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MODELLING HUMAN TEACHING TACTICS AND
STRATEGIES FOR TUTORING SYSTEMS

Benedict du Boulay and Rosemary Luckin, HumanCented Technolayy Reseath Group,
Sdaool of Cognitiveand ComputingSciencesUniversity of Sussg, BN19QH, UK.
bend@cgs.susx.ac.ukpsel@cgs.susx.ac.uk

Abstract. One of the promisesof ITSs and ILEs is that they will teachand assistlearning
in anintelligentmanner Historically this hastendedto meanconcentratingon the interface,
on the representationf the domainandon the representationf the students knowledge. So
systemdhave attemptedo provide studentswith reificationsboth of whatis to be learnedand
of thelearningprocessaswell asoptimally sequencingndadjustingactvities, problemsand
feedbacko besthelpthemlearnthatdomain.

We now have embodiedanddisembodiedjeachingagentsandcomputetbasedpeersand
the field demonstratea much greaterinterestin metacognitiorandin collaboratve actvities
andtools to supportthat collaboration. Neverthelesshe issueof the teachingcompetencef
ITSsandILEs is still important,aswell asthemorespecificquestionasto whethersystemsan
andshouldmimic humanteachers.Indeedincreasingnterestin embodiedagentshasthrovn
thespotlightbackon how suchagentsshouldbehae with respecto learners.

In the mid 1980sOhlssonand othersoffered critiquesof ITSs and ILEs in termsof the
limited rangeandadaptabilityof their teachingactionsascomparedo thewealthof tacticsand
stratgies employed by humanexpertteachers.So arewe in ary betterpositionin modelling
teachinghanwe werein the 80s?Are thesecriticismsstill asvalid todayasthey werethen?

This paperreviews progressn understandingertainaspect®f humanexpertteachingand
in developingtutoring systemghatimplementthosehumanteachingstratgies andtactics. It
concentrateparticularlyon how systemshave dealtwith studentanswersand how they have
dealtwith motivationalissuesreferringparticularlyto work carriedoutat Sussg: for example,
onrespondingeffectively to the students motivationalstate,on contingentand Vygotskianin-
spiredteachingstratgiesandon theplausibility problem.This latteris concernedvith whether
tacticsthat are effectively appliedby humanteacherscan be as effective when embodiedin
machineteachers.

INTRODUCTION

IntelligentTeachingSystemsandintelligentLearningEnvironmentsnitially evolvedin arather
lop-sidedway. First, mucheffort wasputinto developinghighly detailedmodelsof particular
domains. So, for example,SOPHIEIn its variousversionsembodieda highly detailedrepre-
sentationof an electroniccircuit at variouslevels of granularity from a single device suchas
a resistor via a functional sub-structuraup to a completepower supply (Brown and Burton,
1975). It alsomodelleddiagnostictacticsandstratgy and could reactsensiblywhenstudents
exhibited lessthan optimal trouble-shootingoehaiour. It also had, for its time, good natu-
ral languagecapabilitiesand could respondto a wide rangeof domainspecificquestionsand
commandgBurtonandBrown, 1977). Othersystemsvereableto exploit their domainknowl-
edge,including knowvledgeof misunderstandingsf the domainin orderto make fine-grained
diagnostigudgementsaboutstudents.For example,Deluggy (Burton, 1982)and morerecent
systemdik e it werecapableof building ahighly detailed(studentimodelof anindividual’'s sub-
tractionbehaiour, but left it to humanteachergo embarkon appropriataemediation.Indeed
whethertherewasary valuein undertakingsuchfine-graineddiagnosiswasitself questioned,



asreteachinghewholeprocedureatherthanjusttheincorrectlyunderstoogortionseemgust
aseffective (Sleemaretal., 1989).

Secondteachinginvolves a wide variety of communicatre actvities suchas explaining,
persuadingarguing,demonstratinggdescribingandsoon, andtheseareskills thatarealsoused
in otherthaneducationatontets. Onecouldimagineateachingsystemthatimplementedhis
more generalcommunicatie competencend then specialisedt asneededor the particular
educationakontet at the time. The theoriesof teachingthat wereimplementedn machine
teacherSwerenotgroundedn suchgeneratommunicatie competencéobecausé wasbeyond
the stateof the art) but necessarilyreated‘teaching” asanisolatedandlargely self-contained
skill.

An example of one of theseisolatedand self-containedskills was Socratic Tutoring, a
methodof teachingbasedon askingthe studenta seriesof carefully constructedjuestionghat
would leadstudentgo recognizeandfix gapsandinconsistenciesn whatthey know of a do-
main (Collins et al., 1975). Anotherexampleis provided by the varioussystemsproducedoy
Andersorandhis colleaguesvhich monitoredstudentsproblem-solvingn afine-grainednan-
nerandhadthe capabilityof reactingimmediatelyif the studentdepartedrom the paththatan
ideal studentwould have followed (seee.g.,Andersonand Reiser,1985). This endaved ma-
chineteacherf that erawith a certaincommunicatre brittlenessthat could underminetheir
otherskills.

Of coursetherewereattemptgo build tutorial systemsvith moreversatileeducationatom-
municatize competenceOnesuchsystemwas GUIDON (Clancg, 1982)which incorporated
rulesfor “selectingdiscoursepatterns”,for “choosingdomainknowledge” andfor “maintain-
ing the communicatiormodel”. Within the categyory of discoursepatterntherewererulesfor
respondingto a studenthypothesiswhich resembledSocraticTutoring, aswell asrules for
dealingwith otheraspect®f theinteraction.

AnothersuchsystenmwastheMeno-tutorwhichincorporatedi DiscourseManagemenhet-
work (Woolf, 1988). Indeed therearevarioussimilaritiesbetweenthis network andOhlssons
taxonomy(seeFigurel). This systemcould make useof the currentdiscoursecontet to dis-
tinguishandexecutea rangeof differentkinds of tutorial tactics(for example,briefly acknavl-
edginga student incorrectanswer)and stratgic rules (for example,undertakinga seriesof
shallov questionsabouta variety of topics).

Sooveralltherewasratherune/enprogressn thefollowing areaswith mostsystemsaving
ratherarestrictedrepertoireof teachingactions,andwork concentratingn (i) below:

i. Thedevelopmentof avariedrepertoireof teachingactions.

ii. Thedevelopmentof effective stratgic andtacticalmeans-endsulesfor the deplgyment
of theteachingactions.

iii. Thedevelopmentof suchbasic,communicatie skills and competenceasexplaining ar
guing, corvincing, cajoling, detectingmisunderstandingslealingwith interruptionsand
sideissuesetc.

iv. The developmentof theoriesof motivation and affect that would enablethe judicious
changeof topic, useof ajoke,impositionof athreat,offer of praiseandsoon.

Thekind of criticism thatwaslevelled at machineteachersvasthe sameasthatoftenlev-
elledat Al in generalpamelythatthey tendedio concentrat®n toy worlds (albeitoftenhighly
detailedtoy worlds)andthatthey tendedo degradebadlywhenmovedoutsidetheir own sphere

ITheterm“machineteachers’ls usedasa generaldescriptionof systemghatadjustthemselesto the needsof
their studentsThis maymeanposinga problem evaluatinganansweror adjustingthelevel of help,butit couldalso
includesadjustingsomeaspecbf (say)asimulationin anintelligentlearningenvironment,to increasehelik elihood
thatproductie explorationsareundertaken.



of competencéseee.g.,Dreyfus, 1979). This meantthat the teachingstyle of mostmachine
teachersvas gearedtowardsa rather“convergent”, “syllabus bound” teachingand diagnos-
tic style (seee.g.,Ohlsson,1987). By contrast,a humanteacheris able to integrate topics
acrosswidely differing domains changestyleandapproactasthe occasiordemandsappeato

common-sensknowledgeandreasoninganduseall the communicatiorandsocialskills at his

or herdisposal A machingeacheroftenappearploddingandrelentlessgominatedy its own

domain-specifiknowledgeandunableto deploy ary of thatchangeof paceandperspectie that
makesgoodteachingwhatit is.

Anothercriticism of machineteacherss thatthey tendedto embodya modelof teachingn
which the teacherknows best. It wasnot thatthe systemsof the time werewholly concerned
with “transmitting” knowledge and maintainingageng in interactionswith their users:some
excellentsystemawverearrangedaslearningervironmentswhich reactedntelligently to moves
instigatedoy users But they werenotthekindsof systemghatcarriedoutthe morefacilitating
rolesof teacherssuchashelping studentg¢o work more effectively together helpingstudents
reflecton what they had learnedand doneor guiding studentsin open-endegroject work.
Thereweregoodreasongor this, namelythatmodellingsuchfacilitating skills neededrtificial
intelligenceabilitiesthatwere (andlargely still are)beyondthe stateof the art. Soit’s not that
thedesigner®f suchsystemdadanimpoverishedview of educationjt wasmuchmorea case
of doingwhatwaspossible.

