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Abstract

One of the goals of this paper is to demonstrate that denotational semantics is useful
for operational issues like implementation of functional languages by abstract machines.
This is exemplified in a tutorial way by studying the case of extensional untyped call-by-
name λ-calculus with Felleisen’s control operator C. We derive the transition rules for an
abstract machine from a continuation semantics which appears as a generalization of the
¬¬-translation known from logic. The resulting abstract machine appears as an extension of
Krivine’s machine implementing head reduction. Though the result, namely Krivine’s machine,
is well known our method of deriving it from continuation semantics is new and applicable to
other languages (as e.g. call-by-value variants). Further new results are that Scott’s D∞-models
are all instances of continuation models. Moreover, we extend our continuation semantics to
Parigot’s λµ-calculus from which we derive an extension of Krivine’s machine for λµ-calculus.
The relation between continuation semantics and the abstract machines is made precise by
proving computational adequacy results employing an elegant method introduced by Pitts.

Capsule Review

In this paper the authors employ a “proof-relevant” version of a double negation translation
(due to Krivine and Girard) giving rise to a so-called “category of negative domains” NR

which is the full subcategory of the category of predomains on objects of the form RX for
some predomain X where R is a domain (i.e. a predomain with ⊥) chosen in advance. The
idea behind this is that a “classical proposition” is simply an intuitionistic negation of an
intuitionistic proposition.

The category NR is a well-pointed cartesian closed category with least fixpoints. Moreover,
it allows to interpret “control features” as Felleisen’s control operator C and Parigot’s λµ-
calculus (which can be seen as calculi whose terms represent proofs of classical (propositional)
logic). Moreover, in NR one may find models of the untyped λ-calculus with control, namely
the negative domain RC where C is the solution of the domain equation C ∼= RC × C . It is
observed in the paper that D. Scott’s D∞-models of untyped λ-calculus are subsumed amongst
these by putting D = R.

The main point made in this paper is that, when unfolding the interpretation of untyped λ-
calculus in RC , the ensuing semantic equations correspond to the transition rules of Krivine’s
machine for computing weak head normal forms of λ-terms. This extends to λ-calculi with



544 Th. Streicher and B. Reus

control. This observation is made precise by extending denotational semantics to the abstract
machines and proving correctness and computational adequacy (for the case where R is the
two element lattice).

The paper gives a reconstruction of well-known operational results (Krivine’s machine)
based on continuation semantics where continuations constitute the denotational analogue
of evaluation contexts. But, moreover, these results are extended to Parigot’s λµ-calculus
providing a machine for it that appears to be new in the literature (but has been found
independently by Ph. deGroote by purely proof-theoretic methods).

1 Introduction and motivation

Continuation-passing-style (cps) translations of call-by-value λ-calculus were intro-

duced originally by Fischer (1972) and Reynolds (1972) in the early 1970s. From its

very beginning continuations were thought of as analogues of the operational notion

of evaluation context. An early study of the cps-translation for λ-calculi can be found

in Plotkin (1975). In loc.cit. Plotkin had already introduced a call-by-name variant

of the cps-translation which was later taken up again by, for example, Okasaki

et al. (1994), where this call-by-name cps-translation has been reformulated on a

semantical level as an appropriate continuation semantics. A semantic version of

the call-by-value cps-translation has been studied as a special instance of Moggi’s

computational monads, the so-called continuation monad (Moggi, 1991).

The relation between cps-translation and abstract machines for call-by-value λ-

calculus with control was studied by Felleisen and his colleagues starting from

the mid-1980s (Felleisen, 1986; Felleisen and Friedman, 1986). Over the years, this

method has been developed to an engineering tool for compiler construction (Appel,

1992). Besides this, in a sequence of papers, Felleisen and his collaborators have

studied equational axiomatizations of the cps-translation of call-by-value λ-calculus

with control (Sabry and Felleisen, 1992).

All the above-mentioned cps-translations and continuation semantics comprise

a notion of value even for the call-by-name variants. Consequently, these cps-

translations and continuation semantics do not validate the η-rule. In any case,

Lafont (1991) introduced an elegant ¬¬-translation of classical propositional logic

to the ¬,∧-fragment of intuitionistic propositional logic based on previous work by

Girard and Krivine. It is different from Gödel’s and Kolmogoroff’s ¬¬-translations

which correspond to a call-by-name cps-translation with values and a call-by-

value one, respectively. As constructive logic has a proof semantics corresponding

to a (model of a) simple functional language, such a translation of classical to

constructive logic gives rise to a proof semantics for classical logic. It was made

clear by Lafont in loc.cit. that also his ¬¬-translation can be understood as a

cps-translation of call-by-name λ-calculus with control to a particular fragment of

λ-calculus corresponding to the ¬,∧-fragment of intuitionistic logic. A semantic

analogue of Lafont’s new cps-translation was studied and extended to PCF with

control (and input/output) by Lafont et al. (1993). The distinguishing feature of

this cps-translation and the corresponding continuation semantics is that it does

not admit a basic notion of value but, instead, a basic notion of continuation.
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Continuation semantics à la Lafont gives rise to a cartesian closed category, the

category of ‘negated domains’.

This category NR appears as the full subcategory of the category of domains

and continuous functions on objects of the form RA where A is a predomain and

R is some fixed domain of ‘responses’. This domain R ∼= R1 is the meaning of the

proposition ⊥. Interpreting λ-calculus in NR the denotation of a λ-term is an object

of RC mapping elements of C – so-called ‘continuations’ – to ‘responses’ or ‘answers’,

i.e. elements of R. Accordingly, elements of RC are called ‘denotations’.

Due to the isomorphism (RB)(R
A) ∼= RRA×B we get that the predomain of continu-

ations for the exponential (RB)(R
A) is RA × B. This means that a continuation for a

function f from RA to RB is a pair 〈 d, k 〉 where d ∈ RA is an argument for f and

k ∈ B is a continuation for f(d).

Due to this simple construction of function spaces in NR we get that ¬RA ∼= RRA

as ¬RA is defined as RA ⇒ R1 which is RRA×1 ∼= RRA

. Moreover, the canonical map

from RRRA

to RA sending Φ to λa:A.Φ(λf:RA. f(a)) ∈ RA provides an interpretation

of the classical proof principle ¬¬P ⇒ P (reductio ad absurdum). It is (a variant of)

this interpretation of reductio ad absurdum which will be assigned as meaning to the

control operator C originally introduced by Felleisen (1986). The idea to understand

the control operator C as a proof of reductio ad absurdum via the principle of

propositions-as-types was first introduced by Griffin (1990).

To interpret untyped λ-calculus in NR one has to exhibit a so-called reflexive

object in NR i.e. a C with RC ∼= RRC×C . For this purpose, it suffices to provide

a domain C with C = RC × C . Reflexive objects in NR of this form will be

called continuation models of untyped λ-calculus. It turns out that these – up to

isomorphism – coincide with Scott’s D∞-models.

The point we try to make in this paper is that the category of negated domains

arises from fairly simple ‘logical’ considerations without any a priori operational

motivation. Furthermore, it turns out that the interpretation of λ-calculus in the

category of negated domains extends easily to an interpretation of an untyped version

of Parigot’s λµ-calculus1 (cf. Parigot (1992)), where continuations can be referred to

by continuation variables that can be bound by µ-abstraction. Accordingly, one has

more freedom in expressing control structure than by Felleisen’s control operator C.

Parigot’s ‘labelling’ [α]M is interpreted as application of the meaning of M –

an element of D = RC – to the continuation bound to α thus giving rise to an

element of R. Parigot’s µ-abstraction µα. t is interpreted as functional abstraction

over the continuation variable α on the level of continuation semantics. As objects

of C = D × C can be considered as (lazy) stacks of denotations it is natural

to extend the λµ-calculus by allowing more general continuation terms than mere

continuation variables namely stack expressions of the form M1 :: . . .Mn :: α.

Using this semantically motivated extension we obtain a simplification of Parigot’s

equational theory getting rid of his ‘mixed substitution’ and replacing it by ordinary

substitution of continuation terms for continuation variables.

1 Parigot’s λµ-calculus, however, was invented for the purpose of representing proofs in a natural
deduction formulation of classical propositional logic by terms.
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As mentioned before, Felleisen and others have used cps-translation for deriving

abstract machines for the call-by-value λ-calculus with control. In this paper, we

use continuation semantics à la Lafont for deriving Krivine’s machine. It turns out

that the semantic equations of the interpretation of λ-calculus in the category of

negated domains are in 1-1-correspondence with the transition rules of Krivine’s

machine, the world’s simplest machine interpreting λ-calculus. All this extends easily

to λ-calculus with control and also λµ-calculus.

