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Abstract. This paper revises and introduces to the field of reconfigurable computer systems, some traditional
techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board
spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing
technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in
space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable
components, based on programmable logic, in space applications.
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1. Introduction
The on-board computer system of a spacecraft for
long-life missions is a good representative example of
an adaptive system [1,2]. This category of system,
including software and hardware, has to be designed
considering that post-launch maintenance is generally
impractical [2], and the hardness of the space
environment will certainly cause problems to the
system. Traditional on-board computers based on
microprocessors, adapt to the problems they face by
using fault-tolerance techniques. Faults are tolerated,
and vital services such as, for instance,
communication to ground stations, are maintained
operative. From the hardware point of view, the
adaptation takes place by the isolation of faulty
modules from the system, and, where it is possible, by
the activation of spare modules. At the software level,
the adaptation is identified, basically, when the
microprocessor starts using a new program, stored on-
board or up-loaded from ground.
Reconfigurable devices introduce to the hardware
level, the flexibility for adaptation provided at the
software level [3,4]. In the case of space applications,
two important advantages of having the whole
computer system, including the hardware and the
software parts, implemented using only hardware
components (reconfigurable hardware) are: the
economy in area usage and board complexity; and the
increased processing speed with lower clock rates.
On-board systems based on reconfigurable hardware
will also reduce the overall design cost associated
with this category of computer. Because of the
application specific nature of this kind of system, its
requirements can vary significantly from application

to application, resulting in a completely new design
for almost every new application. Reconfigurable
devices are appropriate for the implementation of
application specific solutions. This allows the
designers to have different hardware configurations,
without the need for changes in the board layout. It is
another example of adaptation. In this case the
hardware adapts to a new application not because of
the occurrence of a fault, but because of a new
mission requirement.
The drawback to the use of reconfigurable devices is
the difficulty associated with the "software"
development for this kind of hardware. The internal
organisation of the reconfigurable devices available,
makes the development of good synthesis tools for
high level programming languages an arduous job.
Even when using hardware description languages as,
for instance, VHDL, the developer of spacecraft
computers has to keep the code as simple as possible,
in order to avoid problems for the synthesis tool [5].
For instance, in systems that require complex data
structures or many levels of nested loops, the best
solution maybe to still use conventional
microprocessor based boards.
The first concern of a designer of a reconfigurable
system for long-life space applications is the
improvement of system dependability features such
as, for example, reliability, availability,
maintainability and testability [6]. Reliable devices
together with fault-tolerance and test strategies are
used in order to accomplish this target. In the past few
years, strategies to improve the dependability features
of reconfigurable computer systems, have been
proposed and implemented [1,7-12]. These strategies



are mainly based on the traditional ones used in
microprocessor based systems.
Following a similar approach, in this paper strategies
to improve the dependability of reconfigurable
computing systems for space applications are
presented. An important consideration is to define the
strategies that make use of the fact that reconfigurable
computing permits new possibilities, for instance, the
use of a combination of strategies for fault tolerance in
software and in hardware at the same level of
abstraction. The ideas discussed here can be used not
only for space applications, but also for any other
embedded system with similar dependability
requirements. It is important to highlight that all
strategies discussed in this work are to be applied
during the system’s usage and at a high level of
abstraction. The fault detection activities take place
first at component level and then at the network node
level. The diagnosis (location) of faults inside a
component is an interesting activity from the
manufacturers’  point of view and it is out of the scope
of this work. This position can be explained because
there is a huge effort from the user point of view to
isolate faulty parts internally to a component. Instead
of this, it is more interesting for the user to try to
recover the whole component, which is possible if the
application is based on SRAM-type FPGA
components.
This paper is organised as follows. Section 2 describes
a case study which is one of the motivations for this
work. Section 3 describes the basic node of a network
architecture for space applications, based on
reconfigurable devices. In Section 4 there is a
description of the fault model adopted, and a brief
review of Single Event Upset (SEU), which is one of
the main sources of problems in on-board electronics
in space applications. Section 5 introduces strategies
for dependability improvement, with emphasis on
reliability, availability and testability improvement
techniques. Section 6 describes an approach for
masking connectivity faults. Section 7 presents
implementation details. Section 8 discusses expected
results. In Section 9 there are some conclusions, and
future directions.

