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Abstract

The paper discusses disparity issues in sensing tasks involving the pro-
duction of a ‘high-level’ signal from ‘low-level’ signal sources. It introduces
an abstraction theory which helps to explain the nature of the problem
and point the way to a solution. It proposes a solution based on the use of
supervised adaptive methods drawn from artificial intelligence. Finally, it
describes a set of empirical experiments which were carried out to evaluate
the efficacy of the method.
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1 Introduction

Sensing technologies have advanced rapidly in the last few decades [1]. But it
remains the case that the phenomena we are most likely to be interested in are
precisely those for which the sensing task is most challenging. For example,
we can easily construct a sensor that will automatically trigger a door opening
mechanism when a large, warm object approaches. But it is a greater challenge
to make the sensor open the door only if the large, warm object is a member of
a particular family.

The salient phenomena of our world tend to be macroscopic objects and
processes — people, especially, and the objects and processes they interact
with. Sensing technologies, on the other hand, interface to the most basic,
physical level of reality — levels of light, heat and motion. This sets the scene
for the so-called disparity problem. We would like to be able to sense high-level
properties and objects of our world, because this is where our interests lie. But



the technologies on offer provide access to characteristically low-level properties.
Early texts anticipating disparity issues include [2, 3, 4]. [5] is also of interest.

This problem with the technology looks as if it should be easily overcome.
High-level phenomena must impact low-level phenomena in some specific way,
i.e., they must create specific signatures. So we might expect to be able to
build systems that will use these signatures to identify the relevant, higher level
objects within the low-level data. The deficiencies in sensing technologies should
then be curable using signal processing. But the question is, what is this signal
processing to consist of7 And how is it to be accomplished?

One idea is to make use of supervised, adaptive methods. Such methods
are commonly used in areas such as artificial intelligence [6], machine learning
[7], digital signal processing [8], statistics [9], data mining [10], neural networks
[11] and genetic algorithms [12]. They aim to produce a mechanism, formula or
theory capable of generating appropriate outputs from arbitrary inputs. They
do this using a reference set of input/output examples (often called a training
set).

As a response to the disparity problem, supervised, adaptive methods are
attractive, since they promise a solution without the need for hands-on design.
Whether or not they can fulfil this promise is an interesting question. The
present paper examines the situation using a combination of theoretical analysis
and empirical experiment. Building on ideas previously put forward in [13] and
[14] it outlines an abstraction theory, which offers a computational analysis of
the disparity problem. It then explores a solution to the problem using indirect
sensing based on an adaptive method from the area of computational learning.
Finally, it presents the results of empirical evaluations of three different adaptive
methods applied to a challenging disparity task.

2 Abstraction theory

The preliminary task for the paper 1s to set out a framework in which we can
identify the origins of the disparity problem and understand why its impact is
problematic. Sensing is a procedure which attempts to produce a signal from an
environment. So we start the process by considering the basic question: What
is an environment?

Anything that we would wish to honour with the name must be based on
some set of basic elements. And these should be viewed as the primitive phe-
nomena of the environment. The majority of phenomena, however, will most
likely consist of combinations of these basic elements. But there are two, quite
different ways in which phenomena may be combined together to form new en-
tities. First, there is the process of composition in which several elements are
combined together to form a new whole. Second, there is the process of clas-
sification by which several elements are gathered together into a single class.!
Every possible subgroup of basic elements is a candidate for both processes.

1The two forms of combination are known to artificial intelligence researchers as ‘partof’
and ‘isa’ construction [15].



Thus, starting from the set of basic phenomena, we may derive a new level of
potential phenomena by treating each possible subgroup as (a) a composite and
(b) a class.

The general idea is visualised in Figure 1. Here the basic level of phenomena
is visualised as a set Py of entities (the grey circles are meant to represent
individual phenomena). From Py, we obtain P;: each phenomenon here is
derived by applying composition or clustering to a subset of Py. Treating Py
as the set of basic phenomena now permits the derivation of a set Ps in which
each phenomenon is the result of clustering or composition applied to a subset
of P;. Treating P, as the set of basic phenomenon permits the derivation of the
set P3 and so on. In this manner, we can go on to derive P., P5, Ps etc.