This paperis divided into four more sectionsafter this Introduction. The next section(2)
expandsthe critique abore by giving a brief accountof Ohlssons andothers’analysef the
restrictedeachingcapabilityandversatility of systemsuilt upto aboutthemid-eighties It cites
furtherexamplesfrom thatperiod. Section3 thenexamineshreemethodologie$or developing
teachingcapabilityandversatility Themostimportantof thesemethodologiess theobseration
of humanteachersandexamplesof suchwork aredescribedgconcentratingn particularon how
teacherglealwith studenterrorsandhow teachersnotivate students Teachingin all its varied
formscoversmary morefactorsthanjustthesewo, but thesehave beenchoserasrepresentate
of themodellingeffort of artificial intelligencein education.

In orderto seewhat progresshasbeenmadesincethe mid-eighties,Section4 draws the
threadgogetherfrom the historicalanalysisandexaminesa numberof contemporarysystems
thatattemptto embodyclever teachingtacticsor stratgies,including onethatattemptso deal
with motivationalissues.Theconcludingsectionofferssomethoughtsonthedegreeof progress
made.

We mustoffer two immediatedisclaimers.The paperdoesnot attemptto be an exhaustve
review of whatis known aboutteaching,or of thosepartsof this knowledgethat have been
incorporatednto systemsthoughit doesprovide a numberof pointersto this large literature.
Rathey it attemptdo highlight key issuesandsystemsdrawn largely from work at Sussg, that
exemplify the compleity of thistask.

Thesecondlisclaimerconcernghe particularfocusof the paperon key aspect®f a certain
kind of teaching.We have concentratedargely on systemshatembodydomainknowledgeor
skills to be learned ratherthan on more open-endedystemsge.g. that facilitate dialoguebe-
tweenstudentsThis appearsnore“teachercentred”than“learnercentred”but is notintended
to expressary valuejudgemenbetweerthesetwo differentwaysto conceptualiseducational
interactions.

RESTRICTED REPERTOIRE OF TEACHING ACTIONS

Versatilehumanteachershave an enormousrepertoireof teachingactionsat their disposal.
Theserangefrom casesvherethe teachemetsthe studentto do almostall the work (“explain

thisto me..”, “solve this problem.”, “write anessaycomparing.”, “chooseaprojectto..”) to
casesvheretheteacheexerciseamoredirectageng (“this is how it is done.”, “think of it this



”oou

way...”, “if | wereyou, | would..”), via all kindsof intermediateandindirectcasesfor example
wherethe teacherorganisesan educationakettingwhich facilitatesseveral studentswvorking
togetherin an effective way. An educationakencounterviewed asa kind of ordinary human
communicationcanexploit all therichnessof context, modality interactionandcontentof or-
dinary humancommunicatioras we experienceit bothin dayto day corversationgincluding
featuresuchastonesof voice,irony, humour glancessilencesandsoon)andin lessinteractve
formssuchastelevision, theatre books,nevspaperstc. Evenin a distanceeducatiorcontext,
the teacherasauthorof the materialswill be mindful of the learningsituationof the students.
They will probablybe isolatedand so materials(suchas video-clips)and actuities (suchas
self-assessmenuestionsvill beincorporatedo keepthelearnemotivatedandself-reflectve.
Ohlsson(1987)providedanexcellentcritique of Artificial Intelligencein Education(AIED)

in termsof its historicallynarrav focusonmodellinganddiagnosisattheexpenseof (theharder)
remedialactionsandteaching.He offeredananalysisof someof the mary teachingoperations
thatmight be associatedvith teachinga procedureof somekind, seeFigurel. Notethatthese
werespecificallyconcernedvith teachinga procedug, thoughsomeof theseoperationanight
alsoapplyin teachinga principle or a concept Theseoperationancludeteachingactionsas-
sociatedwith settingthe sceneaswell aswith indicatingthe nutsandbolts of the procedure.
Settingthe scenecaninvolve clarification of goalsaswell asjustification of individual steps
or pointing out similaritiesto similar procedurealreadywell understoody the student.lt is
importantto reiteratethatteachingcanbe muchmorethanassistinghe masteryof procedures,
principlesandconcepts.

PRESENTI NG TARGET PROCEDURE PRESENTI NG JUSTI FI CATI ONS
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Figurel: Teachinga ProcedureSomePrinciplesof IntelligentTutoring(Adaptedirom Ohlsson
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Perhapghe mostinterestingitemson Ohlssonrs list arethoseassociatedvith reactionsto
the studentgetting his or her answercorrect: actionsdesignedo getthe studentto checkthe
robustnessapplicability assumptiongtcof the solution. Will it work for all casesSupposing
theinitial conditionshadbeenslightly different? Is it expressedn the mostgeneralform? Is
it similar to other solutions? Are theresimilaritiesin the way the solution was constructed
comparedo otherproblem-solvingepisodes?s thesolutionoptimal ?Wasthe problem-solving
optimal? And soon. The difficulty of achiezing this with a machineteacherarisesnot from
ary difficulty of posingtheright kinds of questionto the studentput of beingableto undertake
ary but the mostcursoryanalysisof the student$ answer An associategroblemhereis the
restrictedmodality (typically text anddiagramson a screen}hatwasthenavailable. Thereis
somethingatherspecialaboutvoiceandgesturghatcancutthroughcomplex materialto reveal
theessentiapoint. Thelatestgeneratiorof embodiedagentsexploit this, aswe seelater

While it may be possibleto constrainthe languagewith which the studentrefersto the
knowledgedomainitself, it is muchharderto constrainthe meta-language which the student
malkes evaluative statementsiboutsolutions. The standardricks at the domainlevel of using
semantigrammarsmenusor otherdevicesto restrictinputaremuchlesseasyto applyto meta-
languagéecause¢hedomainhasbeenbroadene@ndthestudenis asledto make comparisons
acrossthe domainor indeedbetweendomains. With notableexceptions,suchas Collins and
Brown (1988),the designerf systemdargetedby Ohlssorwere muchlessinterestthannow
in thewholeissueof metacognitiorandtoolsto supportplanningandreflection(say)wereless
common.

Therealsotendedo beabasicasymmetrbetweerstudentandmachineteacheiin thatthe
compleity of the textual or diagrammatimutputfrom the machineteachemwasusuallyfar in
excessof the complity of typedinput from the studentthat could be understoody the ma-
chineteacher Sometimesystemsallowed studentgo typein freeform text, but typically this
waseitherignoredor only partially comprehendedly the system. Of course,a studentcould
be monitoredinteractvely while building up a complex object(e.g. suchasa Lisp programin
the Lisp tutor: Andersonand Reiser,1985)or be provided with a posthoc analysisof a com-
plex objectthathe or shehashuilt (suchasa Pascalprogramin Proust.Johnsorand Soloway,
1987),but in generaimachineteachersnademuchhigherdemandsn thelanguageandimage
understandingf their studentghantheir studentamadeof them. If the studentthoughtabout
thedomainin a differentway from the machineteacheror solved problemsin anidiosyncratic
mannettherewasusuallynowaythatthe studentouldtell themachineteachethatthis wasthe
caseor ary way for themachineteacheto beableto make anevaluative, comparatie comment
aboutthe students view or methodin comparisorwith its own.

Althoughwe have concentratedn Ohlssons (1987)critique,hewasnottheonly researcher
to have calledinto questionthe teachingcapability of that generatiorof machineteachers.n
anothercritical analysisof Intelligent ComputerAssistedinstruction(ICAI), Ridgway (1988)
summedup the actiities missingfrom machineteachers repertoireas:

1. Encouragingxplanationdrom pupilsto eachotherandto theteacher
2. Groupwork thatfacilitatesmetacognitie actvities andis itself inherentlyvaluable,
3. Metacognitve skills suchasself-explanationandself-evaluation.

