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Abstract

A quantitative theoryof abstractionis presented.The centralfeatureof this is
a growth formula definingthe numberof abstractionswhich may be formedby an
individual agentin a given context. Implicationsof the theoryfor artificial intelli-
genceandcognitivepsychologyareexplored.Its possibleapplicationsto theissueof
implicit v. explicit learningarealsodiscussed.

1 Intr oduction

Abstractionhaslong beenassumedto bea key processin cognition. And thoughit has
never beengiven a genericspecification,philosopherssincethe time of Aristotle have
beenwilling to accordit a centralrole. In Aristotle’s case(1), andlater in Locke’s (2),
theprocesswasseenaslying at theheartof theproblemof ‘universals’.1 More recently,
artificial intelligenceresearchershave carriedon thetradition,lettingabstractiontakethe
strainin modelsof search,problemsolving, theoremproving, planning,reasoningand
programming[c.f. 3, GunchigliaandWalsh,1990,4, 5].

Thatsuchanimportantprocesshasnever beenput on a formal, theoreticalfooting is
a little odd. It may be that it is regardedastoo obvious andstraightforwardto require
formuleaictreatment.And, certainly, therehasbeenlittle disputedown the agesabout
the natureof the processitself. Accountsof the processhave tendedto show strong
commonalities.For example,considerHume’s descriptionfrom ‘The Essay’(6).

’Tis evident that in forming mostof our generalideas,if not all of them,
we abstractfrom every particulardegreeof quantityandquality, andthatan
objectceasesnot to be of any particularspecieson accountof every small
alterationin its extension,durationandotherproperties.(pp.16-7).

Humesaw abstraction,then,in termsof thefiltering-awayof informationof specifics,
with theaim of extractingcontentor meaning.Aristotle alsosaw it this way. Sotoo did
Locke,thephilosopherperhapsmoststronglyassociatedwith theideathatuniversalsare
derivedby abstractionfrom empiricaldata.Locke,in fact,deemedabstractionto bethe
leaving outof particularcircumstancesof timeandplace.

But evena brief examinationof theseportrayalsof theprocessrevealunderlyingin-
consistencies,contraditionsandambiguitities. Philosophersmay agreethat abstraction
involvesthe eliminationof relatively specificinformation. But they are lessclearhow

1Onecharacterisationof thedifferencebetweenPlato’s andAristotle’s views on thederivationof universal
truthswasthatPlatosawthemascoming‘from above’while Aristotlesawthemascoming‘from below’.



QAT

thespecificityis to bemeasuredor how theinformationis to berepresented.In fact,any
attemptto specifywhatis to beeliminatedtendsto fall foul of counter-examples.Locke’s
notion,for instance,thatall factorsrelatingto timeandplaceshouldbeeliminatedwould
seemquiteinappropriatein thecaseof abstractionappliedto higher-level concepts,such
asmight relateto physicalbeautyfor example.

Suffice it to say, then, that philosophicalaccountsof the processof abstractionare
characteristicallypre-theoretical. They assumethe existenceof a well-defined,shared
meaningfor the term. Sincethis doesnot exist, theseaccountslack precisionandare
insufficientfor themechanisticandprogrammaticpurposesof AI.

No surprise,then,thatAI projectswhichattemptto harnessthepower of abstraction
in aparticularproblemdomaintypically startby providing amechanisticdefinitionof the
process(cf. GunchigliaandWalsh,1990). Clearly, AI researchersareawareof the fact
thatabstractionhasno genericspecificationandthat they cannothopeto makeuseof it
withoutfirst providing aworkingdefinition.

Theformulationof agenericspecificationfor theprocessis aworthygoal,then,which
mightyield benefitsright acrossthelandscapeconnectingcognitivescienceto epistemol-
ogy. It couldprovidea genericbasisfor thediversityof abstraction-usingAI techniques.
It might alsoprovide a meansof integratingabstraction-relatedideasarisingin different
areas.Possibly, it might alsohelp to fertilise new techniquesfor exploiting abstraction
within cognition.Lastbut not least,it would help to furtherthe theoreticaldevelopment
of artificial intelligence.

But while thepresentpapertakesthis ambitiousgoalasits generalcontext, it makes
no claim to reachthe targetor even to approachit very closely. Rather, it addressesthe
specialproblemof abstraction quantification. The papershows, in particular, how we
maycalculatethenumberof abstractionswhichmaybegeneratedby anindividualagent
in a particularcontext. In so doing, it developsandusesa partial formalisationof the
processitself. This turnsout to have a numberof practicalandexplanatoryapplications
within AI andin relatedareassuchascognitive psychology. Thereis alsothehint of a
new angleon thelongstandingproblemof universals.