Figure 1:

Note that in the case of both composition and clustering, a set of elements
is reidentified as a single entity, with an accompanying elimination of informa-
tion relating to independent elements. In the case of composition, the elements
become the component parts of a new whole. In clustering, the elements be-
come alternative manifestations of a single identity. These processes are thus
quintessentially abstractive. The tree of derived phenomena — a small fragment
of which appears in Figure 1— is thus a tree of abstractions: an abstraction tree.

The vertical dimension of the tree provides a visual interpretation for what is
meant by ‘high-level” and ‘low-level’. In terms of the abstraction tree, high-level
phenomena are phenomena appearing in the upper layers of the abstraction tree
while low-level phenomena are phenomena appearing in the lower layers.

3 Complexity

Applied recursively to a set of basic phenomena, the two forms of abstraction
lead to an infinite hierarchy of potential phenomena. The number of nodes in
this hierarchy expands rapidly as we move upwards from level to level. Let us say
there are n nodes in a particular layer. The layer above adds two instantiations
of each subset. Thus, the number of nodes it contains must be 2™ + 27,



If we label the set of nodes at the i’th level of the hierarchy P;, and let
P, = n, the number of nodes at any given level of the hierarchy is thus

|P;| = 9UPi—a|+IPi—al) _ |Pi_4|

The subtraction of |P;_1| in the recursive equation is necessary in order to
discount the fact that singleton subsets resulting from composition are identi-
cal to singleton subsets resulting from clustering. We can offset this effect by
discount exactly one set of singleton subsets.

4 Poker hands example

To make these ideas more concrete, let us take, as our basic environment (i.e.,
our set of basic elements) a pack of playing cards. Standard poker hands may
then be viewed as phenomena of different levels of abstraction.

At the first and lowest level of abstraction we have classes and compositions
constituted from the actual playing cards. An example of a class would be
‘heart’, i.e, the class of all hearts. Another example would be ‘two’ — the
class of all twos. We also have composites, i.e., collections of specific cards. An
example would be the pair consisting of the two of spades and the nine of hearts.

At the second level of abstraction we have classes and compositions made
up from first level entities. An example of a class at this level is ‘two-of-a-kind’:
this contains all two-card hands from the first-level in which both cards have
the same rank. For similar reasons, ‘three-of-a-kind’ is also a class at this level,
as 1s ‘straight’, ‘flush’, "four-of-a-kind’, ’straight-flush’ and ’royal-flush’. Specific
hands within these categories constitute second level compositions.

At the third level of abstraction we have classes and composites made up
from second-level entities. An example of a composition at this level would be
a specific full-house, i.e., an entity combining a specific two-of-a-kind with a
specific three-of-a-kind.

At the fourth level of abstraction, the classes and compositions are made up
from third-level entities. And this is the level at which we naturally identify the
full-house class, i.e., the class of all full-houses.

Above this level, the potential entities are no longer defined within conven-
tional poker classifications. They can thus be viewed as potential constructs
which are, in fact, non-existent within the domain of poker.

5 Types and tokens

Mapping out the generative properties of abstraction sheds some light on the
relationship between types and tokens. Any phenomenon in the abstraction tree
whose derivation is not, at any stage, mediated by clustering (i.e., whose roots
do not go back through any class nodes) has only one, possible grounding in
basic elements — there is only way it can possibly occur or exist. In contrast,
any phenomenon whose derivation has been mediated by clustering (i.e., whose



roots do go back through class nodes) is a phenomenon with more than one
possible grounding in basic elements. The latter type of phenomenon is what
we would conventionally call a type, since it effectively ‘stands for’ more than
one pattern of basic-level phenomenon. The former type of phenomenon is a
token by the same reasoning.

When we map out the hierarchy of potential phenomena resulting from ab-
straction processes, we thus obtain both types and tokens. The differentiation
between the two is more a matter of degree than dichotomy. The situation
appears to be that every ‘thing’ has a class-like nature, the degree of which is
fixed by the number of basic-level groundings that can be realised.

6 Real and potential entities

Abstraction, then, i1s capable of generating an infinite hierarchy of potential
phenomena. But we would like to know what phenomena really ezist in specific
domains. In particular, we would like to be able to pick out a domain and
enumerate the phenomena. Provided we can identify the set of basic elements,
we can map out the abstraction tree of potential phenomena. But presumably
only a finite fraction of this infinite set will be realised. How do we distinguish
the real from the potential?

