof detectingthestudent’s currentmotivationalstateLepperet al. (1993)
suggestthatexperiencedteachersmake useof “the student’s facialexpressions,bodylanguage,
intonation,andotherparalinguisticcues”.

Thereis anotherway of gatheringevidenceaboutthestudentsmotivationalstate.Student
effort, ratherthanperformance,is alsoa reasonablyreliableindicationof intrinsic motivation
(Keller,1983).Learnerswhodisplayahighlevel of effort (detectedthroughtheiractivities,sug-
gestions,responses)maydeserve praiseevenwhentheir performanceis non-optimal.Thereis
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awide literatureon therelationbetweenextrinsic rewards(suchaspraise)andintrinsicmotiva-
tion. Eisenberger’s (1992)work suggestsrewardingeffort is effective over thelong-termandan
extensive meta-analysisof the literatureby CameronandPierce(1994)suggeststhat (contrary
to receivedwisdom)extrinsic rewardssuchaspraisedo notdecreaseintrinsicmotivation.

Observation of humanteachersthus lendsforce to Ohlsson’s (1987) criticisms. Indeed,
they go beyond it by pointingout theimportanceof affective issuesin determininghow expert
teachersbehave. Before turning to examinesystemsthat post-dateOhlsson’s criticisms, we
briefly examinethetwo othermethodologiesfor deriving thebehaviour of amachineteacher.

Derived from learning theory

We have alreadynotedthat thereare threemethodologiesfor deriving a teachingtheory for
a machineteacher. The secondof the threemethodologiesstartsfrom a learningtheoryand
derivesappropriateteachingtacticsandstrategiesfrom thattheory.

Beforecontinuingwith our discussionsabouthow learningtheorieshave informedthede-
signof computersystemsthatteachwe needto saya few wordsaboutthenatureof knowledge
itself. Thenatureof knowledgehaslongbeenanareaof active researchanddiscussionamongst
philosophers,psychologistsandeducationalistsaswell asthoseinvolvedin thedevelopmentof
artificial intelligencesystems.Is knowledgeabsoluteor relative? Doesit exist asan external
objectthatcanbeknown or is it boundup with eachindividual’s environmentandexperience?
What are the implicationsof what we belief aboutthe natureof knowledgefor the way we
perceive our own knowledgeandtheprocessesby which we acquirethatknowledge?In other
wordshow do our beliefsaboutknowledgeinteractwith theway we understandtheprocessof
learning?Thereis no roomfor usto do justiceto a discussionof thenatureof epistemological
beliefsandtheir role in learninghere. We thereforeraisethequestionin the reader’s mind as
onethat they would needto considerfor a fuller explorationof thenatureof learningtheories.
However, in this currentpaperwe now placeourselvesonestepremoved from this discussion
andconcentrateon thenatureof thelearningtheoriesthathave influencedsystemdesignrather
than the epistemologyupon which they are founded. For examplesof work in this areathe
readeris referredto von Glasersfeld(1984,1987);Wilson andCole(1991);Wilson (1997).

Let usnow look at somespecificexamplesof learningtheoriesandtheir interactionswith
teachingtheories. ConversationTheory (PaskandScott,1975)and its reification in various
teachingsystemsis an exampleof this approach. As with SocraticTutoring, Conversation
Theoryis concernedessentiallywith epistemologyratherthanwith affectiveaspectsof teaching
andlearning. It is basedon a view of learningconsistingof two interactingprocesses.One
operatesat the domainlevel, for instanceaddinglinks, facts,rulesandprinciples. The other
worksat themeta-level, notinggapsandinconsistenciesin what is known at thedomainlevel.
Thesetwo processescanoperateinsideanindividual learneror they canbedistributedasroles
betweenmorethanoneparticipant.Overall thetheorysetsconditionsto ensurethatthelearner
constructsa multifacetedunderstandingof a domainthat allows her to describe(to herselfor
to others)the inter-relationshipsbetweenconcepts.In somewaysthis is echoedby the “self-
explanation” view of effective learning(Chi et al., 1989). A further exampleof the second
methodology, whichalsopartiallyaddressessomeof theaffectiveissues,is ContingentTeaching
(Wood andMiddleton,1975). Herethe ideais to maintainthe learner’s agency in a learning
interactionby providing only sufficientassistanceatany point to enableherto makeprogresson
thetask.Theevaluationof this strategy in thehandsof non-teacherswhohadbeendeliberately
taughtit shows that it is effective. However it was found sometimesto go againstthe grain
for experiencedteacherswho oftenwish to provide morehelpat variouspointsthanthetheory
permits(Woodetal.,1978).Successfullyhelpingteachersto applya teachingstrategy basedon
scaffolding (Woodet al., 1976)canbedifficult, asthestudyby Bliss et al. (1996)shows. They
foundthat,evenafterteachers’reflective observationof their own andtheir colleagueslessons,
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focusingon opportunitiesandmethodsof scaffolding pupils’ learning:

“. . . they professedimproved practiceanddemonstratedgreaterconfidencein dis-
cussingscaffolding, but therewasnosignificantincreasein thenumberof instances
thatcouldbedescribedasscaffolding. Whenscaffolds wereusedthesewereusu-
ally onaone-to-onebasis.It wasduringthisphasethatwerealisedthatourteachers
could ‘talk scaffolding’ but appearedto implementit only marginally. Their focus
wason teachingratherthanon pupils’ learning.”