This way the partial correctness of Krivine’s machine follows easily from the way

it is derived from continuation semantics. The correspondence is given by identifying

expressions of the form [[M]] e k, i.e. the meaning of term M in environment e applied

to continuation k, with the states of Krivine’s machine, i.e. expressions of the form

〈 [M, env], S 〉 where env is an environment assigning closures to variables and S is

a stack of closures.

For a moderate extension of Krivine’s machine (computing head normal forms

and not only weak head normal forms) we can prove computational adequacy in a

very semantic way employing the technique of ‘inclusive predicates’. This goes back

to Reynolds and was simplified and extended to untyped languages by Pitts (1994)

using recent methods arising from Freyd’s category-theoretic analysis of recursive

domain equations (Freyd, 1992).

For the case of λµ-calculus a similar machine has been obtained by P. de Groote

via purely syntactic methods in de Groote (1996) which, however, seems to be more

complicated.

A different relation between denotational semantics and implementations of func-

tional languages has been investigated by Jeffrey (1994). There, it has been shown

that the initial/terminal solution of D = [D → D]⊥ provides a fully abstract model

for concurrent graph reduction for an untyped lazy λ-calculus with recursive decla-

rations and a parallel convergence tester. The models, presented in this paper, are

not fully abstract for operational semantics as given by our abstract machines. This

could be achieved, however, by extending them in such a way that they implement

a parallel convergence tester as well. In contrast to our work, Jeffrey starts with

a given operational semantics and proves that the (obvious) Scott model for it is

actually fully abstract, whereas we derive operational semantics from a denotational

semantics, namely a continuation semantics arising from a generalization of the

¬¬–translation of classical to intuitionistic logic.

2 The category NR of negated domains

In this section we describe a category of ‘negated domains’ originally introduced

by Lafont et al. (1993), where terms of λ-calculi with control will be assigned their

meaning.

Ordinary ‘direct’ semantics lives in the category P of (pre)domains and Scott

continuous functions. In our context, a predomain is simply a partial order having

suprema of all directed subsets but not necessarily a least element. A function

between predomains is Scott continuous iff it preserves suprema of directed sets. A

domain is a predomain that has also a least element, called bottom element. The
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corresponding full subcategory of domains will be referred to as D. Notice that a

continuous function between domains need not preserve bottom elements. If it does

it is called strict. We write D⊥ for the category of domains with strict maps as

morphisms.

We present a similarly general framework for continuation semantics: the cate-

gory of negated domains NR which is parameterized by an arbitrary domain R of

responses. We assume R to have a least element in order to guarantee that NR has

a (least) fixpoint operator.

Before giving the precise definition of NR we provide some motivation considering

the semantics of classical proofs.

In the 1930s, Kurt Gödel showed how classical logic can be translated into

intuitionistic logic by his famous ‘double negation translation’ explained, for example,

in Troelstra and van Dalen (1988). Though this can be done syntactically, we prefer

to explain Gödel’s double negation translation in terms of truth value semantics.

Let A be a Heyting algebra, i.e. a lattice together with a binary operation →:

A × A → A such that for all a, b, c ∈ A we have c 6 a → b iff c ∧ a 6 b. Notice that

the operation → is determined uniquely already by the lattice structure of A. Now

for all r ∈ A (including the least element of lattice A)

Ar = {a → r | a ∈ A}

is a Boolean algebra w.r.t. the partial order inherited from A. The Boolean negation

of a ∈ Ar is given by a → r. Notice that infima and → are inherited from A

but r is the least element in Ar and the supremum of a and b in Ar is given by

((a → r) ∧ (b → r)) → r.

The definition of NR is motivated by lifting this simple construction from truth

values semantics, i.e. Heyting algebras, to proof semantics, i.e. cartesian closed cat-

egories with finite coproducts. This way one obtains a proof semantics for classical

logic as will be shown subsequently.

Definition 2.1

The category NR of negated domains is defined as follows. The objects of NR are

the objects of P and NR(A,B) = P(RA, RB), i.e. a morphism in NR from A to B

is a morphism in P from RA to RB . Composition of morphisms in NR is inherited

from P.

Thus, the category NR is equivalent to the full subcategory of P on powers of

R. As R has a least element by assumption any of its powers has a least element,

too. Therefore, NR is equivalent actually to a full subcategory of the category of

domains and all continuous functions.

Next we show that the category NR is still well-behaved in the sense that it has

enough structure to interpret functional programs.

Theorem 2.1

For any domain R the category NR is cartesian closed and admits a least fixpoint

operator.
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Proof

As the category of predomains has categorical sums we have the isomorphisms

RA × RB ∼= RA+B . Therefore, NR has cartesian products. The terminal object in

NR is given by the empty predomain 0 as R0 ∼= 1 contains precisely one element. Due

to the isomorphism (RB)(R
A) ∼= RRA×B we get that NR is also closed under function

spaces. For any predomain A the predomain RA has a least element ⊥RA = λx:A.⊥R .

Thus, any f ∈ NR(A,A) = P(RA, RA) has the least fixpoint
⊔

n∈N
fn(⊥RA). q

Remark 2.1

Notice that for the existence of cartesian products in NR it is essential to have

predomains instead of only domains because the category of domains and continuous

functions lacks sums in the categorical sense.

Theorem 2.1 suggests notation as fixed in the following definition.

Definition 2.2

In NR we write cartesian product as A ∧ B := A+B and function space (exponen-

tiation) as A ⇒ B := RA × B.

Next we show how to interpret ‘classical negation’ in NR .

Definition 2.3

We write ⊥ (‘falsity’) for the terminal predomain 1 = {⋆} considered as an object

on NR . For any A in NR let ¬A := A ⇒ ⊥ which abbreviates RA × 1.

Next we show that this notion of negation actually behaves classically, i.e. for any

A in NR there is a morphism CA : ¬¬A → A in NR corresponding to reductio ad

absurdum distinguishing classical logic from intuitionistic logic.

Theorem 2.2

For any A in NR let ηA : A → ¬¬A and CA : ¬¬A → A be the morphisms in NR

such that

ηA(a)〈f, ⋆〉 = f〈a, ⋆〉

for all a ∈ RA and f ∈ R¬A and

CA(f)(k) = f 〈(λ〈a, h〉:¬A. a(k)), ⋆〉

for all f ∈ R¬¬A and k ∈ A.

Then CA ◦ ηA = idA.

Proof

For d ∈ RA and k ∈ A we have

(CA ◦ ηA)(d)(k) =

= ηA(d)〈(λ〈f, h〉:¬A. f(k)), ⋆〉 =

= (λ〈f, h〉:¬A. f(k))〈d, ⋆〉 =

= d(k) =

= idA(d )(k )

Thus, by extensionality of NR-morphisms we have CA ◦ ηA = idA. q
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For any domain R the category NR provides a ‘proof semantics for classical logic’,

i.e. a λ-calculus with a distinguished type ⊥ representing the proposition falsity such

that for any type A there is a morphism CA : ¬¬A → A in NR corresponding to

the classically valid principle of reductio ad absurdum.

Remark 2.2

If we had decided to define ¬A as RA then ηA : A → ¬¬A and CA : ¬¬A → A could

have been defined more easily as the following morphisms in P

ηA = εRA and CA = RεA

where for any X in P the P-morphism εX : X → RRX

is defined as εX(x)(p) = p(x).

Straightforward computation shows that

RεA ◦ εRA = idRA .

This observation should make transparent the idea behind our ‘official’ definition of

η and C which appears as slightly more complicated only because – for reasons of

uniformity – we insist on defining ¬A as A ⇒ ⊥.

If we had chosen R to be the empty predomain 0 then the resulting category NR

would be rather trivial. As 0A is empty if A is non-empty and 0A contains precisely

one element, otherwise, the category NR were equivalent to the 2-element Boolean

lattice Σ. The case R = 1 leads to the same problem as for any A we have 1 ∼= 1A.

Thus, for obtaining a nontrivial category of negated domains a minimal choice is

R = Σ.

We conclude this section by showing that Theorem 2.2 cannot be improved to the

extent that ηA ◦ CA = id¬¬A for all A.

The underlying reason for this phenomenon is the following quite general fact

(originally observed by Joyal for the special case where R is initial).

Theorem 2.3

Let C be a cartesian closed category together with a distinguished object R such

that A ∼= RRA

for all A in C. Then R is subterminal, i.e. R is a subobject of 1, and

C is a preorder, i.e. all parallel arrows in C are equal. Thus, C is equivalent to a

Boolean lattice.

Proof

If ε1 : 1 → RR1

were an isomorphism then this would give rise to the following

1-1-correspondence

C(A, 1) ∼= C(A,RR1

) ∼= C(A,RR) ∼= C(A × R, R)

for all A in C.

