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Abstract

We investigate an application of distributional similarity techniques to the problem of

structural organisation of biomedical terminology. Our application domain is the relatively

small GENIA corpus. Using terms that have been accurately marked-up by hand within the

corpus, we consider the problem of automatically determining semantic proximity. Termino-

logical units are defined for our purposes as normalised classes of individual terms. Syntactic

analysis of the corpus data is carried out using the Pro3Gres parser and provides the data

required to calculate distributional similarity using a variety of different measures. Evaluation

is performed against a hand-crafted gold standard for this domain in the form of the GENIA

ontology. We show that distributional similarity can be used to predict semantic type with a

good degree of accuracy.

Keywords: distributional similarity, biomedical terminology, semantic proximity, ontology.

1 Introduction

Lexical resources are commonly organised according to lexico-semantic relations such as synonymy,

hyponymy, antonymy and meronymy. For example, the widely-used resource WordNet (Fellbaum,

1998) has synonymy and hyponymy as its central organising relations. Word senses are grouped

into sets of synonyms, i.e., words that have the same meaning, and then these synsets are further

organised into a hierarchy, where each child of a node is a type or hyponym of the concept at that

node.

Organising a lexical resource according to semantic principles makes it possible for humans

and computers to find related words and to derive implicit information about words based on the

structure of the resource. For example, if one is looking for information about “amino acid” and
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it is known that a “protein” is a type of “amino acid”, then it may be useful to include “protein”

in a search for information on “amino acid”.

While much effort has been put into constructing, both manually and automatically, general

lexical resources such as WordNet, the need for domain-specific resources is becoming increasingly

recognised. This is because specialised domains tend to have large terminological vocabularies,

where individual terms are either not used in the general domain, and therefore cannot be found

in a general resource, or have technical, domain-dependent meanings.

However, the task of organising a domain vocabulary, such as biomedical terminology, according

to semantic relationships is a difficult one, and generally requires expert knowledge about the

domain. Further, the process is never finished. There are always new words entering the language

and new terms being introduced in a specialised domain. To this end, researchers have begun to

investigate a number of ways in which the process might be semi-automated.

The task that we consider in this paper is how new terms might be added to an existing ontology

of terminological types. Our approach involves calculating distributional similarity between terms

over a domain corpus and hypothesizing that distributionally related terms are also semantically

related. We then use the semantic types already assigned to these related terms to predict the

semantic type of the unknown or target term. In this way, we make use of the expert knowledge

previously supplied in the construction of the hierarchy, but aim to reduce the amount of expert

knowledge required in maintaining and updating an existing hierarchy.

The remainder of this paper is organised as follows. In section (2), we discuss related work on

the organisation of terminology. Section (3) then introduces the biomedical domain in which we

are working. In particular, we describe the GENIA corpus and the manually constructed GENIA

ontology against which our predictions of term similarity are evaluated. In section (4) we describe

the parser (Pro3Gres) used to produce the grammatical dependency relation data that serves as

a basis for computing distributional similarity. In section (5), we discuss distributional similarity

itself and consider three alternative measures. In section (6) we describe a number of experiments

in using distributional similarity to determine semantic relatedness of terms. In particular, we

investigate whether distributional similarity is correlated with semantic similarity according to

the GENIA ontology and whether the distributionally nearest neighbours of a term can be used

to predict the semantic type of the term, according to the GENIA ontology. Our results show

that distributional similarity techniques can provide a very useful source of information in the

semi-automatic placement of new terms in the ontology. Our conclusions and directions for future

work are presented in section (7).
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2 Related Work

Approaches to the automatic organisation of terminology can be distinguished broadly according

to the types of information sources they employ (internal or external) and whether they adopt

supervised or unsupervised methods of training. Sources of information internal to the terms

include lexical properties such as token sharing and morphological analysis. External sources of

information can be statistical, contextual, or ontological. Many successful approaches combine

knowledge sources either as a cascade or in parallel.

Techniques exploiting internal sources of information range in sophistication from the analysis

of simple lexical inclusion to the terminological variation paradigm. For example, across the

entire NLM MEsH thesaurus, simple lexical inclusion between the terms (i.e., where the tokens

of one term are included within another) indicates a relation of hyponymy with a precision of

23% (Grabar and Zweigenbaum, 2002). Further restricting this relation to ensure that the terms’

lexical heads are token identical is exploited across the literature as a high precision knowledge

source (Mani et al., 2004; Torii et al., 2003; Nenadić et al., 2002b). This is taken as a starting

point in clustering terms for the purpose of scientific and technology watch (Ibekwe-SanJuan and

SanJuan, 2003, 2004), with the further qualification of a maximum token count difference of 1

between the two terms. Natural classes of multi-word terms are built around the conceptual head

and are further related through the range of syntactic variation. In combination with an external

ontology, terminological variation is expanded to include semantic variations, reducing the noise

produced through token “substitution” (SanJuan et al., 2004; Hamon et al., 1998).

Morphological analysis can determine concept families with a precision of 92% within the

biomedical domain (Grabar and Zweigenbaum, 2000). As shown in (Torii et al., 2003), even

the presence of a specific suffix can be used as a feature in the supervised machine learning

of semantic types. Dedicated processing of morpho-syntactic variation can determine complex

semantic relations between terms such as “antonymy”, “result” and “set of” (Daille, 2003).

A widely used external source of information is the context within which a term is observed

to appear. The notion of term context can be defined as a “bag-of words”, with reference to a

specific window size around a term (Mani et al., 2004). However, other definitions of context are

clearly possible. For example, (Nenadić et al., 2003) demonstrate that using terms rather than

words provides better performance at lower recall points within their support-vector machine

(SVM) approach to the classification of gene names. Context has also been successfully defined

as generalised regular expressions (Nenadić et al., 2002a). The present work adopts a notion of

distributional context that is defined in terms of the grammatical relations of subject and object.

An alternative, complementary external source of information uses shallow parsing around
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contextual clues (or “cue-phrases”) to identify hyponymy and synonymy with some reliability

(Hearst, 1992; Caraballo, 1999; Lin et al., 2003; Morin and Jacquemin, 2003; Dowdall et al.,

2004). For example, one might expect to see indicators of hyponomy like “amino acids such as

proteins” occurring in a corpus of biomedical documents. Unfortunately, this approach is likely

to have rather low recall in the domain of biomedical research articles because the specified “cue-

phrases” appear to be relatively sparse (Nenadić et al., 2002a; Mani et al., 2004). To address

this problem, it may be possible to expand the type of corpus to include textbooks (which are

naturally more descriptive than discursive and which contain less assumed knowledge) in order to

produce a deeper hyponymy hierarchy (Kawasaki et al., 2003).