(Bliss etal., 1996,pages44-45)

The rangeof tutors developedby Andersonand his colleagueshasprovided an influen-
tial, andcontroversial,modelof teachingin the areaof dealingwith errors,seefor example,
(Andersonand Reiser,1985; Andersonet al., 1985; Corbettand Anderson,1992;Anderson
et al., 1995),andmorerecently(Koedingeret al., 1997,2000).Theform of teachinghasbeen
characterisedasone-to-onewith fine-graineddiagnosisandremediationfor multi-stepproblem-
solving in a varietyof formal domainssuchasgeometry, programmingandalgebra.It applies
only to problemswith tightly constrainedsolutionmethodsandthis is clearly limiting in terms
of the kinds of educationalinteractionbetweenmachineteacherandstudentthat canbe sup-
ported.However, recentwork by Koedingeretal. (1997)usingthePAT systemto teachalgebra
hasshown how someof theselimitations canbe circumventedby payingspecialattentionto
contextual factors(e.g.asemphasisedby Schoenfeld,1998).In particular, greatcarewastaken
to involve theschoolsandtheteacherswho wouldbeusingthesystemandcarefulthoughtwas
given to the useof the Tutor within theclassroom.The systemwasusednot on a one-to-one
basisbut by teamsof studentswho werealsoexpectedto carryout activities relatedto theuse
of thetutor, but not involving thetutor, suchasmakingpresentationsto their peers.This useof
explanationbetweenlearnershelpsto counteroneof Ridgway’s (1988)criticisms,mentioned
earlier.

Thedesignof thesesystemsis derived from a theoryof learningthat,at base,providesan
accountof the developmentof expertisewhich explainshow declarative knowledgeis trans-
formedinto proceduralknowledgeandhow this transformationcanbe supportedby learning
environments(Anderson,1990).A consequenceof thetheoryis thatattentionis paidto ensur-
ing that learnersarekeptawareof thegoalandsub-goalhierarchyof theproblemsolvingthey
have embarkedon.

The intelligenceof thesesystemsis deployed in several ways. Model Tracing,basedon
representingknowledgeof how to dothetaskin termsof production-rules,is usedto keepclose
trackof all thestudent’s actionsastheproblemis solvedandflag errorsasthey occur, suchas
misplottinga point or enteringa value in an incorrectcell in the spreadsheet.It alsoadjusts
the help feedbackaccordingto the specificproblem-solvingcontext in which it is requested.
KnowledgeTracingis usedto choosethenext appropriateproblemsoasto move thestudents
in a timely but effective mannerthroughthecurriculum.

Learningtheoriesarestill beingusedto inform systemdesign:for example,Constructivism
(AkhrasandSelf, 2000)andReciprocalTeaching(ChanandChou,1997). In addition,Grand-
bastien(1999)stressestheneedfor effective methodsto access,organiseandusetheexpertise
of the teacheror trainer. Startingfrom a modelof learning,Winne (1997)suggestshow stu-
dentsmight behelpedto developbetter“self-regulated”learningcapability(i.e. improve their
metacognitive skills).

Derived from studiesof students

Thethird methodologyfor deriving a teachingtheoryis basedon observationof students.One
methodologyobserveshow studentsof differenttypesrespondto a particularteachingmethod,
for exampleassessinghow studentsof differing ability farewith a particularmachineteacher.
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Anothermethodologycomparesdiffering methodsacrossstudents,and a third methodology
observesinteractioneffectsbetweenstudentcharacteristicsandteachingmethods.

Thesemethodologiescomein two forms. Therecanbeempiricalobservationsof real stu-
dentsor therecanbeanalysesof thereactionsof simulatedstudents.