Instantiating A by R itself we get that there exists precisely one map R × R → R.

Thus, both projections πi : R × R → R are equal and, therefore, for any A there is

at most one map A → R. Thus, R → 1 is a monomorphism, i.e. R is subterminal.

Now for any objects A and B in C we have that

C(A,B) ∼= C(A,RRB

) ∼= C(A × RB , R).
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As there is at most one map A × RB → R since R is subterminal there also exists

at most one map from A to B. So C is a preorder and, therefore, equivalent to a

Boolean lattice. q

The theorem shows that any model of classical logic where any proposition A is

isomorphic to ¬¬A is already equivalent to a Boolean lattice where all proofs of a

proposition are equal. But, the categories NR introduced above provide models of

classical logic where for any proposition A there are maps A → ¬¬A and ¬¬A → A

establishing the logical equivalence of the propositions A and ¬¬A although they

are not isomorphic. This is in accordance with traditional classical logic which only

postulates the logical equivalence of A and ¬¬A but not that they are isomorphic2.

3 Continuation semantics for λ-calculi with control features

3.1 The pure λ-calculus

According to Scott (1980), a model of the extensional λ-calculus is given by a

reflexive object D in a cartesian closed category where an object D is called reflexive

iff D is isomorphic to DD = [D → D], the type of functions from D to D (in the

sense of the ambient cartesian closed category).

In a category of negated domains NR an object C is reflexive iff RC ∼= RRC×C

in the category P of predomains. Thus, for obtaining a reflexive object in NR it

suffices to find a solution of the domain equation

C = RC × C

in the category D of domains. It is clearly sufficient to look for solutions in D and,

furthermore, in P there do not exist solutions which are simultaneously initial and

terminal (Plotkin, 1983; Freyd, 1992).

The initial/terminal solution of this domain equation gives rise to a continuous

isomorphism

con : (RC × C) → C

(called ‘constructor’) with inverse

dec := con−1 : C → (RC × C)

(called ‘destructor’) which in turn – by applying the contravariant functor R( ) –

gives rise to the (mutually inverse) pair of continuous isomorphisms

Rdec : RRC×C → RC and Rcon : RC → RRC×C .

establishing that C ∼= RC ×C in NR . As RRC×C ∼= (RC)R
C

in D we get a solution to

the domain equation D = DD in D by taking D = RC .

Convention. We assume that con (and dec) are actually identities, i.e. that we have

an initial terminal solution of the domain equation C = RC × C up to equality

2 That propositions are isomorphic cannot even be expressed in traditional logic due to the absence of
proof objects and equalities between them.
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(which can always be achieved by choosing an appropriate isomorphic variant of

the functor ×). This assumption will facilitate subsequent computations as con and

dec being identities will allow us to omit them.

Surprisingly, it will turn out that D = RC is isomorphic to the D∞-model of the

extensional λ-calculus as constructed by Dana Scott in 1969 (cf. Barendregt, 1984,

§ 18.3) by instantiating the D of D∞ by the domain R of responses. Thus all known

non-syntactic models of extensional3 λ-calculus turn out as being isomorphic to

continuation models, i.e. as solutions to the domain equation D = [D → D] in NR ,

and, therefore, allow one to interpret control operators like Felleisen’s C as we shall

see in the next section.

Theorem 3.1

Let C be the initial/terminal solution of the equation C = RC × C in D. Then for

D := RC the continuous functions

eval : D → DD and abst : DD → D

defined as

eval(d)(d′)(k) = d 〈d′, k〉 and abst(f) 〈d, k〉 = f(d)(k)

constitute an isomorphism pair.

Furthermore, D is isomorphic to the R∞-model, i.e. the D∞-model with D = R.

Proof

First we show that abst ◦ eval = idD and eval ◦ abst = idDD :

(abst ◦ eval)(d)〈d′, k〉 =

= abst(eval(d))〈d′, k〉 = eval(d)(d′)(k)

= d 〈d′, k〉

(eval ◦ abst)(f)(d)(k) =

= eval(abst(f))(d)(k) = abst(f)〈d, k〉 =

= f(d)(k) .

Next we will show that D = RC is isomorphic to R∞. This will be done by

exhibiting an isomorphism between the ω-diagrams of embedding/projection pairs

whose inverse limits are D = RC and R∞, respectively.

First, remember that the initial/terminal solution to the recursive domain equa-

tion C = RC × C is constructed as the inverse limit of the sequence of embed-

ding/projection pairs

(in : Cn → Cn+1 , qn : Cn+1 → Cn)n∈N

which is defined by primitive recursion as follows

C0 := {⊥}, Cn+1 := RCn × Cn

i0 : C0 → C1, q0 : C1 → C0 are the unique strict maps

in+1 := Rqn × in qn+1 := Rin × qn .

3 Here extensional means that the η-rule λy. xy = x is valid in the model.
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Next remember that R∞ is defined as the inverse limit of the sequence of embed-

ding/projection pairs

(en : Rn → Rn+1 , pn : Rn+1 → Rn)n∈N

which is defined by primitive recursion as follows

R0 := R Rn+1 := RRn
n

e0 : R0 → R1 : r 7→ λx:R. r en+1 := en
pn

p0 : R1 → R0 : f 7→ f(⊥) pn+1 = pn
en .

To prove that D = RC and R∞ are isomorphic it is sufficient to show that the

sequences of embedding/projection pairs

(Rqn , Rin)n∈N and (en, pn)n∈N

are isomorphic because then their inverse limits are isomorphic, too. For this purpose

we define a sequence of isomorphism pairs

(fn : Rn → RCn , gn : RCn → Rn)n∈N

such that for all n ∈ N

fn+1 ◦ en = Rqn ◦ fn

Such a sequence can be defined recursively as follows:

f0 : R0 → RC0 : r 7→ λx:C0. r fn+1 := uncurry ◦ fn
gn

g0 : RC0 → R0 : h 7→ h(⊥) gn+1 = gn
fn ◦ curry .

The required properties can be proved by straightforward, but tedious induction.

Despite the technicality of the induction proof, intuitively, the key point is that the

conditions above are satisfied for n = 0. The rest follows from the fact that (RY )R
X

and RRX×Y are isomorphic naturally in X and Y . q

For the reflexive object D = RC , where the required isomorphism is given by

eval and abst of the previous Theorem 3.1, we can define the interpretation of

the extensional untyped λ-calculus according to the general pattern described by

Scott (1980).

Definition 3.1

The interpretation function [[ ]] : Term → (Var → D) → D is defined by structural

recursion as follows

[[x]] e := e(x)

[[λ x.M]] e := abst(λd:D.[[M]] e[x := d])

[[MN]] e := eval([[M]] e)([[N]] e) ,

where abst and eval are defined as in Theorem 3.1.

By unfolding the definitions of abst and eval in the previous definition we get

the following more explicit definition of the interpretation function.
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Theorem 3.2

The interpretation function [[ ]] : Term → (Var → D) → D of Definition 3.1 can be

defined equivalently by the following equations

[[x]] e k = e(x)(k)

[[λ x.M]] e 〈d, k〉 = [[M]] e[x := d] k

[[MN]] e k = [[M]] e 〈[[N]] e, k〉 .

Proof

The first equation is immediate. The remaining two equations can be proved by

unfolding the definitions of abst and eval from Theorem 3.1 and exploiting the fact

that any object of type C is necessarily of the form 〈d, k〉.

[[λx.M]] e 〈d, k〉 = abst(λd : D. [[M]] e[x := d])〈d, k〉 =

= (λd:D. [[M]] e[x := d])(d)(k) =

= [[M]] e[x := d] k

[[MN]] e k = eval([[M]] e)([[N]] e)(k) =

= [[M]] e 〈[[N]] e, k〉 .

q

The simplest continuation model of the extensional λ-calculus is Σ∞, i.e. D∞ for

D = Σ, where Σ = {⊥,⊤} is the domain containing only two different elements,

also known as Sierpinski space. This Σ corresponds to the space of observations

where one can only observe termination represented by ⊤ and non-termination or

divergence represented by ⊥.

A famous result of Wadsworth (cf. Barendregt, 1984, Theorem 19.2.4) establishes

a useful equivalence between interpretations in the Σ∞-model and operational prop-

erties of λ-terms: for a closed term M the process of head reduction terminates iff

the interpretation of M in Σ∞ is different from ⊥.

Theorem 3.3

Let Σ = {⊥,⊤} and C be the initial/terminal solution of C = ΣC × C in D⊥.