2. Motivation for the Use of FPGAs in Space
Applications

The main motivation for using FPGAs instead of
microprocessors for on-board computer
implementation, is the gain in performance with
associated decrease in the PCB area usage. In order to
find out the feasibility of using FPGAs in this class of
application, a case study was developed. The case
study is the FPGA implementation of an on-board

instrumentation module of a NASA sounding rocket
[13]. This rocket flew from Spitzbergen, Norway, in
the winter of 1997/1998, carrying a scientific
application computer designed at the Space Science
Centre, University of Sussex [14]. The real time
science measurement performed by this embedded
system is an auto-correlation function (ACF) [15]
processing of particle count pulses as a means of
studying processes occurring in near Earth plasmas.
The original module as flown consisted of a board
with two DS87C520 microcontrollers (8051 family),
FIFOs, state machines and software written in
assembly language. Although this ACF
implementation is a very specific application, the
system as a whole, including the hardware and the
software parts, is not too different from conventional
embedded systems based on microprocessors or
microcontrollers. This case study is a typical memory
transfer application, with a high input sampling rate
and with scarceness of processing modules. The most
demanding actions for processing blocks, are the ones
with multiply-and-accumulate operations (MACs),
typical of DSP applications.
The test strategies proposed in this paper are designed
to execute in parallel with the user application and
with the fault-tolerance strategies. When considering
processing time, there are no performance penalties,
because there is no need, for instance, to time share
tasks. Table 1 lists the number of cycles necessary to
run the processes written in assembly language for the
microcontrollers, and the equivalent ones written in
VHDL for the FPGA. The software algorithm flown
on the example mission was broken down into six
contributing processes to ease the comparison.
Another important system feature improved because
of the use of configurable computing technology is the
reduction in the number of hardware components. The
main system repercussions are the reduction in the on-
board area usage, and in the power consumption. The
reduction in the number of components can be
achieved by using only one FPGA device configured
to execute the same functionality as the whole 8051
based system. For instance, external chip FIFOs were
replaced by circular FIFOs implemented using data
structures in VHDL.
Considering the use of the FPGA board in an
application where fault-tolerance is not a requirement,
as the original case study, all of the electronics board
can be implemented as a single chip, for instance, an
XQ4085XL Xilinx FPGA [16,13] with two XQ1701L
serial ROMs to store the bitstream. The result is a
reduction from 22 to 3 chips. Extrapolating the case
study to a long-life system, where fault-tolerance is
required, we can use a board similar to the one shown



in Fig. 1.b. In this case the reduction in the number of
components may be from 22 to about 10 chips on-
board, which is still a significant result, considering
that now the system has fault-tolerant capabilities.

Table 1. Performance Comparison for the Case Study.

µcontroller
(cycles)

FPGA
(cycles)

Rate

P1 4,518 1 4,518 times
faster

P2 8..36 1 8 to 36 times
faster

P3 18..1,018 1..68 18 to 14.97
times faster

P4 1,240 48 25.8 times
faster

P5 1,334..3,438 132..143 10.11 to 24
times faster

P6 11,116 288 38.6 times
faster

3. System Description Overview
Field-Programmable Gate Arrays (FPGAs) are the
devices used for the implementation of reconfigurable
computer systems. The block diagram in Fig. 1.a
shows the proposed architecture for an on-board
processing system, based on FPGAs, which may be
used for both scientific and commercial space
applications. The two main improvements in this
architecture over the architectures that have been used
in most space applications previously, are the use of
reconfigurable devices as the main processing
elements, and the use of a network to connect the
different modules. As the main objective of this paper
is to discuss and to present strategies for the
dependability improvement of processing elements of
a reconfigurable system, we describe in this Section a
basic network node.
The block diagram of the network node shown in Fig.
1.b has two external communication channels, one for
connection to the network, and the other one for
interfacing to the application. The first one has a fixed
number of signals, as the protocol for inter-node
communication is pre-defined. A microcontroller with
an embedded UART is a good option for the inter-
node communication. The second one is defined
according to the application requirements, and is a
good example of the flexibility introduced by the
reconfigurable computer technology.
The main responsibilities of the processing element,
FPGA module in Fig. 1.b, are to construct telemetry
packets, according to the European Space Agency
(ESA) standards [17], and to implement the protocol

for communication on the on-board network system.
The protocol used is the Controller Area Network
(CAN), and the HurriCANe core, designed by ESA
has been used in the design [18].