Whatever domain we choose to look at, we have to assume that the physics
of the domain, or the dynamics of the domain, or the God of the domain, or
whatever 1t is that causes the domain to be the way it is, will tend to ‘put
elements together’ in a certain way. We cannot say very much about what this
‘way’ is, without first understanding the relevant physics, dynamics or God.
However, one deduction can be made with respect to the composites of the
domain. Regardless of what the parts of a particular composite actually are,
we know that they must at least ‘fit together’, i.e., they must have the right
relationships to enable them to combine together to form the relevant whole.
Composites are thus relational structures by definition.

The implication is that the linkage between basic-level phenomena and higher-
level phenomena of the domain may be mediated by relational composites. In
fact, this turns out to be guaranteed. Clustering applied solely to classes is a
redundant operation — the same effect can always be achieved simply by deriv-
ing bigger classes in the first place. Thus we know that linkages spanning more
than two layers of any non-redundant abstractions are necessarily mediated by
composites. By the same argument, linkages between basic-level and high-level
phenomena are also always mediated by relational composites.

This has a bearing on the disparity problem and on the chances of solving it
using supervised adaptive methods. Recall that in a disparity sensing task, we
require a sensor which responds in some specific way to a high-level phenomenon
of an environment on the basis of measures or signals of low-level phenomena.
In signal-processing terms, this task involves the creation of a function which
maps from basic elements, to high-level outputs (instantiations of high-level
phenomena). The abstraction theory enables us to analyse what this is going



to involve in different situations.

First of all, there is the trivial case to consider. This occurs when ‘high’ and
’low’ are really the same and the phenomenon to be sensed 1s actually a basic-
level feature of the environment. For example, the ‘high-level” phenomenon
might be a particular temperature and the low-level data might be temperature
readings. In this case, the phenomenon of interest is a level 0 phenomenon and
the only signal processing required is that a particular input (element) should
trigger a particular output.

Consider now a level 1 class. Sticking with the temperature example, the
class might contain a set of temperature values. The signal-processing then
requires that any one of a class of inputs (elements) triggers a particular output.

Finally, consider a level 2 class containing level 1 composites. The high/low
linkage 1s now mediated by a relational composite and the required signal pro-
cessing is more complex. The requirement is that a particular output is produced
if basic inputs (elements) can be grouped together to form a composite which
is within the relevant class.

How well should we expect supervised, adaptive methods to fare on these
three, sensing tasks?

The answer with respect to the trivial case is readily obtained. Any set
of input/output examples constructed for this phenomenon will exhibit a com-
pletely reliable relationship between specific input values and specific output
values. Any supervised method may be expected to exploit this relationship
and to produce a reliable mechanism for performing the desired sensing.

The answer with respect to the level 1 phenomenon is similar, except, in this
case, the relationship will be between sets of input values and particular output
values. Again, any supervised method will perform to satisfaction and derive
the desired sensing mechanism [13].

However, when we come to consider the level 2 phenomenon, and in fact
any phenomenon above this level, the situation changes in a significant way.
The level 2 phenomenon is necessarily based on a relational composite. The
relationship required by the supervised methods now exists between an output
value and sets of input values exhibiting particular relationships. The impact of
this on the outlook for supervised learning is firmly negative. No longer is there
any expectation that there will be reliable relationships between output values
and specific input values. In fact the reverse is expected. The individual input
values that we will see associated with specific output values are now effectively
unpredictable, in the absence of information about the related values.

As a result, a set of reference examples constructed for this sensing task will
have the appearance of random data and chance-level performance is the best
that will be achieved by any conventional, adaptive method. The only escape
is for the adaptive method to reconstitute the relevant relational composite and
then use it as a ‘filter’ for pre-processing the data. If, as we would expect, the
results of this exhibit the required, relationship with output values, supervised
learning may proceed as normal.

The general lesson is that relationality is a ‘spanner in the works’ for con-
ventional, supervised methods. The existence of relationality in the underlying



structure of the target phenomenon implies that any reference examples will
not show reliable relationships between input and output values. Rather, they
may appear to be derived from a random distribution. To overcome this prob-
lem, a supervised method must somehow reconstitute the relevant relational
aggregate(s) and then use it/them as a filter for pre-processing the data.