Let D = ΣC , ⊤D = λk:C.⊤ and stop ∈ C be the greatest element in C , i.e.

stop = 〈⊤D , stop〉. Then for arbitrary λ-terms M the following are equivalent:

(i) M has a head normal form, i.e. the process of head reduction terminates

(ii) [[M]] e⊤ stop = ⊤

where e⊤(x) = ⊤D for all variables x, i.e. e⊤ is the environment that maps any

variable to the maximal element in D.

Proof

Wadsworth’s Theorem 19.2.4 states that a closed term M is unsolvable, i.e. the

process of head reduction diverges, iff the interpretation of M in Σ∞ is ⊥. From this

and our Theorem 3.1 it follows immediately that a closed term M has a head normal

form iff its interpretation in Σ∞ is different from ⊥, i.e. [[M]] e⊤ stop = ⊤ (we have

that [[M]] e = [[M]] e⊤ for all environments e as M is closed by assumption).
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We now extend this result to open terms M. Obviously, an open term M has a

head normal form iff its ‘λ-closure’ λ~x.M has a head normal form (where~x is the list

of all variables free in M). Thus, from the consideration above it follows that M has

a head normal form iff [[λ~x.M]] e⊤ stop = ⊤. From the second semantic equation of

Theorem 3.2 we get that for an arbitrary term N we have

[[λx.N]] e⊤ stop = [[N]] e⊤[x := ⊤] stop = [[N]] e⊤ stop

as stop = 〈⊤, stop〉. Thus, by induction on the length of ~x we get that

[[λ~x.M]] e⊤ stop = [[M]] e⊤ stop

and, therefore, M has a head normal form iff [[M]] e⊤ stop = ⊤. q

This result will be crucial for proving a computational adequacy result for an

extension of Krivine’s machine computing head normal forms instead of weak head

normal forms.

3.2 The λC-calculus

3.2.1 Continuation semantics

The syntax of the λC-calculus is that of the untyped λ-calculus together with a

new unary operator C, called Felleisen’s Control Operator, which was introduced

originally in (Felleisen and Friedman, 1986) for call-by-value λ-calculus.

Later we will interpret (the call-by-name version of) C as an untyped analogue of

the operator C introduced in Theorem 2.2 above. The equations governing the use

of C will be derived from its semantics (c.f. Theorem 3.5).

But first we define terms and evaluation contexts of λC-calculus.

Definition 3.2

The terms and evaluation contexts of the λC-calculus are defined as follows :

(Term) M ::= x | λx.M | MM | CM

(EvCont) E ::= [] | EM

The fragment without C is known as the ordinary untyped λ-calculus.

Notice that an evaluation context is always of the form []M1...Mn, i.e. given by a

list of arguments.

The conversion or rewrite rules of the λC-calculus are intentionally not stated

here but will be extracted from a careful examination of the subsequently given

continuation semantics which we consider as more fundamental.

Next we will give an interpretation of Felleisen’s control operator C in D = RC

where C is the initial/terminal solution of C = RC × C in D⊥.

Recall (Theorem 2.2) that in NR for every object A there is a morphism CA :

((A ⇒ ⊥) ⇒ ⊥) → A with

CA(d)(k) = d (〈 λ 〈d′, h〉 : A ⇒ ⊥. d′(k) , ⋆ 〉)

for all d : ((A ⇒ ⊥) ⇒ ⊥) → R and k ∈ A.
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The definition of CA : ((A ⇒ ⊥) ⇒ ⊥) → A can be generalized by replacing ⊥
by an arbitrary non-empty predomain B. For any b ∈ B and all objects A of NR

there is a morphism Cb
A : ((A ⇒ B) ⇒ B) → A with

Cb
A(d)(k) = d (〈 λ〈d′, h〉 : A ⇒ B. d′(k) , b 〉)

for all d : ((A ⇒ B) ⇒ B) → R and k ∈ A. Again, as in Theorem 2.2 by

straightforward computation one can show that Cb
A ◦ ηBA = idRA for the morphism

ηBA : A → (A ⇒ B) ⇒ B in NR with

ηBA (a)〈d, y〉 = d〈a, y〉

for all d : (A ⇒ B) → R and y ∈ B.

Obviously, Cb
A depends upon b. Moreover, if b1 ⊑ b2 then Cb1

A ⊑ Cb2

A . Therefore,

if B happens to have a greatest element ⊤ then it is natural4 to choose this for b as

C⊤
A is the greatest element in { Cb

A | b ∈ B } w.r.t. the domain ordering ⊑.

Now having generalized CA to Cb
A whenever b ∈ B we are ready to interpret

Felleisen’s control operator C in a type-free setting, namely as Cc
C for some c ∈ C

where C is the initial/terminal solution of C = RC × C .

If R has a greatest element ⊤ then C has a greatest element stop which is

characterized uniquely by the equation

stop = 〈λk:C.⊤, stop〉

and in this case C will be interpreted as Cstop

C . This convention applies in particular

when R = Σ.

Definition 3.3

Let D = RC where C is the initial/terminal solution of C = RC × C . The inter-

pretation function [[ ]] : Term → (Var → D) → D (where Term denotes the set of

λC-terms) is defined by structural recursion as follows :

[[x]] e = e(x)

[[λ x.M]] e 〈d, k〉 = [[M]] e[x := d] k

[[MN]] e k = [[M]] e 〈[[N]] e, k〉
[[CM]] e k = [[M]] e 〈ret(k), stop〉

where ret(k) = λ〈d, h〉. d(k) ∈ D and stop ∈ C .

Convention. If R contains a greatest element ⊤ then stop will always be the greatest

object in C characterized uniquely by the equation stop = 〈⊤RC , stop〉 where ⊤RC =

λk:C.⊤R is the greatest element in RC .

Since C is defined recursively as C = RC ×C one may consider a continuation, i.e.

a k ∈ C , as an infinite list of denotations, i.e. elements of D = RC . Such infinite lists

of denotations can be interpreted as denotational versions of call-by-name evaluation

contexts. Under this correspondence between denotational and operational notions,

the semantic equation for C expresses that, to evaluate CM in an evaluation context

4 Given two objects or programs satisfying a specification one will certainly prefer the one which
terminates more often.
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represented by k one simply applies (the meaning of) M to ret(k) in the empty

evaluation context represented by the continuation stop. The denotation ret(k) is

used only implicitly in the λC-calculus. In the subsequently introduced λµ-calculus,

however, it will appear as the denotation of a term of the extended language

(provided k is denotable by a term). The behaviour of denotation ret(k) can be

explained as follows: when applying the denotation ret(k) to a denotation d w.r.t. a

continuation h then the result is d(k), i.e. the current continuation h is forgotten and

the argument d is evaluated w.r.t. the ‘returned’ continuation k.

These intuitive explanations will get precise when we study equational laws of

λC-calculus and Krivine’s machine. But first, we consider some examples showing

the use and expressivity of the control operator C.

To illustrate the expressivity of Felleisen’s C we briefly show how to define some

simple (and well-known) λC-terms implementing some derived control operators

analogously to those found as primitives in realistic call-by-value functional lan-

guages as SCHEME and NJ-SML. Due to the importance of these call-by-value

languages there is a large amount of syntactically oriented work investigating

Felleisen’s C and its expressivity for a call-by-value version of λC-calculus (Felleisen,

1986; Felleisen et al., 1987; Griffin, 1990; Felleisen and Hieb, 1992; Sabry and

Felleisen, 1992).

First, we state a lemma which is technically useful for many computations and

explains in which sense C is an inverse to ‘double negation’.

Lemma 3.4

For any term M we have

(1) [[C(λf. f M)]] e k = [[M]] e[f := ret(k)] k

(2) [[C(λf. f M)]] e k = [[M]] e k if f 6∈ FV (M) .

Notice that point (2) of Lemma 3.4 says that C can be reformulated as C(ηM) =

M where η stands for the ‘double negation’ operator λx. λf. f x. That means that

using C one can ‘unpack’ terms which have been ‘encapsulated’ by the ‘double

negation’ operator η.

Below we briefly sketch how other control operators known from the literature

can be expressed in terms of C by giving a syntactic definition and the corresponding

semantic equation.

Abort operator

AM := C(λf.M) with f 6∈ FV (M).

Its semantics can be computed as

[[AM]] e k = [[C(λf.M)]] e k = [[M]] e[f := ret(k)] stop = [[M]] e stop

demonstrating that evaluation of AM in context k amounts to forgetting the current

context and evaluating M in the empty context represented by stop.

