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Abstract: Some regularities enjoy only an attenuated existence in a body of training data. These are regularities whose statistical visibility
depends on some systematic recoding of the data. The space of possible recodings is, however, infinitely large – it is the space of applicable
Turing machines. As a result, mappings that pivot on such attenuated regularities cannot, in general, be found by brute-force search. The
class of problems that present such mappings we call the class of “type-2 problems.” Type-1 problems, by contrast, present tractable
problems of search insofar as the relevant regularities can be found by sampling the input data as originally coded. Type-2 problems, we
suggest, present neither rare nor pathological cases. They are rife in biologically realistic settings and in domains ranging from simple
animat (simulated animal or autonomous robot) behaviors to language acquisition. Not only are such problems rife – they are standardly
solved! This presents a puzzle. How, given the statistical intractability of these type-2 cases, does nature turn the trick? One answer, which
we do not pursue, is to suppose that evolution gifts us with exactly the right set of recoding biases so as to reduce specific type-2 problems
to (tractable) type-1 mappings. Such a heavy-duty nativism is no doubt sometimes plausible. But we believe there are other, more general
mechanisms also at work. Such mechanisms provide general (not task-specific) strategies for managing problems of type-2 complexity.
Several such mechanisms are investigated. At the heart of each is a fundamental ploy – namely, the maximal exploitation of states of
representation already achieved by prior, simpler (type-1) learning so as to reduce the amount of subsequent computational search. Such
exploitation both characterizes and helps make unitary sense of a diverse range of mechanisms. These include simple incremental learning
(Elman 1993), modular connectionism (Jacobs et al. 1991), and the developmental hypothesis of “representational redescription”
(Karmiloff-Smith 1979; 1992). In addition, the most distinctive features of human cognition – language and culture – may themselves be
viewed as adaptations enabling this representation/computation trade-off to be pursued on an even grander scale.

Keywords: connectionism; learning; representation; search; statistics

1. Introduction: The limits of uninformed learning

In any multilayered PDP System, part of the job of intermediate
layers is to convert input into a suitable set of intermediate
representations to simplify the problem enough to make it
solvable. One reason PDP modelling is popular is because nets
are supposed to learn intermediate representations. They do
this by becoming attuned to regularities in the input. What if the
regularities they need to be attuned to are not in the input? Or
rather, what if so little of a regularity is present in the data that
for all intents and purposes it would be totally serendipitous to
strike upon it? It seems to me that such a demonstration would
constitute a form of the poverty of stimulus argument.

(Kirsh 1992, p. 317)

Kirsh’s worry about regularities that enjoy only a marginal
existence “in the input” is, we suggest, an extremely serious
one. In this paper we offer a statistical framework that gives
precise sense to the superficially vague notion of such
marginal regularities. We show that problems involving
such marginal regularities are much more pervasive than

many working connectionists optimistically imagine. And
we begin the task of developing a unified framework in
which to understand the space of possible solutions to such
problems – a space centered around the key notions of in-
cremental learning and representational trajectories (Clark
1993, Ch. 7; Elman 1993).

Having emphasized the foundational role that an under-
standing of these notions must play in cognitive science, we
go on to argue that a wide variety of superficially distinct
ploys and mechanisms can be fruitfully understood in these
terms. Such ploys and mechanisms range from simple
evolved filters and feature detectors all the way to complex
cases involving the use and reuse of acquired knowledge.
The goal, in every case, is to systematically reconfigure a
body of input data so that computationally primitive learn-
ing routines can find some target mapping – that is, to trade
representation against computation. Uninformed learning
– learning that attempts to induce the solutions to problems
involving these “marginal regularities” solely on the basis of
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the gross statistics of the input corpus – is, we show, pretty
much doomed to failure. But the variety of ways in which a
learning device can circumvent such problems is sur-
prisingly large and includes some quite unexpected cases.

The strategy of the paper is as follows. We begin (sect. 2)
by distinguishing two kinds of statistical regularity. This
distinction (between what we term “type-1” and “type-2”
mappings) gives precise sense to Kirsh’s notion of robust
versus “marginal” exemplification of regularities in specific
bodies of data. We go on (sect. 3) to look at two case studies.
These concern a simple animat (simulated animal or auton-
omous robot) behavior called “conditional approach” and
the grammar acquisition task studied by Elman (1993). The
final substantive section (sect. 4) develops a broader per-
spective on the issues and canvasses a variety of partial
solutions to the problems posed by type-2 mappings. These
solutions build on and extend Elman’s (1993) perspective
on incremental learning and relate it to other strategies for
maximizing the usefulness of achieved states of representa-
tion.

2. “Marginal” regularities and the complexity
of learning

Kirsh’s question concerned regularities whose presence “in
the data” was so weak as to make discovery “totally seren-
dipitous.” But how should we understand this notion of
regularities that are in some way present in the data and yet
threaten to remain invisible to any uninformed learning
device? One way to give concrete sense to such a notion is to
distinguish between two ways in which a regularity can be
statistically present in a training set. The first (basic) way
the regularity may be discovered is by examining the matrix
of conditional probabilities (i.e., relative frequencies) ob-
servable in the input data. In the second (derived) way, the
regularity may emerge only as a result of some systematic
recoding of the input features, treating relational properties
of the original inputs as defining new, higher-order fea-
tures. In the latter case, it is unlikely that any uninformed
learning device (one that does not receive some extra
prompt or push to enable it to choose the right recoding out
of an infinity of possible recodings) will discern the regu-
larity.

This account of the idea of “marginal regularities” can be
made statistically precise. Let us treat the process of learn-
ing implemented by some arbitrary uninformed learning
mechanism as the attempt to acquire a target input/output
mapping. To have any chance of success the learner re-
quires some source of feedback regarding the mapping to
be acquired. In the much-studied supervised-learning sce-
nario, this feedback takes the form of a set of training
examples. The learner’s aim is to arrive at a point where it
is able to map any input taken from the target mapping
onto its associated output. In more general terms, the
learner’s aim is to be able to give a high probability to the
correct output for an arbitrary input taken from the map-
ping.

If the learner is to have any chance of achieving this goal,
the feedback it receives must contain information that
justifies assigning particular probabilities to particular out-
puts. Learning is essentially the process of discovering and
exploiting such justifications. To understand the nature of
the process we need to analyze the ways in which super-

visory feedback can provide justifications for assignments of
particular probabilities to particular outputs. The problem,
in general, is thus:

(From) a source of feedback – that is, a set of input/output
examples.
(Produce) an implementation of an appropriate, conditional
probability distribution over outputs – that is, produce an
implementation that will identify the value of P (yux ), the
probability that y is the correct output for input x, for any x and y
taken from the target input/output mapping.

Given this specification, any analysis of the acquisition task
must show how the probability assignments produced are
justified by the input/output examples. Ignoring the trivial
case in which x → y is a member of the example set, which
trivially justifies the conclusion that P (yux ) 5 1, there
remain three substantial forms of justification. P (yux ) 5 p
might be justified if

(1) P (y ) 5 p,
(2) P (yux9) 5 p, where x9 is some selection of values from input-

vector x, or
(3) P[yug ([ X ) 5 z] 5 p, where g is some arbitrary function,

[ X is any seen input, and z is the value of function g applied
to x.

This holds for any value of p. Thus we know that any
acquisition mechanism must exploit some combination of
these three forms of justification. In the absence of any
special background knowledge, the complexity of exploit-
ing a particular probability (as a justification) is related to
the size of its distribution. This prompts us to split the
justification forms into two basic categories: the “direct”
forms P (y ) and P (yux ) and the “indirect” form P[yug ([ X)
5 z].

P (y ) and P (yux ) are direct in the sense that their distri-
butions can be obtained by examination of the frequency
statistics of the inputs and their values. P[yug ([ X ) 5 z] is
indirect since it can only be obtained following identifica-
tion of the “recoding” function g. The significance of this
distinction relates to complexity. Provided variables take a
finite number of values, both of the direct forms have finite
distributions. The indirect form, however, has an infinite
and highly “explosive” distribution since it is grounded in
the space of computable functions. Problems that involve
exploiting either of the two direct forms thus have much
lower theoretical complexity than problems that involve
exploiting the indirect form.

The added complexity in the indirect case consists in the
need to discover a recoding of the training data – that is, to
discover the function g on which the justification depends.
Such a function must depend on nonabsolute values of its
argument vector since otherwise it would follow that in all
cases there would be some P (yux9) such that

P[yug ([ X ) 5 z] 5 P (yux9)

and the supposed indirect justification would thus be re-
duced to one or more direct justifications. From this we can
infer that problems requiring the exploitation of indirect
forms of justification involve finding functions that test (or
measure) relational properties of the input values.2 In what
follows we will call problems that are only solvable through
exploitation of indirect justifications “type-2” and all others
“type-1.” “Type-1” problems are solvable through exploita-
tion of observable statistical effects in the input data (e.g.,
probabilities). “Type-1” problems are in this sense “statis-
tical,” and “type-2” problems are “relational.”



Clark & Thornton: Trading spaces

BEHAVIORAL AND BRAIN SCIENCES (1997) 20:1 59

Table 1. Original pairs in training set

x1 x2 y1

1 2 ⇒ 1
2 2 ⇒ 0
3 2 ⇒ 1
3 1 ⇒ 0
2 1 ⇒ 1
1 1 ⇒ 0

We can decide whether a given problem has a type-1
solution by inspecting the relevant matrix of conditional
probabilities. However, there is no obvious way to decide
whether or not a problem has a type-2 solution without
actually solving it. Thus, there is no obvious operational
definition for the class of type-2 problems. We do not
believe this lack of an operational definition undermines
the value of the distinction, any more than it undermines,
for example, the distinction between halting and nonhalting
computer programs.

The distinction between type-1 and type-2 problems is
closely related to Rendell’s distinction between smooth and
“multipeaked” concepts (Rendell 1989), and our discussion
of its significance will also recall Utgoff ’s treatment of
inductive bias (Utgoff 1986). The type-1/type-2 distinction
may in addition be viewed as generalizing the distinction
between linearly separable and nonlinearly separable prob-
lems (Minsky & Papert 1988). In a linearly separable
problem, all variables are numeric and target outputs can
be derived by thresholding a weighted summation of the
input values. For this to be possible, input values must vary
monotonically with target outputs. Thus, in a linearly separ-
able problem, specific ranges of input values are associated
with specific outputs and strong conditional output proba-
bilities necessarily exist. Linearly separable problems are
therefore type-1. However, our definition of type-1 prob-
lems does not insist on input-to-output monotonicity. Thus
we may have type-1 problems with numeric variables that
are not linearly separable.

To further illustrate the distinction between type-1 and
type-2 problems, consider the training set shown in Table 1.
This is based on two input variables (x1 and x2) and one
output variable (y1). There are six training examples in all.
An arrow separates the input part of the example from the
output part.

A variety of direct justifications are to be found in these
training data. For example, we have the unconditional
probability P (y1 5 1) 5 0.5 and the conditional probability
P (y1 5 1ux2 5 2) 5 0.67. It turns out that these proba-
bilities, and in fact all the probabilities directly observed in
these data, are close to their chance values. Indirect justi-
fications are to be found via some recoding function g. In
the case at hand, imagine that the function effectively
substitutes the input variables in each training pair with a
single variable whose value is just the difference between
the original variables. This gives us a set of derived pairs as
shown in Table 2 (the value of x4 here is the difference
between the values of x1 and x2).

Note how the recoding has produced data in which we
observe a number of extreme probabilities relating to the

Table 2. Derived pairs

x4 y1

1 ⇒ 1
0 ⇒ 0
1 ⇒ 1
2 ⇒ 0
1 ⇒ 1
0 ⇒ 0

output variable y1 – namely, P (y1 5 0ux4 5 0) 5 1, P (y1 5
1ux4 5 1) 5 1 and P (p1 5 0ux4 5 2) 5 1. The recoding thus
provides us with indirect justification for predicting y1 5 0
with a probability of 1 if the difference between the input
variables is 1. It also provides us with indirect justification
for predicting y1 5 1 with a probability of 1, if the
difference between the input variables is either 2 or 0. In
short, we have indirect justification for the output rule
“y151 if x4 5 1; otherwise y1 5 0.” Kirsh’s “marginal
regularities,” we conclude, are precisely those whose justi-
fication is in our sense indirect. They thus involve (1)
deriving a recoding of the training examples and (2) deriv-
ing probability statistics within the recoded data.