Studiesof RealStudents

Within theeducationalliteratureasa wholethereis a hugeliteratureon how studentsof differ-
ing characteristicsrespondto differing teachingmethods.Therangeof characteristicsinclude
gender, ability, learningstyle,backgroundknowledge,ageandsoon. For a review of this huge
areathe readeris referredto CronbachandSnow (1977). Within the artificial intelligencein
educationcommunity, many studieshave lookedat how studentsof differing ability andback-
groundrespondto particularsystems.As asinglerecentexampleof thisstyleof work weselect
Arroyo et al. (2000).They categoriseda cohortof studentsby genderandby level of cognitive
development. They wantedto establishhow variationsin the style of hints in the context of
anarithmeticprograminteractedwith genderandwith cognitive development.Hints variedon
two dimensions:degreeof interactivity andthenatureof thesymbolismused.They looked at
thereductionin thenumberof mistakeson a problemfollowing a hint asoneof thedependent
variables.They founda numberof interactioneffects(e.g. that“high cognitive ability students
do betterwith highly symbolichintswhile low cognitive ability studentsdo worsewith highly
symbolichints”). Theseandrelatedresultsshouldenabletheprogramto make“macroadaptive”
(Shute,1995)changesto its teachingstrategy to suit particularsub-groupsof students.

Despitethehugewealthof work, it is difficult to derive generalguidelinesaboutthediffer-
entialeffectof students’characteristicsof sufficientprecisionandreliably to supportthedesign
of machineteachers.

In termsof looking at the effectsof variationsof teachingmethod,an importantindirect
influenceonprogresshasbeenthework of Bloom(1984)andhiscolleagues.They investigated
how variousfactors,suchascuesandexplanations,reinforcementandfeedback,affect student
learning,taking conventionalclassroomteachingas the baseline.They found that highly in-
dividualisedexpert teaching,shifts thedistribution of achievementscoresof studentsby about
two standarddeviationscomparedto the moreusualsituationwhereoneteacherdealswith a
classroomof students.They alsofoundthattherangeof individual differencesreduced.

This two standarddeviation improvement,or Two Sigmashift, hasbecomea goalat which
designersof machineteachersaim. A standardmethodof evaluationof sucha systemis to
compareit with conventionalnon-computer-basedinteractionteachingthesametopic, though
therehave beensomecomparisonsof “smart” and“dumb” versionsof thesamesoftware. For
moreon evaluationof AIED systems,seedu Boulay(2000);Self (1993).

Studiesof SimulatedStudents

The secondform of the methodologythat is basedon observation of studentsusessimulated
ratherthanreal students.The exampleswe know of this methodologytypically comparedif-
ferent teachingmethodsacrossidenticalsimulatedstudentsratherthanmodellingstudentsof
differing characteristicsandobservinghow a particularteachingmethodaffectsthemdifferen-
tially. This methodologybuilds a computationalmodelof thelearneror of thelearningprocess
andderivesa teachingstrategy or constraintson teachingbehaviour by observingthemodel’s
responseto differentteachingactions.For example,VanLehnetal. (1994)comparedtwo strate-
giesfor teachingsubtractionto a productionrulemodelof a subtractionlearnerandconcluded,
on the basisof the amountof processingengagedin by the model,that the “equal additions”
strategy was more effective than the more widely taught “decomposition”strategy. With a
similar generalmethodologyVanLehn(1987)derived “felicity conditions”for thestructureof
tutorial examples,for instancethatthey shouldonly containonenew subprocedure.
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This methodologyoffersan interestingavenuefor researchbut in termsof makingpredic-
tions abouthow real studentswill react,it dependscrucially on the fidelity of the underlying
simulations.

EXAMPLES OF RECENT PROGRESS

This sectiondoesnot aim to bea comprehensive review of thecurrentstateof theart in mod-
elling teachingfor tutoring systems.It offers a numberof examplesof recentandrelatively
recentsystemsthatattemptto go beyondtherestrictionsoutlinedby Ohlsson(1987)andRidg-
way(1988).Two of theexamplesderivedirectly from theanalysisin theprevioussection.Thus
the first subsectionexploits the literatureon expert teachersto tackle the centralissueof the
affectivedimensionin teachinganddescribesasystemconcernedwith modellingteachers’mo-
tivationalexpertise.Thesecondsubsectionshows how ContingentTeachinganda Vygotskian
learningtheorycanbeexploitedanddealswith anaspectthathasbeenof centralinterestfrom
thestartof AIED, namelyadjustingthekind of activities andthehelp provided to studentsto
succeedon thoseactivities. Thesystemcandynamicallyadjustthe terminologyit usesto de-
scribeits domainto thestudentaswell asmakeadjustmentsto boththecomplexity of thetasks
it setsaswell asthehelpit provides.

Becauseof their increasingvisibility, thethird subsectionlooksat severalexamplesof ped-
agogicalagentsandexamineshow they areaffecting thedebateaboutmodellingteachers’be-
haviour, includingtheissueof theperceivedplausibilityof suchsystems.