Of particular relevance to the present work are three studies that use the GENIA corpus and

supervised models for determining the semantic type of the terms.

In addition to term identification, in (Chikashi Nobata and ichi Tsujii, 1999) terms are classified

as belonging to one of four semantic types. The study is based on just 100 abstracts and employs

two alternative models of classification. The first model uses supervised learning with external

word lists, word frequency and head weighting, and achieves an F-score of 65.8%. The second

model uses decision trees based on part-of-speech tags and orthography in addition to the word

lists, and pushes the F-score up to 90.1%.

The second study contrasts two models in the combined identification and classification task

(Kazama et al., 2002). Word frequency, part-of-speech tags, inflectional morphology and lexical

inclusion are used as input to a SVM and Maximum Entropy (ME) model. Over the 670 available

abstracts, the SVM is shown to out-perform the ME model. In classifying the terms into one of

six semantic types, ME achieves a precision of 53.4% with a recall of 53.0%; the SVM performs

slightly better with a precision of 56.2% and a recall of 52.8%.

In a third study that utilises the GENIA corpus at its present size of 2000 abstracts, machine

learning is used to classify the terms into one of five semantic types (Torii et al., 2003). Classi-

fication is based on a cascade of information sources that includes “f-terms” (where the head of

the term is also its classification) the suffix occurring with the head of a term, a measure of term

similarity based on a head weighted string matching algorithm and finally the “bag-of-words”

context of a term. This approach achieves precision between 84% and 96% with recall between

62% and 90% across four semantic types.

Compared to the three studies outlined above, the approach taken here is based solely on the

external context of terms. We apply measures of distributional similarity to a parsed corpus and

hypothesise that distributionally similar terms are also likely to be semantically related terms.

This is in accordance with the distributional hypothesis (Harris, 1968):
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The meaning of entities, and the meaning of grammatical relations among them, is

related to the restriction of combinations of these entities relative to other entities.

In recent years, distributional similarity has been applied on this basis to a wide range of problems

in natural language processing (Hindle, 1990; Grefenstette, 1994; Lin, 1998a; Curran and Moens,

2002; Kilgarriff, 2003; Weeds and Weir, 2003b; Geffet and Dagan, 2004; Linden and Piitulainen,

2004)). For such applications, large, general corpora such as the Wall Street Journal or the British

National Corpus, are used to discover automatically semantic relationships of the kind found in

general, manually-constructed lexical resources such as WordNet (Fellbaum, 1998) or Roget ’s

Thesaurus (Roget, 1911)1.

The use of distributional similarity techniques to predict semantic relationships between terms

in a specialised area of knowledge (i.e., biomedicine) has at least two important consequences for

the present work. First, it is necessary to employ parsing techniques that can deal reliably with

text containing terminological units. Knowledge of multi-word terminology is vital for parsing

accuracy in the biomedical domain. Second, in practice, the specialised domain coupled with the

need for term annotation results in a much smaller corpus than used in other applications, where

the words of interest typically may be assumed to occur over one hundred times. In contrast, the

majority of the terms in the domain-specific corpus used in our work occur less than ten times.

Consequently, it is necessary to find a technique that will perform well in the presence of very

sparse data.

3 The GENIA domain

The GENIA corpus (J.-D. Kim and Tsujii, 2003) consists of 2000 titles and abstracts collected

from the MEDLINE repository. The MeSH headings “human”, “blood cell” and “transcription

factor” were singled out to create a document collection around the topic of biological reactions

concerning transcription factors. The resulting documents comprise more than 400,000 words, and

have been semi-automatically annotated with part of speech information and manually annotated

for terminology. Each instance of a term in the document collection is additionally assigned a

single, unambiguous semantic type.

These types are organised into an IS A hierarchy representing a coarse grained semantic dis-

tinction. The resulting hierarchy is known as the GENIA ontology, and is shown here in figure (1).

The ontology can be considered at different levels of specificity. Level 0 is the most specific and

1Not all applications of distributional similarity assume the distributional hypothesis. The technique has also
been used to identify word-clusters for use in language modelling, where there is no necessary requirement for the
clusters to be semantically coherent (Dagan et al., 1994, 1999; Lee, 1999).
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corresponds to the leaf nodes of the ontology as shown in the figure. Level 5 is the most general

and only involves the three nodes at the top of the ontology, which subsume all other levels.

Figure 1: The GENIA ontology

The huge annotation effort that goes into cre-

ating such a resource brings clear advantages

for NLP systems. Terminology extraction still

remains a semi-automated process involving

statistical, linguistic and hybrid algorithms

(Castellvi et al., 2001) the results of which al-

ways need manual validation. The ability to

side step this issue and simulate near perfect

terminology extraction allows research effort

to be concentrated elsewhere, without the fear

that inadequate or inappropriate term extrac-

tion methodologies may introduce noise in sub-

sequent processing. The drawback however, is

the relatively small size of the corpus.

Language resources used in the develop-

ment and evaluation of NLP systems typically

involve syntactic and/or semantic annotations

and have a lower limit of 100,000 words (Mar-

cus et al., 1993; Baker et al., 2003). Whilst the

GENIA annotations are invaluable, the consid-

erable effort required to create them keeps the

collection at the smaller end of the scale. This

is a potential problem for techniques where

sparse data is known to adversely effect perfor-

mance, but it does reflect the practical prob-

lem that technical document collections tend

to be smaller than open domain collections for

reasons of availability, copyright restrictions and the nature of the subject matter. The GENIA

corpus therefore provides a realistic test of performance for a data-driven application such as

distributional similarity.

The GENIA corpus is encoded in XML and the ontology is distributed in the DAML+OIL

format (Connolly et al., 2001). Terminology is identified using XML tags, with the semantic type
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of a term as a tag attribute. Syntactically, the terminology takes the form of noun phrases (NPs),

the vast majority of which are minimal NPs although coordinated NPs are also represented. In the

more complex cases, such as ellipsis in coordinated clauses, the underlying markup disambiguates

the terminology as far as possible. The GENIA terminology does not include NPs with attached

prepositional phrases as these phrases are considered to consist of distinct terminological units. In

total, the corpus identifies 76592 such instances of terms with each assigned one of 36 types. There

are two steps in defining the terminological unit for further processing: term normalisation and

class identification.

Term normalisation is designed to identify term instances that refer to the same underly-

ing concept due to arbitrary punctuation use. With larger ontological resources (such as the

UMLS (NLM, 1998)) term normalisation is aggressive in the sense that terms are lower-cased

and stripped of punctuation before the words are sorted alphabetically to produce a normalised

representation. Here normalisation is more relaxed, removing punctuation from a word only if the

resulting stripped word appears elsewhere in the terminology and the linear order is preserved.