The number of indirect justifications is the number of
direct justifications (derivable from the relevant recoded
data) plus the number of possible recodings of the data. The
number of possible recodings is simply the number of
distinct Turing machines we can apply to those data. There
are infinitely many of these. Thus the space of indirect
justifications is infinitely large. To hit on the right one by
brute-force search would indeed be “serendipitous.”

Thus, consider the much-studied case of learning parity
mappings (see, e.g., Rumelhart et al. 1986 and Hinton &
Sejnowski 1986). These are indeed cases of type-2 (rela-
tional) input/output mappings. The input/output rule for a
parity mapping is simply that the output should be 1 (or
true) just in case the input vector contains an odd number
of 1s (or, in general, an odd number of odd values). The
complete mapping for the third-order, binary-valued parity
problem (i.e., 3-bit parity) is shown in Table 3.

Every single conditional probability for this mapping (for
values of the output variable x4) is at its chance level of 0.5.
Since the probabilities for parity mappings are always like
this they cannot be solved by exploiting direct justifications.
Parity problems are thus always pure type-2.

Table 3. Bit parity

x1 x2 x3 x4

1 1 1 ⇒ 1
1 1 0 ⇒ 0
1 0 1 ⇒ 0
1 0 0 ⇒ 1
0 1 1 ⇒ 0
0 1 0 ⇒ 1
0 0 1 ⇒ 1
0 0 0 ⇒ 0
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Yet parity problems, as is well known, can be solved by,
for example, backpropagation learning. Moreover, such
solutions are typically said to involve the algorithm deriving
what can be thought of as an internal recoding scheme.
Despite this, we should not overestimate the generality of
such solution methods. All of them introduce restrictive
assumptions about the nature of the type-2 regularity to be
discovered. Backpropagation, for example, effectively as-
sumes that the required recoding can be expressed in terms
of the user-fixed architecture of semilinear, sigmoidal trans-
fer functions, and that it can be discovered by the gradient
descent method embodied in the learning algorithm. If the
assumption is invalid, the learning necessarily fails.

This may help to explain why backpropagation, although
highly successful in solving apparently complex generaliza-
tion problems (e.g., text-to-phoneme translation [Rosen-
berg & Sejnowski 1987], handwritten zip code recognition
[LeCun et al. 1989], etc.), nonetheless often fails to solve
low-order parity problems when presented as generaliza-
tion problems in which some cases are held back for testing
purposes.

We have carried out an exhaustive empirical analysis of
the performance of backpropagation (Rumelhart et al.
1986) on the 4-bit parity generalization problem using
three-layered, feed-forward networks. The number, n, of
hidden units was varied between 3 and 80. For each n, the
results from 10 successful training runs were obtained. On
each training run, a randomly chosen input/output pair was
removed from the data set and used to test the network
after it had successfully learned the other 15 pairs. Runs
were terminated once negligible mean error on the training
cases had been achieved or after 50,000 iterations. For
these experiments we used standard learning parameters –
that is, a learning rate of 0.2 and a momentum of 0.9.

The results are summarized in Figure 1 below. This
shows the mean error for the seen items in the incomplete
training set and for the remaining, unseen input, for 10
successful training runs. The error measure is the average
difference between actual and target activations. Clearly,
generalization beyond the incomplete training set failed. In
every run, the output associated with the single test item
was incorrect.

Note that this generalization failure occurs in the context
of perfectly “successful” learning, that is, perfect acquisi-

Figure 1. Parity generalization by backpropagation.

tion of the training cases. This is a particularly concrete sort
of generalization failure since it cannot be overcome by
increasing the amount of training or by changing parame-
ters. Once a supervised algorithm has learned the training
cases perfectly, generalization grinds to a halt. As far as the
algorithm “knows,” it is already producing perfect perfor-
mance.

Parity cases, we conclude, do not really warrant the
customary optimism concerning the chances of back-
propagation in a multilayer net hitting on the right recod-
ings to solve type-2 cases. Instead as we move toward larger-
scale, more realistic cases, we find a robust pattern of
failure. In the next section we consider two such cases. The
first concerns a simple robotics-style problem called “con-
ditional approach.” The second concerns learning about
grammatical structure.

3.  Two case studies

In order to investigate the difficulty of type-2 learning
problems in an experimental setting, we conducted a com-
parative survey focused on a superficially simple animat
behavior called “conditional approach.” The production of
this behavior in an animat requires a proximity-sensing
system of some sort and motor abilities enabling forward
and rotational movements. The behavior involves moving in
on any relatively small object in the sensory field but
standing clear of (i.e., not moving in on) any large object.

The behavior was investigated using computer simula-
tions. The simulations used a two-dimensional, rectangular
world and a single animat. This had two free-wheeling
castors situated fore and aft and two drive wheels situated
along the central, latitudinal axis (see Fig. 2). The animat

Figure 2. The simulated animat.
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Figure 3. The simulation setup.

was equipped with a range-finding system. This sensed the
proximity of the nearest object – subject to 10% noise –
along seven rays, evenly spaced within a 1008, forward-
facing arc.

The plan view shown in Figure 3 illustrates the basic
simulation setup. The animat, situated in the lower part of
the space, is represented as a small box with an arrow
pointing in its direction of motion. The seven dashed lines
are the rays along which proximity is measured. The bound-
aries of the space – here shown as unbroken lines – are
actually transparent to the animat. Thus, in the situation
shown, the animat senses only the circular blob directly
ahead of it. That is to say, within its seven proximity inputs,
the two associated with the rays intersecting the blob will be
relatively high but the other five will be zeros indicating “no
object sensed.”

The aim of the empirical investigation was to see how
well supervised learning algorithms performed when used
to train an animat to perform conditional approach. To
obtain training sets for the learning process, we hand-
crafted an animat to produce perfect conditional-approach
behavior and then sampled its reactions during simulation
runs. This involved interrupting our simulation program in
the middle of each timecycle and recording the sensory
input received by the animat at that point and the amount of
drive being sent to the two wheels. The input/output pairs
produced gave us the required training set.

The conditional-approach behavior entails producing
three basic behavioral responses to four scenarios. With no
object appearing in the sensory field the animat must swivel
right 108. With an object appearing at long range, or a small
object appearing at close range, the animat must execute a
forward move toward that object (this might or might not
involve a change in direction). When a large object appears
at close range the animat should remain stationary.

The inputs from the sensory system were represented

(for purposes of training) in the form of real numbers in the
range 0.0–1.0. The inputs formed a normalized measure of
proximity and embodied 10% noise. The amount of drive
applied to the two wheels in each simulation step was
represented in the form of two real numbers, also in the
range 0.0–1.0. Thus, a full right turn with no forward
motion would appear in the training set as the pair ,1.0,0.0
(given the assumption that the first number sets the drive
on the left wheel and the second number the drive on the
right wheel).

The use of standard-format training sets enabled us to
test the performance of any supervised learning algorithm
on the conditional-approach problem. We tested the per-
formance of a wide range of algorithms including ID3
(Quinlan 1986) and C4.5 (Quinlan 1993), feed-forward
network learning algorithms of the backpropagation fam-
ily including “vanilla” backpropagation (Rumelhart et al.
1986), a second-order method based on conjugate-gradient
descent (Becker & Cun 1988), and a second-order method
based on Newton’s method called “quickprop” (Fahlman &
Lebiere 1990). We also tested the cascade-correlation con-
structive network learning method (Fahlman & Lebiere
1990) and a classifier/genetic-algorithm combination based
on Goldberg’s “simple classifier system” (Goldberg 1989).

All the network algorithms tested operate by modifying
the connection weights in a fixed, nonrecurrent network of
artificial neurons (using the standard logistic activation
function). The efficiency of network learning is determined
by feeding in novel inputs to the network and seeing what
outputs are generated after the activation has propagated
across all the relevant connections. When applying network
learning algorithms the user must decide on the internal
architecture of the network3 and, in some cases, the learn-
ing and momentum rate. When testing the various network
learning algorithms we experimented with a range of two-
layered, feed-forward architectures (with complete inter-
layer connectivity) but found that the best performance was
obtained using nine hidden units; that is, we settled on a 7–
9–2 feed-forward architecture. All the results reported
relate to this case.

The results were surprisingly robust. C4.5 and nearest-
neighbors performed better on the learning task than the
connectionist algorithms or the classifier system, but none
of the algorithms provided satisfactory performance on this
problem. In general, following training, the animat would
tend to either approach all objects (large or small) or no
objects. It would only very occasionally produce the desired
discrimination between large and small objects.

We measured the success of the training in several ways.
First of all we measured conventional error rates (i.e.,
proportion of incorrect responses on unseens). However,
these figures give a misleading impression of success. The
majority of responses in the conditional-approach behavior
do not entail making the crucial discrimination between
large and small objects. They merely involve continuing
rotatory behavior or moving further towards a small and/or
distant object. A better performance measure is provided
by sampling the frequencies with which the animat actually
arrives at large and small objects. The former frequency (a
measure of number of errors) we call the “nip frequency,”
the latter (a measure of successes) the “meal frequency.”
These frequencies tend to show the extent to which the
animat’s behavior embodies the necessary size discrimina-
tion.
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Table 4. Performance of learners on conditional approach

Error rate Meal freq. Nip freq.

NN 0.161 0.117 0.191
Quickprop 0.221 0.201 0.321
C4.5 0.233 0.479 0.371
CS 0.344 0.251 0.275

Our main results are summarized in Table 4. The lowest
error rate on the testing cases was 0.161 (16.1%) and this
was produced by the nearest-neighbors algorithm (NN).
This figure seems low but actually reveals relatively poor
performance (for reasons explained above). The same goes
for the other error rates shown. The columns headed “Meal
freq.” and “Nip freq.” show the “meal” and “nip” frequen-
cies respectively for the various simulated animats. Note
that the trained animats do quite poorly, with the quick-
prop, NN, and CS animats all achieving nip-frequencies
(i.e., making errors) in excess of the meal-frequencies.

The reason conditional approach, despite its surface
simplicity, is so hard to learn is that it is a classic type-2
problem. What makes it type-2 is that the input/output rule
for this behavior is (relative to the input coding) inherently
relational. The robot must learn to produce behaviors that
depend on the ratio between apparent closeness and appar-
ent width. Successful performance can be straightforwardly
achieved by a hand recoding in which this ratio is calculated
and made explicit.

Moving up the scale of task-complexity, we next consider
Elman’s recent and important work on grammar acquisition
(Elman 1993). Elman studied a grammar-acquisition prob-
lem in which a simple recurrent net was required to learn a
grammar involving features such as verb/subject number
agreement and long distance (cross-clausal) dependencies.
He discovered that ordinary backpropagation learning was
unable to prompt a net to acquire knowledge of the gram-
mar. But success could be achieved in either of two ways.
First, it was possible to train a net successfully if the training
data were divided into graded batches beginning with
simple sentences and progressing to more complex (multi-
clausal) ones. Second, success could be achieved by provid-
ing the network with a limited initial window of useful
recurrency (resetting the so-called context units to 0.5 after
every third or fourth word), which was allowed to increase
as training progressed. In the latter case there was no need
to batch the training data as the restricted early memory
span in effect filtered out the mappings involving cross-
clausal dependencies and allowed in only the simpler con-
structions: the data were thus “automatically sorted.” It is
clear that the two techniques are functionally equivalent;
the reason they work is, as Elman comments, that:

The effect of early learning . . . is to constrain the solution space
to a much smaller region. The solution space is initially very
large, and contains many false solutions (in network parlance,
local error minima). The chances of stumbling on the correct
solution are small. However, by selectively focussing on the
simpler set of facts, the network appears to learn the basic
distinctions – noun/verb/relative pronoun, singular/plural etc.
– which form the necessary basis for learning the more difficult
set of facts which arise with complex sentences. (Elman 1993,
p. 84)

By “false solutions” Elman means the extraction of the
wrong regularities, that is, finding spurious type-1 regu-
larities, which will fail to determine successful performance
on unseen cases. Both of Elman’s solution techniques force
the net to learn certain basic mappings first (e.g., verb/sub-
ject number agreement). Once this knowledge is in place,
the more complex mapping tasks (e.g., agreement across an
embedded clause) alter in statistical character. Instead of
searching the explosive space of possible relations between
input variables, the net has been alerted (by the simpler
cases) to a specific relation (agreement) that characterizes
and constrains the domain.