Note that one way to track the changesin the teachingability of modernsystemsis to
examinetools for building machineteachers,namelyauthoringsystems.This is not theplace
to survey suchsystemsandan excellent recentsurvey is provided by Murray (1999). He is
upbeatabouttheir capabilityto representtutorial strategiesandtacticsbeyondsimpleissuesof
curriculumsequencingandplanning:

“Instructionaldecisionsat themicro level includewhenandhow to give explana-
tions, summaries,examples,andanalogies;what type of hinting andfeedbackto
give; andwhat typeof questionsandexercisesto offer thestudent.. . .Also char-
acteristicto systemsin this category is the ability to representmultiple tutoring
strategiesand“meta-strategies” that selectthe appropriatetutoring strategy for a
givensituation.”

(Murray, 1999,page102)

Amongthemany systemssurveyedby Murray (1999),REDEEMstandsasagoodexample
of an authoringsystemwith the capabilityof specifyinga wide variety of teachingstrategies
(Major etal., 1997).Thissystemprovidestoolsfor authors(usuallyteachers)to reuseandreor-
ganizeexistingnon-adaptive pagesof tutorial materialinto a responsive andadaptive system.

Adding motivational competence

As we have seen,theoriesof instructionalmotivationelaboratetheinfluenceof issueslike con-
fidence,challenge,controlandcuriosityin thelearningprocess(Keller,1983;MaloneandLep-
per, 1987)andsuggestinstructionaltacticsto keepthestudentin anoptimal learningstateand
provide appealingandeffective interactions.Of course,it is an openquestionas to how far
in practiceoneneedsa separatetheoryof motivation. It could be arguedthat if onegetsthe
cognitive,metacognitive andcontextual issuesright, thenall will bewell. Eachof theseis itself
a complex issue,andso for thepurposesof progressit seemssensibleto clarify themeansby
whichstudentscanbemotivated.

Work on motivational issuesis proceedingalong two fronts. The first reasonsaboutthe
affective stateof theteacher. With therisein interestin creatingpedagogicalagents,increasing
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attentionis beingpaidto equippingthemwith affective competence.For example,Lesteret al.
(1999)describethetechniquesunderpinningCOSMO,a pedagogicalagentthatcanadaptboth
its facialexpression,its toneof voice,its gesturesandthestructureof its utterancesto indicate
its own affective stateandto addaffective forceandfocusto its interactionswith learners.By
presentingits reactionsto thestudentin amorevaried,human-like waythehopeis thatstudents
will be bettermotivatedto learnandbetterable to judgewhat is importantin what is being
advised.Theseissuesareelaboratedin a latersectionof thepaper.

Onanotherfront work is progressingonasystem,MORE,to reasonabouttheaffectivestate
of the student(del Soldato,1994;del Soldatoanddu Boulay,1995). To this endimplement-
ing motivationaltechniquesdemandsshapingthesystem,includingdomainrepresentationand
studentmodel,in severalaspects.In whatfollows theassumptionis thatthestudentis working
on topicsassignedaspart of a curriculumratherthanworking on topicspurely of their own
choosing,in which casethemotivation issuesarelikely to bevery different. In particular, the
systemmust:

1. Detectthestudent’s motivationalstate;

2. Reactwith thepurposeof motivatingdistracted,lessconfidentor discontentedstudents,
or sustainingthedispositionof alreadymotivatedstudents.

The notionof a system’s reaction— triggeringparticularmotivationaltactics— suggests
thatacomprehensive instructionalplanshouldconsistof a “traditional” instructionalplancom-
binedwith a motivationalplan. Wasson(1990)proposedthedivision of instructionalplanning
into two streams:contentplanning(“which topic to teachnext”), followedby delivery planning
(“how to teachthenext topic”). At first sightthemotivationalplanseemsto becompletelyem-
beddedin thedelivery plan. However, motivationaltacticsdo not alwayssimply completethe
traditionalcontentplanning:sometimesthey competewith it aswell. A typicalexampleof such
a conflict is thenecessityfor lessconfidentstudentsto build their confidenceby accumulating
experienceof success,in which casethesystemcouldprovide problemslikely to bepositively
answered— basedon topics that the studentalreadyknows. This is relatedto the needfor
practicein learning,an issuenot well exploredin AIED systems.Furthermore,while the de-
tectionof a learner’s motivationalprofile shapesthestudentmodel,thesystem’s reaction(e.g.
suggestinganeasierproblem,askingapuzzlingquestion)dependson theresourcesavailablein
thedomainrepresentation.

Typicaldomain-basedplannersselectactionsaccordingto whetherthelearnerknowsatopic
or hasmastereda skill. Themethodologyis twofold: detectingthecurrentstateof thelearner’s
knowledgeand skill (studentmodelling) and reactingappropriatelyin order to increasethis
knowledgeand skill (teachingexpertise). To take accountof motivational factors,we have
extendedthe twin activities of “detectingthe state”and“reactingappropriately”by addinga
motivationalstateandmotivationalplanningto thetraditionalITS architecture.Sometimesthe
adviceofferedby themotivationalplannerdisagreeswith thedomain-basedplan,while in other
casesbothplanscomplementeachother(delSoldatoandduBoulay,1995).