This results in 31398 normalised terms.

Next, the normalised terms are gathered into terminological classes by exploiting the natural

endocentricity of nominal compounds (Barker and Szpakowicz, 1998). Following lemmatization

using Morpha (Minnen et al., 2001), the head identification algorithm chooses the rightmost non-

symbolic word. This excludes words that consist of a sequence of numeric characters, a mixture

of alpha-numeric characters or just a single alphabetical character. This ensures that the terms

“HMG 88” and “HMG 1” are gathered into the same class. The result of class identification is

a set of natural classes of terms that share a common head noun. This is a normal first step

when organising through terminological variation (Ibekwe-SanJuan and SanJuan, 2004, 2003) as

these classes can engender hyponymy relations through the tendency for more specific terms to be

formed by adding modifiers (see section (2)).

This pre-processing of the terminology results in 4797 terminological classes out of which 4104

contain terms with identical semantic types and 558 classes contain terms with 2 or 3 semantic

types. A further 135 classes contain terms with more than three semantic types and represent

miss-classification due to the highly symbolic nature of the constituent terms and the fact that

the head identification algorithm does not take character casing into account. This results, for

example, in “75 kD” (of type protein molecule), “Kd” (other name) and “105 KD” (peptide) being

grouped together. The number of single typed classes for each level in the ontology is given in

figure (1).
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4 The parser

Syntactic analysis of the GENIA corpus is performed by Pro3Gres, a dependency-based linguistic

parser that broadly follows the architecture suggested by (Abney, 1995).The analysis moves from

shallow to deep processing, combining rule-based and statistical decision-making processes to

analyse input sentences. The parser makes use of nominal and verbal chunking as a foundation for

the dependency rules and a statistical model to build the predicate argument structure between

the chunks’ heads. Such hybridisation of chunking and dependency parsing has proven to be

practical, fast and robust (Collins, 1996; Basili and Zanzotto, 2002). By optimising the trade-off

between computational efficiency and formal expressivity, Pro3Gres is capable of processing more

than 300,000 words per hour.

A hand-written dependency grammar is used to identify possible syntactic structures within

each sentence. The grammar contains around 1000 dependency rules, each involving the part-of-

speech (POS) tags of a head and its dependent, the dependency relation, lexical information and

contextual restrictions. The restrictions express sub-categorisation constraints, such as that only

a verb which has an object in its context is allowed to attach a secondary object. The possible

syntactic analyses proposed by the dependency grammar are ranked and pruned statistically during

parsing, by combining attachment probabilities for the dependency relations used in the grammar.

These probabilities were acquired automatically from the Penn Treebank (Marcus et al., 1993).

This method of parse selection can be seen as a generalisation of the statistical approach to

prepositional phrase attachment developed in (Collins and Brooks, 1995). The parser also provides

a graceful fallback through partial analysis if no complete parse is available, and uses incrementally

aggressive pruning techniques for very long sentences.

Typical examples of the parser output are shown in figures (2) and (3). The diagrams show

the identified GENIA terminology (in boxes), minimal chunks (marked by square braces) and

labelled dependency relations between the heads of chunks (shown as arrows). For example, in

the parse of figure (2), the verb “regulate” has as its subject (subj ) the chunk “retinoblastoma gene

product” and as its object (obj ) the chunk “transcriptional activation”. The latter is modified by

a reduced relative clause (modpart) with head verb “mediated”, which in turn has a prepositional

phrase “by ... protein” as dependent. Figure (3) shows an example of a subordinate clause sentobj

relation introduced by an optional complementizer compl. The subordinate object is modified by

a prepositional phrase (modpp).

Unlike traditional statistical parsers (such as (Collins, 1999)) Pro3Gres expresses the majority

of long-distance dependencies (Schneider, 2003). This is achieved by:

1. relying on Dependency Grammar characteristics
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The retinoblastoma gene product  negatively regulates transcriptional activation  mediated by the human cytomegalovirus IE2 protein

NN VBZ NN VBN IN NN

subj obj modpart

pobj

prep

Figure 2: Example sentence parse

retinoblastoma susceptibility gene product  dramatically suppressed this IE2 transactivation of  various promoters 

PRP VBD IN NN VBD NN IN NN

subj

sentobj

compl

subj

obj modpp

prep

We found that the

Figure 3: Example sentence parse

2. expressing Long-Distance Dependencies (LDD) as local dependencies with a dedicated label

3. using statistical post-processing

An example of 2 is the modpart (modification by participle or reduced relative) relation illus-

trated in the parse of figure (2), which is assumed to involve a long-distance dependency in the

Penn Treebank. The underlying object (past participle) or subject (present participle) relation is

recoverable thanks to the dedicated label. Statistical post-processing (3) is used to handle cases

involving control relations such as subject control. For example, in the sentence “John wants to

leave”, the proper noun “John” functions not only as the explicit subject of “want”, but also as

the implicit subject of “leave”. A parser that fails to recognize control subjects misses important

information (quantitatively, about 3% of all subjects). The lexicalised, statistical post-processing

step for control relations selectively converts the dependency tree structure into a graph structure.

The language of the GENIA corpus is very complex and technical, which is attested by the

unusually high average sentence length (27 words) and a high token to chunk ratio for NPs (2.3

tokens per chunk). To evaluate the parser performance in this domain, we manually annotated a

sample of 100 sentences that had been randomly selected from the GENIA corpus. The manual

annotations were the subject, object, PP-attachment and subordinate clause relations. We first

ran the parser over the 100 sentences without any consideration of terminology. In this case, the

minimal NP and VP chunks used by the parser were solely determined by the LTCHUNK chunker

(Finch and Mikheev, 1997). Next, we performed the analysis over the same 100 sentences, but using

the near-perfect terminology identification provided by the GENIA annotations. A comparison of

the results is presented in table (1).

The results presented in the table show two things. First, despite the complexity of the lan-

guage represented by the sample sentences, it is clear that the parser is performing very accurately.
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Parsing Subject Object Noun-PP Verb-PP Sub clause

WITH terminology

Precision 90 94 83 82 71
Recall 86 95 82 84 75

WITHOUT terminology

Precision 83 70 68 67 63
Recall 75 77 64 68 60

Table 1: Evaluation of Pro3Gres over 100 random sentences from the GENIA corpus

Second, knowledge of terms has an important and often dramatic impact on parsing performance.