Error-handling

handle err inM by N := C(λf . f ((λerr.M)(f N)))
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where f is a fresh variable. The semantics of this construct can be computed as

follows:

[[handle err inM by N]] e k=

= [[C(λf. f((λerr.M)(f N)))]] e k = (Lemma 3.4(1))

= [[(λerr.M)(f N)]] e[f := ret(k)] k =

= [[M]] e[err := [[f N]] e[f := ret(k)]] k =

= [[M]] e[err := λh. [[N]] e k] k

Intuitively, the evaluation of handle err inM by N in context k is as follows: one

evaluates expression M in context k but whenever during that process one has to

evaluate the expression err w.r.t. a (new) context h then this context h is forgotten

and expression N is evaluated instead w.r.t. the old context k. Note that no raise

construct is necessary as opposed to the call-by-value case.

Call with current continuation

call/ccM := C(λf . f (M f )) with f 6∈ FV(M).

This yields the following semantic equation.

[[call/ccM]] e k = [[M]] e 〈ret(k), k〉.

Notice that the difference between call/cc and C is that – although [[M]] e in

both cases is applied to ret(k) – the continuations w.r.t. which the applications are

evaluated are different: in case of call/cc the continuation is the current continuation

k whereas in the case of C it is stop representing the empty evaluation context.

Taking A and call/cc as basic control operators together with their defining

semantic equations

[[AM]] e k = [[M]] e stop

[[call/ccM]] e k = [[M]] e 〈ret(k), k〉

then one can verify that

[[call/cc(λx.A(M x)]] e k = [[M]] e 〈ret(k), stop〉

for all terms M with x 6∈ FV (M). Thus, Felleisen’s C is definable from A and

call/cc.

3.2.2 Some useful laws of λC-calculus

In this subsection we will derive some equational laws for the λC-calculus. These

laws will turn out as analogous to the ones stated by Felleisen et al. (1987) and

Felleisen and Hieb (1992) for the call-by-value variant of the λC-calculus.
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Theorem 3.5

In any continuation model for the λC-calculus the following equalities are true for

all terms M, N and evaluation contexts E:

(β) (λx.M)N = M[N/x]

(η) λx. (M x) = M if x 6∈ FV (M)

(C1) C(λf.fM) = M if f 6∈ FV (M)

(C2) C(λf.CM) = C(λf.M(λx.Ax))

(C3) E[CM] = C(λf.M(λx. f E[x])) with f 6∈ FV (M) ∪ FV (E)

Proof

The Substitution Lemma, i.e. [[M[N/x]]] e = [[M]] e[x := [[N]] e] provided N is free

for x in M, can be proved straightforwardly by induction on the structure of M.

Using this basic fact we can show the validity of the rules (β) and (η).

The equation (C1) follows immediately from Lemma 3.4 (2).

The equation (C2) is valid as

[[C(λf.CM)]] e k =

= [[λf.CM]] 〈 ret(k), stop 〉 =

= [[CM]] e[f := ret(k)] e stop =

= [[M]] e[f := ret(k)] 〈 ret(stop), stop 〉

[[C(λf.M(λx.Ax)]] e k =

= [[λf.M(λx.Ax)]] e 〈 ret(k), stop 〉 =

= [[M(λx.Ax)]] e[f := ret(k)] stop =

= [[M]] e[f := ret(k)] 〈 [[λx.Ax)]] e, stop 〉

and

[[λx.Ax)]] e 〈 d, k 〉 =

= [[Ax]] e[x := d] k =

= [[x]] e[x := d] stop = d stop =

= ret(stop) 〈 d, k 〉 .

For proving the equations (C3) assume that E ≡ [] P1 . . . Pn and for a continuation

k ∈ C and an environment e let kE,e := 〈[[P1]] e, . . . , 〈[[Pn]] e, k〉 . . .〉.

[[E[CM]]] e k = [[CM]] e kE,e = [[M]] e 〈 ret(kE,e), stop 〉

and

[[C(λf.M(λx. f E[x]))]] e k

= [[λf.M(λx. f E[x])]] e 〈 ret(k), stop 〉 =

= [[M(λx. f E[x])]] e[f := ret(k)] stop =

= [[M]] e 〈 [[λx. f E[x]]] e[f := ret(k)], stop 〉 .

It remains to show that ret(kE,e) = [[λx. f E[x]]] e[f := ret(k)] :

[[λx. f E[x]]] e[f := ret(k)]〈 d, h 〉 =

= [[f E[x]]] e[f := ret(k)][x := d] h =

= ret(k)〈 [[E[x]]] e[x := d], h 〉 =
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= [[E[x]]] e[x := d] k =

= d kE,e[x:=d] = (as x is not free in E)

= d kE,e =

= ret(kE,e)〈 d, h 〉

which finishes the proof. q

Remark 3.1

One might be inclined to postulate

E[CM] = M (λx. E[x])

as an intuitive explanation of the meaning of C. It is, however, inconsistent as

C(λf. λx. x) = (λf. λx. x)(λx. x) = λx. x and, therefore, for all terms M we have

M = (λx. x)M = C(λf. λx. x)M = (λf. λx. x) (λx. xM) = λx. x, i.e. all terms M are

equal to λx. x.

3.3 The λµ-Calculus

In this section we will use our continuation semantics for interpreting an untyped

variant of Parigot’s λµ-calculus. The typed λµ-calculus has been introduced by

Parigot (1992) in a purely syntactical way, to give a proof term assignment for

classical logic formulated in natural deduction style. Here we will not further

investigate the logical aspects of the λµ-calculus, but rather demonstrate that it is a

flexible language for expressing general control operators.

The untyped λµ-calculus is an extension of the ordinary λ-calculus by two new

syntactic categories: continuation expressions and R-terms. The underlying intuition

is that ordinary terms denote elements of D, i.e. denotations, R-terms denote ele-

ments in R, i.e. responses, and continuation expressions denote elements in C , i.e.

continuations. Thus the untyped λµ-calculus allows to refer explicitly to semantic

objects like responses and continuations which in λC-calculus can be referred to

only in an indirect way.

First we give the syntax of the untyped λµ-calculus in BNF-form.

Definition 3.4

Let Var and CVar be two disjoint infinite sets of (object) variables and continuation

variables, respectively. We will use x, y, z . . . as meta-variables for object variables

and α, β, γ . . . as meta-variables for continuation variables.

(Term) M ::= x | λx.M | MM | µα. t
(Cont) C ::= α | M :: C

(R-Term) t ::= [C]M

The λµ-calculus is an extension of the ordinary λ-calculus. Therefore, we may

extend our continuation semantics for the λ-calculus (as given in Theorem 3.2) to

the full λµ-calculus.
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Definition 3.5

Let D = RC where C is the initial/terminal solution of C = RC ×C . Let Env be the

set of environments, i.e. functions mapping object variables to elements of D and

continuations variables to elements of C . The interpretation functions

[[ ]]D : Term → Env → D

[[ ]]C : Cont → Env → C

[[ ]]R : R–Term → Env → R

are defined by structural recursion as follows :

[[x]]D e = e(x)

[[λ x.M]]D e 〈d, k〉 = [[M]]D e[x := d] k

[[MN]]D e k = [[M]]D e 〈[[N]]D e, k〉
[[µα. t]]D e k = [[t]]R e[α := k]

[[α]]C e = e(α)

[[M :: C]]C e = 〈[[M]]D e, [[C]]C e〉

[[[C]M]]R e = [[M]]D e ([[C]]C e)

Convention. We will omit the subscripts of the interpretation functions defined above

as they can be read off from the term between the semantic brackets.

The idea of ‘continuations as objects’ is illustrated by the following example

[[µα.[β]M]] e k = [[M]] e[α := k] e(β)

swapping continuations.

Notice that Parigot’s original formulation of the λµ-calculus – besides being typed

rather than untyped – does not have continuation terms but only continuation

variables. In our extended syntax the general form of continuation expressions

is M1 :: . . . :: Mn :: α, i.e. continuation expressions are stacks of ordinary terms

whose bottom is a continuation variable. Due to this extension, we can express

the substitution [M :: β/α] directly instead of introducing it as a new primitive

called ‘mixed substitution’ in Parigot (1992). Thus, by admitting these more general

continuation expressions we get a considerable simplification of the equational

presentation of λµ-calculus.

Theorem 3.6

The continuation model for the untyped λµ-calculus validates the following equa-

tional axioms.

(β) (λx.M)N = M[N/x]

(η) λx. (M x) = M where x not free in M

(βcont) [C] µα.t = t[C/α]

(ηcont) µα. [α]M = M where α not free in M

(Swap) [C](MN) = [N :: C]M
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Proof

The verifications of (β) and (η) are as in the proof of Theorem 3.5.

The remaining equations follow from the semantic equations of Definition 3.5

and a Substitution Lemma for continuation variables which says that for arbitrary

expressions A and arbitrary continuation expressions C

[[A[C/α]]] e = [[A]] e[α := [[C]] e]

for all e ∈ Env.