Elman-style incremental learning works because the
early learning alters the shape of the subsequent search
space. In a sense, once the early learning is in place, the
device is no longer uninformed. Instead, it benefits from a
substantial bias toward solutions that involve recoding in-
puts in terms of, for example, verb, subject, number (singu-
lar or plural), and so forth. And, relative to such a recoding,
the otherwise invisible higher-level grammatical regulari-
ties pop out. In this way the incrementally trained net
avoids what Elman calls the Catch-22 situation, in which:

[T]he . . . crucial primitive notions (such as lexical category,
subject/verb agreement etc.) are obscured by the complex
grammatical structures . . . [and] the network is also unable to
learn about the complex grammatical structures because it lacks
the primitive representations necessary to encode them. (El-
man 1993, p. 94)

Learning these “primitive representations” is learning a
specific recoding scheme, one that later simplifies the task
of accounting for more complex grammatical regularities
such as long-distance dependencies. Relative to the new
encodings such elusive regularities are transformed into
directly observable frequencies in the (now recoded) data
set. The need for such recoding, in the grammar case, was
demonstrated long ago. Here, we merely recapitulate
Chomsky and Miller’s (1963) observation (also cited by
Elman, 1993, p. 86) that regularities such as long-distance
dependency cannot (on pain of unimaginably large search)
be learnt by reliance on cooccurrence statistics defined
over individual words, that is, defined over the original
input features. By contrast, once the input is viewed
through the special lens of a recoding scheme involving
features such as subject and number (singular/plural), even
a 17-word displaced agreement relation will show up as a
mere second-order direct frequency, that is, one involving
the absolute values of two variables. What Elman so power-
fully demonstrates is that this recoding scheme can itself be
learnt as a function of directly sampled frequencies pro-
vided the early training data are either carefully selected (as
in the “graded batches” technique) or effectively filtered (as
in the memory-restriction case). In these ways a problem
whose mature expression poses an intractable type-2 learn-
ing problem can be reduced to a developmental sequence
of tractable type-1 mappings. Moreover, this can be
achieved without going so far as to build in the required
recoding bias at the very outset. The full nativist solution
favored by Chomsky is, in such cases, not compulsory.

Kirsh’s observation that target domains that involve “mar-
ginal regularities” represent a version of the poverty of the
stimulus argument is thus correct. But – perhaps sur-
prisingly – such domains (now fixed as those built around
type-2 indirect frequency effects) sometimes yield to a
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temporal sequence of type-1 learning episodes. In the next
section we consider the potential scope and power of this
basic strategy and some related ploys and techniques. The
upshot is, we believe, a much more unified and theoreti-
cally well-grounded idea concerning the role of a variety of
developmental, computational, and even cultural and his-
torical constraints and processes. The combined effect of
such constraints and processes is to enable us to achieve a
kind of cognitive hyperacuity: to regularly and robustly
solve types of problem whose statistical profiles are prima
facie cause for despair.

4. Putting representations to work

The real trouble with type-2 learning problems is, we saw,
that they cannot in general be solved by any kind of
uninformed search. The trouble with informed search, of
course, is identifying the informant. In many cases, positing
better-informed search simply begs the question. Just
where did those feature detectors, or those biases towards
trying such and such a recoding first, come from? Unless we
are comfortable with a very heavy-duty nativism and an
amazing diversity of task-specific, on-board learning de-
vices,4 we will hope in addition to uncover at least a few
more general strategies or ploys. Such strategies (tricks,
ploys, heuristics) cannot be problem specific, since this
would be to fall back on the full nativist solution. Instead,
they will constitute general techniques aimed at maximiz-
ing the ways in which achieved representations can be
traded against expensive search. They will thus maximize
the chances of a learner successfully penetrating some
random type-2 domain. Elman has already alerted us to one
such trick – the provision of an extended developmental
period whose early stages are characterized by weaker
computational resources able to act “like a protective veil,
shielding the infant from stimuli which . . . require prior
learning to be interpreted” (Elman 1993, p. 95). What other
strategies might reduce the search space for type-2 cases?

Recall that the key to success, when faced with a type-2
case, is to use achieved representations to reduce the
complexity of subsequent search. This is the operational
core of incremental learning in which the bare input data
are effectively recoded through the lens of the early knowl-
edge. Such a recoding (in, e.g., the cases studied by Elman)
is, however, task-specific. That is to say, the achieved
representations (the results of the early learning) are only
available for use along a single, fixed processing channel.
Once the system has exploited the early knowledge to
achieve success with the adult grammar, the enabling
resource (the “building-block” knowledge) is in effect used
up. There are ways around this, but they all require either
extensions of the basic connectionist model (e.g., wholesale
copying of the early net) and/or are restricted to the rare
cases in which the dimensionality of the inputs is identical
for both the original task and any later ones; for a full
discussion see Clark & Karmiloff-Smith (1993), and
Karmiloff-Smith & Clark (1993).

One useful trick would thus be to somehow “free-up” any
acquired representational resources so as to allow such
resources to participate in a multitude of different kinds of
future problem-solving. Representational resources origi-
nally developed to solve a problem P in a domain D would
then be exploitable in an open-ended number of future

learning episodes. Whereas in the Elman example the
representational trajectory is a one-off (one sequence of
learning culminating in a successful network), we are now
imagining cases in which one set of early “building block”
knowledge can be used as often as required and can thus
participate in multiple representational trajectories (tem-
poral sequences of learning).5 Achieved representational
resources, on such a model, do double duty as general
purpose feature detectors that can be used to recode
subsequent inputs in an effort to unmask lurking type-2
regularities.

Complete and unbounded mobility and reuseability of
existing knowledge is probably impractical. But partial
mobility is a realistic and realizable goal. One way of
attaining it is to pursue a more determinedly modular
connectionist approach. Thus Jacobs et al. (1991a) describe
a system that comprises a variety of architecturally distinct
subnets. These subnets compete to be allowed to learn to
represent a given input pattern. Whichever net, early on in
the training, gives the output closest to the target is allowed
to learn that pattern. In the trained-up system a gating
network selects which subnet should come into play to yield
the output for a given input. In a task such as multiple-
speaker vowel recognition (Jacobs et al. 1991b), such a
modular system can avoid the intractable task of finding a
single position in weight space capable of solving the
problem for all types of voices and instead tackle a set of
more tractable ones; for example, one subnet learns to
identify vowels in children’s voices, another in men’s, and
another in women’s (see also Churchland & Sejnowski
1992, p. 130). Such modularization is one possible key to
the flexible and multiple reuse of the valuable products of
early learning. The goal, as noted above, is to ensure that a
detector for some property P is not inextricably embedded
into the solution to a single more complex problem, since P
may be just the property or sensitivity that would render
some other subsequently encountered problem tractable.
Assigning specific tasks to specific modules allows for the
future reuse of a trained-up module in some other overall
task (see Jacobs et al. 1991a).

An even more general version of this idea (concern-
ing the benefits of flexible and multiple reuseability for
achieved representations) is captured by Karmiloff-Smith’s
(1979; 1992) Representational Redescription Hypothesis.
Karmiloff-Smith’s claim is that a special and distinguishing
feature of higher cognition is that it involves an endogenous
drive to (1) seek increasingly general, flexible, and abstract
recodings of achieved knowledge and (2) make those recod-
ings available for use outside the original problem domain.
Such recoding is, moreover, to be conservative in that the
previous codings are never lost and can thus be reinvoked as
required.

Despite a frustrating lack of concrete mechanisms (but
see Clark & Karmiloff-Smith, 1993, and Clark, 1993, for
some suggestions), the idea is attractive. Endogenous pres-
sure to recode is precisely a self-generated pressure to
explore continuously the space of incremental problem
solutions without commitment to the solution of any spe-
cific problem. Each such recoding may just happen to
reduce a problem that was previously type-2 (and hence
effectively outside the scope of individual learning) to a
tractable type-1 incarnation. The learner will thus be en-
gaged in a kind of continuous search for new problems
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insofar as each recoding changes the shape of the space
defined by the inputs and hence opens up new cognitive
horizons. An individual, endogenously specified tendency
to engage in representational redescription would thus
amount to a natural injunction to persistently pull as much
as possible into the space negotiable by our on-line, weak
type-1 learning methods. With direct task-driven explo-
ration of type-2 spaces out of the question, evolution be-
stows on the individual a generic drive to code and recode
and re-recode. Once again, we are trading spaces – using
achieved representation to reduce the complexity of com-
putation.

Such a tendency would also help offset a serious con-
straint on standard connectionist learning. This is what
Elman (1993) calls the constraint of “continuity of search.”
The worry is that gradient descent search techniques im-
pose a limitation, namely, that the hypotheses to be consid-
ered (here, hypotheses are identified with locations in
weight space) at time t 1 1, cannot be “wildly different”
from those already under consideration at the previous
processing cycle (time t). This is because of the nature of
gradient descent learning itself; it explores a space by
multiple restricted local weight updates. Hence “learning
occurs through smooth and small changes in hypotheses”
(Elman 1993, p. 91). But while this is true so long as we
restrict our attention to the search performed by any single
network, it is not true if we consider the use of multiple
searches exploiting a variety of networks. Within a larger,
more modular space, we can indeed explore “wildly differ-
ent” hypotheses in rapid succession. This would be the case
if, for example, new inputs were at first gated to one
subnetwork and then, if that does not look promising (large
error signal), gated to a wholly different subnet, and so on.
Such subnets (as in the Jacobs, Jordan, and Barto work)
could encode very different states of achieved knowledge
and hence provide a multitude of different “lenses” to apply
to the data. In such a manner, distant points in hypothesis
space could indeed be successively explored. Networks of
networks, comprising multiple, reuseable representational
resources, may thus provide for more wide-ranging search
and hence the maximal use of achieved representation.

Analogical reasoning provides a familiar incarnation of a
related strategy. Here we use the filtering lens of a set of
concepts and categories developed in one domain as a
means of transforming our representation of the salient
regularities in some other domain. To borrow an example
from Paul Churchland, scientists fruitfully redeployed con-
cepts and categories developed for the domain of liquid
behavior to help understand optical phenomena. It may be
that, as Churchland suggests (1995, pp. 271–86), the con-
cepts of wave mechanics could not have been directly
induced from the evidence available in the optical domain.
Without the transforming lens of the feature detectors
originally developed to explain behavior in liquid media,
the bodies of data concerning optical phenomena might
indeed have presented intractable problems of search.
Instead we rely on a learning trajectory in which resources
developed to account for regularities in one domain are
reused in a multitude of superficially disparate domains.

It may even be useful (though clearly highly speculative)
to consider public language and culture as large-scale
implementations of the same kind of strategy. Language
and culture, we suspect, provide exactly the kind of aug-
mentation to individual cognition that would enable unin-

formed learning devices to trade achieved representation
against computation on a truly cosmic scale. Public lan-
guage may be seen as a ploy that enables us to preserve the
fruits of one generation’s or one individual’s explorations at
the type-1/type-2 periphery and thus quickly to bring
others to the same point in representational space. Other-
wise put, we can now have learning trajectories which criss-
cross individuals and outstrip human lifetimes. In addition,
we can (by grace of such cultural institutions as schooling)
easily re-create, time and again, the kind of learning trajec-
tory that leads to the solution of key complex problems. In
these ways, the very occasional fruits of sheer good fortune
(the discovery of a powerful input recoding [a concept] or a
potent sequence of training items) can be preserved and
used as the representational baseline of the next genera-
tion’s mature explorations. Language and culture thus en-
able us to trade achieved representation in any member of
the species, past or present, against computation for all
posterity. Given the largely serendipitous nature of the
search for new representations, this is an advantage whose
significance cannot be exaggerated.