Multi-word terminology is known to cause serious problems for NLP systems (Sag et al., 2002;

Dowdall et al., 2003) and is a notable characteristic of the biomedical domain represented by the

GENIA corpus. The object relation precision is most affected, because many deverbal adjectives

such as “reduced” (as in “reduced PMA/Ca2+ activation”) may be erroneously interpreted as

verb-object relations. The high precision and recall of subject and object relations is of partic-

ular importance here as these dependencies provide the contextual features needed to determine

distributional similarity between terms.

5 Distributional similarity

In this section, we first introduce the concept of distributional similarity and describe its appli-

cation to the discovery of semantic relationships. We then discuss three distributional similarity

methods used in the literature and in our experimental work.

5.1 Introduction

The intuition underlying distributional similarity is that two words are distributionally similar

if they appear in similar contexts. Context, however, can be modelled at a number of different

levels. For example, two words might be considered to appear in the same context if they occur

in the same document, or the same sentence, or the same grammatical dependency relation (e.g.

as the nominal subject or object of a particular verb). In automatic thesaurus generation, it is

usual to take grammatical dependency relations as contextual features, since this leads to tighter

thesauruses (Kilgarriff and Yallop, 2000), in which words are related via linguistic relations such

as synonymy, hyponymy and antonymy rather than topical relations as might be found in Roget.

Without loss of generality, the similarity between any two words can be defined on a continuous

scale between 0 and 1, where 1 represents apparent identity and 0 represents no observed overlap.

Thus, one can think of the neighbours of a word w as being those words that can be ranked in

terms of their similarity to w (i.e. the set of words which have a non-zero similarity with respect
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to w). In practice however, there may be many neighbours of a word w which have very small but

non-zero similarity scores. For this reason, it is often more useful to consider only the k nearest

neighbours of w, where the parameter k may be varied for practical reasons, such as the quantity

of text data used to gather word context or the particular application of a thesaurus.

5.2 Measures of distributional similarity

A number of methods have been proposed or adopted for calculating distributional similarity.

These measures have been shown to have differing characteristics (Lee, 1999; Weeds et al., 2004)

which make them useful for different applications or on different data-sets. In this section, we

present three distributional similarity methods which have been proposed or adopted in the au-

tomatic thesaurus generation literature, and which are used in our experimental work. These

methods are the L1 Norm, Lin’s measure and co-occurrence retrieval (CR). For a more extensive

review of measures of distributional similarity, see (Weeds, 2003).

In order to increase readability, throughout the following discussion we consider finding sim-

ilarity between two nouns n1 and n2. However, it should be noted that distributional similarity

techniques are equally applicable to other parts of speech. We also refer to calculating the similar-

ity between two nouns in terms of their set of dependency features, where a dependency feature

is a grammatical context in which a noun has occurred within some text corpus. For example,

the noun apple might have the dependency feature <apple, direct-object-of , eat> (amongst many

others), while the noun girl may have the distinct dependency feature <girl , subject-of , eat>. The

collection of all the contextual features for a given noun defines a point in a multi-dimensional

space, and it is the similarity between points in this space which we attempt to measure. Most

measures of distributional similarity also take into account the (conditional) probabilities P (f |n)

with which each dependency feature f is observed to occur with a given noun n.

5.2.1 L1 Norm

The L1 Norm is a member of a family of measures, known as the Minkowski Distance, for measuring

the distance between two points in space. Distance measures, also referred to as divergence and

dissimilarity measures, can be viewed as the inverse of similarity measures; that is, an increase in

distance correlates with a decrease in similarity. The L1 Norm represents the distance travelled

between two points given that it is only possible to travel in orthogonal directions and for two

nouns, n1 and n2 can be written as:

distL1
(n1, n2) =

∑

f

|P (f |n1) − P (f |n2)| (1)
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A feature of the L1 Norm, as shown in (Dagan et al., 1999), is that it can be calculated by

considering just the dependency features that occur with both nouns. Consequently, any nouns

that do not share any dependency features are at a maximal distance of 2. Conversely, nouns that

have identical distributions of dependency features have zero distance between them.

We chose to study the L1 Norm in this work because it is a popular measure in clustering

e.g. (Kaufman and Rousseeuw, 1990; Schütze, 1993; Dagan et al., 1999) and, whilst being simple

to calculate, it has been shown to be as effective as more complicated similarity measures (Lee,

1999). Further, recent work (Weeds, 2003; Weeds et al., 2004) has shown the L1 Norm to perform

consistently for high and low frequency words, which is likely to be important in this work.

5.2.2 Lin’s measure

Lin’s measure (Lin, 1998a) is an information-theoretic measure of similarity which has been shown

to perform well in comparison to other measures (Lin, 1998a; Weeds, 2003) and is becoming a

popular choice in applications of distributional similarity (Wiebe, 2000; Kilgarriff, 2003; McCarthy

et al., 2003). It is based on Lin’s information-theoretic similarity theorem (Lin, 1997, 1998b):

The similarity between A and B is measured by the ratio between the amount of in-

formation needed to state the commonality of A and B and the information needed to

fully describe what A and B are.

The information in a description of a word can be measured as the sum of the pointwise

mutual information (MI) between the word and each dependency feature in the description of

the word. The MI between two events measures their relatedness or degree of association (Church

and Hanks, 1989), and for a noun n and a dependency feature f it can be written as:

I(n, f) = log
P (f, n)

P (f).P (n)
= log

P (f |n)

P (f)
(2)

This measures the extent to which the probability of feature f is increased by knowing that

the noun is n (or, since it is symmetric, how much the probability of noun is n is increased by

knowing that the feature is f). Negative values indicate that the probability of f decreases if we

know that the noun is n and a value of zero indicates that the feature and the noun occur together

no more or less frequently than one would expect by chance (i.e. assuming independence).

With this definition of MI, the similarity between two nouns n1 and n2 can be calculated using

Lin’s measure as:

simlin(n1, n2) =

∑
T (n1)∩T (n2)

(I(n1, f) + I(n2, f))
∑

T (n1)
I(n1, f) +

∑
T (n2) I(n2, f)

(3)
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where T (n) = {f : I(n, f) > 0}. T (n) thus contains the most salient dependency features of a

noun n (i.e., those which increase are expectation that the noun is n). Since only these dependency

features are considered in the calculation, two nouns n1 and n2 will have similarity 0 if there is no

overlap in their sets of most salient features (i.e., T (n1)∩T (n2) = ∅ ) and they will have similarity

1 when their sets of most salient features are identical (i.e., T (n1) = T (n2)).

We chose to study Lin’s measure in this work because of its wide application and its high

performance in previous work. However, Lin’s measure has been shown to perform less well at

predicting semantically related words for low frequency target words in the general domain (Weeds,

2003) and thus we might expect it not to perform as well as other measures in this study.