2 Derivation of the theory

Informal characterisationsof abstraction(suchasHume’s) normally focuson thereduc-
tive aspectsof theprocess,i.e., theway in which relatively specificinformationis elim-
inated. But the processmay alsobecharacterisedin termsof its constructivefunction.
An abstractionis necessarilyanabstractionof something.In essence,then,it is aniden-
tification of a phenomenon— an object,processor propertyof the abstractingagent’s
world. At thepoint of construction,theconstituentsmustbealreadyavailable. We may
view abstractionthereforenot in termsof theeliminationof irrelevantcomponents,but in
termsof theselectionandcombinationof relevantconstituents.

Theadvantageof theconstructive interpretationis that it opensup thepossibilityfor
quantitative analysis.Sincethe resultof any act of abstractionis the identificationof a
new phenomenonembodyingsomecombinationof currentlyidentifiedphenomena,we
canusecombinatorialreasoningto determinethe numberof abstractionsa given agent
canform startingfrom a baseof primitiveidentifications.

However, thereareseveralcomplicationsto takeinto account.Thenumberof possible
abstractionsmight seemsimply to be the numberof waysin which theelementsof the
basesetmaybecombined.But this is not quitecorrect.Eachnew abstractionidentifies
a new phenomenonandthusbecomesa potentialconstituentin a furtherabstraction.The
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process,then,is inherentlyrecursive. Theanalysisshouldtakeaccountof this.
Also of importanceis the fact that therearetwo quitedifferentwaysin which iden-

tifications may be combinedto form a new abstraction. First, thereis the processof
compositionin whichidentifiedphenomenaarecombinedtogetheraspartsto form anew
whole. Second,thereis theprocessof classificationin which identifiedphenomenaare
gatheredtogether(aswholeelements)into aclassof alternatives.(In AI terms,theformer
is constructionusingPARTOF relationshipsandthelatteris constructingusingISA rela-
tionships.)Every possiblesubgroupof identificationsis a candidatefor bothprocesses.
Thus, startingfrom any baseset, we may derive a setof abstractionsby treatingeach
possiblesubgroupas(a)a compositeand(b) a class.

The generalidea is visualisedin Figure 1. Here the baseset of identificationsis
labelled��� . From ��� , weobtain ��� : eachidentificationin thissetisanabstractionderived
by applyingcompositionor classificationto a subsetof ��� . Treating ��� asthe baseset
permitsthederivationof aset ��� in whicheachphenomenonis theresultof classification
or compositionappliedtoasubsetof � � . Treating� � asthebasesetpermitsthederivation
of theset �
	 andsoon. In thismanner, wecangoon to derive ��� , ��
 , ��� etc.

Figure1: Abstractiontree.

The diagramportraysthe generationof possibleabstractions,startingfrom a setof
primitives. Thedynamicsof this arecharacteristicallyconstructive. But theeliminative
aspectshouldalsobeapparent.In thecaseof bothcompositionandclassification,asetof
elementsis reidentifiedasa singleentity. Informationrelatingto theelementsthemselves
is effectively eliminated.But theresultis achievedin two differentways. In thecaseof
composition,theelementsbecomethecomponentpartsof anew whole. In classification,
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theelementsbecomealternativemanifestationsof a singleidentity.

3 Complexity

Appliedrecursively to abasesetof identifications,thetwo formsof abstractionleadto an
infinite hierarchyof constructs.Thenumberof nodesin thishierarchyexpandsrapidlyas
we move upwardsfrom level to level. Let ussaythereare � nodesin a particularlayer.
Thenwewouldexpectthenumberof nodesin thelayerabove to be

���������

sincethe numberof possiblecombinationsof n objectsis
� �

, andthe processgen-
eratestwo nodesfor eachcombination.However, we mustalsoaccountfor the fact that
someof thesenodesareredundant.Clusteringappliedto all possibleclassesof a setof
objectsis redundant,sinceany classobtainedmustbe identicalin objectmembershipto
oneof theoriginalclasses.By thesametoken,abstractionsinvolvingclassescomposedof
classesareredundant.Thusweneedto discountthenodeswhichresultfromclassification
appliedpurely to classes.