Although concernedvith a wider classof systemsnamelyadvice-gving expert systems,
CarrollandMcKendreg(1987¥ criticisedmary approacheshenusedfor machineteachersas
lackingin empiricaljustificationor generalisabilityacrossdomains.For example,with respect
to SocraticTutoring,they wrote:

2Mary of the questiongaisedin this wide-rangingsurwey of thefield arestill relevanttoday



“It is likely thatthis is an effective stylefor interactve tutoringin mary situations,
but it is alsosignificantthatno evidenceis offeredto supportthis assumptionThe
possibility exists that the Socraticstyle is often adoptedfor tutorially irrelevant
reasons.Giving the systemcontrol of the dialogueallows a simple question-list
knowledgestructuré.

(CarrollandMcKendree1987,pagelb)

In summarythecriticismsabose canbereducedo two majorissuesFirst, tutoringsystems
have focusedon too narrav a rangeof typesof educationainteraction,i.e. taking rathera
teachercentredview of the enterpriseand not attemptinga more learnercentredfacilitating
role. Second,even within a teachetcentredframavork, most systemshave adoptedrathera
narrav rangeof teachingtacticsandstrategies.

Soin principle how could the issuesraisedin thesecriticisms, especiallythe second,be
dealtwith?

DEVELOPMENT OF TEACHING STRATEGIES

Therearethreeprincipled methodologiedor developingthe teachingexpertisein AIED sys-
tems.Firstis the obsenation of humanteacherdollowed by anencodingof effective examples
of theseteachels expertise typically in theform of rules. The seconds basedon learningthe-
ory andderivesateachingtheoryfrom that. Thethird is basedon obserationsof real students
or onarunnablesimulationmodelof thestudenandderivesateachingheoryfrom experiments
with suchstudentsor modelsof students.

Derived from expert human teachers

An influential early exampleof the methodologyof learningfrom experthumanteacheravas
SocraticTutoring (Collins etal., 1975). SocraticTutoring providesa numberof detailedteach-
ing tacticsfor eliciting from andthenconfrontinga learnerwith her misconceptionsn some
domain.A generalisatiomf thisapproach’inquiry Teaching'is offeredby CollinsandStesens
(1991).A morerecentexampleof the generaimethodologyis provided by Lepperetal. (1993)
who analysedhe methodsthat humanteachersuseto maintainstudentsn a positve motiva-
tional statewith respecto theirlearning.

Thereis anissuein usingexpertteachersasa source.Typically they will have beeninflu-
encedo agreateror lesserextentby thetheoriesof teachingandlearningthey wereexposedo
duringtraining, sothereis a dangerthatonemight be simply observingthesetheoriesfiltered
throughtheir applicationby the chosenexperts. Anotherissueis thattherearemary different
stylesand philosophiesof teaching,further fragmentedby individual personalitydifferences
anddomainnorms.Finally whatteachersaythey do andwhatthey actuallydo maybeatodds
with eachother seeBliss etal. (1996),describedater.

Therearemary waysto examinethe issueof what constitutesexpert humanteachingbe-
haviour. Oneway is to have regardfor the literature on expertiseand analysethe waysthat
expertteachersresimilarto expertsin otherfields. For example,Sternbeg andHorvath (1995)
reviewedwork onthestructureof expertteacheknowledge. Typically, thisis foundto bemuch
more highly structuredthanthat of novice, or even experiencedeachers.They looked at the
“efficiengy” with whichthesekindsof expertsolved problemsn theirdomain.They foundthat,
aswith otherexperts,automaticitylendsspeed.They alsolooked at “insight” issuesandcon-
cludedthatexpertteacherdiave abetterinsightinto the deepratherthanthe surfacestructureof
learningandteachingsituations.

Althoughnot concernedo assistthe implementatiorof machineteachersthe analysisby
Schoenfeld1998)of how teacherstontet-specificbeliefs,goalsandknowledgeareactivated



andinteractin classroomnsettingsis couchedn the languageof cognitive science.The author
analyses numberof mathematicsessonsn enoughdetailto demonstratéow farwe yethave
to goin orderto duplicateskilled humanteachingandto offer hints towardsa framework for
suchanenterprise.

Anotherway is to look at the fine structureof how humanteachersdeal with particular
issuessuchasmaintainingstudentsmotivation (e.g.,LepperandChabay,1988),offering cor
rective feedbacke.g.,Fox, 1991),or detectingandrepairingdialoguefailures(Douglas,1991).
In the latter case,Douglasfoundin her study of teacherghat“Expert andnovice tutorsmade
aboutthe samenumberof [communicationffailures,but the expertwasmarkedly betterat de-
tectingandrepairingthem” — an obseration that supportsSternbegy and Horvath'’s (1995)
analysisof teachingexpertise above.

Amongthe mary studiescited by Sternbeg andHorvath (1995)wasanempiricalanalysis
of expertandnovice teachersn theareaof mathematicg¢LeinhardtandGreeno1991).Echoing
Ohlssons (1987)critique, they foundthat

“The expertteacherdad,with theclass,alarge repertoireof routines,usuallywith
severalformsof eachone.In somecasesye obseredteacherapparentlyteaching
new routinesto their classes.The mainfeaturesof thesemutually known routines
werethat (a) they werevery flexible, (b) ordercould be shifted and piecestaken
from onesegymentandappliedto another (c) little or no monitoring of execution
wasrequired,and (d) little or no explanationwasrequiredfor carryingthemout.
Theseroutineshadsimple,transparenbbjectives: to increasehe amountof time
that studentsweredirectly engagedn learningor practicingmathematicandre-
ceving feedbackto reducethe cognitive load for the teacherandto establisha
framethat permittedeasytransmissiorof informationin mutually known andrec-
ognizedsettings.

(LeinhardtandGreeno,1991,page265)

More recently in a seriesof studiesGraesseet al. (2000) studiedboth expert teachers
andnon-expert humantutors®. They found that even untrainednumantutors were extremely
effective andthattheir methodglid notseento correspondo ary of thestandardnethodologies
suchasSocraticTutoring (Collins etal., 1975),erroridentificationandcorrection(Corbettand
Anderson,1992)or sophisticatednotivationaltechniquegLepperetal., 1993). However they
concludedhat

“Tutorsclearly needto be trainedhow to usethe sophisticatedutoring skills be-
causehey donotroutinelyemepgein naturalisticutoringwith untrainedutors.We
believe thatthe mosteffective computertutor will bea hybrid betweematuralistic
tutorial dialogandideal pedagogicastratgies”

(Graesseetal., 2000,pageb1)

Theway thatexperthumanteachersnterweae a wide rangeof actionsthatdealwith cog-
nitive, metacognitre and affective issuesis exemplified by Lajoie et al.’s (2000) obsenation
of anexpertmedicalinstructor They obsered how theinstructorassignedolesto eachof the
participantsan the smallgroupof first yearmedicalstudentsliscussingpatients.

“One studentwasasled to presentan actualpatientcaseto the group, describing
the patients relevant medicalhistory and currentsituation. A secondstudentwas

3Thedistinctionbetweeriteaching”and“tutoring” is opento debateln referringto humanteacherswe will use
theterm“tutor” to imply someonaevith lessformaltrainingin pedagogyhana“teacher”. Theliteratureof Artificial
Intelligencein Educationusesthe terms*“tutor” and“teacher”interchangeablyrrespectie of the expertiseof the
systemsodesignated.



thenasled to summarizethe samecasebasedon the verbal accountof the first
student.Next, a third studentwasasked to producea problemlist for the patient
at the blackboardwith the assistanc®f the otherstudentsn the group. Finally,
the fourth studentwas asled to leadthe groupin developinga list of differential
diagnosegor thecasé€.

(Lajoie etal., 2000,pageb9)

Throughthe organizationof the students rolesandthroughboth specificandgeneralfeed-
backthe instructorwasableto dealwith a numberof issuessimultaneously At the cognitive
level, boththedivision of labourandhis feedbackprovided scafolding for the comple, cogni-
tive taskof arriving at a diagnosis.At the metacognitre level the interactionbetweenstudents
andtheir feedbackprovided modelsfor reflective self-critical examinationof how datawasbe-
ing usedandhow decisionswere beingarrived at. At the affective level, encouragemenvas
beingprovided whenneeded And finally, at the “community of practice”level, studentsvere
beingapprenticednto medicallyacceptedvaysof behaing.

It is unrealisticto expectthatan all-embracing prescriptve theory of teachingwill easily
emege given the comple, social natureof the enterprise. It would be like expectinga pre-
scriptive theoryof “being a politician” or “being anactor”. Of coursein eachof theseactvities
thereareguidelineswhich the novice teacher(or politician or actor)canmalke useof andsome
theoriesandpracticaltips on, say how to be corvincing, how to explain effectively or how to
reflecton performance.For example,in the latter case,it canbe very usefulfor a teacherto
seea videotapeof a lessonhe or shehastaughtandto discussthe performancewith a more
experiencedgerson.