It is interesting to compare this vision (of language and
culture as a means of preserving representational achieve-
ments and extending representational trajectories) with
that of Dennett (1994). Dennett usefully identifies a weak
type of learning, which he calls “ABC learning” and defines
it as the “foundational animal capacity to be gradually
trained by an environment.” He depicts standard connec-
tionist learning as falling into this class and asks what leads
us to outstrip the achievements of such ABC-learners. His
answer is: the augmentation of such learning by the symbol
structures of public language (see also Dennett, 1991,
pp. 190, 220, 298–302).

We think Dennett is almost right. He is right to depict
language as a key factor in our abilities to frequently and
repeatedly appear to exceed the bounds of ABC (or, as we
would have it, type-1) learning. Yet in a very real sense there
is, we believe, no other type of learning to be had. What
looks like type-2 learning is in fact the occasional reformula-
tion of a type-2 problem in terms that reduce it to type-1.
Language, we suggest, simply enables us to preserve and
build on such reductions, insofar as the key to each reduc-
tion is an achieved re-representation of a body of data. But
language is not, we think, the sole or primary root of such
re-representations. Instead, such re-representations must
be discovered essentially by chance (perhaps aided by an
endogenous, though undirected, drive to continuously seek
recodings of existing knowledge) in either individual or
species learning. Language is a preserver both of represen-
tational discoveries and of useful learning trajectories.
Language-users will thus indeed steer a profoundly deeper
course into the type-2 problem space than anyone else, but
for reasons which are, we suspect, a little more pedestrian
than Dennett imagines.

Notice in addition that cultural transmission opens up a
new avenue of quasi-evolutionary selection (see, e.g.,
Campbell 1974). It allows the production of artifacts that
are increasingly well-adapted to human needs. One intrigu-
ing possibility is that public language, as a kind of cultural
artifact, has itself evolved to fit the profile of the human
learner. Such a hypothesis effectively inverts the nativist
image in which our brains are adapted to the space of
humanly possible languages. Instead, the conjecture is that
those languages all represent careful adaptations to us.
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Thus, for example, English may exhibit a morphological
structure selected so as to “pop out” when English sen-
tences are heard by a typically biased human learner, for
example, a child with a limited short-term memory and
window of attention. If this were so, then it would be as if
the learner had “feature detectors” already in place, geared
to recoding the gross inputs in a peculiarly morphology-
revealing way. Yet, in fact, it would be the language whose
morphological form had evolved so as to be revealed by
processing biases that the system already exhibited.

Just such a conjecture has been explored by E. Newport
in the guise of her “less is more” hypothesis. The basic
hypothesis is similar to Elman’s “starting small” idea –
though it is targeted on learning about morphology. The
idea is that young children’s inability to process and recall
complex stimuli actually allows basic morphological struc-
tures to “pop out” of the gross data. Learners able to process
and recall more complex stimuli would have to extract these
morphological building blocks by computational means.
For our purposes, however, it is the next step in Newport’s
argument that matters. For she goes on to ask whether any
such “fit” between basic morphological structure and chil-
dren’s limited early capacities to perceive complex stimuli
must be just a lucky coincidence. The answer, she hypothe-
sizes, (Newport 1990, p. 25) is No. The fit is no accident.
But neither is it the case that the child’s early capacities
were selected so as to facilitate language learning. Instead
(and here is the inversion we noted earlier), the structure of
the language may have been selected so as to exploit those
early (and independent) limitations. The upshot is a situa-
tion in which it looks as if the child has on-board resources
tailored to simplifying the language-acquisition task. But in
fact, it is (in a sense) the language that has the prior
knowledge of the child, and not vice versa.

A similar maneuver may, we conjecture, be needed to
insulate Elman’s “starting small” story6 from a related
criticism. The worry is that the “protective veil” of early
limitations is of value only insofar as it filters the gross
incoming data in just the right way as to allow type-1
learning to extract the fundamental regularities (such as
subject/verb number agreement) needed to constrain sub-
sequent attempts to accommodate more complex patterns
(such as long-distance dependencies). But it is not imme-
diately clear why the veil of restricted short-term memory
should filter the data in just that way. One possible explana-
tion, following Newport, is that the sentence structures of
public languages have themselves evolved precisely to
exploit the specific properties of early short-term memory
in human infants. Had our basic computational profiles
been different, public languages would themselves have
evolved differently, in ways geared to the exploitation of
whatever early learning profile we exhibited. In this way
many superficially type-2 problems may be humanly trac-
table because the problem space has itself evolved so as to
make use of whatever inherent biases happened to charac-
terize human learning mechanisms. Just as the shape of a
pair of scissors represents the adaptation of the shape of an
artifact to the preexisting shape of a human hand, so the
phonology and grammar of human languages may repre-
sent the adaptation of a rather special artifact to the
preexisting biases of young human learners. Strong nativist
hypotheses on this account may at times be akin to the
mistaken supposition that the hand is exquisitely adapted to
the scissors, that is, they may invert the true explanatory

order. In such cases it is rather the evolution of the problem
space to fit the learner that yields the functional equivalent
of informed search.

Finally, we note that it is also possible in certain cases to
trade real-world action against direct computational effort.
To divide two-thirds of a cup of cottage cheese into four
equal portions one may either compute fractions or form
the cheese into a circle and divide it into four quadrants.
(This example is from Kirsh 1995.) In the latter case, we
actively manipulate the real world so as to translate the
abstract mathematical problem into a form that exploits the
specific computational powers of our visual systems. We do
not know of any concrete cases in which such physical
interventions act so as to transform a type-2 search into
some more tractable form, although it may prove fruitful to
examine cases in which color-coding, chemical trails, and so
on are used to simplify recognition and tracking. Perhaps
real human action can play a similar role to internal epi-
sodes of problem recoding and thus provide still further
opportunities for the embodied, embedded cognizer to rise
above his apparent computational bounds.7

5. Conclusions: A cautious optimism

From a determinedly statistical point of view, things looked
bleak. Uninformed learning, it was shown, had little chance
of penetrating type-2 problem spaces. And such problem
spaces looked to permeate biological cognition right down
to its roots in simple animat bahaviors. Since such problems
are repeatedly solved by real learners, the question was
“How?” What ploys, stratagems, and tricks enable weak
learning devices to discover regularities whose traces in the
gross input data are (in a sense we made precise) merely
marginal?

One solution would be to leave it all up to biological
evolution; to suppose that we are simply gifted with innate
tendencies to recode and process the gross data in just those
ways needed to simplify very specific kinds of learning. And
no doubt this is sometimes the case. We believe, however,
that other, more general mechanisms are also at work. The
goal of our treatment was therefore two-fold: first, to give a
precise, statistical account of the difference between “mar-
ginal” and robust statistical regularities and hence to distin-
guish two kinds of learning task whose computational
demands are very different; and, second, to explore some of
the ways (short of full-blooded nativism) in which the
harder type of learning may be successfully performed.

The statistical story is, we believe, robust. We have shown
that a variety of existing learning algorithms tend to rely
predominantly (and in some cases exclusively) on the ex-
traction of a specific type of regularity from a body of input
data. This type of regularity lies close to the surface of the
training data, in the form of pronounced frequency effects
and is thus fairly straightforwardly extracted by a variety of
direct sampling methods. Some appearances to the con-
trary, the extraction of these (type-1) regularities is really all
we currently know how to achieve – and no wonder, once
the size of the search space for the other form is appreci-
ated.

The extraction of the more opaque type-2 regularities is
not, however, impossible. The crucial maneuver in such
cases is somehow to trade achieved representation (or
perhaps on occasion real-world action) against computa-
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tional search. Achieved representational states act as a kind
of filter or feature detector allowing a system to recode an
input corpus in ways that alter the nature of the statistical
problem it presents to the learning device. Thus are type-2
tigers reduced to type-1 kittens. It is exactly this strategy
that characterizes Elman’s recent and important work on
incremental learning. Several extensions to Elman’s basic
strategy were pursued. In particular, we noted the potential
value of allowing achieved early representational states to
participate in multiple episodes of future problem-solving,
thus making maximal use of any recoding leverage ever
obtained. Modular connectionism, we suggested, may pro-
vide a partial implementation of such a maximizing strategy.
Annette Karmiloff-Smith’s work on representational re-
description was seen to constitute a general vision of
endogenous drives in human learning consistent with the
commitment to such maximization. Most speculatively,
language and culture were themselves depicted as evolved
tools enabling a kind of species-wide implementation of the
same strategy. Finally, we noted that certain kinds of prob-
lem space (such as that of language acquisition) may have
themselves evolved so as to exploit whatever biases happen
to characterize the search strategies of real learners. To the
extent that this is so, we may again see type-2 problems
solved with unexpected ease.

It is the combination of these various factors that, we
believe, explains our otherwise baffling facility at uncover-
ing deeply buried regularities. But despite the grab-bag of
specific mechanisms, the underlying trick is always the
same: to maximize the role of achieved representation and
thus minimize the space of subsequent search. This now
familiar routine is, as far as we can tell, obligatory. The
computationally weak will inherit the earth. But only if they
are representationally rich enough to afford it.
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NOTES
1. The order of names is arbitrary.
2. This is a satisfying rediscovery of the old AI rule that states

that “relational learning is hard” (cf. Dietterich et al. 1982).
3. The configuration of input and output units is fixed by the

learning problem. When testing standard backpropagation we
found that a learning rate of 0.2 and a momentum of 0.9 gave best
results; these were the settings used in all the cases reported.
When testing iterative learning algorithms (i.e., the network
learning algorithms), we ran the algorithms for a minimum of
100,000 epochs of training (i.e., 100,000 complete sweeps through
the entire training set).

4. Gallistel (1994) provides an eloquent defense of just such a
profligate nativism.

5. As one referee usefully pointed out, standard programming
practice incorporates a version of the same idea in the form of an
injunction to maximally exploit achieved partial solutions by the
use of subroutines.

6. Elman (1993) discusses Newport’s work. But strangely, he
does not address the cultural–evolutionary conjecture, which we
believe is crucial to any complete defense of his model.

7. Kirsh and Maglio’s (1994) discussion of “epistemic actions”
begins the important task of plotting ways to trade action against
computational effort.
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Abstract: Clark & Thornton are too hasty in their dismissal of uninformed
learning; nonmonotonic processing units show considerable promise on
type-2 tasks. I describe a simulation which succeeds on a “pure” type-2
problem. Another simulation challenges Clark & Thornton’s claims about
the serendipitous nature of solutions to type-2 problems.

Clark & Thornton (C&T) believe that type-2 problems present a
very real difficulty for uninformed learning mechanisms because
they require a systematic recoding of the input features, of which
there are potentially an infinite number. This, they argue, is a
particular problem for automated learning mechanisms, such as
those based on backpropagation style supervised learning rules.
C&T support this position by appealing to a number of simula-
tions. They also make a number of proposals about how these
difficulties might be avoided without having resort to what they
describe as “a very heady-duty nativism and an amazing diversity
of task-specific, on-board learning devices.” These proposals aim
at reducing the search space for type-2 problems without being
excessively task specific, nativist, or ad hoc. Although I have no in
principled objections to C&T’s proposals, it does seem as if they
have overlooked a much simpler means of making type-2 prob-
lems tractable.

The type-1/type-2 distinction may be thought of as a generaliza-
tion of the distinction between linearly separable and linearly
nonseparable problems, according to C&T. This is because type-2
problems require finding relational properties in the input data. It
has been known for a long time that problems of this kind present
significant difficulties for networks of processing units with mono-
tonic activation functions (see for example Minsky & Papert 1988).
C&T consider only learning systems which use processors with
monotonic activation functions. They do not consider whether
processing units with nonmonotonic activation functions may be
able to solve type-2 problems. There are, however, good grounds
for believing that networks of such processing units may be able to
perform type-2 learning tasks.