5.2.3 Co-occurrence retrieval

Co-occurrence retrieval (CR), (Weeds and Weir, 2003b; Weeds, 2003), is based on the idea that

similarity between words can be measured by analogy with document retrieval. In document

retrieval, there is a set of documents that we would like to retrieve and a set of documents that

we actually do retrieve. If we are testing the appropriateness of using one word, n1, in place of

another, n2, then there is a set of co-occurrences that we would like to retrieve (the dependency

features of n2) and a set of co-occurrences that we do retrieve (the dependency features of n1).

In both document retrieval and co-occurrence retrieval, we can measure the similarity of the two

sets in terms of precision and recall, where precision tells us how much of what was retrieved

was correct and recall tells us how much of what we wanted to retrieve was actually retrieved.

An advantage of using co-occurrence retrieval to measure similarity is that it differentiates

between two types of dissimilarity (low precision and low recall). When n1 occurs in contexts that

word n2 does not, the result is a loss of precision, but n1 may remain a high recall neighbour of

n2. When n1 does not occur in contexts that n2 does occur in, the result is a loss of recall, but n1

may remain a high precision neighbour of n2. Six different models for calculating precision and

recall are proposed in (Weeds, 2003). Here we consider only one of these models, the additive,

Mutual Information (MI) based CRM, which was shown to consistently outperform the other

models (Weeds, 2003). In this model the set T (n) of salient dependency features of a word n are

first selected using MI:

T (n) = {f : I(n, f) > 0} (4)

The shared features of noun n1 and noun n2 are referred to as the set of True Positives (TP):

TP = T (n1) ∩ T (n2) (5)
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The precision of n1’s retrieval of n2’s features is the proportion of n1’s features that are shared

by both nouns, where each feature is weighted by its relative importance according to n1 (i.e., its

MI with n1):

P(n1, n2) =

∑
TP I(n1, f)∑

T (n1) I(n1, f)
(6)

The recall of n1’s retrieval of n2’s features is the proportion of n2’s features that are shared

by both nouns, where each feature is weighted by its relative importance according to n2 (i.e., its

MI with n2):

R(n1, n2) =

∑
TP I(n2, f)∑

T (n2) I(n2, f)
(7)

Precision and recall both lie in the range [0,1] and are both equal to 1 when each noun has

exactly the same features. It should also be noted that the recall of n1’s retrieval of n2 is equal to

the precision of n2’s retrieval of n1, i.e., R(n1, n2) = P(n2, n1).

(Weeds, 2003) investigates a parameterised framework which combines precision and recall

with different weights. Here, we consider just one other setting of the framework, which is known

as the F-score in Information Retrieval and is the harmonic mean of precision and recall:

F = mh(P(n1, n2),R(n1, n2)) =
2.P(n1, n2).R(n1, n2)

P(n1, n2) + R(n1, n2)
(8)

Note that the harmonic mean of two numbers lies between them, but is always substantially

closer to the lower one of the two and attains a maximum when they are equal. In other words,

for two words to be considered highly similar by this score, both precision and recall must be high.

We use co-occurrence retrieval in this work as it has been shown to be a useful way of classifying

different similarity measures (Weeds et al., 2004). Further, high recall neighbours have been shown

to bear more resemblance to sets of neighbours derived from WordNet than high precision or high

harmonic mean neighbours in previous work (Weeds, 2003). This effect was particularly apparent

for low frequency words and thus we would expect high recall neighbours to be more useful here.

6 Evaluating an automatically generated thesaurus

In this section we describe a number of experiments that were conducted in order to evaluate

the application of an automatically generated thesaurus to the problem of organising the GENIA

terminology. More specifically, our aim was to test the following hypotheses regarding the use of

distributional similarity in this domain:
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1. distributional similarity predicts semantic similarity for terminology;

2. distributional similarity permits accurate classification of terminology within an existing

domain ontology.

A problem that immediately arises in this context is that of data sparseness. The comparatively

small size of the GENIA Corpus, coupled with the Zipfian (Zipf, 1949) nature of word distribution,

means that we have very little co-occurrence data for many of the terms in which we are interested.

For example, while there are 31398 terms terms identified within the GENIA corpus, of these only

1935 (6.2%) occur more than 5 times. It has generally been assumed that the effective application

of distributional similarity techniques requires large quantities of data about each word. For

example, (Lin, 1998a) applies distributional similarity techniques to the problem of automated

thesaurus construction, using a 64 million word corpus and only calculating similarity for nouns

that occur at least 100 times2.

While it would be desirable to substantially extend the corpus before applying distributional

similarity techniques, this is not straightforward. Automatic annotation of terminology is not suf-

ficiently accurate for our purposes, and hand-annotation is time-consuming. Instead, we partially

address the problem of data-sparseness by applying distributional similarity to the terminological

classes rather than the individual terms themselves. This is possible because terms within the

same class tend to have the same semantic type. Nevertheless, of 1576 terminological classes, over

50% are represented fewer than five times in the corpus. The number of classes that occur at

different frequencies (up to a frequency of 40) is shown in figure (4). As a consequence, we may

expect that the successful application of distributional similarity methods in this domain will still

rely on finding a similarity measure that works well for low frequency items. For this reason, in

the following experiments we report on the comparative performance of several of the measures

described in section (5).

As a basis for calculating the distributional similarity scores, the GENIA corpus was syntac-

tically analysed using the Pro3Gres parser. The resulting dependency parses were then used to

extract all those dependency relations of the form 〈n, subject , v〉 or 〈n, object , v〉, where n is a head

noun (possibly representing a terminological class), and v is a verb. The resulting set of depen-

dency triples provided the raw data required to determine distributional similarity according to

the different similarity measures discussed in section (5): the L1 Norm (L1), Lin’s measure (Lin)

and CR (recall (R), precision (P) and harmonic mean (F)). Given a measure of distributional

similarity and a set of dependency triples, we found for each terminological class c the set of all

2A notable difference between our work and that of Lin is that the corpus used in our experiments is domain-
specific and the individual terms are expected to have only a single sense. It is possible that this may reduce the
quantity of data required to obtain usable results with measures of distributional similarity.
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Figure 4: Number of Terminological Classes with each Corpus Frequency

its neighbours. In general, not every neighbour of a terminological class c will itself represent a

terminological class. In the following section, where there is a need to restrict attention to just

the terminological classes amongst the neighbours, we will refer to these as the terminological

neighbours.

The neighbours of a class c can be ranked according to similarity, so that the neighbour that is

most similar to c has rank 1, the next most similar rank 2, and so forth. Sets of neighbours were

computed twice for each measure: once using all of the available subject and object dependency

triples, and once using just those triples 〈n, r, v〉 where the noun n had occurred at least five

times in the corpus. This was done to allow us to examine the effect of class frequency on the

performance of the different distributional similarity measures.