But thesetheoriescan never be entirely prescriptve in that the activities do not occurin
a vacuumbut often dependfor their effectivenesson the personalitieof the participants.An
authoritariandisciplinedteachemay be just aseffective (alongcertaindimensionsasa more
easy-goingpersonwith alaissez-&ire approachlt dependsn how well theindividual teacher
canexploit his or herown personalitytraits for the job in hand(Rutteretal., 1979). The abore
shouldnotbetakento meanthatthetheoreticaktudyof teachingnteractiondgs misguidedpnly
thatsocialphenomenareenormouslysubtle.

Within the overall spaceof possibleteachingsituations,let us examinetwo in particular:
dealingwith motivationalissuesanddealingwith errors. Thesetwo have beenchoserbecause
they interactwith eachotherandalsobecausehey nicely illustrate a polarisationof emphasis
betweensystemsthat Ohlsson(1987) criticised and what has beenachieved sincethen. Of
course thevery notionof “dealingwith errors”betraysan expectationof correctandincorrect
answersandthiswill applyonly in alimited kind of learningsituation.

In orderto maintainthe senseof historic continuity theissueof dealingwith errorsis taken
first. Thisissuehasbeencentralin thedevelopmentof machineteachers.

Dealingwith errors

Many machineteacherdave addressetheissueof dealingwith studenterrors,soit is natural
thatdesignersf suchsystemsave looked to humanexpertteacherdor insight. An important
teachingcontroversy aroundsuch systemsis the issueof the tactical vs. the stratgic value
of providing immediatehelp whenerrorsare detected. Tactically the studentis helpedat the
pointwherethey have the bestchanceof understandingndexploiting thathelp. Stratgically,
however, they maybe beingdeniedopportunitiedo figure out for themseleswhatwentwrong
andwhatto do next.

A review of theliteratureonthecomparisorbetweerexperthumanteachersandthesekinds
of intelligent tutoring systemss provided by Merrill etal. (1992b). They notedthat different
expertsadoptedifferentstylesof tutorial feedback:



“Fox (1991)andLepperet al. (1991) aguedthat tutorsusevery subtlefeedback
uponerrorsor obstacleso maximisestudentsproblemsolvingsuccessTheMcArthur
et al. (1990) resultsalso suggesthat tutors follow students’solutionsvery care-
fully, but indicatethatthis feedbackcanbe very directive. McArthur etal. argued
that tutors give explicit feedback sometimeseventelling studentshow to solve a
problem,andcarefully structurestudentstasksby remindingthemof the problem
goals.Littmanetal. (1990)andMerrill etal. (1992a)arguedthatthe context of the
erroris critical in determiningfeedback”

(Merrill etal., 1992b,page283)

Thereare clearly differing styles of teachingthat position themseles at different points
in the trade-of betweenproviding too muchhelp (thus potentiallyinhibiting the development
of problem-solvingstratgies), and providing too little help (thusrisking the possibility that
studentshecomeost anddemotvated). For example,in the context of industrialtraining, the
Recaovery Boiler Tutor offeredthetraineea numberof “precautionarynessages. . whenafull-
scaledisasteris imminent” ratherthanspecificallynegative feedbackstatementsThesemight
redirectthe student:Haveyouconsideed. . .; or, draw their attentionto anunobseredrelation-
ship: Did you noticethe relationshipbetween . .; or, confirmthoseactionswhich are helpful
(Woolf, 1988).

An importantfacetof the issueof how muchspecifichelp to offer is the degreeto which
studentsarein fact suficiently self-avare to knov whenthey do in fact needhelp (seee.qg.,
AlevenandKoedinger2000).

Merrill etal. (1992b)provide a critical comparisorof a rangeof model-basedutoring sys-
temsin relationto the above findingsfrom humantutors. An interestingissuethatis explored
aspartof this discussioris the way thatthe interfaceto the systemcanbe a crucial elementin
helpingthestudenunderstandhenatureof the problem-domaingverandbeyondary feedback
thatatutor might additionallyprovide (Reiseretal., 1992).

In comparinghumanandcomputetbasedutors’ waysof dealingwith errors,Merrill etal.
(1992b)notesomesimilarities, e.g. both help“studentsdetectandrepairerrorsandovercome
impasses” However, they alsonotea numberof differences Humantutorsoffer less“explicit
verbalizationof the student$ misconceptionthanmachineteachersthey aremoreflexible in
thetiming andthe natureof their feedbackandthey aremoresubtlein indicatingto the student
thatanerrorhasoccurredg.g.via slight pause®r intakesof breath.

Motivatingstudents

An importantaspecbf humanteachingexpertisethat figuresonly weaklyin Ohlssons (1987)
criticismcentresaroundskills employedby teacherso build andmaintainstudentsengagement
with thetaskandtheir motivationto learn.

Accordingto Lepperetal. (1993)thefocusfor mary expertteacherss notjuston cognitive
issuessuchaswhattaskto teachnext or whaterrorthe studenthascommitted.They alsofocus
stronglyon affective issues.How canthe studentbe stimulatedandchallenged”How canthe
students confidenceandsensef controloverthelearningsituationbe maintainedr improved.
In pursuitof theseaffective goals,humanteachersare often indirectin their way of helping
studentdo setgoalsor in reactingto their errors:“Now tell mehowyou gotthat6?”.

In thetricky issueof detectingthe student$ currentmotivationalstateLepperet al. (1993)
suggesthatexperiencedeachersnale useof “the students facialexpressionsbodylanguage,
intonation,andotherparalinguisticcues”.

Thereis anothermway of gatheringevidenceaboutthe studentanotivational state. Student
effort, ratherthan performancejs alsoa reasonablyeliableindicationof intrinsic motivation
(Keller,1983).Learnersvhodisplayahighlevel of effort (detectedhroughtheir actities, sug-
gestionsyesponsesinay desere praiseeven whentheir performancas non-optimal. Thereis
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awide literatureon therelationbetweerextrinsic rewards(suchaspraise)andintrinsic motiva-
tion. Eisenbeger’s (1992)work suggestsewardingeffort is effective overthelong-termandan
extensve meta-analysi®f the literatureby CamerorandPierce(1994)suggestshat (contrary
to recevedwisdom)extrinsic rewardssuchaspraisedo not decreaséntrinsic motivation.
Obsenation of humanteacherghus lendsforce to Ohlssons (1987) criticisms. Indeed,
they go beyondit by pointing out the importanceof affective issuesn determininghow expert
teacherdbehae. Beforeturning to examine systemsthat post-dateOhlssons criticisms, we
briefly examinethetwo othermethodologiesor derving the behaiour of amachineteacher

Derived from learning theory

We have alreadynotedthat there are three methodologiedor derving a teachingtheory for
a machineteacher The secondof the threemethodologiestartsfrom a learningtheoryand
derivesappropriatdeachingtacticsandstratgiesfrom thattheory

Before continuingwith our discussiongbouthow learningtheorieshave informedthe de-
signof computersystemghatteachwe needto saya few wordsaboutthe natureof knowledge
itself. Thenatureof knowledgehaslong beenanareaof active researctanddiscussioramongst
philosopherspsychologistandeducationalistaswell asthoseinvolvedin the developmentof
artificial intelligencesystems.Is knowledgeabsoluteor relatve? Doesit exist asan external
objectthatcanbe known or is it boundup with eachindividual’s ervironmentandexperience?
What are the implications of what we belief aboutthe natureof knowledgefor the way we
perceve our own knowledgeandthe processeby which we acquirethatknowledge?In other
wordshow do our beliefsaboutknowledgeinteractwith the way we understandhe processof
learning?Thereis no roomfor usto do justiceto a discussiorof the natureof epistemological
beliefsandtheir role in learninghere. We thereforeraisethe questionin the readers mind as
onethatthey would needto considerfor afuller explorationof the natureof learningtheories.
However, in this currentpaperwe now placeourselhesonestepremoved from this discussion
andconcentrat®n the natureof thelearningtheoriesthathave influencedsystemdesignrather
thanthe epistemologyupon which they are founded. For examplesof work in this areathe
readeiis referredto von Glasersfeld1984,1987);Wilson andCole (1991); Wilson (1997).