RCM 1 RCM 2 RCM n…

User 1 User 2 User n…

Shared
RAM

RCM
(TC/TM)

On-board network bus

1

2

Legend:

1 - Protocol for on-board communication
2 - ESA standard protocol
3 - Reconfigurable interface

3

1

Programmable
switch FPGA module

1 or more FPGAs
(processing unit)

RAM

(golden device)

Ground station

On-board instrument processing board

(a)

(b)

Microcontroller
with embedded
flash memory

(holds the
configuration

bitstream)

RCM (Reconfigurable Computer Module)

to/from on-board network bus to/from user’s application

(optional)

Fig. 1. Block diagram of the proposed system. (a) Network
architecture. (b) Basic RCM node.

In some applications it may be possible to transfer
some or all user processing activities to the FPGA
module. An example is when the on-board data-
handling (OBDH) system and one (or more) of the
applications are designed by the same group [19, 20].
In this case the "User" block shown in Fig. 1.a may be
very simple, for instance, consisting of only analog
devices, sensors and converters, as the FPGA module
in Fig. 1.b may be used to execute all of the
processing.
The microcontroller is responsible for the
implementation of the physical layer of the CAN
protocol, connecting the CAN core (located on the
FPGA module) to the network bus. Another important
activity performed by the microcontroller is the
management of the reconfiguration and test of the
FPGA module. The design and implementation of



these activities are the main objective of this work,
and they are detailed in Section 5.
Other components of the Reconfigurable Computer
Module (RCM) node are a RAM memory and a
programmable switch. The RAM module may be
attached to the FPGA module, in order to be used by
some applications as a scratch area. The
programmable switch is one of the single points of
failure of the system (the other one is the FPGA
itself), and for this reason a highly reliable and non
complex device is used.
The data pins of the microcontrollers are connected
directly to a voter implemented in the FPGA, and the
pins used to program the FPGA are connected to the
programmable switch. If a single discrepancy is
detected by the voter, then the FPGA reprograms the
switch in order to select one of the two healthy
microcontrollers as the new configuration manager.
The microcontrollers’  embedded flash memories hold
the configuration bitstreams (CBs) for the FPGA
module. They may be changed from the ground in
case of system upgrades or bug fixes. The
microcontroller works as a configuration manager
allowing device(s) of the FPGA module to be
initialised from the flash memories as if they were
serial ROMs. The microcontroller is also responsible
for refreshing the flash memories when they
experience upsets. As the objective of this work is the
improvement of the dependability features of the
FPGA module, strategies for dependability
improvement of the microcontroller and flash
memories will be discussed in a future work.

4. Fault Model Adopted
As the systems based on the proposed architecture
have been conceived for long-life missions, all of the
electronic components must be military standard.
However, as stated before, because of the hostile
environment found in space and the long-life expected
for the system, additional fault-tolerance strategies are
used in the design, even when employing high
reliability devices. In order to define the strategies, a
very simple, but efficient, fault model was chosen.
The faults considered in this fault model are “stuck-
at”  and “connectivity”  (faults in interconnect
resources) [6].
The main cause of stuck-at faults in space are the
Single-Event Upsets (SEUs) caused by atmospheric
high-energy neutrons [21-23]. Most of the FPGAs
available are SRAM based, and devices implemented
with this kind of technology are sensitive to SEUs.
Basically, a SEU takes place when a single high-
energy particle (typically a heavy ion) strikes a
sensitive node in a memory cell, which causes the