7 Introduction to the DISTAL method

This section introduces the DISTAL method, which aims to meet the require-
ments noted above. Based on an artificial intelligence method called abstractive
learning, it uses informed search to seek out the relevant structure underlying
a set of reference examples for a disparity task. It achieves this by recursively
exploring the abstractive constructions that can be placed upon primitive phe-
nomena until such time as a structure is identified which provides a match
against the reference examples. In carrying out the search, it takes into account
the full taxonomy of phenomena identified in abstraction theory.

7.1 Abstractive learning algorithm

The abstractive learning procedure forms the main component in the DISTAL
method. The main steps of the algorithm are as follows.

(1) Read in the set of reference, input/output examples.
(2) Generate the least complex, abstraction structure.

(3) Compute the frequency with which the structure correctly evaluates to the
output of a training example when it is applied to the associated inputs
(elements).

(4) Save the structure if this frequency is the highest identified so far.

(5) If the complexity of the structure remains within bounds, identify the next
most complex structure and continue from step 3.

(6) Output the most recently saved structure.

Unfortunately, searching over structures in this way carries an exponential
cost. In the experiments, this was kept at bay by having the implementation
focus on a small subspace of the total set of possible structures. This comprised
just those structures which could be built from two-part composites, using a
set of four relationships. Class phenomena were not explored directly. Instead,
every relational composite was assumed to be a member of a class in the level
above, i.e., every relational composite was treated as implicitly identifying the
class of all composites whose parts exhibited the same relationships.



The relationships actually utilised in the experiment were known as Sum,
Diff, Sum2 and Diff2. The Sum relationship evaluates to the sum of its argu-
ments while the Diff relationship evaluates to the difference between its argu-
ments. The Sum?2 and Diff2 relationships are variations of Sum and Diff which
apply a modulus filter to normalise their values within the range of possible
target outputs, in this case the range 0..6. These particular relationships were
selected for their generality and computational simplicity.

The exploration of possible structures carried out is most easily concep-
tualised as a bottom-up process. The primitive variables of the environment
form the set of basic elements. The first level of possible structures is explored
by searching through the possible relationships and possible assignments of re-
lational roles to basic elements. For each configuration, a new level of basic
elements may be obtained. These are the outputs (i.e., values) of the applied
relationships. The search process then explores the structures that may be
erected with respect to these elements just as it did with the original elements.

7.2 How abstractive learning fits into DISTAL

The DISTAL method manages the application of abstractive learning to the
relevant sensing problem. It is effectively a ‘wrapper’ for abstractive learning.
The three main steps are as follows.

(1) Acquire the set of reference, input/output examples for the sensing task at
hand. These must associate input values with target sensor outputs.

(2) Run the abstractive learning procedure to find the structure which most
accurately fits the training data.

(3) Use the structure identified as a way of implementing a sensor/signal-
processing mechanism which actually performs the sensing task.

The final product of this procedure is a method for indirectly sensing a
high-level property on the basis of low-level inputs.

8 The head-count experiment

To evaluate the DISTAL method as a solution to the disparity problem, an
experiment was performed to test its performance on a suitably configured head-
counting task. Head-counting involves counting the number of persons passing
through a particular area — normally a corridor or passage. The aim in this
particular version of the task was to use audio data derived from a microphone
feed to detect the passage of individuals up or down a busy staircase. The task
thus involved using a low-level sensory signal to derive a measure of a high-level
property (the head-count).

To facilitate testing, a large collection of real-world datasets were obtained.
Each of these contained samples recording the association between particular



patterns of audio input and the passing/non-passing of individuals through the
relevant physical space (the staircase). The DISTAL method was tested for its
ability to predict the passing/non-passing attribute using a set of samples as a
reference.

The data used in the experiment were derived using the digital recording
facilities on a standard PC. A microphone was placed on a busy staircase on the
University of Sussex campus and connected to the PC. While the signal from
the microphone was digitally recorded, an electronic log was kept marking the
time at which each person using the staircase passed the microphone point. The
recording and the log were then integrated so as to produce a dataset based on
six input variables and one output variable, i.e., a set of data in which each
datum consisted of seven values, six of them input values and one of them an
output value.