6.1 Distributional similarity and semantic relatedness

One possible way of comparing the ability of the different similarity measures to predict semantic

similarity might be to consider the following simple decision task: given three terminological

classes, c1,c2 and c3, the goal is to determine whether c1 is more closely related to c2 or to c3.

An instance of this task is thus a triple of classes, in which the first and second classes are chosen

so as to belong to the same semantic type, while the third belongs to a distinct type. Note that

the correct decision is to select class c2. However, a given measure of distributional similarity

will select either c2 or c3 depending on which one is distributionally closest to c1 according to

that measure. The measure that is most successful at this task over many trials (i.e., most often

chooses c2 when presented with a large number of different problem instances) may be regarded

as the best at predicting semantic relatedness.

16



While this task is an intuitively appealing way to evaluate the relationship between distri-

butional similarity and semantic similarity, in the present context it turns out to be somewhat

problematic. Because of data sparseness, for any given similarity measure, the vast majority of

the possible triples c1, c2, c3 will be such that the similarity score of c1 and c2 and the similarity

score of c1 and c3 are extremely low (possibly zero). Unfortunately, such low similarity scores

do not provide a reliable basis for choosing between the classes and it turns out to be impossible

to make an informed choice about semantic relatedness of terminological classes in a very large

number of cases.

One way of attempting to overcome this problem is to perform the evaluation using only those

classes where the similarity scores are greater than a given, reasonably large threshold. However,

this approach no longer provides a fair comparison of the different similarity measures. This is

because different measures may exhibit considerable variation in the rate at which the similarity

score drops off as more distant neighbours of a class are considered. For some measures, similarity

scores drop off rapidly (yielding a fairly compact set of neighbours) while for others they tail away

slowly (yielding a larger and more diffuse set of neighbours). As a result, for triples chosen to

evaluate measures where similarity scores drop off rapidly, c1 and c3 would typically be closer

neighbours than in triples chosen to evaluate measures with similarity scores that tail off slowly,

which would presumably favour the latter measures.

In order to avoid these problems, we considered an alternative means of evaluation that is not

sensitive to the absolute score that a measure assigns to its neighbours. This is based on the

(reasonable) assumption that a distributional similarity measure provides a good basis for deter-

mining semantic relatedness of terminological classes if it exhibits a strong, positive correlation

between neighbour rank and error rate in predicting semantic type. The stronger this correlation,

the better the similarity measure at predicting semantic relatedness.

6.1.1 Neighbour ranking and semantic proximity

For a given measure of distributional similarity, we calculated the correlation between neighbour

rank and error rate. Taking the ranked set of 100 nearest neighbours produced for a given termino-

logical class c, we considered each rank in turn. The ith-ranked neighbour ni was labeled “correct”

if it represented a terminological class with a semantic type matching that of c, and “incorrect”

if it represented a terminological class with a semantic type differing from that of c (no label was

assigned for neighbours that did not represent terminological classes). Note that in order to avoid

equivocation, neighbours with more than one semantic type were also left unlabeled3. The error

3A possible alternative would be to label a neighbour as correct whenever it shares a semantic type with c, and
incorrect otherwise. However, this would result in a more lenient measure of error rate.
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L1 Lin R P F
5 0.917 0.880 0.920 0.681 0.925
4 0.916 0.887 0.918 0.701 0.923
3 0.917 0.881 0.923 0.707 0.931
2 0.891 0.885 0.933 0.590 0.912
1 0.877 0.886 0.926 0.507 0.909
0 0.862 0.849 0.934 0.380 0.892

(a) Terminological classes of all frequencies

L1 Lin R P F
5 0.812 0.842 0.889 0.897 0.887
4 0.802 0.846 0.891 0.898 0.897
3 0.785 0.830 0.894 0.894 0.890
2 0.791 0.864 0.913 0.895 0.887
1 0.799 0.869 0.914 0.900 0.892
0 0.773 0.873 0.911 0.900 0.891

(b) Terminological Classes with frequency ≥ 5

Table 2: Correlation coefficients

rate at each rank i was then calculated over all of the terminological classes, as the proportion of

all the labeled neighbours at rank i that were assigned the label “incorrect”.

We might expect the error rate to be affected by the granularity of the classification system

used in order to determine the label for each neighbour. The most fine-grained level corresponds to

the leaf nodes of the GENIA ontology (level 0) so that a neighbour is labeled as correct or incorrect

depending on which of the 36 different leaves it corresponds to. As we “move up” the hierarchy

the classification becomes increasingly coarse-grained, until we reach the top of the ontology (level

5) where the labeling decision is made on the basis of which of just 3 different sub-trees of the

ontology the neighbour belongs to: source, substance, or other. In order to examine the effect of

granularity, we calculated error rates at each of the 6 different levels of the GENIA ontology.

6.1.2 Results

The results of the rank correlation experiments are shown in table (2(a)) and table (2(b)). For

each similarity measure and each level of the ontology we show the value of Spearman’s rank

correlation coefficient calculated between neighbour rank and error rate rank. As the figures

clearly show, a high positive correlation is demonstrated in all cases. This tells us that neighbour

rank reflects the gradient of semantic similarity, with distant neighbours more likely to make an

error in matching the semantic type of the target class than close neighbours. The highest positive

correlation seen for all frequencies at level 0 in the ontology is for the recall measure (0.934). A

scatter plot of neighbour rank against error rate for this case is presented in figure (5(a)). The

lowest correlation is seen for the precision measure, which is illustrated in the scatter plot of figure

(5(b)).

These results also show that different distributional similarity measures are more effective for

different frequencies. For example, over all frequencies, the L1 Norm outperforms Lin whereas

over just the higher frequency terms, Lin outperforms the L1 Norm. This supports earlier work

which suggests that MI and, in particular, Lin’s Measure perform poorly for low frequency events
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(a) CR Recall Measure
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(b) CR Precision Measure

Figure 5: Correlation between CR recall measure and CR precision measure and error in semantic
type prediction for terminological classes of all frequencies

(Resnik, 1993; Fung and McKeown, 1997; Kilgarriff and Tugwell, 2001; Weeds and Weir, 2003a;

Wu and Zhou, 2003; Weeds, 2003). The high performance of R and F , which also use MI to select

and weight features, supports the claim that MI can be effective for weighting features for low

frequency words, provided that only words with high recall of the selected features are considered

as neighbours (Weeds, 2003; Weeds et al., 2004). However, as can be seen here, frequency of

terms only has to increase to a minimum of five for high precision neighbours to also exhibit good

correlation with semantic similarity.