Let usnow look at somespecificexamplesof learningtheoriesandtheir interactionswith
teachingtheories. CorversationTheory (Pask and Scott, 1975) and its reificationin various
teachingsystemsis an example of this approach. As with Socratic Tutoring, Corversation
Theoryis concernecssentiallywvith epistemologyatherthanwith affective aspect®f teaching
andlearning. It is basedon a view of learningconsistingof two interactingprocessesOne
operatesat the domainlevel, for instanceaddinglinks, facts,rulesand principles. The other
works at the meta-leel, noting gapsandinconsistencies whatis known atthe domainlevel.
Thesetwo processesanoperatansideanindividual learneror they canbe distributedasroles
betweermorethanoneparticipant.Overall the theorysetsconditionsto ensureghatthelearner
constructsa multifacetedunderstandingf a domainthat allows herto describe(to herselfor
to others)the inter-relationshipsbetweenconcepts.In somewaysthis is echoedby the “self-
explanation” view of effective learning(Chi et al., 1989). A further example of the second
methodologywhichalsopartiallyaddressesomeof theaffective issuesis Contingenfleaching
(Wood and Middleton, 1975). Herethe ideais to maintainthe learners ageng in a learning
interactionby providing only suficientassistancatary pointto enableherto make progreson
thetask. Theevaluationof this stratgy in the handsof non-teachersrho hadbeendeliberately
taughtit shows thatit is effective. However it wasfound sometimedo go againstthe grain
for experiencedeachersvho oftenwish to provide morehelpat variouspointsthanthe theory
permits(Woodetal., 1978). Successfullyhelpingteachers$o applyateachingstratgy basecn
scafolding (Woodetal., 1976)canbedifficult, asthe studyby Bliss et al. (1996)shavs. They
foundthat, even afterteachersreflectve obseration of their own andtheir colleaguedessons,
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focusingon opportunitiesandmethodsof scafolding pupils’ learning:

“...they professedmproved practiceanddemonstrategreaterconfidencan dis-
cussingscafolding, but therewasno significantincreasen thenumberof instances
thatcould be describecasscafolding. Whenscafolds wereusedthesewereusu-
ally onaone-to-ondasis.It wasduringthis phasehatwerealisedhatourteachers
could‘talk scafolding’ but appearedo implementit only mawginally. Their focus
wason teachingratherthanon pupils’ learning

(Blissetal., 1996,pagesi4-45)

The rangeof tutors developedby Andersonand his colleagueshasprovided an influen-
tial, and controversial, model of teachingin the areaof dealingwith errors,seefor example,
(Andersonand Reiser,1985; Andersonet al., 1985; Corbettand Anderson,1992; Anderson
etal., 1995),andmorerecently(Koedingeret al., 1997,2000). The form of teachinghasbeen
characterisedsone-to-onewith fine-graineddiagnosisandremediatiorfor multi-stepproblem-
solvingin avariety of formal domainssuchasgeometry programmingandalgebra.lt applies
only to problemswith tightly constrainedgolutionmethodsandthis is clearlylimiting in terms
of the kinds of educationainteractionbetweenmachineteacherand studentthat canbe sup-
ported.However, recentwork by Koedingeretal. (1997)usingthe PAT systemto teachalgebra
hasshavn hov someof theselimitations canbe circumwentedby paying specialattentionto
contetual factors(e.g.asemphasisetly Schoenfeld1998).In particular greatcarewastaken
to involve the schoolsandtheteachersvho would be usingthe systemandcarefulthoughtwas
givento the useof the Tutor within the classroom.The systemwasusednot on a one-to-one
basisbut by teamsof studentsvho werealsoexpectedto carry out actvities relatedto the use
of thetutor, but notinvolving thetutor, suchasmakingpresentationso their peers.This useof
explanationbetweenlearnershelpsto counterone of Ridgway'’s (1988) criticisms, mentioned
earlier

The designof thesesystemsds derived from a theoryof learningthat, at base providesan
accountof the developmentof expertisewhich explains how declaratre knowvledgeis trans-
formedinto proceduraknowledgeandhow this transformationcan be supportedoy learning
ervironments(Anderson,1990). A consequencef thetheoryis thatattentionis paidto ensur
ing thatlearnersarekeptawareof the goalandsub-goalhierarchyof the problemsolving they
have embarledon.

The intelligenceof thesesystemss deplo/ed in several ways. Model Tracing, basedon
representindggnowledgeof how to dothetaskin termsof production-rulesis usedto keepclose
track of all the student$ actionsasthe problemis solved andflag errorsasthey occur suchas
misplotting a point or enteringa valuein anincorrectcell in the spreadsheetlt alsoadjusts
the help feedbackaccordingto the specificproblem-solvingcontet in which it is requested.
KnowledgeTracingis usedto choosethe next appropriatgproblemso asto move the students
in atimely but effective mannerthroughthe curriculum.

Learningtheoriesarestill beingusedto inform systemdesign:for example,Constructiism
(AkhrasandSelf, 2000)andReciprocalTeaching(ChanandChou,1997). In addition,Grand-
bastien(1999)stresseshe needfor effective methodgo accessprganiseandusethe expertise
of the teacheror trainer Startingfrom a modelof learning, Winne (1997) suggest$ion stu-
dentsmight be helpedto develop better“self-regulated”learningcapability (i.e. improve their
metacognitie skills).

Derived fr om studiesof students

Thethird methodologyfor deriving ateachingtheoryis basedon obseration of studentsOne
methodologyobsereshow studentsof differenttypesrespondo a particularteachingmethod,
for exampleassessingnow studentsof differing ability farewith a particularmachineteacher
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Another methodologycomparediffering methodsacrossstudents,and a third methodology
obseresinteractioneffectsbetweerstudentcharacteristicandteachingmethods.

Thesemethodologiezomein two forms. Therecanbe empiricalobserationsof real stu-
dentsor therecanbe analyse®f thereactionsof simulatedstudents.

Studiesof RealStudents

Within the educationaliteratureasa wholethereis a hugeliteratureon how studentsf differ-
ing characteristicsespondo differing teachingmethods.The rangeof characteristicinclude
genderability, learningstyle,backgroundknowledge,ageandsoon. For areview of this huge
areathe readeris referredto Cronbachand Snav (1977). Within the artificial intelligencein
educationcommunity mary studieshave looked at how studentsof differing ability andback-
groundrespondo particularsystemsAs a singlerecentexampleof this style of work we select
Arroyo etal. (2000). They cateyoriseda cohortof studentdy genderandby level of cognitve
development. They wantedto establishhow variationsin the style of hintsin the contet of
anarithmeticprograminteractedwith genderandwith cognitve development.Hints variedon
two dimensions:degreeof interactvity andthe natureof the symbolismused. They looked at
thereductionin the numberof mistaleson a problemfollowing a hint asoneof the dependent
variables.They founda numberof interactioneffects(e.g. that“high cognitive ability students
do betterwith highly symbolichintswhile low cognitive ability studentsdo worsewith highly
symbolichints”). Theseandrelatedresultsshouldenabletheprogramto make “macroadaptie”
(Shute,1995)changedo its teachingstrategy to suit particularsub-group®f students.

Despitethe hugewealthof work, it is difficult to derive generalguidelinesaboutthe differ-
entialeffect of studentstcharacteristicef sufiicient precisionandreliably to supportthedesign
of machineteachers.

In termsof looking at the effects of variationsof teachingmethod,an importantindirect
influenceon progressasbeenthework of Bloom (1984)andhis colleaguesThey investigated
how variousfactors,suchascuesandexplanationsyeinforcementndfeedbackaffect student
learning,taking corventionalclassroomeachingas the baseline. They found that highly in-
dividualisedexpertteaching shifts the distribution of achi&zementscoresof studentsy about
two standarddeviations comparedo the more usualsituationwhereone teacherdealswith a
classroonof studentsThey alsofoundthattherangeof individual differencegeduced.

This two standarddeviation improvement,or Two Sigmashift, hasbecomea goalat which
designersof machineteachersaim. A standardmethodof evaluationof sucha systemis to
compareit with corventionalnon-computebasedinteractionteachingthe sametopic, though
therehave beensomecomparison®f “smart” and“dumb” versionsof the samesoftware. For
moreon evaluationof AIED systemsseedu Boulay (2000);Self (1993).