Each input variable was the normalised, mean amplitude recorded over a
one-second interval and the six input values of each datum were arranged in
chronological order to represent a sequence of amplitudes for a six-second in-
terval. The output variable for each datum was set to the number (integer) of
individuals passing the microphone point in the relevant interval (up to a max-
imum of six). 16 recordings were made in all, each one lasting for 18 minutes.
From these recordings, 16 datafiles were produced, each one containing 180 data
(18 x 60 / 6 = 180).

These datasets may be visualised as simple time series by concatenating the
input values (mean amplitudes) from successive data, ignoring the output value.
Applying this process to the ‘Da’ dataset (see below) produces the visualisation
shown in Figure 2. This has the expected appearance of a random signal.

Figure 2:



9 Testing

The empirical evaluation involved applying the DISTAL method along with two
other popular adaptive methods to the entire suite of 16 training sets. In each
application, the method to be tested was provided with 120 training examples
selected randomly from one of the 16 datasets. The method was then tested for
its ability to predict the output values (i.e., the number of individuals passing the
mic point in the relevant interval) in the remaining 60 samples from the dataset.
The mean accuracy on the unseen data was then computed and tabulated.

The other two methods tested were the decision-tree method C4.5 [16] (closely
related to the CART method of [17]) and the nearest-neighbor method [18].
The nearest-neighbour method was configured to use six neighbours during the
output-generation phase, a setting which proved to generate optimal perfor-
mance on this task. The C4.5 method was run in the default configuration
using the developer’s implementation.

Performance statistics were generated by averaging the performance of each
method over 100 applications on each dataset, each of which would have pro-
vided the method with a different, random selection of training examples. In
other words, 100 x 16 x 4 = 6400 test runs were performed in all.

10 Results

The results produced are shown in Figure 3. The vertical axis here represents
accuracy: this is the proportion of unseen, test cases on which the method
correctly predicted the output value (i.e., correctly predicted the number of
individuals passing the microphone point in the relevant time interval). The
horizontal axis ranges over the possible datasets, here labelled Da, Db, Dc etc.
The results are also shown in tabular form in Table 1.

100-all-Coc (30-3-2002)

1.0 FE C4ps
2 MM
30 AbstractiveLearner
0.7s
05
0.25
0.0

Da Dh Dc Dd De Df Do Dh Di O Dk DI Dm Dn Do Dp

Figure 3: Prediction accuracies for head-count datasets.
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C4pb | NN | DISTAL
Da | 0.352 | 0.298 0.514
Db | 0.411 | 0.385 0.482
Dc | 0.348 | 0.375 0.489
Dd | 0.371 | 0.422 0.411
De | 0.372 | 0.377 0.548
Df | 0.449 | 0.466 0.410
Dg | 0.360 | 0.410 0.448
Dh | 0.357 | 0.382 0.534
Di | 0.436 | 0.46 0.457
Dj | 0.333 | 0.326 0.468
Dk | 0.349 | 0.400 0.502
Dl | 0.416 | 0.424 0.401
Dm | 0.344 | 0.339 0.56
Dn | 0.335 | 0.372 0.435
Do | 0.299 | 0.331 0.555
Dp | 0.359 | 0.384 0.520
M | 0.368 | 0.384 0.483

Table 1:

The final row of the table (row M) gives the mean accuracies achieved. Note
that abstractive learning is shown as achieving a mean accuracy of 0.483. This
compares favourably against the accuracies achieved by the other two meth-
ods, these being 0.384 for the nearest-neighbor method and 0.368 for the C4.5
method. Although the accuracies seem rather low, it must be remembered that
target outputs in these datasets were within the integer range 0..6. Thus, the
level of accuracy achieved by random guessing would be 1/7 x 100, i.e., just
over 14%. The accuracy achieved by abstractive learning exceeds this level by
some 34%.

11 Performance analysis

The nearest-neighbour method operates by selecting from its store of reference
examples the closest match to any unclassified (‘unseen’) case. The output from
the matching example is then produced as the predicted output for the unclassi-
fied case. Where the NN method is configured to use multiple nearest-neighbors,
this final step involves deriving an average output from the neighbours. Since,
the algorithm does little more than store the training data and then utilise it
as a lookup table, there is little to be said in the way of performance analysis.

C4.5 operates by building a decision tree for output prediction from the
given samples, utilising an information theory measure in order to minimise the
depth of the tree (i.e., the average number of decisions that have to be made

11



in order to generate a given output). Following any run of the method, it is
possible to look at the decision tree which has been generated and also at the
level of generalisation. This corresponds to the average number of cases which
are handled by each leaf node.