Exactly half of the � nodeswill beclasses.Thereforewe shouldsubtract
����

. The
revisedformulafor thenumberof nodesthenbecomes

����� � ����� ��

It might seemthata furthermodificationshouldbemadeto takeaccountof the fact
thatexactly � of the

� �
possiblecombinationsaresingletonsets,i.e., they simply yield

‘copies’ of nodesat thelayerbelow. (We mightdiscountthesenodesby subtracting
� � .)

However, sinceit is possiblein principle for abstractionsto beconstructedout of nodes
atdifferentlevelsin thetree,it simplifiesmattersif weallow thesingletonsetsto remain.
This way, every level of thetreecontainsa copyof every nodeat every level below and
thepossibilityof cross-level abstractionsis automaticallytakeninto account.

To rendertheformulain a recursive form is now straightforward.If � � is setequalto
thenumberof basicelements,thenumberof nodes��� representedat the  ’ th level of the
hierachymaythenbecalculatedusingthefollowingrecursive formula.

� �"! �$# ����� ��% ����� � %�

4 Significant abstractions

The growth formula revealsthe exponentialcostof abstractionformulation. But it ap-
plies specificallyto the caseof exhaustive (i.e., unrestrained)abstractionratherthanto
abstractionin practice.Thedifferenceis significant.Agentswhich form abstractionsin
a realisticsituationaresurelyunlikely to do soexhaustively. More likely, they will aim
to ensurethat abstractionsmatchup to reality. This will involve makingsurethat any
identificationsformedareliterally significant, i.e., identify real andsalientphenomena.
(Concernsaboutthe inaccessibilityand/orimplausbilityof objective reality areignored
here.)Theneteffect is thatthesetof significantabstractionsfor any particularindividual
is likely to bea smallsubsetof thetotal setof possibleabstractions.

But althoughthecostsof in-practiceabstractionmaybelowerthanthegrowth formula
suggests,they will not be as low as we might hope. They will, after all, include the
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costsof carryingout the‘reality check’,i.e.,whatever operationis requiredto ensurethat
abstractionsmatchreality. In the caseof classification,this may involve nothingmore
thanmakingobservationsaboutsimilaritiesamongtherelevantclassmembers.But in the
caseof compositionalabstraction,theresultingconstructis only valid if theelementsfit
togetherin theright way, i.e.,only if they havetheright relationships.Thustheformation
of compositionalabstractionsalwaysinvolvestheidentification,by theabstractingagent,
of therelevant relationship.Thereis evidenceto suggestthat in theworstcasethis may
beaninfinitely complex task(7).

5 Typesand tokens

Any abstractionwhosestructure(in thehierarchy)is not,atany stage,mediatedby classi-
fication(i.e.,whoserootsdonot gobackthroughany classnodes)hasonly one,possible
groundingin basicelements.In the perceptionof the agent,thereis only oneway that
it exists. As a conceptualisation,then, the abstractionconstitutesa token. In contrast,
any abstractionwhosederivation is mediatedby classification(i.e., whoserootsdo go
backthroughclassnodes)identifiesa phenomenonwith morethanonepossibleground-
ing in basicelements.With respectto thegivenset,the latterconstitutesa type, sinceit
effectively standsfor morethanonecombinationof elements.

Thetheorythusgivesaformalmeaningto thelong-standingdistinctionbetweentypes
andtokens.But notehow it upgradestheideafrom a simpledichotomyinto acontinuous
dimension.As noted,the rootsof a typenodemustgo backthroughoneor moreclass
nodes.But therecanbemoreor lessof these.And they mayappearhigheror lower in
thetree.Thus,the‘typeness’of a phenomenonis not a black-and-whiteissue.Rather, it
is a matterof (2-dimensional)degree.

How thenshouldwe properlyrenderthe distinctionbetweentypesand tokens? A
simpleapproachmightbeto treateveryphenomenonasa type,andto saythatthe‘type-
ness’of a particularphenomenonis just thesizeof its extension— thenumberof ways
in whichit canexist. A tokencouldthenbethoughtof asatypewith anextensionof one.

An alternative would be to treat an identificationas a type only if its classnodes
aresufficiently closeto thesurface,i.e., appearsufficiently high in therelevantabstrac-
tion construct.Theremight beproblemsin identifying a suitablecutoff point. But the
approachhasits attractions.It would, for example,avoid thenecessityof treatingthein-
dividualcalledFredBloggsasa ‘type’ simply on thegroundsthathemayconsist,atany
onetime, of quitedifferentarrangementsof quantumstates.Therootsof ‘Fred Bloggs’
maygo backthroughclassnodes,wecouldargue,but they areat too greata depthto be
treatedassignificant.