Let us consider, as an example,the situationin which the studentsucceedsin solving a
problem,in this casefinding the bug in a program. A typical domain-basedplannerwould
acknowledgethe right answerandsuggest(or directly provide) a harderproblem,thusmak-
ing surethe studentis traversingthedomainin a progressive manner. Suchbehaviour is well
exemplifiedby Peachey andMcCalla’s (1986)instructionalplanner:whenthe learnermasters
an instructionalgoal, the plannerfocusesnext on goalsthat requirethe topic just masteredas
pre-requisites,traversingthe domainin the directionof a specificultimategoal. In this case,
knowingor not knowingthe topic, or exhibiting or not exhibiting the relevantskill, is theonly
issuein thestudentmodelthatdrivestheselectionof suitableactions.
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Motivationalplanningtakesinto accountothervariablesin the studentmodelandwidens
the tutor’s spaceof possiblereactions.Justby consideringbinary statesof effort (little/large)
andconfidence(low/ok) resultsin four differentsituations,eachonerequiringa suitablesetof
actionsfrom thetutor, thebinarystatesof effort andconfidence.

When the student’s confidenceis diagnosedasbeing low, the major goal for the planner
is to help the learnerregain a reasonablelevel of confidence,and one of the tacticsfor im-
proving confidenceis to increasethe student’s experienceof success. The tutor shouldthen
selecta task likely to be solved successfullyagain(e.g. a similar taskto the onethe student
hasjustaccomplished).This is aclearexampleof disagreementbetweenthedomain-basedand
themotivationalplanner, sincesimply traversingthedomainto thenext hardertopic hasbeen
deliberatelyavoided.

Ontheotherhand,if providing aright answerrequireslittle effort from thestudent(evenan
insecureone)the tutor shouldmove to hardertasks.The tutor shouldmake thedifficulty-level
promotionvery clear, bothby praisingthesuccessesobtainedsofarandwarningaboutthenew
difficultieswhich arelikely to beencounteredat theharderlevel. Thestudentthenis prepared
to copewith new failureswithout feelingtoode-motivated.

Let usnow considerthecaseof ataskthatdoesnotrequireverymucheffort from anormally
confidentlearner. For a typical domain-basedplannersucha situationwould beideal,whereas
from a motivationalperspective thetaskcouldbeperceived asbeingirrelevantor “boring”, or
in otherwords,de-motivating. Thetutor shouldthenincreasethedegreeof challengeprovided
by theinteraction,by adjustingthedifficulty level to a harderonewherethestudentwould not
always(easily)performthetask,andsomeeffort wouldhave to bespentto achieve success.

Similar analyseshave beenmadefor caseswherethestudentfails at a taskor givesup on
a taskandthesetacticswereimplementedasproductionrulesin themotivationalplanner. The
issuehereis not so muchwhethertheseparticulartacticsarecorrect,but the fact that tactics
suchasthis canbemodelledexplicitly within thesystem.If thesearenot thebestrules,then
otherscanreplacethemwithout having to redesignthesystemfrom scratch.

Theneedfor flexibility in theway thatmotivationaltacticsareimplementis underlinedby
theevaluationof MORE.Oneof theissuesthatemergedwasthereluctanceof somestudentsto
acceptcertainteachingtacticsfrom a machineasopposedto a human— therefusalto provide
helpwhenaskedor therefusalto allow thestudentto give up on anunsolvedproblem.This is
anexampleof the“plausibility problem”,whichwe discusslater.

Judging task difficulty and degreeof assistance

Assumingthat a learneris in a reasonablestateof motivation, the teachercan thenfocuson
whatthelearnershoulddo andhow they shouldbehelped.

Wenow discusstheissueof adjustingthecomplexity of thelearningenvironment,thecon-
tentanddifficulty of theactivities, thelanguagein which they areexpressed,andthequality of
hintsandsuggestionsin interactive learningenvironments(ILEs). In particular, wedescribethe
educationalphilosophyunderpinningtheEcolabsoftware.

TheEcolabis anInteractive LearningEnvironment(ILE) whichaimsto helpchildrenaged
10–11yearslearnaboutfood chainsandwebs. The Ecolabprovides a flexible environment
whichcanbeviewedfrom differentperspectivesandrun in differentmodesandin increasingly
complex phases.In additionto providing thechild with thefacilities to build, activateandob-
serveasimulatedecologicalcommunity, theEcolabalsoprovidesthechild with smallactivities
of differenttypes,suchasfindingoutwhatanimalseat,whicharepredatorsandwhichareprey,
establishingtheenergy changesassociatedwith feeding,andsettingup a self-sustainingsmall
ecosystem.Theactivitiesaredesignedto structurethechild’s interactionswith thesystem.They
provide a goal towardswhich thechild’s actionscanbedirectedandvary in thecomplexity of
therelationshipswhich thechild is requiredto investigate.
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This systemexplorestheway thatVygotsky’s Zoneof ProximalDevelopmentcanbeused
in the designof learnermodels(Luckin, 1998;Luckin anddu Boulay,1999). The theoretical
foundationrequiresthesystemto adoptthe role of a moreableassistantfor a learner. It must
provideappropriatelychallengingactivitiesandtheright quantityandqualityof assistance.The
learnermodelmusttrackboththelearner’s capabilityandherpotentialin orderto maintainthe
appropriatedegreeof collaborative assistance.