Studiesof SimulatedStudents

The secondform of the methodologythatis basedon obsenration of studentsusessimulated
ratherthanreal students.The exampleswe know of this methodologytypically comparedif-
ferentteachingmethodsacrossidentical simulatedstudentsatherthan modelling studentsof
differing characteristicandobservinghow a particularteachingmethodaffectsthemdifferen-
tially. This methodologybuilds a computationamodelof thelearneror of thelearningprocess
andderivesa teachingstratgy or constraintson teachingbehaiour by observingthe models
respons¢o differentteachingactions.For example,VanLehnetal. (1994)comparedwo strate-
giesfor teachingsubtractiorto a productionrule modelof a subtractioriearnerandconcluded,
on the basisof the amountof processinggengagedn by the model, thatthe “equal additions”
stratgy was more effective than the more widely taught“decomposition”stratgy. With a
similar generalmethodologyvanLehn(1987)derved “felicity conditions”for the structureof
tutorial examplesfor instancethatthey shouldonly containonenew subprocedure.
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This methodologyoffers aninterestingavenuefor researctbut in termsof makingpredic-
tions abouthow real studentswill react,it dependscrucially on the fidelity of the underlying
simulations.

EXAMPLES OF RECENT PROGRESS

This sectiondoesnot aim to be a comprehense review of the currentstateof the artin mod-
elling teachingfor tutoring systems. It offers a numberof examplesof recentandrelatively

recentsystemshatattemptto go beyondtherestrictionsoutlinedby Ohlsson(1987)andRidg-
way (1988). Two of theexamplesderive directly from theanalysisn the previoussection.Thus
the first subsectiorexploits the literatureon expert teacherdo tackle the centralissueof the
affective dimensionin teachinganddescribes systemconcernedvith modellingteachersmo-

tivationalexpertise. The secondsubsectiorshavs how ContingentTeachinganda Vygotskian
learningtheorycanbe exploited anddealswith anaspecthathasbeenof centralinterestfrom

the startof AIED, namelyadjustingthe kind of actvities andthe help provided to studentgo

succeedn thoseactvities. The systemcandynamicallyadjustthe terminologyit usesto de-
scribeits domainto the studentaswell asmalke adjustmentso boththe complexity of thetasks
it setsaswell asthehelpit provides.

Becausef theirincreasingvisibility, thethird subsectiodooks at severalexamplesof ped-
agogicalagentsandexamineshow they areaffecting the debateaboutmodellingteachersbe-
haviour, includingtheissueof the perceved plausibility of suchsystems.

Note that one way to track the changesn the teachingability of modernsystemsis to
examinetoolsfor building machineteacherspamelyauthoringsystems.This is not the place
to suney suchsystemsandan excellentrecentsuney is provided by Murray (1999). He is
upbeatabouttheir capabilityto representutorial stratgiesandtacticsbeyond simpleissuesof
curriculumsequencingndplanning:

“Instructionaldecisionsat the micro level includewhenandhow to give explana-
tions, summariesexamples,andanalogieswhat type of hinting andfeedbackto
give; andwhattype of questionsandexercisesto offer the student.... Also char
acteristicto systemsin this cateyory is the ability to represenmultiple tutoring
stratgjies and “meta-stratgies” that selectthe appropriatetutoring stratgy for a
givensituation’

(Murray, 1999,pagel02)

Amongthemary systemsuneyedby Murray (1999),REDEEMstandsasa goodexample
of an authoringsystemwith the capability of specifyinga wide variety of teachingstratgies
(Major etal., 1997). This systenmprovidestoolsfor authorgusuallyteachersjo reuseandreor
ganizeexisting non-adaptie pageof tutorial materialinto aresponsie andadaptve system.

Adding motivational competence

As we have seentheoriesof instructionalmotivation elaborateéhe influenceof issuedik e con-
fidence challengegcontrolandcuriosityin thelearningprocesgKeller,1983;MaloneandLep-
per, 1987)andsuggesinstructionaltacticsto keepthe studentin an optimallearningstateand
provide appealingand effective interactions. Of course,it is an openquestionasto how far
in practiceone needsa separategheory of motivation. It could be aguedthatif onegetsthe
cognitive, metacognitie andcontextual issuegight, thenall will bewell. Eachof theses itself
a comple issue,andsofor the purpose®f progresst seemssensibleto clarify the meansby
which studentsanbe motivated.

Work on motivationalissuesis proceedingalongtwo fronts. The first reasonsaboutthe
affective stateof theteader. With therisein interestin creatingpedagogicaagentsjncreasing
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attentionis beingpaidto equippingthemwith affective competenceFor example,Lesteretal.
(1999)describethetechniquesinderpinningCOSMO,a pedagogicahgentthatcanadaptboth
its facial expressionijts toneof voice, its gestureandthe structureof its utteranceso indicate
its own affective stateandto addaffective force andfocusto its interactionswith learners.By
presentingts reactiongo thestudenin amorevaried,human-like way the hopeis thatstudents
will be bettermotivatedto learnand betterableto judge whatis importantin whatis being
advised.Theseissuesareelaboratedn alatersectionof the paper

Onanotherfrontwork is progressingn asystemMORE, to reasorabouttheaffective state
of the student(del Soldato,1994; del Soldatoanddu Boulay, 1995). To this endimplement-
ing motivationaltechniqueslemandshapingthe system ncludingdomainrepresentatioand
studentmodel,in severalaspectsin whatfollows the assumptions thatthe studentis working
on topics assignedas part of a curriculumratherthanworking on topics purely of their own
choosing,in which casethe motivationissuesarelikely to be very different. In particular the
systemmust:

1. Detectthe students motivationalstate;

2. Reactwith the purposeof motivating distracted)essconfidentor discontentedtudents,
or sustaininghe dispositionof alreadymotivatedstudents.

The notion of a systems reaction— triggering particularmotivationaltactics— suggests
thatacomprehense instructionalplanshouldconsistof a “traditional” instructionalplancom-
binedwith a motivational plan. Wasson(1990) proposedhe division of instructionalplanning
into two streamscontentplanning(“which topicto teachnext”), followedby delivery planning
(“how to teachthe next topic™). At first sightthe motivationalplanseemdo be completelyem-
beddedn the delivery plan. However, motivationaltacticsdo not always simply completethe
traditionalcontentplanning:sometimeshey competewith it aswell. A typical exampleof such
aconflictis the necessityfor lessconfidentstudentgo build their confidenceby accumulating
experienceof successin which casethe systemcould provide problemdlikely to be positively
answered— basedon topicsthat the studentalreadyknows. This is relatedto the needfor
practicein learning,anissuenot well exploredin AIED systems.Furthermorewhile the de-
tectionof alearners motivational profile shapeghe studentmodel,the systems reaction(e.g.
suggesting@neasiemproblem,askinga puzzlingquestiondepend®n theresourcegvailablein
thedomainrepresentation.

Typicaldomain-baseglannersselectactionsaccordingo whetherthelearnerknows atopic
or hasmasterea skill. The methodologyis twofold: detectingthe currentstateof thelearners
knowledge and skill (studentmodelling) and reactingappropriatelyin order to increasethis
knowledge and skill (teachingexpertise). To take accountof motivational factors,we have
extendedthe twin actvities of “detectingthe state” and “reacting appropriately”’by addinga
motivationalstateandmotivationalplanningto thetraditional I TS architecture Sometimeshe
adviceofferedby themotivationalplannerdisagreesvith thedomain-baseglan,while in other
casedothplanscomplementachother(del Soldatoanddu Boulay,1995).

Let us consider as an example, the situationin which the studentsucceedsn solving a
problem,in this casefinding the bug in a program. A typical domain-baseglannerwould
acknavledgethe right answerand suggesft(or directly provide) a harderproblem,thus mak-
ing surethe studentis traversingthe domainin a progressie manner Suchbehaiour is well
exemplifiedby Peachg andMcCalla’s (1986)instructionalplanner:whenthe learnermasters
aninstructionalgoal, the plannerfocusesnext on goalsthat requirethe topic just masteredas
pre-requisitestraversingthe domainin the directionof a specificultimategoal. In this case,
knowingor not knowingthe topic, or exhibiting or not exhibiting the relevant skill, is the only
issuein the studentmodelthatdrivesthe selectionof suitableactions.
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Motivational planningtakesinto accountothervariablesin the studentmodelandwidens
the tutor’'s spaceof possiblereactions.Justby consideringbinary statesof effort (little/large)
andconfidencdlow/ok) resultsin four differentsituations,eachonerequiringa suitablesetof
actionsfrom thetutor, the binary statesof effort andconfidence

Whenthe students confidences diagnosedas being low, the major goal for the planner
is to help the learnerregain a reasonabldevel of confidenceand one of the tacticsfor im-
proving confidenceis to increasethe students experienceof success The tutor shouldthen
selecta tasklikely to be solved successfullyagain(e.g. a similar taskto the one the student
hasjustaccomplished)This is a clearexampleof disagreemenrtetweerthe domain-basednd
the motivational planney sincesimply traversingthe domainto the next hardertopic hasbeen
deliberatelyavoided.