Perhapsthebestapproachis simply to acceptthatthetraditionaltype/tokenterminol-
ogy over-simplifiesreality. The logical structureof abstractionmeansthat the sizeand
characterof a phenomenon’sextensionmayvary in a rangeof ways.Thereforetherecan
benohardandfastdistinctionbetweentypesandtokens.

6 Other applicationsof the theory

The growth formula andits underlyingprinciplesprovidesa definitionof the term ‘ab-
straction’anda meansof estimatingthenumberof abstractionswhichmaybeformedby
an individual agentin a givensituation. It providesa quantitativetheoryof abstraction
ratherthana qualitative one,sinceit saysnothingaboutwhat abstractionswill actually
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consistof, exceptthat they will involve thecombinationof certainelements.It alsosays
nothingabouttheway in which theprocessworksor why it is required.

Thetheorycanbeappliedto naturalagentsandeven,in principle,to humansubjects.
But herethereis alwaystheproblemof identifying thesetof basicidentificationsupon
which abstractionmay build. Without a specificationfor this set, the growth formula
cannotbeappliedandtherestof the theorybecomesinoperable.In somecases,it may
befeasibleto treatanagent’s sensorystimuli asthesetof fundamentalidentificationsof
phenomena.(Certainly, therecouldbeno morebasicsetof primitivesthanthis.) But in
practicetheapproachstill raiseshorrific problemsof enumeration.

More practicalare applicationswhich focus on artificial agents,particularly when
thesearehand-designed.Very often,thebasicsetof environmentalobjectswith whicha
designedagentengagescanbesimply read-off thedesign.Thederivationof thepotential
abstractiontreeis thenstraightforward.

In somecases,it maybeusefulto mapout anagent’s total abstractionsetsimply as
a meansof evaluatingits possible,representationaltrajectories(cf. 8). This might also
provide thebasisfor anevaluationof theagent’sconceptualadventurousness. Its relative
penetrationof thetotal abstractionset— theratio betweenthenumberof developedand
potentialabstractions— summarisesthe degreeto which the agenthasfleshed-outthe
potentialconceptualisationsof its environment.Relative penetrationmight thenbecome
a kind of conceptual‘horse-power’ rating for artificial agents. (This is not completely
satisfactory, however, sincethe total abstractionsetwill normallybesignificantlylarger
thanthesetof significantabstractions.)

7 Representationand behaviour

To somedegree,the theorymayalsobeusedto makejudgementsabouttherepresenta-
tional behaviour of agents.An agent’s total abstractionset includesall the phenomena
thattheagentis capableof identifying (includingonesthatdonotactuallyexist). Putting
this in representationalterms,we would saythat the abstractiontreeidentifiesthecom-
pletesetof phenomenathat the agentis capableof representing,aswell as the logical
dependenciesbetweenthem.

Thus,if a particularphenomenondoesnot appearwithin anagent’s total abstraction
set,we know that the agentcannotform a representationfor thatphenomenon.It may
be unableto form a particularrepresentationfor otherreasons.But the absenceof the
phenomenonfrom theabstractionsetshows thatit cannotdo so in principle. This might
becomean issueof importance,for instance,if anattemptwerebeingmadeto build an
agentthatwould acquiretheability to behave contingentlywith respectto a propertyof
theworld thatit wasunableto represent.

Imaginefor examplethat the aim is to constructa simple,mobile agentwhich will
acquirethe ability to approachsmoothobjectsbut not spikey ones. Regardlessof any
efforts made,theexperimentwill necessarilyfail if thephenomenon‘smoothobject’ has
no representationwithin theagent’sabstractiontree.

But the representationalimplicationsof the theoryonly go so far. It allows oneto
calculatewhat is containedwithin a particularabstractionsetandthuswhata particular
agentis andis notcapableof representing.However, it saysnothingaboutwhataparticu-
lar representationwill consistof or how it will beconstructed.(Thisis reallyjust thesame
pointaswasmadeabove: thetheorydoesnot specifywhatanabstractionwill consistof,
merelythatit mustcombinecertainelements.)

http://www.aisb.org.uk
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Furthermore,noclaimis madethatagentswill representationallyreproducethestruc-
tureof abstractiontrees.Indeed,it is apparentthatareasof researchinterestedin learning
andbehaviour acquisition(whethermotivatedby arepresentationalinterestsor not)show
little signof devisingmethodswhichgenerateabstractiontrees,or anything like them.If
anything, thereverseis thecase(cf. 9). Theevidenceis thatinsofarascontemporaryarti-
ficial agentsmaybesaidto build representationsat all, thesedonot resembleabstraction
trees.