particle to loose energy via production of electron-
hole pairs, resulting in a densely ionised track in the
local region of that element. It will force the affected
memory cell to stay in a fixed state, 0 or 1, and,
consequently, stuck-at faults are the best option to
model the bit errors that can occur.
The other modelled fault, connectivity, is responsible
for most of the problems in a board [6] and, as
described later, special strategies as, for instance, bus
replication and voters, are used to tolerate this
problem. Connectivity faults are related to I/O and
connection resources in general. Some authors defend
the position that tests in the processing elements cover
also the connectivity faults. The strategies used to
prevent and, when it is not possible, to tolerate the
faults, belong to the fault model adopted, are
described next in Section 5.
In [21,22] there is a study showing the low SEU
susceptibility of Xilinx FPGAs. However, for some
critical applications where human life is at a premium
or when the whole on-board electronics is dependent
on two or three core components, then, even the low
SEU susceptibility must be improved. The strategies
described in the next sections are used to tolerate the
effects of faults resulting of SEU occurrences.
Needless to say that in order to tolerate a fault, it is
necessary first to detect the fault. Test strategies for
fault detection are also described next.

5. SEU Prevention Strategies
5.1. Refresh operation in a Triple Modular
Redundancy (TMR) FPGA system

In [22] a strategy to reduce the effects of SEUs in
Xilinx FPGAs was proposed. Basically, as shown in
Fig. 2, three FPGAs are configured with the same
bitstream (triple redundancy), and operate in
synchronism. A controller reads the three FPGA
bitstreams, bit after bit, and if there are no differences,
then a correct functioning with no SEU occurrence is
assumed. This procedure is executed continuously,
with no interference in the FPGA normal operation.
Such a scheme is possible because of the FPGA's
readback feature.
If one input of the controller is different from the
others, then it is assumed that an SEU has occurred,
and a reconfiguration of the faulty FPGA is executed.
In [21] it was shown that a simple refresh operation, in
this case by means of reconfiguration, is sufficient to
recover the device from an SEU. The main problem
with the refresh recovery is the total loss of
measurement data within the instrument system, since
all those FPGAs have to be resynchronised to the
same input data and same position in the application



algorithm. Another problem is the time necessary for
reconfiguration, and depending on the application
size, it is therefore recommended to divide the system
into small blocks using several small FPGAs. This is
because in a small FPGA, configuration can be made
in just a fraction of second (e.g. 195 ms, for Xilinx
XQ4085XL). The block size has to be calculated
according to the application time requirements.

voter

• user registers
• user logic
• routing

Configuration
bitstreams

Readback
bitstreams: FPGA

Serial
EPROM

Start refresh
signals

Error signal

Fig. 2. A TMR FPGA system.

It is important to note that we are not proposing the
use of refreshing operations as a means to prevent
SEUs. This strategy has already been proposed in
previous works [21][22]. What we are proposing are
strategies to trigger and to start the refresh operation.
In the next three Sections, the methods proposed in
this work for SEU prevention are presented. These
new methods are also based on the refresh execution,
but without FPGA replication.

5.2. Periodic Refresh Without FPGA Replication

As the target system is a long-life application, periods
of downtime are considered in its design, and thus are
possible to be interrupted and completely reinitialised
after some time running, with no major problems.
This strategy, shown in Fig. 3, utilises a clock
generator and a counter. In the event of a rising edge
pulse, generated by the clock, the counter is
incremented. Every time the counter reaches the zero
value the refresh operation is executed. Refresh is
achieved by the counter process resetting the FPGA
PROG pin, which leads to the FPGA being
reconfigured, preventing SEU occurrences from
affecting the system functioning. It is important to
notice that in this strategy there is no test execution,
and consequently, no SEU detection. The refresh is
executed periodically, even if there are no SEU
occurrences. In terms of hardware resources, this
strategy is less expensive than the TMR one, but
depending on the application, it can be expensive in
terms of system availability.
The appropriate refreshing frequency has to be

calculated according to the application characteristics.
For example, in a hypothetical application where a
new processing cycle starts every 20 hours, a 15 Hz
clock generator and a 19 bits counter could be used to
trigger the refresh operation, which will happen every
19.4 hours.

FPGA
Configuration

bitstream

counter <= counter + 1;

if counter = 0 then

   PROG <= ‘0’ ;  -- reset
else

 PROG <= ‘1’ ;

end if;

Application
process

counter

Application
process

PRG pin

Start refresh signal

15 Hz

Application
process

Fig. 3. Using a counter to start the refresh operation.