Oneof thelinks betweenthework on theZPD andthework on motivation is thenotionof
effort. For themotivationalplannertheamountof effort expendedby thestudentis a measure
of hermotivationalstate.For Vygotsky, anappropriatedegreeof mentaleffort is apre-requisite
for learning.

TheZoneof ProximalDevelopment(ZPD) (Vygotsky, 1978)is createdwhentwo or more
peopleform a collaborative learningpartnershipin which the moreablemembersenablethe
lessable membersto achieve their goal. In order for a collaboratorto be successfulin the
role of a moreablelearningpartnershemustconstructa sharedsituationdefinition (Wertsch,
1984)whereall membershave somecommonknowledgeaboutthecurrentproblem. This in-
tersubjectivity canonly beachieved if theteacher/collaborator hasa dynamicrepresentationof
thelearner’s currentknowledgeandunderstanding.TheZPD alsohasa spatialanalogywhich
quantifiesa learner’s potential(Vygotsky, 1986). It is the fertile areabetweenwhat shecan
achieve independentlyandwhat shecanachieve with assistancefrom another. In essencethe
ZPDrequirescollaborationor assistancefor alearnerfrom anothermoreablepartner. Theactiv-
ities which form a partof thechild’s effective educationmustbe(just) beyondtherangeof her
independentability. Thelearningpartnermustprovide appropriatelychallengingactivities and
theright quantityandqualityof assistance.In theEcolabthelearningpartnerrole is adoptedby
thesystem,andso the learnermodelmusttrackboth the learner’s capabilityandherpotential
in orderto maintaintheappropriatedegreeof collaborative assistance.

The strongfocuson adaptingto the userby adjustingthe amountof help that is initially
offeredis similar to the adaptive mechanismsin the SHERLOCKtutors(seee.g.,Katz et al.,
1992;Lesgoldet al., 1992). A differencefrom SHERLOCKis that thereis alsoadjustment
both to the natureof the activities undertaken by usersand to the language in which these
activities areexpressed.Theworking assumptionis thatmoreabstractlanguageis harderand
learnersmovefrom theconcretetowardtheabstract.An alternativeview mightoffer theabstract
terminologyearlierasan aid to generalisation.The emphasiswhich the Ecolabplacesupon
extendingthelearnerbeyondwhatshecanachievealoneandthenproviding sufficientassistance
to ensurethatshedoesnot fail alsosetsit apartfrom othersystem’s suchasthatof Becket al.
(1997),whichgenerateproblemsof controlleddifficulty andaimto tailor thehintsandhelpthe
systemoffersto theindividual’s particularneeds.TheEcolabextendsthework donewith other
systemswhich have usedtheZPD conceptin relationto thelearnermodellingtasksuchasthe
systemof Gegg-Harrison(1992)which offers the learnerguidedproblem-solvingsessionsin
which they aregivenassistancein solvingdifficult Prologproblems.

The Ecolabcanassistthechild in several ways. First, it canoffer 5 levels of gradedhelp
specificto theparticularsituation;second,the difficulty level of theactivity itself canalsobe
adjusted(activity differentiation).Finally, thedefinitionof thedomainitself allows topicsto be
addressedby thelearneratvaryinglevelsof complexity and(independently)usingterminology
of varying levels of abstractness.So, for example,activities caninvolve simplebilateralrela-
tionshipsbetweensay“rabbits” and“grass”, or the samesimplerelationshipdescribedin the
moreabstractterms“herbivore” and“primary consumer”.In addition,morecomplex relation-
ships(suchasbetweendistantmembersof thesamefood web)canalsobedescribedeitherin
simpleor moreabstractlanguage.

The Ecolabusesa bayesianbelief network modelof the difficulty of transitionsbetween
nodesandthehistoryof successandhelprequiredat previousnodesto decide:
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� Which nodein the curriculum will be tacklednext — which level of complexity and
which level of terminologyabstraction.

� Whatlevel of helpwill beoffered.

� How muchactivity differentiationwill beofferedto thechild.

Thesystemmaintainsa modelof theecologycurriculumbasedon a BayesianBelief Net-
work. Eachnodein the curriculumrepresentsa rule to be learned. The rulesare linked via
pre-requisitesthatimposeapartialorderon therulesin thecurriculum.Thereis astartingnode
andalsoanotionalfinishingnode,namelythemostcomplex ruleexploredvia themostabstract
terminology.