Dawson and Schopflocher (1992) describe a kind of processing
unit they call “value units”; these have a nonmonotonic Gaussian
activation function. Value units can solve linearly nonseparable
problems without requiring a layer of hidden units. Recently,
Berkeley et al. (1995) have shown how networks of value units can
be subject to detailed analysis. In describing their analytic tech-
nique, Berkeley et al. discuss a network that became sensitive to a
number of relational properties found in a training set of logic
problems. These results indicate that value units may have the
properties necessary to solve type-2 problems.

To test this hypothesis, a number of networks of value units
were trained on the 4-bit parity problem (Rumelhart et al. 1986),
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which C&T (sect. 2, para. 17) also studied. All the networks had
four input units, a single hidden unit and a single output unit.
Sixteen training sets were developed, each consisting of 15 train-
ing patterns. The remaining untrained pattern was then used to
assess the generality of the solutions discovered by the networks
upon convergence. Each training set was trained 11 times, giving a
total of 176 simulations. The convergence criterion for each of
these simulations was set at 0.025 and in each case a learning rate
of 0.01 and a momentum of 0.0 were used. A total of 97 (55%) of
these networks reached convergence.

The mean sum squared error for these 97 networks for the seen
items in the incomplete training sets was 0.008 and the mean error
for the remaining unseen inputs was 0.368. However, such gross
figures do not give an entirely accurate picture of the results of
training. In contrast to C&T’s (sect. 2, para. 18) results in which “In
every run, the output associated with the single test item was
incorrect,” 61 (63%) of the value unit networks generalized cor-
rectly when presented with the untrained pattern. The mean error
for the unseen patterns for these 61 networks was 0.017 and the
mean sum squared error for the training patterns was 0.009. The
mean error for the 36 (37%) networks which failed to produce
the correct response to the untrained pattern was 0.963, with a
mean sum squared error on the training patterns of 0.007. In other
words, the results of these simulations show that networks of value
units are reasonably successful on “pure” type-2 problems.

These simulation results seem to suggest that another strategy
for handling the difficulties presented by type-2 problems is to use
a nonmonotonic kind of processing unit. Moreover, this strategy
does not involve a commitment to nativism, nor is it task specific,
as value unit networks can be trained upon a wide range of
problems.

In fact, there is some evidence which suggests that the results
from value unit networks may serve to undercut C&T’s
type-1/type-2 distinction. If C&T (sect. 2, para. 12 and sect. 4,
para. 9) are entirely right about the distinction, then the results of
the above simulations would be “serendipitous.” However, the
results of running 25 simulations of the “oddeven” problem
described by C&T (sect. 2, para. 9) and illustrated in their Tables 1
and 2 suggests that this is not the case. Training runs on this
problem used a value unit network with two input units, a single
hidden unit and a single output unit. All networks which reached
convergence (20%) had remarkably similar patterns of activation
in the hidden unit for each of the inputs in the training set. In other
words, each network which converged discovered substantially
the same solution to the problem. This is illustrated in Table 1.

These results seem to suggest that the converged value unit
networks solve the problem in exactly the same way, each time.
More important, it appears as if the solution discovered by the
networks in each case captures the indirect justification for the
output rule which C&T (sect. 2, para. 11) propose (this can be seen
by comparing the value of x4 for each pattern with the mean
hidden unit activity). Such results are hard to reconcile with C&T’s

Table 1 (Berkeley). Results of training value unit networks on the “oddeven” problem

Pattern
Number

Input
pattern
(x1) (x2)

Desired
output
(y1)

Derived
Recoding
(x4)

Mean Hidden
Unit Activity

Variance in
Hidden Unit
Activity

1 1 2 1 1 4.904e-01 1.497e-03
2 2 2 0 0 9.999e-01 7.500e-06
3 3 2 1 1 4.939e-01 2.065e-03
4 3 1 0 2 5.869e-02 3.840e-04
5 2 1 1 1 4.921e-02 1.279e-03
6 1 1 0 0 9.999e-01 7.000e-07

(sect. 2, para. 12) claim that “the space of indirect justifications is
infinitely large. To hit on the right one by brute-force search would
indeed be ‘serendipitous.’ ” Either value units just happen to be
exceptionally suitable for type-2 problems, or C&T’s claims about
type-2 problems are incorrect. Whichever is the case, it appears
that processing units with nonmonotonic activation functions
provide a means, in addition to those discussed by C&T, by which
“type-2 tigers” (sect. 5, para. 4) can be tamed.

Constraining solution space to improve
generalization

John A. Bullinaria
Centre for Speech and Language, Department of Psychology, Birkbeck
College, London WC1E 7HX, United Kingdom. johnbull666ed.ac.uk

Abstract: I suggest that the difficulties inherent in discovering the hidden
regularities in realistic (type-2) problems can often be resolved by learning
algorithms employing simple constraints (such as symmetry and the
importance of local information) that are natural from an evolutionary
point of view. Neither “heavy-duty nativism” nor “representational recod-
ing” appear to offer totally appropriate descriptions of such natural
learning processes.

I agree with the main conclusion drawn by Clark & Thornton
(C&T) that successful generalization in the case of realistic map-
pings often requires something more than the simplest statistical
analysis. However, I would like to suggest that the case for
representational recoding may be somewhat overstated, and that
simple constraints on the solution space are often sufficient on
their own to lead to good generalization.

Let us consider again the four-bit parity problem cited by C&T.
One can explore the solution space in this case without making
unnecessary assumptions concerning the properties of particular
learning algorithms by performing a Monte Carlo search for
solutions in weight space. The minimal network to solve this
problem requires four hidden units (and hence 25 degrees of
freedom) so we use that architecture. We choose sets of network
weights at random (in the range 216 to 116) and check to see
whether they solve the four-bit parity problem for 15 of the 16
training patterns in the sense that each output unit activation is to
the correct side of 0.5. To find 20 solutions took 11.8 billion
attempts. Each solution generalized incorrectly to the missing
training pattern, which is what we would expect given that random
hyperplanes in input space are likely to cut off the missing pattern
with its closest neighbors which all produce the opposite output.

We have to ask why we consider one particular generalization to
be better than the others. In the sense of Occam’s razor, such as
embodied in Bayesian model comparison (e.g., MacKay 1992), the
best (or “most correct”) generalization is the one provided by the
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simplest model (e.g., the one with the least “free” parameters). In
fact, smaller networks are well known to provide superior general-
ization (e.g., Baum & Haussler 1989). In this respect, the argu-
ments of C&T would have been more convincing if six- or more bit
parity were used, so that the mapping could be carried out with
fewer free parameters (i.e., weights) than training patterns. Since
avoiding local minima in minimal six- (or more) bit parity networks
is extremely difficult and since it is unlikely that real brains use
minimal networks we shall pass over this point.

One natural way to achieve model simplification is by constrain-
ing the search space, and one natural constraint might be the
imposition of symmetry, that is, start learning assuming maximal
symmetry and only relax that assumption as each level of symme-
try is found to fail to exist. This will automatically reduce the
effective number of free parameters. For example, imposing a
symmetry on the weights is sufficient to give good generalization
for the four-bit parity problem. Here we constrain the weight
solutions to lie on the hyperplanes in weight space corresponding
to weights that are symmetric with respect to the input units. This
might be implemented in a learning network by constraining the
weight changes to be the same for each input unit. This reduces
the problem to 13 degrees of freedom and requires only 16.3
million random attempts to find 20 solutions. The symmetry
guarantees that all these solutions will generalize correctly. Such
“weight sharing” is known to improve generalization more gener-
ally (e.g., Nowlan & Hinton 1992).

Another natural constraint we may impose is to assume that
local information is more important than distant information until
such an assumption is proven incorrect. We may view this to be at
work in Elman’s grammar acquisition network as discussed by
C&T. Elman (1993) implemented these constraints with incre-
mental learning schemes. This is in fact another poor example,
since the network not only fails to generalize but also has insuffi-
cient processing power to learn even the raw training data (Elman
1993, p. 76). A more powerful recurrent network, or a network
with appropriate input buffers or time delay lines, should not have
this problem, but there is no reason to suppose that this would
improve generalization as well. In time-buffered networks we can
constrain solutions to make maximal use of local information by
having a smaller learning rates for weights corresponding to longer
range dependencies. This approach has also, for example, been
shown to improve generalization in past tense acquisition models
for which the inflection is usually, but not always, determined by
the final phoneme of the stem and in models of reading aloud for
which long range dependencies are relatively rare (Bullinaria
1994). Similar constraints may be implemented by weight decay
and are also known to improve generalization (e.g., Krogh & Hertz
1992).

Simple constraints on the weight space may not be sufficient to
improve generalization for all type-2 problems, but the examples
given above indicate that it does have a range of applicability. One
might argue that such constraints are just a convenient way to
implement the representational recodings of Clark & Thornton,
but if that is the case we would seem to have a continuous
spectrum of constraints and their type-1/type-2 distinction be-
comes rather fuzzy.

What is the type-1/type-2 distinction?

Nick Chater
Department of Psychology, University of Warwick, Coventry, CV4 7AL,
United Kingdom. nick666psy.ox.ac.uk

Abstract: Clark & Thornton’s type-1/-2 distinction is not well-defined.
The classes of type-1 and type-2 problems are too broad: many nocompu-
table functions are type-1 and type-2 learnable. They are also too narrow:
trivial functions, such as identity, are neither type-1 nor type-2 learnable.
Moreover, the scope of type-1 and type-2 problems appears to be equiva-

lent. Overall, this distinction does not appear useful for machine learning
or cognitive science.

1. Why probabilities? Clark & Thornton (C&T) frame the
learning problem as deriving a conditional probability distribution
P(YuX), where X and Y are sets of possible inputs and outputs, from
a set of input-output pairs, (x, y). This is puzzling, because the
learning systems that C&T consider (e.g., feedforward neural
networks) produce a single output, given each input, rather than a
conditional probability distribution over all possible outputs.1
Moreover, C&T state that if a pattern (x, y) has been encountered,
then P(yux) 5 1 (sect. 2, para. 4), which indicates that they assume
that the conditional probability distribution is degenerate – that is,
for each input there is a single output. So they appear not be
concerned with learning arbitrary conditional probability distribu-
tions, but rather with learning functions from input to output.

2. All conditional probability distributions are Type 1 learn-
able. C&T say a distribution to be learned “P(yux) 5 p might be
[type-1] justified if . . . P(yux9) 5 p, where x9 is some selection of
values from input-vector x . . .” (sect. 2, para. 4). Suppose x9 is the
selection of all values of x – that is, x9 5 x. Then it trivially follows
that P(yux) 5 p if and only if P(yux9) 5 p. That is, all conditional
probability distributions, including as a special case all functions
(including the uncomputable functions), are type-1 learnable.

Note that adding the stipulation that x9 cannot include all of x
does not help. This can be circumvented by adding irrelevant
“dummy” values to each input vector (e.g., a string of 0s) – the
learning problem is now just as hard as before. Then the selection
x9 does not take all elements of the input; it ignores the dummy
values. But as before P(yux) 5 p if and only if P(yux9) 5 p.

3. The problem of novel outputs. From the above, it seems that
C&T’s definition does not capture their intuitive notion suc-
cessfully. From the examples they give, it seems that they intend
that P(yux9) is not an arbitrary probability distribution, but rather
that it is estimated from frequencies in the input data by F(y, x9)/
F(x9), where F(x9) is the number of occurrences of patterns which
match x on the selection x9 of values, and F(y, x9) is the number of
such patterns associated with output y.

But this definition is also inadequate in general, because it
means that any novel output ynovel must be assigned probability 0,
because F(ynovel, x9) 5 0, precisely because ynovel has not occurred
in the training set. This means that the class of type-1 problems is
very restrictive. It does not include the identity function (in which
each input is mapped to a different and hence novel output).