5.3. Signature Analysis-Driven Refresh Without
FPGA Replication

Another option for SEU prevention is the use of a
signature analysis method [6], to identify when a
refresh operation is necessary. For applications where
periods of downtime and loss of data are not
allowable, this strategy is more efficient than the
clock/counter one. In this work two different
architectures have been implemented. In the first one
it is assumed that the FPGA module (Fig. 1.b) has two
FPGAs, one for processing and a smaller one for
testing activities. In the second architecture the FPGA
module has only one FPGA, and the testing activities
are performed by a microcontroller. From the system
reliability point of view, both architectures have
advantages and disadvantages, which are discussed in
Section 9. A short explanation of the implementation
of signature analysis methods in both architectures is
given next.

FPGA Module has Two FPGAs
Fig. 4 shows a block diagram of the first version of
the FPGA module of Fig. 1.b. In this version the
processes responsible for processing the user’s
application and for starting the readback and refresh
operations are located on FPGA A. FPGA B, the
smaller one, is responsible for the testing activities.
As FPGA area is an expensive resource, the method
proposed here uses the LFSR/PSG approach for
signature generation and analysis [24]. A Linear
Feedback Shift Register (LFSR) is a shift register with
combinational feedback logic around it that, when
clocked, generates a sequence of pseudo-random
patterns [24]. In our case, we are considering the use
of a primitive polynomial, in order to generate all the



2n – 1 possible combinations, where n is the degree of
the polynomial. A Parallel Signature Generator (PSG)
is an LFSR with exclusive-or gates between the shift
registers, implementing a generator polynomial used
to compact a given sequence of bits. Using this
approach, the same piece of hardware is used both, to
trigger the start of the readback (LFSR mode) and to
generate and analyse the FPGA bitstream signature
(PSG mode).

FPGA B

Flash
memory

FPGA A
readback pin

System
clock

PRG pin
PRG pin

1

2

3

3

4
2

LFSR/PSG

Readback Start readback?

Refresh?

Fig. 4. The LFSR/PSG approach.

In order to define when the readback starts, first the
LFSR/PSG process (Fig. 4, 

�
), working as a simple

LFSR, generates all 2n – 1 pseudo-random patterns.
When the output of the LFSR has a pattern matching a
pre-defined seed, then the operation mode is changed
to readback. At this moment a signal to start the
readback is sent to FPGA A (Fig. 4, � ).
After each 8 cycles of the system clock, a register in
the LFSR/PSG process is loaded with the contents of a
8 bits shift-register located in the Readback process
(Fig. 4, � ) which holds the last 8 bits received from
FPGA A. This shift-register is controlled by the
Readback process, which is also responsible for
filtering the bits "unusable data", "RAM bits" and
"capture bits", not used for purposes of signature
generation [25]. The reason for that is because these
bits change dynamically during the FPGA utilisation
and are not suitable for comparison with the "gold"
signature. The "gold" signature is generated on
ground, using the same PSG method, from the original
bitstream used to configure FPGA A, and is stored on-
board, in FPGA B.
When the readback is concluded, the LFSR/PSG
process in FPGA B uses the calculated signature to
compare to the on-chip stored, pre-defined one. If the
test fails, then a "start refresh" signal is sent to FPGA
A (Fig. 4, � ) in order to "clean" possible SEUs. The
FPGA B refreshes itself after the end of all FPGA A
readback/refresh executions.

FPGA Module has One FPGA
The main difference between this approach and the
latter is that the testing activities are now implemented
in software and they run on a microcontroller. This

approach could be implemented in the architecture
shown in Fig. 1.b, but a simpler one with only one
microcontroller and one FPGA has been used here
because the FPGA board with three microcontrollers
and a programmable switch is still in the design stage.
Using a microcontroller for the readback and refresh
operations is much easier than using another FPGA.
The microcontroller already has fixed hardware
blocks that can be used to build the test strategy, with
no need for hardware reuse. A Cyclic Redundancy
Check (CRC) based strategy has been implemented
instead of the LFSR/PSG method. A microcontroller’s
timer is used to trigger the readback, and a standard
CRC algorithm is used to calculate the signature of the
bitstream. On the FPGA side, the operation is the
same as the one described in the last Section.