It is also possible to read off from these graphs the error with which the first neighbour (and

each subsequent neighbour) assigns the correct semantic type to each target terminological class.

The error rates for the first neighbour for all measures and all ontological levels are given in table

(3) and table (4). The tables also contain figures for random classification at each level, as well

as a more informed baseline score. The baseline represents the error which would be observed if

the first neighbour was always a member of the most populous semantic type (i.e., the semantic

type to which most classes belong) at each level in the ontology. For example, at level 0, the most

populous semantic type is other name. Note that for terminological classes of all frequencies,

L1 Lin R P F Random Baseline

5 29.0 27.8 32.2 41.0 28.2 66.7 49.8
4 30.8 29.5 33.4 42.1 30.0 80.0 50.6
3 31.4 30.6 33.7 42.7 31.0 90.9 50.9
2 46.7 46.7 40.7 60.1 47.5 94.1 57.4
1 48.3 49.0 41.6 61.3 49.0 95.2 57.4
0 52.8 53.8 42.7 77.9 53.2 96.6 57.4

Table 3: Error in first neighbour’s prediction of semantic type for terminological classes of all
frequencies (with one semantic type)
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L1 Lin R P F Random Baseline

5 16.3 14.6 13.7 39.3 14.5 66.7 35.1
4 16.3 15.1 13.7 39.3 14.9 80.0 35.1
3 16.3 15.1 13.7 39.6 14.9 87.5 35.1
2 21.6 20.4 18.6 47.3 20.9 91.2 35.1
1 21.6 20.4 18.6 47.3 20.9 92.9 35.1
0 22.1 20.8 18.6 47.3 21.3 94.7 35.1

Table 4: Error in first neighbour’s prediction of semantic type for terminological classes of fre-
quency ≥ 5 (with one semantic type)

regardless of similarity measure, the first neighbour is doing far better than chance in predicting

the semantic type of the terminological class. With the exception of the precision measure P , the

measures are also doing better than the baseline. A very similar picture emerges from table (4),

which also shows that the error rate decreases for higher frequency terminological classes.

With regard to different similarity measures, the results follow the same pattern as for the

correlation results. The lowest error rate in prediction of semantic type by the first neighbour is

achieved by R and the highest error rate by P . F , which combines precision and recall, gives

intermediate results which are substantially closer to those of R than those of P . Lin, which has

been shown (Weeds, 2003) to be approximated by F , gives similar results to F and is the only

measure which performs better, relative to other measures (F and L1) for high frequency terms.

In summary, the ability of a neighbour to make the correct prediction as to the semantic type

of a terminological class tends to decrease as the neighbour becomes more distant (i.e., error is

correlated with distributional distance). This supports our first hypothesis that distributional

similarity is correlated with semantic similarity. Of the different measures, R appears to perform

the best and P appears to perform the worst. This means that a useful neighbour needs to have

high recall of the most salient features of a terminological class.

While the correlation scores do not vary greatly at different levels in the ontology, the error rate

does improve as we move up the ontology. This is to be expected to some extent, as the random

assignment of a semantic type will also improve as the number of possible choices decreases. More

telling is the observation that the reduction in error rate for the similarity measures generally

outstrips that of the baseline.

There is a significant improvement when we only consider terminological classes that have

occurred five or more times in the corpus. In part, this could be due to the improvement in the

baseline, since the proportion of classes which should be assigned to the most populous semantic

type also increases when we consider only the most frequently occurring terminological classes.

However, it is also what one would expect given that there is more corpus data for each termino-

logical class for which we are determining neighbours. The overwhelming conclusion here is that
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even with relatively little corpus data (the majority of terminological classes occurring fewer than

10 times), it is possible to see a clear correlation between distributional similarity and semantic

proximity.

6.2 Distributional similarity and classification of terminology

An important potential application of distributional similarity techniques is to the organisation of

terminology. To determine the extent to which distributional similarity can be used successfully

to classify terminology, we considered the problem of assigning an “unknown” terminological class

c to a semantic type at the most fine-grained level of the GENIA ontology (i.e. leaf nodes at level

zero). Our approach makes use of the set of nearest neighbours of a terminological class c to select

a semantic type for c according to a “majority vote” strategy.

6.2.1 Neighbour selection of semantic type

Given the observed correlation between neighbour rank and semantic similarity, we might expect

the nearest neighbours of a terminological class to be good predictors of its semantic type. To test

this, we took each terminological class c in turn and found its k nearest terminological neighbours.

Each of the k terminological neighbours of c was then used to score the 36 possible semantic types

at level 0 of the GENIA ontology. For a neighbour with exactly one semantic type, a score of 1

was assigned to that type; for a neighbour with N different semantic types, the score was split

equally amongst them, so that each type received a score of 1/N . The scores obtained in this

way were summed over the k neighbours of c, which was then predicted to belong to the semantic

type which received the highest overall score (ties were broken randomly). The type prediction

for a terminological class c was judged to be correct if c belonged to that class according to the

GENIA ontology, and otherwise it was judged to be incorrect. Note that in case c belonged to

several classes, then any one of them would be regarded as correct.

The prediction of semantic type described above is parameterised by the choice of k: the

number of nearest neighbours that are considered in scoring the different possible types. To

investigate the effect that this choice has on prediction accuracy, we ran experiments for different

settings, with k = 10, 20, 30 and 40. As before, we also considered neighbour sets calculated with

reference to all terminological classes, and neighbour sets calculated for those classes represented

five or more times.
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L1 Lin R P F Baseline

10 59.4 60.9 54.6 48.0 61.3 42.0
20 60.2 63.0 54.8 54.7 63.0 42.0
30 59.7 62.9 54.8 54.1 63.1 42.0
40 59.3 63.1 53.9 54.8 62.6 42.0

(a) Terminological classes of all frequencies

L1 Lin R P F Baseline

10 72.3 76.5 69.0 64.1 75.7 58.0
20 71.7 77.0 68.8 70.0 76.8 58.0
30 71.1 75.1 67.0 72.0 75.6 58.0
40 72.4 74.9 66.3 73.0 76.0 58.0

(b) Terminological Classes with frequency ≥ 5

Table 5: Accuracy at assigning semantic types using 10, 20, 30 and 40 nearest neighbours

6.2.2 Results

Results showing the percentages assigned correctly for each measure and at each value of k are

shown in table (5(a)) and table (5(b)). The baseline for each experiment is calculated as the

percentage that would be assigned correctly if every terminological class was assigned to the

largest semantic type (other name). As the results show, all of the measures perform well above

the respective baselines in each experiment. While the closest neighbours do not always assign the

correct semantic type, errors made by these close neighbours can be corrected, to a certain extent,

by accumulating evidence from a larger number of more distant neighbours. On the other hand,

there comes a point, at around k = 20, when the votes of subsequent neighbours begin cancelling

each other out, as if these so-called neighbours had been selected at random.