For (βcont) consider

[[[C] µα.t]] e = [[µα.t]] e ([[C]] e) = [[t]] e[α := [[C]] e] = [[t[C/α]]] e .

For (ηcont) consider

[[µα. [α]M]] e k = [[[α]M]] e[α := k] = [[M]] e[α := k] (e[α := k](α)) = [[M]] e k .

For (Swap) consider

[[[C](MN)]] e =

[[MN]] e ([[C]] e) = [[M]] e 〈[[N]] e, [[C]] e〉 = [[M]] e ([[N :: C]] e) =

[[[N :: C]M]] e .

q

The usual control operators can now be expressed in the λµ-calculus as

C ≡ λf. µα. [σ]f(λx. µβ. [α]x)

call/cc ≡ λf . µα. [α]f (λx. µβ. [α]x)

A ≡ λf. µα. [σ]f

where σ is a distinguished unbound continuation variable whose intended meaning

is the distinguished continuation stop considered previously (for λC-calculus).

Notice that the λµ-terms above are almost identical with the semantic equations

for these control operators in our previous continuation semantics for λC-calculus.

This demonstrates that λµ-calculus reflects more closely the underlying semantics

than λC-calculus.

We now discuss the equation (Swap) and explain why it is crucial for simplifying

the previous axiomatisations given in Parigot (1992) and Ong and Ritter (1994). The

rule (Swap) does not appear in loc.cit. as its right hand side is not even part of his

syntax. Using the rule (Swap) we can derive in our extended calculus the equation

(µα.t)M = µβ. [β]((µα. t)M) = µβ. [M :: β](µα. t) = µβ. (t[M :: β/α])

employing ordinary substitution of continuation expressions for continuation vari-

ables. This was impossible in Parigot’s original calculus where continuation variables

were the only form of continuation expressions. Using the equation above we can

derive the so-called (ζ)-rule

µα.t = λx.(µα.t)x = λx.µβ.t[x :: β/α]
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which plays an essential role in Ong’s treatment of λµ-calculus (Ong and Ritter,

1994; Hofmann and Streicher, 1997).

When trying to use the equations of Theorem 3.6 in order to obtain a deterministic

rewrite strategy for λµ-calculus it is not clear how to orient the equation (Swap) due

to its apparent symmetry.

But for giving a rewrite semantics to λµ-calculus by ηcont it suffices to give

reduction rules for R-terms, i.e. expressions of the form [C]M. In order to have a

deterministic evaluation strategy the rule used to rewrite an R-term [C]M should

depend only upon the shape of M.

If M ≡ M1M2 then by applying (Swap) in the direction left-to-right [C]M reduces

to [M2 :: C]M1.

If M ≡ µα. t then by applying (βcont) in the direction left-to-right [C]M reduces

to t[C/α].

Using the equation (Swap) in the direction right-to-left we get

[N :: C](λx.M) = [C]((λx.M)N) = [C](M[N/x])

which – when read from left to right – tells us what to do in case of functional

abstractions.

Summarizing, we have the following three rewrite rules allowing one to reduce

R-terms :

[C](MN) → [N :: C]M

[N :: C](λx.M) → [C](M[N/x])

[C](µα.t) → t[C/α].

The first two rules correspond to the transition rules of Krivine’s machine for

pure λ-calculus, which will be introduced in the next section. The third rule provides

a transition rule suitable for an extension of Krivine’s machine to λµ-calculus.

Though the rewrite system above contains the key ideas of Krivine’s machine,

it is still different from it in the respect that the formulation of the rules employs

substitution as a basic operation, e.g. the second rule is essentially the β-rule of

ordinary λ-calculus. The pragmatic superiority of Krivine’s machine is that it avoids

substitution as a basic operation (which might be quite costy as the size of terms may

explode) and, instead of terms, manipulates so-called closures, i.e. terms together

with an environment. Substitution will only be performed when actually needed, i.e.

when applied to a term that is already a variable. This will be achieved by a further

transition rule of Krivine’s machine.

4 From continuation semantics to abstract machines

The aim of this section is to give a rational reconstruction of the operational

semantics of λ-calculi with control features by deriving abstract machines from their

continuation semantics.

Usually, these machines compute only weak head normal forms. It is straight-

forward to extend them to machines computing head normal forms and for these

we can prove computational adequacy w.r.t. our continuation semantics.



Classical logic, continuation semantics and abstract machines 563

4.1 The λC-calculus

In this section we will derive an abstract machine for λC-calculus based on its

continuation semantics as introduced in section 3.2 by turning the semantic equations

into transition rules. Our abstract machine for λC-calculus will be an extension of

Krivine’s machine for pure untyped λ-calculus (Abadi et al., 1991).

4.1.1 Krivine’s machine

Any semantic equation of Definition 3.3 is of the form

[[M]] e k = [[M ′]] e′ k′

where M,M ′ are terms, e, e′ are environments and k, k′ are continuations. Expressions

of the form [[M]] e denote elements of D and can be considered simply as pairs of

terms and environments, traditionally called closures. In the presence of control

operator C, closures may also be of the form ret(k) where k is a continuation.

Continuation expressions are of the form stop or 〈 c, k 〉, where c is a closure and

k is a continuation expression. Thus continuation expressions are simply stacks of

closures (with stop as empty stack).

This suggests to define a machine whose states are pairs whose first component is a

closure and whose second component is a stack of closures. As already noted above,

a closure is a pair of a term and an environment binding finitely many variables

to closures. The rewrite rules of the machine operating on states will mimic the

semantic equations of Definition 3.3. We will relate the machine arising this way to

the continuation semantics by defining interpretation functions mapping closures to

elements of D, stacks to elements of C , environments to functions from Var to D and

states to elements of Σ.

We first give a definition of Krivine’s machine.

Definition 4.1

If A and B are sets then A →fin B denotes the set of finite partial functions from A

to B. For any e ∈ A →fin B we write dom(e) for the finite subset of A where e is

defined.

The sets Term of terms, Env of environments, Clos of closures, Stack of stacks

(of closures) and State of machine states are defined inductively as follows:

(Term) M ::= x | λx.M | MM | CM

(Env) env ∈ Var →fin Clos

(Clos) c ::= [M, env ] | ret(S)

(Stack) S ::= stop | 〈 c, S 〉
(State) σ ::= 〈 c, S 〉
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The binary transition relation → on State is given by the following transition rules:

(Var) 〈 [x, env ], S 〉 → 〈 env (x), S 〉 if x ∈ dom(env )

(Fun) 〈 [λx.M, env ], 〈 c, S 〉 〉 → 〈 [M, env [x := c]], S 〉
(App) 〈 [MN, env], S 〉 → 〈 [M, env ], 〈 [N, env ], S 〉 〉
(C) 〈 [CM, env ], S 〉 → 〈 [M, env], 〈 ret(S), stop 〉 〉
(Ret) 〈 ret(S), 〈 c, S ′ 〉 〉 → 〈 c, S 〉

We write trans for the partial function whose graph is →. Notice that → is

deterministic, i.e. if σ → σ1 and σ → σ2 then σ1 and σ2 are equal. Let Eval be the

partial function associating with any state σ the state transn(σ) where transn+1(σ) is

undefined and transi(σ) is defined for all i 6 n. If transn(σ) is defined for all n then

Eval(σ) is undefined. A state σ is final iff trans(σ) is undefined. Obviously, a state σ

is final iff it is of one of the following forms:

(i) 〈 [x, env ], S 〉 with x 6∈ dom(env )

(ii) 〈 [λx.M, env ], stop 〉

(iii) 〈 ret(S), stop 〉

Thus, final states are either a head variable followed by a list of closures (case (i))

or the stack is empty and the first component is a function definition either of the

form [ λx.M, env ] (case (ii)) or of the form ret(S) (case (iii)).

Next we define the denotational semantics of Krivine’s Machine (KM).

Definition 4.2

The interpretation functions

[[ ]]State : State → Σ

[[ ]]Clos : Clos → D

[[ ]]Env : Env → Var → D

[[ ]]Stack : Stack → C

are given by the following semantic equations

[[〈 c, S 〉]]State = [[c]]Clos([[S]]Stack)

[[〈 c, S 〉]]Stack = 〈[[c]]Clos, [[S]]Stack〉
[[stop]]Stack = ⊤C := 〈⊤D , [[stop]]Stack〉

[[env ]]Env(x) = if x ∈ dom(env ) then [[env (x)]]Clos else ⊤D

[[[M, env ]]]Clos = [[M]] [[env ]]Env

[[ret(S)]]Clos 〈d, k〉 = d [[S]]Stack

where ⊤D = λk.⊤ (recall that R = Σ) and for a term M its semantics [[M]] is defined

as in Definition 3.3.