Eachnodeis associatedwith aprobabilityvaluethatindicatesthelikelihoodthatthelearner
cancomplete,unassisted,activities associatedwith thatnode.Thesystemusesthesevaluesto
distinguishnodesthatareeithertoo easy(outsidetheZPD), just too hard(within theZPD) or
muchtoohard(outsidetheZPD) for that learnerto completeunassisted.

Thenext nodefor the learneris chosenfrom thosethatarejust too hard. Thesystemuses
dataaboutthe learner’s progresswith previousnodesto setboththedegreeof difficulty of the
activity chosenaswell asthequalityof theinitial helpwhich is offeredif needed.

Onceanactivity is completedtheactualamountof helpthatthelearnerusedis noted.This
may be more than was expected,if the activity turnedout to be harder, or can be lessthan
expectedif in fact the learnerdid not needany help. The amountof help actuallyprovided
is usedby the systemto updatethe probability valueof masteryat that node. This value is
thenpropagatedthroughthenetwork to updatetheprobabilityvaluesat all othernodeslinked
to it via pre-requisites(Luckin, 1998). A nodeis againchosenthat is just too hard. This may
involveeitheraprogressionthroughthecurriculum(i.e. to amorecomplex ruleor towardsmore
abstractterminology)or stayingat thecurrentnodeandtacklingadifferentactivity.

Student’s input to theEcolabwaslargely unambiguous,e.g. button pressesto choosedif-
ferentaspectsof the interfaceor to chooseanimalsand their actionsto assembleinto small
programs.Whereinappropriateactionswerechosenthesystemgeneratedhelpmessagesat the
appropriatelevel of specificity, dependingon its view of the learner’s degreeof masteryof the
topic. Whenthe learnermadesucha mistake the Ecolabdid not try to reasonaboutwhat the
learnermight have hadin mind. Its modelof the learnerwasan overlay of standardecology
knowledgeexpressedasasetof probabilitiesthatthelearnerhadmasteredeachof thetopics.

An issuethatemergedfrom thework with Ecolab(which is thesubjectof currentresearch)
concernsthepupils’ degreeof insightinto theirown stateof learningandpossibleneedfor help,
seealso(AlevenandKoedinger,2000)mentionedearlier.

Making the teachermanifestand believable

Thegenerationof systemscritiquedby Ohlsson(1987)realisedtheir teachingexpertisethrough
their textual interactionswith studentsor throughchangesto the interfacesonto the domains
beingstudied.With therapidimprovementin graphicalandaudiotechnologymany new possi-
bilities for animatedpedagogicalagentspresentthemselves.Suchsystemsstill have to address
thesamerangeof teachingproblemsasbefore,but they cannow bring a wider rangeof tactics
to bear(e.g.achangeof facialexpression,or achangeof verbalemphasis).

Johnsonet al. (2000)describea numberof pedagogicalagentsfor differentdomains,in-
cludingSteve(for teachingaboutoperatingmachinery),Adele(for teachingmedicine),Herman
theBug (for biology) andCOSMO(for adviceaboutinternetprotocols).They arguethatsuch
systemsbring extrapossibilitiesin thefollowing areas:
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� Interactive demonstrations:wheretheagentcando thetask,point to itemsin asimulated
environmentaswell ashandover the taskto the learnersandcommenton their perfor-
mance.

� Navigationalguidance:wheretheagentcanassistthelearnersto find theirwayroundand
establishtheirbearingswithin acomplex VR world.

� Useof gazeandgesture:wheretheagentcanexploit its own gazeandgestureto indicate
its currentfocusof attentionin anon-verbalmanner.

� Useof non-verbalfeedbackandconversationalsignals:wheretheagentcanindicatethat
thestudenthascompleteda taskcorrectlyor incorrectlyby differentkindsof nodof the
heador by changingits facialexpression,or exploit eye contact,or adjusttoneof voice
andemphasis.Thesekindsof capabilitygo someway towardsproviding boththesubtle
andnon-intrusive feedbackemployedby experthumanteachers,describedearlier.

� Conveying andeliciting emotion: wherethe agentcan indicatesurprise,pleasure,dis-
pleasure,puzzlementandotheremotionsappropriateto thecurrentstateof the learning
interaction.

� Virtual teammates:wheretheagentcanplay therole of oneor moreteammatesin tasks
wherethelearnerneedsto learnhow to coordinateactionsfor arolewith theactionstaken
by otherroleplayers.

Embodiedpedagogicalagentsoffer the possibility that someof the subtletechniquesem-
ployed by expert teachers(Merrill et al., 1992b)cannow beappliedby machineteachers.Of
course,theseextra possibilitiesbring extra complexity: for example,not just a matterof decid-
ing what to sayandwhento sayit, but alsoa matterof exactly how to sayit. So oneof the
centralandlong-standingproblemsof thefield hasre-emergedwith new force.