Ontheotherhand,if providing aright answerrequiredittle effort from the student(evenan
insecureone)the tutor shouldmove to hardertasks. The tutor shouldmale the difficulty-level
promotionvery clear bothby praisingthe successesbtainedsofar andwarningaboutthe new
difficultieswhich arelikely to be encounterea@t the harderlevel. The studentthenis prepared
to copewith new failureswithout feelingtoo de-motvated.

Letusnow consideithe caseof ataskthatdoesnotrequirevery mucheffort from anormally
confidentlearner For atypical domain-baseglannersucha situationwould be ideal, whereas
from a motivational perspectie the taskcould be perceved asbeingirrelevant or “boring”, or
in otherwords,de-motvating. The tutor shouldthenincreasdahe degreeof challengeprovided
by the interaction,by adjustingthe difficulty level to a harderonewherethe studentwould not
always(easily)performthetask,andsomeeffort would have to be spentto achiese success.

Similar analyseshave beenmadefor casesvherethe studentfails at a taskor givesup on
ataskandthesetacticswereimplementedasproductionrulesin the motivationalplanner The
issuehereis not so muchwhethertheseparticulartacticsare correct, but the fact that tactics
suchasthis canbe modelledexplicitly within the system.If thesearenot the bestrules,then
otherscanreplacethemwithout having to redesigrthe systemfrom scratch.

Theneedfor flexibility in theway thatmotivationaltacticsareimplementis underlinedby
the evaluationof MORE. Oneof theissueghatemegedwasthereluctanceof somestudentso
accepftcertainteachingtacticsfrom a madine asopposedo a human— therefusalto provide
helpwhenasled or the refusalto allow the studentto give up on anunsohed problem. Thisis
anexampleof the“plausibility problem”,which we discusdater.

Judging task difficulty and degreeof assistance

Assumingthat a learneris in a reasonablestateof motivation, the teachercanthenfocuson
whatthelearnershoulddo andhow they shouldbe helped.

We now discusgheissueof adjustingthe compleity of thelearningervironment,the con-
tentanddifficulty of the actwities, thelanguagen which they areexpressedandthe quality of
hintsandsuggestiong interactve learningernvironments(ILES). In particular we describehe
educationaphilosophyunderpinninghe Ecolabsoftware.

TheEcolabis anlinteractve LearningEnvironment(ILE) which aimsto helpchildrenaged
10-11yearslearn aboutfood chainsandwebs. The Ecolabprovides a flexible ervironment
which canbeviewedfrom differentperspectiesandrunin differentmodesandin increasingly
complex phasesln additionto providing the child with the facilities to build, actvateandob-
sene asimulatedecologicalcommunity the Ecolabalsoprovidesthe child with smallactvities
of differenttypes,suchasfinding outwhatanimalseat,which arepredatorsaandwhich areprey,
establishinghe enegy changesassociateavith feeding,andsettingup a self-sustainingsmall
ecosystemTheactvities aredesignedo structurethechild’s interactionswith thesystem.They
provide a goaltowardswhich the child’s actionscanbe directedandvary in the compleity of
therelationshipsvhich thechild is requiredto investigate.
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This systemexploresthe way that Vygotsky’s Zoneof ProximalDevelopmentcanbe used
in the designof learnermodels(Luckin, 1998; Luckin anddu Boulay, 1999). The theoretical
foundationrequiresthe systemto adoptthe role of a moreableassistanfor a learner It must
provide appropriatelychallengingactivities andtheright quantityandquality of assistanceThe
learnemodelmusttrack boththelearners capabilityandherpotentialin orderto maintainthe
appropriatelegreeof collaboratve assistance.

Oneof thelinks betweerthe work on the ZPD andthe work on motivationis the notion of
effort. For the motivationalplannerthe amountof effort expendedby the studentis a measure
of hermotivationalstate.For Vygotsky, anappropriatalegreeof mentaleffort is a pre-requisite
for learning.

The Zoneof ProximalDevelopment(ZPD) (Vygotsky, 1978)is createdwhentwo or more
peopleform a collaboratve learningpartnershign which the more able membersenablethe
lessable membersto achieve their goal. In orderfor a collaboratorto be successfuin the
role of a moreablelearningpartnershemustconstructa sharedsituationdefinition (Wertsch,
1984)whereall membershave somecommonknowledgeaboutthe currentproblem. This in-
tersubjectrity canonly beachiezedif theteacher/collaboratdhasa dynamicrepresentationf
thelearners currentknovledgeandunderstandingThe ZPD alsohasa spatialanalogywhich
guantifiesa learners potential (Vygotsky, 1986). It is the fertile areabetweenwhat shecan
achieve independenthandwhat shecan achieve with assistancérom another In essencehe
ZPDrequirescollaboratioror assistancéor alearnerfrom anothemoreablepartner Theactiv-
ities which form a partof the child’s effective educatiormustbe (just) beyondthe rangeof her
independenability. Thelearningpartnermustprovide appropriatelychallengingactvities and
theright quantityandquality of assistanceln the Ecolabthelearningpartnerole is adoptedoy
the system,andsothe learnermodelmusttrack both the learners capabilityand her potential
in orderto maintainthe appropriatedegreeof collaboratve assistance.

The strongfocus on adaptingto the userby adjustingthe amountof help thatis initially
offeredis similar to the adaptve mechanismsn the SHERLOCK tutors(seee.g.,Katz et al.,
1992; Lesgoldet al., 1992). A differencefrom SHERLOCK s thatthereis also adjustment
both to the natureof the actvities undertaken by usersandto the language in which these
actvities areexpressed.The working assumptions thatmore abstractanguages harderand
learnersnove from theconcretdowardtheabstract An alternatve view mightoffer theabstract
terminologyearlierasan aid to generalisation.The emphasisvhich the Ecolabplacesupon
extendingthelearnerbeyondwhatshecanachiere aloneandthenproviding sufiicientassistance
to ensurethatshedoesnot fail alsosetsit apartfrom othersystems suchasthatof Becketal.
(1997),which generatgroblemsof controlleddifficulty andaimto tailor the hintsandhelpthe
systemoffersto theindividual’s particularneeds.The Ecolabextendsthework donewith other
systemsawhich have usedthe ZPD conceptin relationto the learnermodellingtasksuchasthe
systemof Gegg-Harrison(1992) which offers the learnerguidedproblem-solvingsessionsn
whichthey aregivenassistance solvingdifficult Prologproblems.

The Ecolabcanassistthe child in severalways. First, it canoffer 5 levels of gradedhelp
specificto the particularsituation; secondthe difficulty level of the actvity itself canalsobe
adjustedactvity differentiation).Finally, the definition of thedomainitself allows topicsto be
addressedly thelearneratvaryinglevelsof compleity and(independentlyusingterminology
of varying levels of abstractnessSo, for example,actvities caninvolve simplebilateralrela-
tionshipsbetweensay “rabbits” and“grass”, or the samesimplerelationshipdescribedn the
moreabstracterms“herbivore” and“primary consumer”.In addition,morecomple relation-
ships(suchasbetweerdistantmemberf the samefood web) canalsobe describeckitherin
simpleor moreabstractanguage.

The Ecolabusesa bayesiarbelief network model of the difficulty of transitionsbetween
nodesandthe history of successndhelprequiredat previousnodesto decide:
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¢ Which nodein the curriculumwill be tacklednext — which level of complity and
which level of terminologyabstraction.

e Whatlevel of helpwill beoffered.

¢ How muchactuity differentiationwill be offeredto the child.

The systemmaintainsa modelof the ecologycurriculumbasedon a BayesianBelief Net-
work. Eachnodein the curriculumrepresents rule to be learned. The rulesare linked via
pre-requisiteshatimposea partialorderontherulesin thecurriculum. Thereis astartingnode
andalsoanotionalfinishingnode,namelythemostcomple rule exploredvia themostabstract
terminology

Eachnodeis associateavith a probabilityvaluethatindicateghelik elihoodthatthelearner
cancomplete unassistedactiities associatedavith thatnode. The systemusesthesevaluesto
distinguishnodesthat areeithertoo easy(outsidethe ZPD), just too hard (within the ZPD) or
muchtoo hard(outsidethe ZPD) for thatlearnerto completeunassisted.

The next nodefor thelearneris choserfrom thosethat arejust too hard. The systemuses
dataaboutthe learners progresswith previous nodesto setboththe degreeof difficulty of the
actvity choseraswell asthe quality of theinitial helpwhichis offeredif needed.