Unfortunately, the decision trees generated by C4.5 for these datasets are
large and provide a minimal degree of generalisation: on average each tip node
covers only two training examples. C4.5 appears to react to this domain by
creating what are in effect large memories for the training data. This approach
is similar to that taken by the nearest-neighbor method so it is not surprising
that the two methods produce very similar levels of performance. A small sample
of a decision tree generated by C4.5 for the Da dataset is shown in Figure 4.

| 1 <= 650 : 4 (4.0/1.0)
| 1 >650 : 6 (2.0/1.0)

2 <= 571

I 0 <= 461 :

I I 2 <= 122 :

| | | 0 <= 240 : 3 (2.0)

| | | 0> 240 : 2 (2.0/1.0)

I | 2> 122 :

I I I 1 <= 253 :

I I I | 2 <=416 : 1 (4.0/2.0)
I I | | 2 > 416 : 4 (2.0/1.0)
I I | 1> 253 :

I I I | 0 <= 114 : 1 (3.0/2.0)
I I I | 0> 114 :

I I I I | 5> 411 : 2 (7.0)
I I I I 5 <= 411

I I I | 5 <= 347 : 2 (5.0/1.0)
I I I I 5 > 347 :

I I I I

I I I I

|
|
|
|
|
Figure 4: Initial branches of C4.5 decision tree.

12 Abstractor cascades

Unlike C4.5 and NN, DISTAL achieves a high level of generalisation on these
datasets, constructing quite compact ‘theories’ for the data. Because all the
input/output examples showed outputs in the integer range 0..6, DISTAL in-
evitably selected structures whose top (root) node was either the Sum2 or the
Diff2 relationship, since only these produced values in the appropriate range
(0..6). However, it was observed that the method would produce very differ-
ent structures for the same data, depending on the selection of cases used for
the training sample. Some of the structures which were identified by DISTAL
during the experiment are shown in Figure 5. The internal-node labels in this

12



diagrams name the relevant relationship while the tip-node labels show input-
variable indexes.

Diff2

Diff Diff

Diff2

iff Diff

S SLUMm Sum SUMm

Figure 5: Misc. abstraction cascades for head-count data.

13 Performance comparisons

The head-counting task was explicitly designed as a disparity, sensing task, i.e.,
a task involving the production of a high-level signal from low-level inputs. Ab-
straction theory suggests that such tasks will necessarily introduce relational
effects and that the net result for conventional supervised adaptive methods
will be poor performance. It also suggests that the result for a properly con-
figured, pre-processing method (such as DISTAL) should be good or perfect
performance. In the event, the conventional methods performed better than
expected while the DISTAL method performed not as well.

The relatively poor performance of the DISTAL method can be put down to
a number of factors. First, it may well be that the data obtained for the head-
counting task did not have the right characteristics, i.e., they did not reflect
a disparity problem of the anticipated type. The characterisation of the task

13



suggests that the output signal relates to a high-level property of the domain
while the inputs relate to low-level properties. But this assumption is not made
on a formal footing. Although the data may have embodied a disparity problem,
it may not have been of a type which was within the search-space explored by
the DISTAL method. It may also have been that noise and other unwanted
statistical effects have obscured the relevant abstraction structures within the
data.

The better than expected performance of the two conventional implies that,
at the very least, the data acquisition process resulted in a number of ‘impuri-
ties’. Neither of the conventional methods tested perform any kind of abstrac-
tive pre-processing. On the face of it, they should therefore not have performed
above the level of random guessing. The fact that they did perform above this
level implies that the derivation of the data must have introduced useful inci-
dental effects [13], i.e., fortuitous statistical patterns allowing the prediction of
output values on the basis of independent input values. A simple example would
involve the statistical prevalence of a particular head-count value associated with
an input value (a mean amplitude) falling above a particular threshold. On the
other hand, the fact that the decision trees produced by the C4.5 method were
so large seems to imply that whatever these incidental effects were they, none
of them can have been so pronounced as to allow for the derivation of anything
approximating a reliable input/output rule.

14 Review

The paper has focussed on the so-called disparity problem — the non-availability
of sensing technologies for precisely those phenomena we expect to be significant
in everyday applications.