In additionto any problemsof educationaleffectivenessin practice,machineteachersare
vulnerableto whatLepperet al. (1993)call the“Plausibility Problem”:

“Evenif thecomputercouldaccuratelydiagnosethestudent’saffectivestateand
evenif thecomputercouldrespondto thatstate(in combinationwith its diagnosis
of thelearner’s cognitive state)exactly asa humantutor would, thereremainsone
final potentialdifficulty: theplausibility, or perhapstheacceptability, problem.The
issuehereis whetherthesameactionsandthesamestatementsthathumantutors
usewill have thesameeffect if deliveredinsteadby a computer, evena computer
with avirtually humanvoice.” (Lepperet al., 1993,page102)

In otherwords,will humanteachingtacticsandstrategies,or tacticsderivedfrom learning
theoriesor learningsystemswork effectively for a machineteacher?We alreadynotedhow
studentsfoundcertainactionsof theMOREmachineteacherunacceptable.For amoreextended
discussionof this issueseeLepperet al. (1993);du Boulayetal. (1999).

CONCLUSIONS

How far hasthe situationimproved from that describedby Ohlsson?Sincethe mid-eighties
therehave beentwo very usefuldevelopments.Partly asa resultof thedesireto improve the
capabilitiesof suchsystems,therehasbeenanincreasingamountof researchinto humanexpert
teachingpractice.Of course,teachinghasbeenstudiedfor millenia, but themorerecentwork
hasstudiedit at a level of granularityandwith thepossibilitythat thetacticsandstrategiesob-
servedmightbeimplementable.Thishasleadto agradualfilling in of thejigsaw of capabilities,
takingawider rangeof issuesinto accountsuchasmotivationandindividual differences.
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Second,theadventof pedagogicalagentshasagainthrown thespotlightbackontothewhole
issueof teachingexpertiseand the subtletyof learner-teacherinteractions. Thereare some
encouragingevaluationsof suchsystems(seee.g.,Lesteret al., 1997)but they alsoraisemany
interestingand,asyet,unresolvedissuessuchastheir plausibilityandtheiracceptabilityacross
a rangeof educationalcontexts.

TheInternethasbeenahugeinfluenceonthedevelopmentof systemsfor education.Overall
this hasfavouredmore learner-centredapproachesthan thosein which teachingtacticsand
strategiesareto thefore, seeCollins et al. (2000);McCalla(2000)for analysesof thesetrends.
Even within a web-basedlearned-centredparadigm,the systemcan make variousautomatic
adjustments,e.g. to which pagesaremadeaccessibleto a particularlearner, seeBrusilovsky
et al. (1998)for anexample.Theintroductionof networked technologieswhich allow learners
to interactacrosswidely distributedgeographicallocationsenablesinteractionsbetweenhuman
learnersandteacherswhichwerepreviouslyunavailable.Are theissueswhichwerepertinentto
traditionalface-to-facehumanteachingandlearningstill pertinentor shouldwebeexploringthe
changesin humanteachingwithin this paradigmin orderto inform our designsfor intelligent
systemsto supportthis learning?

We shouldnot losesightof thestrengthsof machineteachers,despitetheir failings. In ad-
dition to beingableto reify thelearningdomainandthelearningor problem-solvingprocessin
waysnoteasilyopento humanteachers,machineteachershave theability to actin apatientand
consistentmanner. Thisconsistency canbebothin termsof theirknowledgeandstrategy aswell
asin termsof theiremotionalreactions.As humanteacherswearewell awareof theoccasional
emotionalintensityof certaineducationalinteractionsandwe have alreadycited the studyby
Bliss et al. (1996) that observed a disparitybetweenwhat teacherssaid they weredoing and
whatthey actuallydid in theclassroom.Machineteachersdonotneedto beprey to theseprob-
lems— unless,of course,our theoryof educationsuggestssuchintensityor unpredictability
needsto playa role!

In future, asmachineteachersevolve, no doubtwe will seethe emergenceof personality
typesamongstthem,with somebeingjokey, alert andquick-fire while othersaremorewell-
manneredandpedestrian.Eachkind may suit sometypesof studenton someoccasions.As
systemsbecomemoreversatilewemayseetheemergenceof thepossibilityof somenegotiation
overwhatis to belearned:thiswouldbelikely to helpthemotivationissuesmentionedearlier.

We arealsostartingto seetheemergenceof systemsthatmonitor theinteractionsamongst
studentswhile they learn in order to ensurethat all partiesplay an effective role. A certain
amountcanbe achieved herewithout the needfor complex naturallanguageprocessingtech-
niques(seee.g.,Soller,2001).
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