Combining evidence from multiple neighbours produces a different pattern, with respect to

similarity measure, from that observed in our earlier experiments. When regarded individually,

high recall neighbours showed the highest correlation with semantic similarity. When evidence is

combined from multiple neighbours, on the other hand, L1, Lin and F all outperform R. Best

performance over all frequencies is achieved by F and best performance for higher frequency terms

is achieved by Lin. Both of these measures require neighbours to have high precision and high

recall retrieval of features. This suggests that while precision may introduce some noise into

the ranking of neighbours, this noise can be effectively filtered out by considering a cluster of

neighbours. A more detailed analysis of the accuracy of the first ten neighbours4 at assigning

each of the 36 level 0 semantic types in the ontology is presented in table (6). We report only

the analysis for the F measure as this was the measure that performed best overall, but note that

the general pattern observed in the results is typical of all of the measures. The analysis is given

in terms of recall (how many of the terminological classes of that semantic type were assigned to

that semantic type by the algorithm) and precision (how many terminological classes assigned to

a particular semantic type are correctly assigned to that type).

The analysis shows that the distributional similarity measure tends to exhibit better recall in

4We only consider the k = 10 results in this analysis since, as more neighbours are considered, it becomes
increasingly less likely that the less populous semantic types will be assigned.
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assigning the most populous semantic types (e.g. other name). This is not surprising given that

terminological classes selected randomly as neighbours would exhibit the observed probability

distribution of semantic types and thus a majority would tend to vote for the most populous

semantic type. However, the distributional similarity measures are not winning simply by always

assigning to the most populous type. Other semantic types are also being assigned with high

recall. Further, the less populous semantic types, for which recall is typically lower, do tend to

be assigned accurately when they are assigned. In other words, if the nearest neighbours of an

unknown terminological class indicate that the class is a member of, say, the multi cell semantic

type, then we can be very confident that this decision is correct.

When only higher frequency terms are considered, the precision of assignment generally in-

creases whereas the recall of types generally decreases. This is likely to be because by only

considering high frequency terms, we are effectively reducing the population of each semantic

type.

7 Conclusions and Future Work

In this paper we have investigated an application of distributional similarity techniques to the

problem of organising biomedical terminology drawn from a relatively small, domain-specific cor-

pus: the 400K word GENIA corpus. The work is part of a wider study of techniques that can be

used to estimate semantic similarity effectively. Using terms that have been accurately marked up

by hand within the corpus, we have considered the problem of automatically determining semantic

proximity. Evaluation is performed against a hand-crafted gold standard for this domain in the

form of GENIA ontology.

We have demonstrated that, within this domain, distributional similarity is highly correlated

with semantic similarity, as defined by the GENIA ontology. Moreover, the distributionally nearest

neighbours of any unknown terminological class can be used to predict the semantic type of that

class with a reasonably high degree of accuracy. We conclude that such techniques can serve

as a rich source of information for the classification of terms, in addition to that provided by

terminological variation and contextual parsing methods.

Our work also demonstrates that distributional similarity techniques can be used effectively

on relatively sparse data. Indeed, all of the measures we have investigated, with the exception

of CR precision have performed comparably. Given just the first neighbour of a terminological

class, it has been observed that the CR recall measure R is best able to predict the semantic type

of that class. The CR precision measure P , on the other hand, is least successful amongst the

various measure at this prediction task. Previous work (Weeds et al., 2004) shows that high CR
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precision tends to select low frequency nouns as neighbours. This may explain its particularly

poor performance in this application, as the lower frequency terms in the GENIA corpus are very

low frequency events and co-occurrence data for such events will tend to exhibit a lower signal-

to-noise ratio simply on account of sparseness. However, it appears that combining precision

and recall with a measure such as F or Lin achieves better results when evidence is collected

from a cluster of neighbours. This suggests that while precision can introduce some noise into

the neighbour ranking, it does nevertheless provide useful, additional information for determining

semantic similarity.

In conclusion, our results demonstrate that the application of distributional similarity tech-

niques is a promising approach to the problem of organising terminology. In future work, we intend

to experiment with weighting neighbours’ contributions in the semantic type decision task by their

distributional ranking. We also believe it may be possible to overcome the biases introduced by

having an unequal distribution of terms between semantic types by 1) weighting a neighbour’s

contribution by our surprise at seeing a neighbour of that semantic type (i.e. smaller semantic

classes get higher weights) and/or 2) using an iterative process where the assignment to semantic

class gets progressively more fine-grained. Finally, having considered the problem of assigning new

terms to an existing set of ontological types, it would also be interesting to determine whether

distributional similarity may be used for clustering terminological classes from scratch.
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Class All frequencies Frequency > 5
population Recall Precision Recall Precision

peptide 56 0 - 0 -
RNA family or group 17 0 - 0 -
amino acid monomer 70 0 - 0 -
nucleotide 14 0 - 0 -
cell component 25 0 - 0 -
cell type 82 7.79 66.7 8.7 100
protein N/A 0 0 - 0 -
virus 16.7 61 30.0 14.3 67
polynucleotide 65 0 - 0 -
DNA domain or region 340 9.6 20 8.4 100
DNA molecule 1009 5.6 100 6.25 100
protein subunit 26 4.54 33.3 4.76 50
tissue 57 0 - 0 -
mono cell 24 0 - 0 -
DNA N/A 1 0 - 0 -
other artificial source 11 0 - 0 -
atom 20 0 - 0 -
other organic compound 435 68.8 46.0 44.4 44.0
protein family or group 102 1.8 22.2 2.4 40
lipid 73 0 - 0 -
multi cell 72 11.1 100 10 100
other name 1148 92.3 75.7 90.1 83.0
RNA molecule 1 0 - 0 -
cell line 185 8.3 60.0 2.9 100
DNA substructure 7 0 - 0 -
body part 53 0 - 0 -
protein molecule 1009 92.0 56.6 83.2 71
RNA domain or region 4 0 - 0 -
protein substructure 6 0 - 0 -
inorganic 16 0 - 0 -
protein complex 35 0 - 0 -
carbohydrate 14 0 - 0 -
RNA substructure 0 0 - 0 -
protein domain or region 4 0 - 0 -
DNA family or group 17 9.67 100 13.3 100
Weighted Average - 48.3 60.0 43.6 72.4

Table 6: Precision and recall in assigning each semantic type using the 10 nearest neighbours of a
terminological class
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