Onceanactuity is completedhe actualamountof helpthatthelearnerusedis noted. This
may be more than was expected,if the actvity turnedout to be harder or canbe lessthan
expectedif in factthe learnerdid not needary help. The amountof help actually provided
is usedby the systemto updatethe probability value of masteryat that node. This valueis
thenpropagatedhroughthe network to updatethe probability valuesat all othernodeslinked
to it via pre-requisitegLuckin, 1998). A nodeis againchosenthatis just too hard. This may
involve eithera progressionthroughthecurriculum(i.e. to amorecomple rule or towardsmore
abstracterminology)or stayingat the currentnodeandtackling a differentactwity.

Students input to the Ecolabwaslargely unambiguouse.g. button presseto choosedif-
ferentaspectf the interface or to chooseanimalsand their actionsto assemblanto small
programs Whereinappropriatectionswerechoserthe systemgeneratedhelp messageat the
appropriatdevel of specificity dependingon its view of thelearners degreeof masteryof the
topic. Whenthe learnermadesucha mistale the Ecolabdid not try to reasonaboutwhatthe
learnermight have hadin mind. Its modelof the learnerwasan overlay of standardecology
knowledgeexpressedisa setof probabilitiesthatthe learnethadmastereaachof thetopics.

An issuethatemepgedfrom thework with Ecolab(which is the subjectof currentresearch)
concernghepupils’ degreeof insightinto their own stateof learningandpossibleneedfor help,
seealso(AlevenandKoedinger2000)mentionedearlier

Making the teachermanifestand believable

Thegeneratiorof systemscritiquedby Ohlsson(1987)realisedheirteachingexpertisethrough
their textual interactionswith studentsor throughchangedo the interfacesonto the domains
beingstudied.With therapidimprovementin graphicalandaudiotechnologymary new possi-
bilities for animatedpedagogicaagentgpresenthemseles. Suchsystemsstill have to address
the samerangeof teachingproblemsasbefore,but they cannow bring a wider rangeof tactics
to bear(e.g.achangeof facialexpressionpr a changeof verbalemphasis).

Johnsoret al. (2000) describea numberof pedagogicahgentsfor differentdomains,in-
cluding Steve (for teachingaboutoperatingmachinery) Adele (for teachingmedicine) Herman
the Bug (for biology) and COSMO (for adviceaboutinternetprotocols). They arguethatsuch
systemdboring extra possibilitiesin thefollowing areas:
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¢ Interactve demonstrationswherethe agentcando thetask,pointto itemsin asimulated
ervironmentaswell ashandover the taskto the learnersand commenton their perfor
mance.

¢ Navigationalguidance wheretheagentcanassisthelearnergo find theirwayroundand
establisttheir bearingswithin acomplex VR world.

e Useof gazeandgesturewheretheagentcanexploit its own gazeandgestureo indicate
its currentfocusof attentionin anon-verbalmanner

¢ Useof non-werbalfeedbackandcorversationakignals:wherethe agentcanindicatethat
the studenthascompleteda taskcorrectlyor incorrectlyby differentkinds of nod of the
heador by changingits facial expressionor exploit eye contact,or adjusttone of voice
andemphasisThesekinds of capabilitygo someway towardsproviding boththe subtle
andnon-intrusie feedbaclkemplo/ed by experthumanteachersdescribedearlier

e Corveying andeliciting emotion: wherethe agentcan indicate surprise,pleasure dis-
pleasurepuzzlemen&andotheremotionsappropriateo the currentstateof the learning
interaction.

¢ Virtual teammateswherethe agentcanplay therole of oneor moreteammate# tasks
wherethelearnemeeddo learnhow to coordinateactionsfor arole with theactionstaken
by otherrole players.

Embodiedpedagogicabgentsoffer the possibility that someof the subtletechniquesem-
ployed by expertteachergMerrill etal., 1992b)cannow be appliedby machineteachers.Of
course theseextra possibilitiesbring extra compleity: for example,not justa matterof decid-
ing whatto sayandwhento sayit, but alsoa matterof exactly how to sayit. Sooneof the
centralandlong-standingproblemsof thefield hasre-emegedwith new force.

In additionto ary problemsof educationakffectivenessn practice,machineteachersare
vulnerableto whatLepperetal. (1993)call the“Plausibility Problem”:

“Evenif thecomputercouldaccuratelydiagnosehestudents affective stateand
evenif thecomputercouldrespondo thatstate(in combinationwith its diagnosis
of thelearners cognitive state)exactly asa humantutor would, thereremainsone
final potentialdifficulty: theplausibility, or perhapsheacceptabilityproblem.The
issuehereis whetherthe sameactionsandthe samestatementshat humantutors
usewill have the sameeffectif deliveredinsteadby a computer evenacomputer
with avirtually humanvoice” (Lepperetal.,1993,pagel02)

In otherwords,will humanteachingtacticsandstratgies,or tacticsderived from learning
theoriesor learningsystemswork effectively for a machineteacher?We alreadynotedhow
studentgoundcertainactionsof theMORE machingeacheunacceptabld-or amoreextended
discussiorof thisissueseelLepperetal. (1993);du Boulayetal. (1999).

CONCLUSIONS

How far hasthe situationimproved from that describedby Ohlsson? Sincethe mid-eighties
therehave beentwo very usefuldevelopments.Partly asa resultof the desireto improve the
capabilitiesof suchsystemstherehasbeenanincreasingamountof researclinto humanexpert
teachingpractice.Of courseteachinghasbeenstudiedfor millenia, but the morerecentwork
hasstudiedit at alevel of granularityandwith the possibility thatthe tacticsandstratgiesob-
senedmightbeimplementableThishasleadto agraduafilling in of thejigsaw of capabilities,
takingawider rangeof issuednto accountsuchasmotivationandindividual differences.
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Secondtheadwentof pedagogicahgentdasagainthrowvn thespotlightbackontothewhole
issueof teachingexpertiseand the subtlety of learnerteacherinteractions. Thereare some
encouragingvaluationsof suchsystemgseee.g.,Lesteretal., 1997)but they alsoraisemary
interestingand,asyet, unresoledissuessuchastheir plausibility andtheir acceptabilityacross
arangeof educationatontets.

Thelnternethasbeenahugeinfluenceonthedevelopmenbf systemdgor education Overall
this hasfavoured more learnercentredapproacheshan thosein which teachingtacticsand
stratg@iesareto thefore, seeCollins et al. (2000);McCalla(2000)for analyse®f thesetrends.
Even within a web-basedearned-centregharadigm,the systemcan make variousautomatic
adjustmentse.g. to which pagesare madeaccessibldo a particularlearney seeBrusilovsky
etal. (1998)for anexample. Theintroductionof networked technologiesvhich allow learners
to interactacrosswidely distributedgeographicalocationsenablesnteractiondetweerhuman
learnersaandteachersvhichwerepreviously unavailable. Are theissuesvhichwerepertinento
traditionalface-to-acehumanteachingandlearningstill pertinentor shouldwe beexploringthe
changesn humanteachingwithin this paradigmin orderto inform our designsfor intelligent
systemgo supportthislearning?

We shouldnot losesightof the strengthof machineteachersdespitetheir failings. In ad-
dition to beingableto reify thelearningdomainandthelearningor problem-solvingorocessn
waysnot easilyopento humanteachersmachineeacherhave the ability to actin a patientand
consistenitanner This consisteng canbebothin termsof theirknovledgeandstratgy aswell
asin termsof theiremotionalreactions As humanteachersve arewell awvareof theoccasional
emotionalintensity of certaineducationainteractionsandwe have alreadycited the study by
Bliss et al. (1996) that obsered a disparity betweenwhat teacherssaid they were doing and
whatthey actuallydid in the classroomMachineteacherslo not needto be prey to theseprob-
lems— unless,of course,our theory of educationsuggestsuchintensity or unpredictability
needdo playarole!

In future, as machineteachersevolve, no doubtwe will seethe emegenceof personality
typesamongsthem, with somebeingjokey, alertand quick-fire while othersare more well-
manneredand pedestrian.Eachkind may suit sometypesof studenton someoccasions.As
system$ecomanoreversatilewe mayseetheemegenceof thepossibilityof somenegotiation
overwhatis to belearned:this would belikely to helpthe motivationissuesmentionedearlier

We arealsostartingto seethe emegenceof systemghatmonitor the interactionsamongst
studentswhile they learnin orderto ensurethat all partiesplay an effective role. A certain
amountcanbe achieved herewithout the needfor complex naturallanguageprocessingech-
nigues(seee.g.,Soller,2001).
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