The next theorem states the correctness of Krivine’s machine.
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Theorem 4.1

(1) For all terms M it holds that

[[〈 [M, ǫ], stop 〉]]State = [[M]] e⊤ ⊤C

where ǫ is the empty environment and e⊤(x) = ⊤D for all variables x.

(2) The relation → preserves semantics of states, i.e. for all states σ, σ′ it holds

that

σ → σ′ implies [[σ]]State = [[σ′]]State.

Proof

(1) follows immediately from the semantic equations of Definition 4.2. (2) is proved

by straightforward case analysis on σ → σ′ employing the semantic equations of

Definition 3.3 and Definition 4.2. q

This is a rather minimal form of correctness stating only that the transitions of the

machine preserve the semantics of states. Nevertheless, it might happen for a term

M that Eval(〈 [M, ǫ], stop 〉) is undefined, i.e. the machine started with initial state

〈 [M, ǫ], stop 〉 never halts, although [[〈 [M, ǫ], stop 〉]]State = ⊤, i.e. ‘semantically’ it

should terminate.

Actually, one would like that

[[〈 [M, ǫ], stop 〉]]State = ⊤ iff Eval(〈 [M, ǫ], stop 〉) is defined

i.e. that the machine started with initial state 〈 [M, ǫ], stop 〉 eventually halts if and

only if it halts ‘semantically’, i.e. [[〈 [M, ǫ], stop 〉]]State = ⊤. Such an equivalence

is commonly called computational adequacy because it says that operational and

semantical notions of termination are equivalent, i.e. the denotational semantics is

adequate w.r.t. the operational behaviour.

The implication from left to right will be proved in section 4.1.2 in Theorem 4.4(ii).

But the reverse direction cannot be true in general for the following reason. The term

Ω ≡ (λx. x x) (λx. x x) does not have a head normal form and therefore λx.Ω does not

have a head normal form either. Therefore, by Theorem 3.3 [[〈 [λx.Ω, ǫ], stop 〉]]State =

⊥ though 〈 [λx.Ω, ǫ], stop 〉 is already a final state and thus Eval(〈 [λx.Ω, ǫ], stop 〉)
is defined.

The reason for this ‘failure’ is that Krivine’s machine does not compute head

normal forms but weak head normal forms.

Theorem 4.2

A term M has a weak head normal form iff Eval(〈 [M, ǫ], stop 〉) is defined where ǫ

is the empty environment.

Proof

For a precise proof one has to introduce a λ-calculus with explicit substitution as

done in detail in Abadi et al. (1991) and Curien (1991). Here we only give an intuitive

relation between reduction steps in Krivine’s machine and steps of the weak head

reduction.

The reduction steps (Fun), (Ret) of Krivine’s machine correspond to β-reduction

steps in the process of weak head reduction. Reduction step (C) of Krivine’s
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machine corresponds to step (C) in the process of weak head reduction, where

ret(S) corresponds to λx.C(λf. E[x]) and S is the stack corresponding to evaluation

context E. The rule (App) of Krivine’s machine allows to store the current evaluation

context on the stack. The rule (Var) handles substitution. It has to be noted that

substitution is actually performed only when applied to a variable. The rule (App)

distributes substitution over the components of an application term. A substitution

applied to a λ-abstraction is never performed as we are only interested in (weak)

head normal forms. q

4.1.2 Extended Krivine’s machine and its computational adequacy

Now we define an extension of Krivine’s machine computing head normal forms

instead of only weak head normal forms. For this Extended Krivine’s machine we

prove a computational adequacy theorem which says that for every term M there is a

terminating sequence of transitions, starting starting from initial state 〈 [M, ǫ], stop 〉
iff the denotation of this initial state equals ⊤.

Definition 4.3

Let →h be the binary transition relation on State containing the relation → of

Definition 4.1 augmented by the rules

(Fun-h) 〈 [λx.M, env ], stop 〉 →h 〈 [M[y/x], env ], stop 〉
(Ret-h) 〈 ret(S), stop 〉 →h 〈 [y, ǫ], S 〉

where in both cases y is a fresh variable (which in case of (Fun-h) in particular

means that y 6∈ dom(env )).

The resulting extension of Krivine’s machine will be called the Extended Krivine’s

machine.

Let trans-h and Eval-h be defined analogously to Definition 4.1. A state σ is

h-final iff trans-h(σ) is undefined. Obviously, a state σ is h-final iff it is of the form

〈 [x, env ], S 〉 with x ∈ Var and x 6∈ dom(env ).

Remark 4.1

The Extended Krivine’s machine with →h as transition relation is a modification

which allows us to compute head normal forms, and not only weak head normal

forms, since whenever computation reaches a state of the form 〈 [λx.M, env ], stop 〉
or of the form 〈 ret(S), stop 〉 – both corresponding to a functional abstraction –

then one introduces a fresh variable for the bound variable and proceeds with the

computation.

The introduction of the fresh variable may be considered as a ‘side effect’ of a

transition of the form (Fun-h) or (Ret-h). One could keep track of these side-effects

by adding a further component to the state, namely a list of variables where in steps

(Fun-h) and (Ret-h) the new fresh variable y is added to the list of variables, and

in all other steps the list remains unchanged. Thus, when computation has finished

one has a list of fresh variables corresponding to the λ-prefix of the head normal

form, together with a head variable which can be read off from the final state, and

a list of closures corresponding to the list of arguments for the head variable. To
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compute normal forms by leftmost-outermost strategy, one could now apply the

machine recursively to each of these closures in parallel.

We now prove the computational adequacy of the Extended Krivine’s Machine.

Theorem 4.3

For all σ ∈ State it holds that [[σ]]State = ⊤ iff σ ∈ dom(Eval-h), i.e. Extended

Krivine’s Machine stops when started with initial state σ.

Proof

First notice that there exist relations – so-called inclusive predicates –

RState ⊆ Σ × State

RStack ⊆ C × Stack

RClos ⊆ D × Clos

REnv ⊆ (Var → D) × Env

RTerm ⊆ ((Var → D) → D) × Term

satisfying the requirements:

uRState σ ⇔ u = ⊤ implies σ ∈ dom(Eval-h)

k RStack stop always valid

〈d, k〉RStack 〈c, S〉 ⇔ dRClos c and k RStack S

dRClos c ⇔ ∀k RStack S. d(k)RState 〈c, S〉
e REnv env ⇔ ∀x ∈ dom(env ). e(x)RClos env (x)

f RTerm M ⇔ ∀e REnv env . f(e)RClos [M, env].

An elegant general method for the construction of such inclusive predicates for

the initial/terminal solution of an arbitrary domain equation and its associated

language has been given by Pitts (1994), to which we refer for a proof. We do not

repeat Pitt’s argument here as for the purposes of our proof; we only need the mere

existence of the required inclusive predicates.

But now, from the existence of the inclusive predicates and the required equiv-

alences for them one shows by straightforward (simultaneous) structural induction

that

[[σ]]State RState σ for all σ ∈ State

[[S]]Stack RStack S for all S ∈ Stack

[[c]]Clos RClos c for all c ∈ Clos

[[env ]]Env REnv env for all env ∈ Env

[[M]]RTerm M for all terms M .

Thus, for all σ ∈ State we have [[σ]]State RState σ, i.e. σ ∈ dom(Eval-h) if [[σ]]State = ⊤,

which proves the implication from left to right.

The implication from right to left follows from the facts that the transition relation

→h preserves denotations of states and that the denotation of final states is ⊤ (as

if 〈 [x, env ], S 〉 is a final state then x /∈ dom(env ) and, therefore, [[env ]]Env(x) = ⊤).

q

As a consequence, we get the following theorem.
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Theorem 4.4

Let ǫ be the empty environment. Then for any term M

(i) [[M]] e⊤ 6= ⊥D ⇔ 〈 [M, ǫ], stop 〉 ∈ dom(Eval-h)

(ii) [[M]] e⊤ 6= ⊥D ⇒ 〈 [M, ǫ], stop 〉 ∈ dom(Eval).

Proof

First notice that, by Theorem 4.1 (1), we have [[〈 [M, ǫ], stop 〉]]State = [[M]] e⊤ ⊤C

and therefore [[M]] e⊤ 6= ⊥D iff [[M]] e⊤ ⊤C = ⊤ iff [[〈 [M, ǫ], stop 〉]]State = ⊤. Now

by instantiating σ = 〈 [M, ǫ], stop 〉 claim (i) follows immediately from Theorem 4.3.