5.4. Signature Analysis With Continuous Readback
Execution

In both signature analysis methods described in the
last Section, the test for SEU occurrences is executed
periodically. Another option for the test is to execute
the readback continuously, as it does not affect the
normal FPGA operation. When considering the use of
two FPGAs, this method is less expensive in terms of
hardware, as part of the LFSR/PSG process is not
necessary. As the readback is executed continuously,
then there is no need for sending a signal to the "start
readback" process resident on FPGA A.
It should be noted that a drawback of this technique is
the increase of power consumption since the "always
on" readback process resident in FPGA B (or
microcontroller) and the continuous readback task that
is performed by FPGA A increase the overall system
power consumption due to the increased switching
activity.

6. Masking Connectivity Faults
The SEU prevention strategies described in the last
Section, are very efficient for fault prevention in
processing modules, as operation units are
implemented using the FPGA SRAM based look-up
tables (LUTs). Control units of processing modules,
are partially implemented using flip-flops. They are
one of the points not covered by this work, since many
well known fault-tolerant strategies to improve control
(and data) flow reliability can be found in the
literature [6].
Reliability improvement in the processing modules is
worthless if the input data correctness is not
guaranteed. The proposed strategy is shown in the
block diagram in Fig. 5. In this scheme a majority
voter receives the same data from three different



FPGA input pins, and if at least two of them are equal,
then the data are sent to the application, otherwise, an
error signal is set, invalidating the data. The block
diagram was partially generated by Synplify from a
VHDL code.
The strategy is used to mask faults in the external
FPGA pins, and in the internal FPGA routing
resources. It is assumed that the same sensor output is
connected to three different FPGA pins, sending the
same data to the voter. Using three different sensors,
which characterises a triple modular redundant (TMR)
implementation [6], may be possible but it will depend
on the data being collected. In most of the cases,
different sensors send different data to the voter and,
even if the data are correct, it may result in a wrong
interpretation by the voter. This happens because
different sensors can detect different physical
phenomena, at the same instant of time.

K
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FPGA

Application

process

Voter 1

Voter 2

Voter 3

error

out 2

out 1

out 3

in 1
in 2
in 3

in 1
in 2
in 3

in 1
in 2
in 3

clk
reset

Fig. 5. Using replicated inputs/voter to mask connectivity
faults.

For this fault masking strategy to be efficient, the
three input signals for the voters must be located,
preferably, in three distant pins. For instance, in the
block diagram in Fig. 5, the input “ in 1”  may be
located in the pin 40, whilst the input “ in 2”  is located
in pin 80. The pin locations are chosen by the
designer, using a constraints file, before the placement
and routing (PAR) execution. The netlist generated by
a synthesis tool, from a VHDL source code, has no
pin location and routing information, and this netlist is
used as input to the PAR tool. In some cases it may be
necessary to edit the CB generated by the PAR tool,
and change, manually, the position of the components
of a voter, in order to approximate them to the input

pins. The pins’ location and the delay for individual
routes can be specified in a constraints file. Moreover,
the PAR tool may place a voter very close to a pin, but
very distant from another one, having both time delays
according to that defined in the constraints file, but
with very different times between them. A solution to
avoid the need for manual intervention, is to define
very short delays in the constraints file. The problem
with this solution is that, depending on the design
complexity, and the size of the FPGA chosen, the
constraints specified may not be achievable. This
strategy for connectivity faults masking can be
employed in the RCM node shown in Fig. 1.b,
because the voters are implemented in the same FPGA
along with the application, as shown in Fig. 5. This
strategy masks permanent, transient or intermittent
faults efficiently.