On the otherhand,it is noticeablethat the very sameareasof researchtend to di-
vide attentionbetweenclassification(class-forming)methodsandcompositionalmeth-
ods. In otherwords,they may be viewed asdividing attentionbetweenthe two funda-
mentalprocessesof abstraction.This is perhapsmostnoticeablein machinelearning,
which is broadlydividedup into a subfieldfocussingon statisticalclassificationmeth-
ods (similarity-basedlearning)anda subfieldfocussingon compositionalor relational
methods(discovery, analogy, inductivelogic programmingetc.)(10)

8 Explicit and implicit learning

Perhapsthemostfruitful areafor applicationsof the theoryis thatof cognitive psychol-
ogy. A lively debatein this areainvolvestheproblemof explicit v. implicit learning.In
part, this is concernedwith the questionof whetherknowledgeis storedin an abstract
or specific(i.e., instance-based)form. It alsofocusseson the degreeto which knowl-
edgeis the resultof consciousor unconsciousprocesses.(In somesense,the two parts
of thedebatearereally one,with the former focussingon staticissuesandthe latteron
dynamic.)

Traditionally, the implicit/explicit issuehasbeenresearchedusing experimentsin
which humansubjectsareeithertaught,or exposedto stringsgeneratedby anartificial
grammar. By evaluatingthe subject’s ability to classifytestcases,or to transferknowl-
edgefrom onegrammarto another, deductionsareattemptedshowing thedegreeto which
abstractionshave or have not resultedfrom implicit learningprocesses.

The seminalwork in this areawas performedby Reber(11) and it was his main
conclusionthatunconscious(i.e., implicit) processesof learningcouldproduceinternal
abstractionswith thesamefunctionalpropertiesasthoseacquiredthroughexplicit tuition.
The implicationsthat Reberdrew from his resultshave beenwidely questioned,with
objectionsoftenfocussingon the fuzzinessof thesupposeddichotomybetweenabstract
andspecificknowledge.

All businessasusual,perhaps.But from thepointof view of quantitativeabstraction
theory, it beginsto look asif theproblemhere,aswith thedilapidatedtype/tokendistinc-
tion, mayreallybetheresultof theattemptto applyanover-simplified,black-and-white
conceptualisationto whatis in realitya complicated,multi-dimensionsalissue.

Accordingto thetheory, abstractionshave a logical structurewhich maybearbitrar-
ily deep. The derivation of new abstractions,whetherclassificatoryor compositional,
mayproceedat any level within the treeof existing abstractions.On this view, it makes
no senseto classifynew knowledgeaseitherabstractor specific. Rather, it shouldbe
identifiedashaving a particularlevelof abstraction.

Similar remarkscanbe madewith respectto consciousv. unconsciousprocessing.
Assumingthatthelevel of ‘consciousness’inherentin cognitiveprocessingis a function
of the abstractnessof the entitiesover which it is applied,we canapply the continuity
upgradeto the conscious/unconscious‘dichotomy’ too. On the basisof theassumption
stated,wecantreattheissueof theconsciousnessof processingasamatterof degree,and
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judgeany specificcasesaccordingto elevationin therelevantabstractiontree.

9 Concluding comment

It would be an interestingprojectto determinehow many of the unresolved issuessur-
roundingthe questionof implicit v. explicit learningwould evaporatein the presence
of suitableenhancementsin the terminology. The projectwould certainlybe approved
by Alan Newell who nearly forty yearsagoadmonishedpsychologistsfor their useof
simplistic,binary oppositesin their conceptualisationof cognitive function (12) Rather
obviously, Newell’s criticismshave hada limited impact. In fact, the implicit v. explicit
debategainedits principalmomentuma full decadeafter Newell’s publication.But the
fact thatcognitive psychologistsstill adhereto black-and-whiteconceptsmaybedueto
the fact thatworkablereplacementshave yet to beprovided. In this context, the limited
but concretecontributionof thepresenttheorymayhave a worthwhilefuture.
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