C&T face a dilemma. If they follow their stated definition, then
all conditional probability distributions are type-1 learnable. If
they follow the frequency-based analysis they use in the text, then
no conditional probability distribution which assigns a nonzero
probability to any unseen output is Type 1 learnable, which seems
drastically restrictive.

Furthermore, the frequency-based approach also faces the
problem that probabilities can never be estimated exactly from a
finite amount of data, and therefore that the F(y, x9)/F(x9) will not
in general equal P(yux9) 5 p. The best that such an estimate can be
is probably approximately correct, in some sense (e.g., Valiant
1984).

4. What does type-2 learning mean? C&T say a distribution to
be learned “P(yux) 5 p might be [Type 2] justified if . . . P[yug ([ X)
5 z] 5 p, where g is some arbitrary function, [ X is any seen input,
and z is the value of function g applied to x.” (sect. 2, para. 4).

This formulation is difficult to interpret, because it uses nota-
tion in an unconventional way. But from the later discussion, the
appropriate interpretation appears to be this: the function g maps
some subset S of previously seen inputs onto a common output, z.
We estimate the conditional probability (presumably that which
C&T call “P[yug ([ X) 5 z] 5 p”) by the number of members of S
which produce output y, divided by the total number of members
of S.

As with type-1 problems, this means that the conditional proba-
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bility of all novel outputs must be zero for a problem to be type-2
learnable, for the same reason: the frequency count for novel
outputs is necessarily 0. So the identity function is not type-2
learnable either.

But worse, all the nonnovel outputs can be justifiably predicted
with probability 1. Suppose that a previous input, xprev was paired
with the output yprev. Then define g such that g(x) 5 z (where x is
the novel input), and g(xprev) 5 z; g(xrest) 5 z 1 1, for all other
previously seen inputs xrest. g is a “recoding” of the inputs that
classifies the novel input x with a single past input xprev. The
subset, S, defined above, has one member, which produced output
yprev, so that the estimated conditional probability is 1/1 5 1.
Hence, the arbitrary output yprev is justifiably predicted with
probability 1. An analogous argument extends not just to a single
novel x, but to all possible novel x. In short, any function whatever
which generalizes from the seen instances to the unseen instances
is type-2 learnable, even the noncomputable ones (so long as there
are no novel outputs).

Note that type-2 problems appear to have the same (rather
bizarre) scope as type-1 problems. They are both too broad and
too narrow in the same way.

NOTE
1. The output of neural networks can be viewed as a probability

distribution over possible outputs if, for example, outputs are binary and
intermediate values are interpreted as probabilities (e.g., Richard &
Lippman 1991). A different approach assumes that outputs are distorted
(for example by Gaussian noise). This is useful in understanding learning
in Bayesian terms (Mackay 1992). Moreover, some networks implicitly
produce conditional probability distributions by generating a distribution
of outputs over time (e.g., the Boltzmann machine; Hinton & Sejnowski
1986). None of these approaches seems relevant to C&T’s discussion.

Parity is not a generalisation problem

R. I. Damper
Cognitive Sciences Centre and Department of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, England.
rid666ecs.soton.ac.uk; www-isis.ecs.soton.ac.uk

Abstract: Uninformed learning mechanisms will not discover “type-2”
regularities in their inputs, except fortuitously. Clark & Thornton argue
that error back-propagation only learns the classical parity problem –
which is “always pure type-2” – because of restrictive assumptions implicit
in the learning algorithm and network employed. Empirical analysis
showing that back-propagation fails to generalise on the parity problem is
cited to support their position. The reason for failure, however, is that
generalisation is simply not a relevant issue. Nothing can be gleaned about
back-propagation in particular, or learning in general, from this failure.

1. Introduction. Clark & Thornton (C&T) argue that many
learning problems involve “type-2” mappings, characterised by
“attenuated existence in . . . training data.” Thus, their discovery
by an uninformed learning device (such as back-propagation)
presents intractable problems of search. Once serendipitously
found, however, the type-2 mappings can be exploited in further,
modular learning. It is hard to argue against the principle of such
recoding playing an important part in learning: indeed, it is almost
a truism in cognitive science. Rather, I wish to show that C&T’s
detailed supporting arguments based on the empirical inability of
back-propagation to generalise on the classical parity problem are
mistaken.

2. Parity, generalisation, and mind reading. As with many
others, my interest in neural computing blossomed when I ob-
tained McClelland and Rumelhart’s Explorations in parallel dis-
tributed processing in 1988. As its advertised purpose was to
encourage experimentation, I tried to get the bp program to
generalise on the 2-variable parity (XOR) problem. Given a
network with 2 input nodes, 2 hidden nodes, and a single output,
together with the first three lines of the truth table:

x1 x2 y
0 0 ⇒ 0
0 1 ⇒ 1
1 0 ⇒ 1

could bp generalise to find the missing line:

1 1 ⇒ 0 ?

I soon realised that was a silly thing to expect. How could any
machine learning procedure generalise on this problem? The
y-output for the unseen mappings is entirely arbitrary and hence
unpredictable from the three seen mappings, although the uncon-
ditional probability P(y 5 1) 5 0.67 on C&T’s argument favours a
1 output corresponding to a learned OR solution. Expecting the
back-propagation network to generalise consistently to the XOR
function – rather than the simpler OR function – solely on the
basis that this is what in the experimenter’s mind, amounts to
expecting the network to be a mind-reader. Parity is not a gener-
alisation problem! Yet this seems to be a cornerstone of C&T’s
thesis. To quote: “parity cases . . . do not really warrant any
optimism concerning the chances of backpropagation . . . hitting
on the right recodings.” Thus, the inability to generalise on the
parity problem is taken to have implications for cognition when,
clearly, it does not.

This inability is apparently well-known to Elman who writes
(1993, p. 85): “If the fourth pattern (for example) is withheld until
late in training, the network will typically fail to learn XOR.
Instead, it will learn logical OR since this is compatible with the
first three patterns.” Presumably, by “compatible” he means the
unconditional probabilities favour the OR solution. As pointed out
above, however, the polarity of the output for the unseen input
combination is arbitrary. To this extent, both XOR and OR are
equally “compatible” with the first three patterns.

I ran several simulations on the first three patterns using bp. In
20 out of 20 repetitions, the linearly-separable OR solution was
always found. The hidden-layer representation was always that of
one unit having weights and biases corresponding to an OR
separating “hyperplane” like that labelled line 1 on Figure 1 while
the other “did nothing,” that is, its weights and biases corre-
sponded to a line which did not separate the input patterns at all.
While there is a finite chance that this “do nothing” line just

Figure 1 (Damper). Possible separating “hyperplanes” for the
2-input parity problem, corresponding to the decision boundaries
formed by the two hidden units. In this simple case, the hyper-
planes are lines.
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happens to separate the unseen (x1 5 1, x2 5 1) input from the
three seen patterns – so learning the XOR function – it is remote
and never occurred in my simulations. In no way do these results
reflect the unconditional probability P(y 5 0) 5 0.33 – although
back-propagation can be used to estimate such probabilities with
an appropriate cost function replacing the squared error measure
(Baum & Wilczek 1988). The OR solution was found very fast:
typically in 55–65 iterations with learning rate 0.5, momentum
0.9, and error criterion of 0.03 (based on an average allowable
error of 0.1 per pattern).

3. “Extended” parity problem. Although parity itself – involv-
ing binary-valued variables – is not a generalisation problem, it is
straightforward to extend the situation depicted in Figure 1 to a
bona fide generalisation problem. Suppose our training data-set is:

x1 x2 y
0 0 ⇒ 0
0 1 ⇒ 1
1 0 ⇒ 1

1.5 0 ⇒ 0
0 1.5 ⇒ 0

This is no longer a parity problem, since the variables are no longer
binary but continuous. However, the last two additional data
points are now sufficient for back-propagation to find a hidden-
layer representation which places line 2 “correctly” (e.g., as in Fig.
1, although other solutions to the parity problem – and this
“extended” version – are possible). In 10 repeated trials of bp with
values of learning rate and momentum set to 0.2 and 0.9 respec-
tively (as used by C&T), convergence to an error criterion of 0.04
was obtained within 5000 epochs on 8 occasions (mean 1277
epochs). (This compares to corresponding figures of 9 successful
trials out of 10, mean 1366 epochs, for the parity problem trained
on all four entries of the truth table – which is not significantly
different. In fact, rather faster training with a mean of 337 epochs
to reach the error criterion was obtained in both cases using a
learning rate of 0.5, which is McClelland and Rumelhart’s default
value.) In all 8 cases, the unseen input (x1 5 1, x2 5 1) was
classified perfectly as binary 0, with the output activation in the
range 0.01–0.04.

4. Discussion. What are the implications of this for C&T’s
thesis? First, nothing can be gleaned about either machine or
animal learning from the fact that back-propagation fails to gener-
alise on the parity problem. Generalisation is plainly not relevant
to the situation. Generalisation is only possible when there is
regularity within classes of similar input patterns, but parity “is a
very hard problem, because the output must change whenever any
single input changes” (Hertz et al. 1991, p. 131).

Second, as stated by C&T themselves, back-propagation does
discover the solution to parity problems relatively easily, in spite of
this being “a very hard problem.” They attribute this to restrictive
assumptions – the network must have appropriate structure,
parameters, and so on. (It must also be shown all the data and not
be expected to mind-read!) Yet back-propagation is actually one of
the least promising learning techniques as far as discovering
recodings is concerned. Its popularity in cognitive science derives
partly from Sutton and Barto’s (1981) observation that the delta
rule (of which back-propagation is a generalisation) is near iden-
tical in form to Rescorla and Wagner’s (1972) model of classical
conditioning, thereby lending iterative gradient-descent search
some psychological respectability. However, non-iterative, con-
structive techniques have much less difficulty in learning parity –
for example, as an and-or network, by simple observation of the
(0, 1) ⇒ 1 and (1, 0) ⇒ 1 entries in the truth table – and are at least
as plausible.

Finally, I think it is necessary to be cautious in using “toy”
problems (like parity) to reason about complex, real-world situa-
tions. Certainly, toy problems can bring to the fore important
issues which might otherwise be obscure, but they are charac-
terised by exact solutions, binary variables, etc. – quite unlike most
real-world problems.

Epistemological missing links
Terry Dartnall
Computing and Information Technology, Griffith University,
Brisbane, Australia 4116. terryd666cit.gu.edu.au

Abstract: Clark & Thornton’s “superficially distinct ploys and mecha-
nisms” are in fact very different: there is a deep difference between
(a) filters and feature detectors, which “let the information in,” and
(b) contentful representations and theories, which reconfigure it into a
computationally tractable form. (a) is bringing abilities to experience
whereas (b) is bringing content to experience. Both have well known
problems. I outline an evolutionary story that avoids these problems and
begins to explain how representations and theories developed out of
feature detectors and filters.

Clark & Thornton (C&T) talk about “a wide variety of superficially
distinct ploys and mechanisms . . . [that] range from (a) simple
evolved filters and feature-detectors all the way to (b) complex
cases involving the use and re-use of acquired knowledge” (my
emphasis). These superficially distinct mechanisms are really
deeply different: (a) is the ability to focus on relevant features of
the environment using filters and feature detectors. This gives us
direct access to the data, but focuses on certain aspects of it, or
feeds bits of it to us a little at a time; (b) is the ability to bring
theories (or models, maps, representations, ideas – in general,
content) to experience, to “systematically reconfigure it” into a
computationally tractable form that can be tackled by what C&T
call “uninformed search.”

The distinction between bringing abilities and content to expe-
rience has been a major issue in Western epistemology. Rational-
ists say we bring content; empiricists say we bring only abilities
(association, combination, search, etc.). Both approaches have
problems. If we bring content, then in some respects the world of
experience is the product of our conceptualisation, and hence does
not exist independently of us. According to classical empiricism,
sensory impressions give rise to representations, and these are
what we experience. Thus the world is either partly the product of
our conceptualisation, or is hidden behind a representational veil.