7. Prototyping Environment and
Implementation Details
Prototypes of the proposed strategies (Sections 5.2,
5.3, 5.4 and 6) have been implemented using two
FPGA developing boards, one with a Xilinx
XC4010XL and another one with a Xilinx Virtex
XCV50. The board with the Virtex FPGA was used in
all implementations. The XC4010XL FPGA was used
as the tester described in Section 5.3 (“FPGA module
has two FPGAs”).
The Virtex board has a PIC microcontroller, which is
used for configuring and testing the FPGA. The
bitstream for configuring the FPGA is stored in the
PIC’s embedded flash memory. The strategies
described in Section 5.3 have not been fully tested
because of the absence of a board with three flash
memories and a programmable switch. However, all
the procedures described, except for the flash memory
selection, have been verified and proven to be
functioning in a satisfactory way.
A vacuum chamber could have been used at the Space
Science Centre in the testing activities, but there were
no spare FPGA boards available when this paper was
written. The solution adopted was a deterministic fault
injection by using Xilinx development tools. For
instance, the flow used for the fault injection and
system verification of Section 5.3 (“FPGA module has
one FPGA”) is as follows:
1. Generation of the CB and respective signature;
2. Download the CB into the PIC’s flash memory;
3. Load PIC with the test program and the signature;
4. PIC configures the FPGA and starts the testing

activity;
5. Change the state of a LUT’s bit using Xilinx Floor

Planner Editor in the host computer;
6. Download the faulty CB into the FPGA using a



JTAG cable (PIC holds the signature of the healthy
CB);

7. Next time PIC calculates the CRC, the injected
fault is detected and the healthy CB located on the
PIC’s flash memory is used to refresh the FPGA.

Deterministic fault injection has limitations in
comparison to a random strategy using a vacuum
chamber and radioactive material, but it is sufficient to
show the efficiency of the proposed strategies
considering the fault model adopted.

8. Numerical Analysis of the Signature
Analysis Method
The RCM node shown in Fig. 1.b has been analysed
in numerical terms using reliability evaluation
techniques [6]. For this analysis two situations are
considered.
In the first situation, the three flash memories hold
three different CBs. This scenario represents a real
reconfigurable computing system, because the FPGA
functionality can be altered, on-the-fly, according to
the application requirements. From the fault-tolerance
point of view it is not a good approach as, in the case
of an SEU occurrence in one of the flash memories,
the respective application has to stop, and wait for a
good CB be up-loaded from the ground station. The
reliability of this situation is found from Equation 1.

R1(t) = 1 -  (1 - Rflash(t)) Equation 1.

Since the reliabilities of all components, but the flash
memories, are constant, they have not been included
in the numerical analysis. The reliabilities of the flash
memories are not constant, because their contents may
be changed when a new CB is uploaded.
In the second situation, the three flash memories hold
the same CB, which characterises a TMR system. The
vote is executed, implicitly, by the microcontroller or
by FPGA B, using the signature analysis method
described in Sections 5.3 and 5.4. As this test strategy
is not capable of fault location, then, in case of a fault
detection, it is not possible to identify whether the
problem was in the flash memory or in the tester. In
any case, the FPGA A (Fig. 4) is reconfigured with a
CB from another flash memory. If the error persists,
then the diagnosis is a permanent fault in FPGA A,
and the module has to be by-passed. On the other
hand, if with the new CB no error is detected, then the
respective flash memory is considered faulty, and then
it needs to be refreshed in order to try to clear any
occurrence of SEUs. The reliability of this situation
can be found from Equation 2.

R2(t) = 1 - ((1 - Rflash1(t))* (1 - Rflash2(t))* (1 - Rflash3(t)))
Equation 2.

To demonstrate the reliability improvements when
using replicated CBs (R2), we consider a hypothetical
situation where the failure rate (λ) is identical for each
flash memory. For this study a failure rate of
0.0001/hour was chosen, to allow for the generation of
quantitative information for comparison purposes.
Considering that R(t) = e-λt and λflash1 = λflash2 = λflash3 =
λflash then Equations 1 and 2 can be re-written as the
following Equations.

R1(t) = e-λt Equation 3.
R2(t) = e-3λt - 3e-2λt + 3e-λt Equation 4.
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Fig. 6. The reliability responses for the two situations.

The graph in Fig. 6 was plotted from Equations 3 and
4. From this graph it is possible to observe that the
reliabilities of each case remain almost the same value
at the end of 30 hours of work, and in an acceptable
range until the end of 100 hours of work. However,
the reliability differences between each architecture
become more distinctive as the time progress. For
example, at the end of 3000 hours of operation (125
days), the reliability for the redundant case (R2) is 1.3
times better than the non-redundant one (R1).