Claim (ii) follows from (i) by the fact that dom(Eval-h) is contained in dom(Eval)

as → is a subrelation of →h. q

The reverse implication of (ii) in the above theorem does not hold as the

containment of dom(Eval-h) in dom(Eval) is proper even for states of the form

〈 [M, ǫ], stop 〉 (e.g. when M has a weak head normal form but not a head normal

form as is the case for M = λx.Ω).

4.2 The λµ-calculus

In this section we derive an abstract machine for λµ-calculus based on its contin-

uation semantics as introduced in section 3.3. As for λC-calculus the method of

derivation again will be to consider the semantic equations as transition rules of the

abstract machine.

Our abstract machine for λµ-calculus will be an extension of Krivine’s machine

for the untyped λ-calculus without control operators. It will turn out that the

distinguishing feature of λµ-calculus is that there are continuation variables which

can be assigned continuations by environments. Thus, we have an extended notion

of environment which assign denotations to object variables and continuations to

continuation variables. We write Var for the set of object variables and CVar for the

set of continuation variables.

We will not employ our extended syntax of section 3.3, but stick to Parigot’s

original language. The reason for this is that the extended language is only needed

for formulating the rule (Swap) simplifying equational reasoning in λµ-calculus.

Therefore, the only term formation rule besides those for pure untyped λ-calculus is

the following: µα. [β]M is a term if M is a term and α, β are continuation variables.

4.2.1 Krivine’s machine for λµ-calculus

Before giving the precise definition, we informally describe the components of Kriv-

ine’s machine for λµ-calculus. Note that a similar machine has been found indepen-

dently by de Groote (1996), albeit by purely syntactical methods which seem, however,

to be more complicated than our semantic approach, in the authors’ opinion.

States will be pairs 〈 c, S 〉 where c is a closure and S is a stack representing a

continuation.

Due to the absence of C and ret, closures will now simply be pairs [M, env ]

where M is a term and env is an environment.
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An environment env will actually be a pair 〈envob, env cont〉 where envob is a finite

partial map sending object variables to closures and env cont is a finite partial map

sending continuation variables to stacks. For x ∈ Var and α ∈ CVar we systematically

write env (x) and env (α) for envob(x) and env cont(α), respectively. Accordingly, we

write dom(env ) for the (finite) set of object and continuation variables on which env

is defined.

Continuations representing stacks are expressions of the form 〈c1, . . . 〈cn, α〉 . . .〉, i.e.
stacks of closures built on top of ‘empty stacks’ represented by unbound continuation

variables.

Definition 4.4

The sets Term of terms, Env of environments, Clos of closures, Stack of stacks (of

closures) and State of machine states are defined inductively as follows

(Term) M ::= x | λx.M | MM | µα. [β]M

(Env) env ∈ (Var →fin Clos) × (CVar →fin Stack)

(Clos) c ::= [M, env ]

(Stack) S ::= α | 〈 c, S 〉
(State) σ ::= 〈 c, S 〉

The binary transition relation → on State is given by the following transition

rules

(Var) 〈 [x, env ], S 〉 → 〈 env (x), S 〉 if x ∈ dom(env )

(Fun) 〈 [λx.M, env], 〈 c, S 〉 〉 → 〈 [M, env [x := c]], S 〉
(App) 〈 [MN, env ], S 〉 → 〈 [M, env ], 〈 [N, env ], S 〉 〉
(µ) 〈 [µα. [β]M, env ], S 〉 → 〈 [M, env [α := S]], env [α := S](β) 〉

where the last rule (µ) applies if and only if β ∈ dom(env [α := S]), i.e. β ∈ dom(env )

or α ≡ β.

The machine given by the above transition rules is called Krivine’s machine for

λµ-calculus.

Again we write trans and Eval for the partial transition function and the partial

evaluation map, respectively, which are defined as usual.

A state σ is final iff trans(σ) is undefined, i.e. iff σ is of one of the following forms

(i) 〈 [x, env ], S 〉 with x 6∈ dom(env )

(ii) 〈 [λx.M, env], α 〉 for some α ∈ CVar

(iii) 〈 [µα. [β]M, env ], S 〉 with β 6∈ dom(env ) and α 6≡ β.

To make the relation to continuation semantics precise we extend it to Krivine’s

machine for λµ-calculus.

Definition 4.5

The interpretation functions

[[ ]]State : State → Σ

[[ ]]Clos : Clos → D

[[ ]]Env : Env → Var → D

[[ ]]Stack : Stack → C
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are defined by the following semantic equations

[[〈 c, S 〉]]State = [[c]]Clos([[S]]Stack)

[[〈 c, S 〉]]Stack = 〈[[c]]Clos, [[S]]Stack〉
[[α]]Stack = ⊤C := 〈⊤D ,⊤C〉

[[env ]]Env(x) = if x ∈ dom(env ) then [[env (x)]]Clos else ⊤D

[[env ]]Env(α) = if α ∈ dom(env ) then [[env (α)]]Stack else ⊤C

[[[M, env ]]]Clos = [[M]] [[env ]]Env

where ⊤D = λk.⊤ (recall that R = Σ) and for a term M its semantics [[M]] is defined

as in Definition 3.5.

Again we have that Krivine’s machine for the λµ-calculus is correct w.r.t. its

continuation semantics.

Theorem 4.5

(1) For all terms M it holds that

[[〈 [M, ǫ], stop 〉]]State = [[M]] e⊤ ⊤C

where ǫ is the empty environment and e⊤(x) = ⊤D for all x ∈ Var and

e⊤(α) = ⊤C for all α ∈ CVar.

(2) If σ → σ′ then [[σ]]State = [[σ′]]State.

Proof

(1) follows immediately from the semantic equations of Definition 4.5. (2) is proved

by straightforward case analysis on the transition rules employing the semantic

equations of Definition 3.5 and Definition 4.5. q

4.2.2 Extended Krivine’s machine for λµ-calculus and its computational adequacy

Again, to obtain computational adequacy, we have to extend Krivine’s machine for

λµ-calculus in a way that it reduces under λ- and µ-abstractions.

Definition 4.6

Let →h be the binary transition relation on State containing the relation → of

Definition 4.4 augmented by the rules

(Fun-h) 〈 [λx.M, env ], α 〉 →h 〈 [M[y/x], env ], α 〉 with y fresh

(µ-h) 〈 [µα. [β]M, env ], S 〉 →h 〈 [M, env [α := S]], β 〉 if β 6∈ dom(env [α := S])

The resulting extension of Krivine’s machine for λµ-calculus will be called Ex-

tended Krivine’s machine for λµ-calculus.

Again, we write trans-h and Eval-h for the transition and evaluation functions,

respectively. A state σ is h-final iff trans-h(σ) is undefined. Obviously, a state σ is

h-final iff it is of the form 〈 [x, env ], S 〉 with x ∈ Var and x 6∈ dom(env ).

We have computational adequacy of the Extended Krivine’s Machine for λµ-

calculus with respect to its continuation semantics.
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Theorem 4.6

For all σ ∈ State it holds that [[σ]]State = ⊤ iff σ ∈ dom(Eval-h), i.e. Extended

Krivine’s Machine for λµ-calculus stops when started with initial state σ.

Proof

The proof is almost identical with the proof of Theorem 4.3. The only difference is

that now

REnv ⊆ Env × Env

RTerm ⊆ (Env → D) × Term

with

e REnv env ⇔ ∀x ∈ dom(env ) ∩ Var. e(x)RClos env (x) and

∀α ∈ dom(env ) ∩ CVar. e(α)RStack env (α)

f RTerm M ⇔ ∀e REnv env . f(e)RClos [M, env]

as new condition for REnv. q

5 Conclusion

We have shown how continuation semantics arising from a simple semantics of

classical logic allows one to explain the meaning of control features in call-by-

name functional languages, and how one can read off an abstract machine from

a continuation semantics. This has been exemplified for λ-calculus with Felleisen’s

control operator C and Parigot’s λµ-calculus.

Moreover, employing Pitts’ method for cooking up proofs of computational ade-

quacy, we have established that our abstract machines compute head normal forms

of terms whose denotation is different from ⊥.

An analogous treatment is possible for call-by-value languages, but in this case

one has to employ the opposite of NR which is isomorphic to the Kleisli category for

the continuation monad RR( )

. It would be nice if one could relate this duality on the

level of semantics to a duality on the syntactical level. This might provide a deeper

understanding of the relation between call-by-name and call-by-value languages.

Another strand of research is to extend the paradigm of deriving abstract machines

from continuation semantics to more realistic languages with basic data types as

booleans, integers, etc., and recursive types. For this purpose it might be appropriate

to give a semantic reformulation of Andrew Appel’s work on ‘compiling with

continuations’ (Appel, 1992) by employing and extending the methods we have

introduced in this paper.
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