I suggest that the answer lies in something that C&T discuss:
“direction of fit.” According to C&T, a problem in Elman’s (1993)
work on grammar acquisition is that “it is not immediately clear
why the veil of restricted short-term memory should filter the
[linguistic] data in just the right way.” They suggest that the answer
lies in Newport’s (1990) theory that the child’s early capacities
were selected to facilitate language learning. There is such a nice
fit between the structure of language and the child’s limited early
capacities to handle complex stimuli because the structure of
language was selected to exploit the limited nature of early short-
term memory in human infants.

That is okay for language; but what about direction of fit in a
more general sense? We experience appropriate features of the
world, and learn to do so in an appropriate developmental se-
quence. We can think about the world, and to some extent
understand and predict it. Is this because our cognition contrib-
utes to the structure of the world, or because nature has selected
mechanisms for understanding her? The first possibility forces us
to say that we can only experience and think about the world of
experience, not about the world as it really is. The other possibility
enables us to say what we surely want to say: that we directly
experience a world that exists independently of us. It also gives us
important insights. The cognitive capabilities of our earliest ances-
tors evolved to cope with features of the world that were necessary
for survival. More sophisticated filters and feature detectors devel-
oped as competition became more demanding, and early mecha-
nisms were adapted to this end. Let us assume that the original
mechanisms were left in place, so that the individual inherited a
layer of increasingly sophisticated mechanisms triggered sequen-
tially during early development. And let us assume that, once
triggered, they could be drawn on by the individual at will.

This evolutionary story makes no mention of representations. In
fact, it can account for some of the things that representations have
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been invoked to explain. In Karmiloff-Smith’s (1992) Representa-
tional Redescription Hypothesis, a layer of representations can be
accessed at will [see multiple book review of “Beyond Modularity”
BBS 17(4) 1994]. In our account, a layer of mechanisms can be
accessed at will. A standard example of representational redescrip-
tion is when data stored as a stack are redescribed as a list. (Items
in a stack can only be accessed from the top, but items in a list can
be accessed in any order.) Suppose that at some point in our
evolution we could only access items or perform actions in a stack-
like sequence, and later we learned to access or perform them in
any sequence. Now we could say that we learned to represent the
world differently, and that this in turn gave us better access to it,
but it is simpler to say that we learned to access it more efficiently.
This is a story about mechanisms, not representations.

The story sheds light on abstraction. If by “abstraction” we mean
“getting at the general features,” then a system of layered mecha-
nisms would give us this ability. Early in our evolution we focussed
on the most salient features of the environment (edges and
corners, high and low pitches of sound, etc.), but we gradually
developed mechanisms for accessing it in more detail. We accord-
ingly need only revert to our earlier mechanisms to pull out the
most general features of the environment. Rather than doing a
search for general features, we revert to our lowest-level detectors
and filters. So abstraction, our most prized intellectual possession,
may not be what it seems.

This story avoids the problem of the representational veil. But
we can still have representations and maps. The condition is that
we must be able to “get behind them,” to check up on the
information they are trying to organise. We might bring multiple
maps to experience, but we need fast ways of checking them out.
The driver who only looks at the map is not an evolutionary
success. Thus, on the one hand we have mechanisms that “let the
information in,” and on the other we have manipulable, control-
lable structures that enable us to reduce the complexity of subse-
quent search. And we have a sequence: filters and feature detec-
tors first, maps and representations later. It is reasonable to
assume that the latter exploited the former. But how?

We know that filters and feature detectors are more efficient if
they are accompanied by domain knowledge: the more we know
about the domain, the less search we have to do. For example, it is
easier to understand a sentence from which letters have been
deleted if we know that the sentence is a proverb. Representations
and maps also depend on accompanying knowledge, more so as
the domain becomes more abstract. This ability to shift the
cognitive load from specific filters and feature detectors to general
knowledge about the domain must have been a major step for-
ward. So was the ability to have accompanying knowledge, not
about the domain (“this is a proverb”), but about the filter or
feature detector itself (“this only picks out proverbs . . . or corners
. . . or edges”). Such knowledge enables us (a) to choose between
filters within a domain and (b) to use them across domains, thus
overcoming domain-specific constraints. This is a tall order, but it
brings us closer to C&T’s multiple maps and representations.

Reducing problem complexity
by analogical transfer

Peter F. Dominey
INSERM U94 69500 Bron; CNRS EP-100 69008 Lyon, France.
dominey666lyon151.inserm.fr

Abstract: Analogical transfer in sequence learning is presented as an
example of how the type-2 problem of learning an unbounded number of
isomorphic sequences is reduced to the type-1 problem of learning a small
finite set of sequences. The commentary illustrates how the difficult
problem of appropriate analogical filter creation and selection is addressed
while avoiding the trap of strong nativism, and it provides theoretical and
experimental evidence for the existence of dissociable mechanisms for
type-1 learning and type-2 recoding.

Clark & Thornton (C&T) cite analogical reasoning as an example
of how previously learned concepts can be used to filter out the
salient regularities in novel situations in order to reduce type-2
problems to type-1 status. This commentary addresses the impor-
tant open issue of how such filters might be developed and chosen
while avoiding the trap of strong nativism. The trap is that one
might require a specific mechanism for representing each differ-
ent concept/filter, and thus be no better off than without analog-
ical reasoning. What would be more appropriate is a single
mechanism that could provide a general capacity for analogical
reasoning.

In this context, it has been proposed that the recognition of
structural isomorphisms is one of the primary means by which
parts of two analogs can be placed in correspondence with each
other (Thagard et al. 1990). For example, consider the two
sequences, ABCBAC and DEFEDF. While they share no com-
mon surface structure, these isomorphic sequences share the
abstract relational structure “u, u, u, n-2, n-4, n-3,” where u
indicates unique or nonrepeated (unpredictable), and n-2 indi-
cates a repetition predictable of the element 2 places behind, and
so on. The ability to store, recognize, and use this kind of structural
isomorphism should contribute to a general mechanism for ana-
logical reasoning in a profitable tradeoff between nativistic prede-
fined functions and robust generalized behavior.

In order to study such a mechanism we developed a test of
analogical transfer in sequence learning (ATSL). The test is based
on the serial reaction time (SRT) task, in which learning is
demonstrated by a reduction in reaction times for stimuli that
appear in a repeating sequence versus stimuli that appear in a
random series (Nissen & Bullemer 1987). Sequence learning can
occur in uninformed or implicit conditions, that is, the statistical
regularities in the sequence can be extracted by an uninformed
type-1 mechanism. In the ATSL task, however, the same sequence
is never repeated. Instead, a number of isomorphic sequences are
successively presented. This is a type-2 problem in that the
statistical regularities of the potentially unbounded number of
sequences become visible only when they are recoded in terms of
their shared relational structure.

We have recently observed that normal human subjects are
capable of this kind of recoding in the ATSL task, that is, they
display learning in the form of monotonically decreasing reaction
times for predictable stimuli in a series of isomorphic sequences
(Dominey et al. 1995b). It is interesting to note that this type-2
learning is only observed in subjects who have been explicitly
informed that such an abstract structure might exist. Implicit or
noninformed subjects display no such learning, in striking contrast
with their known capacity for type-1 learning in the SRT task
(Nissen & Bullemer 1987).

To confirm the observation that this type-2 task cannot be
performed by a type-1 system, we performed simulation studies
using a model of type-1 sequence learning based on the neural
architecture of the primate frontostriatal system (Dominey et al.
1995a; Dominey 1995). In the model, learning-related synaptic
modifications generate increased activation of appropriate re-
sponse units for stimuli in learned sequences, with a correspond-
ing RT reduction. Due to this property, the model demonstrates
type-1 SRT sequence learning when using a single repeating
sequence (Dominey 1996). It fails, however, in the type-2 ATSL
task, with the same lack of learning as observed in the implicit
learning group (Dominey 1996; Dominey et al. 1995b).

For the model to exploit the abstract structure shared by
isomorphic sequences like ABCBAC and DEFEDF, it must be
capable of representing such sequences in terms of the structural
relation sequence “u, u, u, n-2, n-4, n-2” that is common to them.
This requires (1) a form of short term memory (STM) of the
several previous elements in a sequence, and (2) the capacity to
recognize whether the current element matches any of those in
the STM, for example, that the second A in ABCBAC matches the
element 4 places behind. Finally, this recoding of the sequences
must be made available to the existing type-1 learning mechanism.
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The type-1 sequence learning system can then be used to learn
this abstract structure that serves as a filter for subsequent inputs.
In the same way the type-1 system alone can predict specific
elements in learned sequences, the modified type-2 system can
predict repeated elements in learned classes of isomorphic se-
quences. Indeed, we observed that the modified type-2 model
reproduces the performance of explicit subjects in the ATSL task
(Dominey et al. 1995b). The type-2 mechanism is simultaneously
capable of (1) applying “filters” learned from previous experience,
that is, recognizing learned abstract structures in order to predict
the repetitive structures of new isomorphic sequences, and (2)
developing new “filters,” thus learning new abstract structures for
isomorphic sequences whose abstract structure has not previously
been learned. The system achieves this by continuously exploring,
in parallel, the space of possible abstract structures, recognizing
learned structures and learning new ones as necessary. The filters
(abstract structures), are stored as remembered sequences, and
are selected by a type-1 process of sequence recognition. Note
that this type-2 mechanism should generalize to the related
problems of (1) exploiting several abstract structures in a body of
input data, and (2) grammaticality judgment after letter set trans-
fer in artificial grammar learning (Gomez & Schaveneveldt 1994).

From a neurophysiological perspective, it is of interest that
type-1 SRT learning is impaired in Parkinson’s disease ( Jackson et
al. 1995), indicating that the frontostriatal system may participate
in this type-1 learning. In contrast, our recent studies of analogical
transfer in Parkinson’s patients have demonstrated that the impair-
ment in type-1 SRT learning is not seen in type-2 ATSL learning in
these patients (Dominey et al. 1996). This suggests a functional
distinction in the role of the frontostriatal system in type-1 and
type-2 learning.

In conclusion, analogical transfer in sequence learning is pre-
sented as an example of how the type-2 problem of learning an
unbounded number of isomorphic sequences is reduced to the
type-1 problem of learning a single or greatly reduced set of
sequences, by continuously recoding sequences in terms of their
relational structure. This example is of theoretical interest in that
(1) it provides an explicit demonstration of how the potentially
difficult problem of appropriate analogical filter creation and
selection is addressed while avoiding the trap of strong nativism,
and (2) it provides theoretical and experimental evidence for the
existence of dissociable mechanisms for type-1 learning and
type-2 re-coding.
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Cognitive success and exam preparation
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Abstract: Evolution is not like an exam in which pre-set problems need to
be solved. Failing to recognise this point, Clark & Thornton misconstrue
the type of explanation called for in species learning although, clearly,
species that can trade spaces have more chances to discover novel
beneficial behaviours. On the other hand, the trading spaces strategy
might help to explain lifetime learning successes.

Clark & Thornton’s (C&T’s) target article is about the general
principles of operation of cognitive mechanisms. More precisely,
they are interested in operational principles that are likely (rather
than those that necessarily must or, as it happens, are) to be found
in mechanisms that have evolved through natural selection. Hence
their paper is about cognitive science, or even evolutionary cogni-
tive science, rather than, say, simply about artificial intelligence.

The principle of operation at issue is learning and at the heart of
C&T’s paper is a distinction between two sorts of learning prob-

lem. Statistical approaches to learning will find type-1 problems
fairly easy, C&T explain, and, in the absence of suitable re-coding,
type-2 problems very hard. One thing that is attractive about this
central claim is the level at which it is pitched. Rather than simply
undertaking empirical trials, comparing this connectionist system
with that symbolic one, or that network architecture with another,
they have also sought to identify a general principle that operates
independently of a connectionist-symbolist dispute. While con-
nectionist learning systems do have many advantages, they can no
more work magic with a type-2 problem than any other form of
statistical learning. This sort of thesis is much needed in cognitive
science. If it holds up, then, at a stroke, it can transform empirical
hunches about the power of this or that algorithm into firm
theoretical results.