9. Final Considerations
The design of reconfigurable computer systems, for
space applications, using SRAM-based FPGAs,
depends not only on high reliability military devices
being available commercially, but also on the
definition of strategies for fault tolerance and on-
board testing.
This work introduced the use of Built-In Self Test
(BIST) techniques and traditional fault-tolerance
strategies together with reconfigurable computing
technology, in order to improve some dependability
features of on-board computers used in space
applications.



The proposed strategies are described in Sections 5.2,
5.3, 5.4 and 6. The strategies adopted for our
particular implementation are described in Sections
5.3 and 6, FPGA module with only one FPGA. To
implement the signature analysis methods, an external
tester is necessary. From the reliability point of view,
an advantage of using an FPGA as a tester is that the
whole system, including the testing algorithms and the
user’s application could be implemented at the same
level of abstraction and using the same description
language. This facilitates the use of formal
verification methods, improving the system reliability
at the design stage. On the other hand, the tester
FPGA is an extra single point of failure, and for this
reason the second strategy described in Section 5.3
can be considered, in our case, as the one providing
more reliability to the system.
Another reason for having selected that strategy is the
savings in the PCB area usage and power
consumption, which are extremely important concerns
when designing on-board computers for space
applications. In some applications where power
consumption is not crucial, the strategy described in
Section 5.4 provides higher levels of reliability.
Performance figures as, for instance, FPGA area usage
are not presented in this paper because of the rapid
advances in the FPGA industry both at the hardware
(FPGA internal organisation) and software (synthesis
tools) levels.
A comparison between the proposed strategy and
previous works in not straightforward. Most of the
strategies for testing FPGAs found in the literature,
target the manufacturer’s side, where the objective is
to locate the fault inside the FPGA. From the user’s
point of view this information is irrelevant. The few
works targeting the user’s side have considerable
differences to the proposed one, for instance, in the
low overhead approach [27]. In that approach, the
FPGA is partitioned in tiles, and each tile has logic
blocks used as spares. It is an expensive approach in
terms of FPGA area usage, but it is more effective
than our proposed strategy in case of permanent faults.
The strategies described in this paper deserve a deeper
investigation, in order to be used in the design of an
adaptive on-board instrument processing system,
entirely based on reconfigurable technology. During
the case study implementation, a series of problems
related to the development of FPGA based systems
arose. For instance, the synthesis tools available for
high-level languages (e.g. VHDL behavioural and
Verilog) are still not efficient, and a VHDL developer
has to follow strict rules to obtain good results [5,26].
An FPGA configuration bitstream generated from a
high-level language is space consuming, and

represents a lower performer circuit when compared
to one generated from schematic diagrams or low
level languages such as VHDL structural.
Another concern is the time necessary for Electronic
Design Automation (EDA) tools to generate CBs. In
time critical systems, such as space applications,
effective development facilities are important because
of the short time available for making remedial
changes to a faulty application. In the past several
missions were saved as a result of the rapid problem
identification, followed by the development of a
solution, ground tests and timely transmission of the
new software to the spacecraft computer. In addition
to the selection of efficient EDA tools, another
investigation to be done is related to the hardware
description language subject.
The original design had only FPGAs (see FPGA
module on Fig. 4), but the programming effort in
VHDL necessary to implement the physical layer of
the network protocol, and the FPGAs reconfiguration
management was too high. A microcontroller has been
added to the original design of the RCM node, in
order to facilitate the software development. At this
point it is important to make clear that it is not a
hardware/software co-design project. The two parts of
the system are completely independent, with a very
well defined interface. The software part
(microcontroller) is developed and tested considering
the existence of two external objects. On one side
there is the object network bus used by the
microcontroller to transmit and receive bytes to/from
the network. On the other side there is the object
FPGA module, which receives/transmits bytes from/to
the microcontroller and also it is tested and refreshed
according to the strategies defined in this work. The
hardware part, FPGA module, has the microcontroller
as an external object used to feed the module with
bytes from the network and to send bytes to the
network. The tests and reconfigurations performed are
completely transparent to the FPGA module.
From the fault tolerance point of view, there are
several single points of failure at the node level in the
proposed system. However, fault tolerance strategies
at the network level can be used to identify and to
isolate faulty nodes, keeping the system working.
These strategies are the subject of a future work.
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