Abstraction theory explains and quantifies the derivation of phenomena from
a set of basic elements. It shows how the level of a particular phenomenon
can be quantified by establishing its level within the domain’s abstraction tree
and how types and tokens are fundamentally equivalent forms of phenomena.
It also reveals that high-to-low linkages will always be mediated by relational
composities and shows that this has a negative impact on the chances of deriving
low-to-high functions using conventional supervised methods.

Empirical experiments were carried out to investigate the idea of using su-
pervised, adaptive methods in order to derive low-to-high signal processing func-
tionality automatically. Attention focussed particularly on the DISTAL method.
This yielded prediction accuracies close to the 50% level. Tests using other su-
pervised methods yielded slightly lower but still promising levels of accuracy.

15 Directions for further work

In the experiments performed, the DISTAL method was configured to search for
a single, cover-all structure. However, this may not be the best approach. It may

14



be that a more fruitful strategy is to let the algorithm find a set of structures
and then select from them dynamically when attempting to predict a target
output. This would obviously raise challenging complexity issues. However, it
would also considerably expand the pre-processing range of the method.

There may also be advantages in relaxing some of the restrictive assumptions
concerning the relationships and role attachments. One might allow the algo-
rithm to explore structures involving relationships using more than two roles,
for example. One might also allow the algorithm to investigate structures in
which more than one role may be attached to the same element, a possibility
which is explicitly disallowed in the current implementation. Which, if any,
of these modifications will bear fruit remains to be seen. It is hoped that the
results of further experiments will form the subject for future publications.

16 Conclusion

The paper has introduced a general theory for analysing the disparity problem,
and a method based on adaptive, supervised learning for solving it. The ini-
tial results show a performance level considerably below that which would be
required for serious applications work. However, results using the two, conven-
tional supervised show some promise in that they considerably exceed the level
of performance that would be expected from random guessing. The performance
level achieved by the DISTAL method is slightly better than that achieved by
the two, conventional methods and might therefore be viewed as more promising
still. Future work will pursue a much broader empirical study in the hope of
clarifying the issue.

References

[1] Gibson, P. (2000). Iniroductory Remote Sensing: Principles and Concepis.
Routledge Publishers.

[2] Bowley, A. (1907). Elements of Statistics. London: P.S King and Son.
[3] Coombs, C. (1964). A theory of data. New York: Wiley.

[4] Fisher, R.(1936). The use of multiple measurements in taxonomic problems.
Annals of Fugenics, 7 (pp. 179-188).

[5] Kullback, S. (1959). Information theory and Statistics. New York: Wiley.

[6] Russell, S. and Norvig, P. (1995). Artificial Inielligence: A Modern Ap-
proach. Prentice Hall.

[7] Mitchell, T. (1997). Machine Learning. McGraw-Hill.

[8] Mitra, S. and Kaiser, J. (Eds.) (1993). Handbook for Digital Signal Pro-
cessing. New York: Wiley.

15



[9] Cowan, G. (1998). Statistical Data Analysis. Oxford: Clarendon Press.

[10] Weiss, S. and Indurkhya, N. (1998). Predictive Data Mining: A Practical
Guide. San Francisco: Morgan Kaufmann Publishers Inc.

[11] Rumelhart, D., McClelland, J. and the PDP Research Group, (Eds.) (1986).
Parallel Distributed Processing: Fzxplorations in the Microstructures of
Cognition. Vols I and II. Cambridge, Mass.: MIT Press.

[12] Holland, J. (1992). Genetic algorithms. Scientific American, 267, No. 1.

[13] Thornton, C. (2000). Truth from Trash: How Learning Makes Sense. MIT
Press.

[14] Thornton, C. (1999). What do constructive learners really learn?. Artifi-
cial Intelligence Review, 13, No. 4 (pp. 249-257).

[15] Thornton, C. and du Boulay, B. (1992). Artificial Intelligence Through
Search. Intellect Press.

[16] Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Mateo,
California: Morgan Kaufmann.

[17] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification
and Regression Trees. Wadsworth.

[18] Cover, M. and Hart, P. (1967). Nearest neighbr pattern classification.
IEEE Trans. Info. Theory, 13 (pp. 21-27).

16



	Indirect sensing through abstractive learning.