C&T describe an animat that starts life lacking the skill of
“conditional approach.” Its problem is to acquire this skill, but,
because the acquisition problem is type-2, the animat is unlikely to
stumble across the solution without trading spaces, even if given a
great deal of help in the form of training. (And, if I understand
C&T aright, it is given rather more help than an animal in a natural
setting could expect.)

Although an effective illustration of the type-1/type-2 distinc-
tion, the example uncovers a curious inversion in C&T’s thinking.
Imagine the evolution by natural selection of a creature such as
their animat – call it a “clarkton.” At some stage, the clarkton is in
the same state as the unschooled animat. Let us suppose the
environment is putting it under increasing pressure and that the
clarkton would greatly benefit from acquiring “conditional ap-
proach.” Consider three possible futures: (i) the clarkton, by very
lucky chance, or with less lack and the application of the trading
spaces strategy, solves C&T’s problem, acquires “conditional ap-
proach,” and so improves its fitness; (ii) the clarkton solves another
quite different type-2 problem, one which improves its fitness in
such a way as to obviate the benefit of “conditional approach”; (iii)
the clarkton fails to improve its fitness and dies. (Note that if we
forget the high frequency of outcomes like [iii] we gain a false
impression of the efficiency of natural selection.)

The only difference between (i) and (ii) is that in (i) the
behavioural change is one in which C&T have a special interest. It
is only with hindsight that the clarkton can be seen to have “solved”
C&T’s “problem,” and this shows that talking about problems and
searches for solutions is out of place here. Evolution is not like an
exam, where the problems are set ahead of time. Rather, many
different routes are tried out, and creatures stick with those that
work. Creatures don’t “aim” to acquire specific skills, though when
they do acquire a new skill and survive, it is usually a skill worth
having.

By contrast, lifetime learning can be rather like an exam. A
creature has to keep tackling just one problem until it gets it right.
Here the trading spaces idea might make a real contribution,
explaining how a strategy of repeatedly recoding and trying again
(or perhaps trying different codings in parallel) improves one’s
chances. Of course, chance is still involved in stumbling across the
right kind of coding.

But not only chance. C&T argue that the sorts of problems that,
say, human beings have become adept at solving are structured in
such a way as to be amenable to our problem solving powers.
Lifetime learning is like an exam, but the exam script consists of
problems at which earlier candidates were successful. This anal-
ogy is too crude: the development of language, say, must surely
have involved very many incremental cycles, with small dividends
at each stage, in which complexity was slowly ratcheted up. But the
route of development was such that each individual was well
equipped to “solve” the relevant “learning problem” at each stage.
To the extent, however, that this part of the argument is a success,
it begins to lessen, though not eliminate, the need to explain type-2
problem solving powers.

By thinking of evolution as being like an exam, C&T create a
spurious difficulty. It is only with hindsight that natural selection
“solves” its design “problems.” Any successful evolution of a
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behavioural strategy can, after the event, be seen as the solution to
some problem, whether of type-1 or type-2. This said, a species
that is capable of trading spaces is able to stumble across a richer
range of new behaviours, so I don’t dispute that the strategy could
play a part in evolutionary explanations. To the extent that lifetime
learning problems are externally set, and are type-2, the trading
spaces strategy does offer an insight into how they might be solved.
Learning algorithms aren’t the whole story, however and, the
authors do steer a subtle course between nativism and empiricism.
Their claim effectively is that problems on individuals’ life exams
are ones for which, for historical reasons, their cognitive mecha-
nisms are particularly well-prepared. And so it turns out that in
both lifetime and species learning our problems look more diffi-
cult than they really are.

Type-2 problems are difficult to learn, but
generalize well (in general)

M. Gareth Gaskell
Centre for Speech and Language, Department of Psychology, Birkbeck
College, Malet Street, London WC1E 7HX, United Kingdom.
g.gaskell666psyc.bbk.ac.uk

Abstract: Learning a mapping involves finding regularities in a training
set and generalization to novel patterns. Clark & Thornton’s type distinc-
tion has been discussed in terms of generalization, but has limited value in
this respect. However, in terms of detection of regularities in the training
set, the distinction is more valid, as it provides a measure of complexity and
correlates with the size of search space.

We can ask two basic questions about the performance of a
connectionist network when applied to an input-output mapping.
First, does the network perform well on the training set? Second,
does it perform well on novel input-output pairs selected from the
same population as the training examples? In other words, has it
learnt and will it generalize?

The type-1/type-2 distinction appears to be set up to address
the second question, and the examples Clark & Thornton (C&T)
provide are cited as failures to generalize from correctly learnt
training examples. Certainly, for the 4-bit parity example, the
networks performed at near ceiling level on the training examples
but failed to generalize to the held-back pattern. Part of the
problem here is that the number of training examples is small and
the number of free parameters is relatively large, implying that
there are many ways of solving the problem for the training set,
many of which will not be applicable to the unseen pattern.

However, the problem of choosing between multiple suitable
recodings, given a small number of training examples, is not
restricted to type-2 mappings. Consider the training set shown in
Table 1. Here, all conditional probabilities are extreme, and
multiple type-1 solutions can be found. However, there is no
guarantee that the one chosen will agree with the underlying
regularity in the set from which these mappings were selected. For
example, in the overall set, x3 might be the only reliable predictor
of the value of y1, but a standard network is likely to pay more
attention to the values of x1 or x2. Thus, when the number of
training patterns is small, multiple solutions may exist for both
type-1 and type-2 problems. Consequently, generalization to novel
items cannot be guaranteed for either type of mapping.

The above example is of course artificial, since most tasks faced
by the human system have a much larger scale. In these cases, the
real difficulty lies in learning to perform the correct mapping on
the training examples. Once a solution is found that is applicable
to the large (and hopefully representative) set of training ex-
amples, the chances of generalization to novel patterns are good.
The type-1/type-2 distinction is no doubt valid as a broad classifi-
cation of complexity in this case. As C&T point out, type-2
problems involve relational learning, which requires transforma-
tion of the input. This increases the number of free parameters
and thus the size of the solution space.

Table 1 (Gaskell). Input-output mappings for a type-1 problem
with multiple solutions

x1 x2 x3 x4 y1

1 0 0.51 0.25 1
0 1 0.49 0.75 0

This point is nicely exemplified by Elman’s (1993) simulations,
which C&T cite as an example of a simple failure to generalize
(sect. 3, para. 15). In fact, the network does not perform satisfac-
torily on even the training set unless either the network or the
training set is altered to obscure long distance dependencies
(Elman 1993, p. 76). Instead, the problems the network encoun-
ters are local minima in the training error curve, which are avoided
by ensuring that initial learning moves the network to a region in
weight space from which the global minimum can be reached.
Once the network has found a solution that is applicable to the
large, complex, and representative training set, generalization is
more or less guaranteed.

Thus, the type-1/type-2 distinction captures one aspect of the
problems involved in learning mappings. For type-2 mappings,
the search space is comparatively large and successful perfor-
mance on the training data may require additional constraints that
make the exploration of this space more tractable. However, the
distinction is less applicable to the generalization problem, which
simply requires a good balance between the number of variables in
the mapping function and the number of data points that the
learning device is exposed to. Generalization will fail when there
are too few data points or too many free parameters, leading to a
plethora of possible solutions with no way of choosing between
them.

Model-based learning problem taxonomies

Richard M. Golden
School of Human Development, University of Texas at Dallas, GR 41,
Richardson, TX 75083-0688. golden666utdallas.edu;
www.utdallas.edu/˜ golden

Abstract: A fundamental problem with the Clark & Thornton definition
of a type-1 problem (requirement 2) is identified. An alternative classical
statistical formulation is proposed where a type-1 (learnable) problem
corresponds to the case where the learning machine is capable of repre-
senting its statistical environment.

An important feature of the Clark-Thornton definition. Note
that requirement (2) in the Clark & Thornton (C&T) definition of
a type-1 learning problem implies that the problem where x1 5
[0, 0, 0], x2 5 [0, 0, 1], x3 5 [0, 1, 0], x4 5 [1, 0, 0], x5 5 [1, 1, 0], and
y1 5 0, y2 5 0, y3 5 1, y4 5 1, y5 5 1, and one must discover that
yi 5 xi1xi2 (where xi1 and xi2 are the first two elements of xi) is a
type-1 learning problem. This type of problem, for example, is
relatively easy for a linear perceptron-like learning rule to solve.

Now consider a modification of the C&T definition of a type-1
learning problem designed to emphasize the importance of re-
quirement (2) of the definition. If requirement (2) was modified to
read “P(yux9) where x9 5 x,” then the above learning problem
(which can be solved by linear perceptron-like learning rules
would be defined as a type-2 learning problem, which would be an
undesirable characteristic of the definition. Thus, requirement (2)
as formulated by C&T is quite appropriate.

A problem with the Clark-Thornton definition of a type-1 prob-
lem. The problem with C&T’s requirement (2) is that the number
of subsets of the d-dimensional vector x which must be examined
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is 2d which is an exponential function of the dimensionality d of x.
Thus, searching for the “right subset” of x is equivalent to search-
ing for the “right mapping function” from a set of 2d possible
functions (which map x into a subset of x).

A classical model-based definition of type-1 learning prob-
lems. Rather than trying to “abstractly” classify data sets indepen-
dently of models as either: (i) type-1 (easy), or (ii) type-2 (hard)
problems, a “parametric model-based” approach is proposed. This
alternative explicitly defines a probability model (i.e., a set of
probability distributions) for a given learning machine that spe-
cifies which probability distributions the learning machine is
capable of implicitly representing. Define a type-1 (learnable)
statistical environment (i.e., the probability distribution of the data
generating process) with respect to some specific probability
model } as a probability distribution which is an element of }. A
type-2 (unlearnable) statistical environment with respect to } is a
probability distribution which is not an element of }. Statistical
tests can be constructed (i.e., goodness-of-fit tests) to infer
whether a given statistical environment is type-1 or type-2 with
respect to a learning machine’s given probability model. Golden
(forthcoming, Ch. 7, Ch. 8; also see Golden 1988 and White 1989)
has explicitly shown how this type of classical statistical framework
is applicable to a wide variety of connectionist learning problems.

Trading spaces: A promissory note to solve
relational mapping problems

Karl Haberlandt
Department of Psychology, Trinity College, Hartford, CT 06106.
karl.haberlandt666trincoll.edu

Abstract: Clark & Thornton (C&T) have demonstrated the paradox
between the opacity of the transformations that underlie relational map-
pings and the ease with which people learn such mappings. However,
C&T’s trading-spaces proposal resolves the paradox only in the broadest
outline. The general-purpose algorithm promised by C&T remains to be
developed. The strategy of doing so is to analyze and formulate computa-
tional mechanisms for known cases of recoding.

Clark & Thornton’s (C&T) target article distinguishes between
direct and relational input/output mappings (type-1 versus type-2
problems). In the former, the relation between input and output
patterns can be discerned through direct inspection of the in-
put/output pairs themselves. In indirect mappings, input and
output pairs are related through any one of an infinite number of
transformation functions that are not transparent. Parity problems
such as the one in Table 3 (sect. 2) represent cases of indirect
mapping (Rumelhart et al. 1986). An important issue for cognitive
scientists has concerned how learners discover the hidden rela-
tional functions that transform input patterns into the correspond-
ing output patterns.

Backpropagation learning, “currently the most important and
most widely used algorithm for connectionist learning” (Gallant
1994, p. 211), has been touted as the algorithm to do just that.
Indeed, backpropagation is the discovery that made possible the
resurrection of the neural network enterprise. It is therefore
newsworthy that C&T have demonstrated limits of backpropaga-
tion in acquiring parity-type problems in sections 2 and 3. Signifi-
cantly, C&T show that backpropagation is limited even when one
takes the greatest liberties in designing the network architecture
and choosing learning parameters (Haberlandt 1990).

Using backpropagation, C&T sought to teach a 3-layer network
a relatively simple 4-bit parity problem. Whereas the network
successfully acquired the training cases, it failed to generalize to
critical test cases not presented during training. If nothing else,
this failure shows that backpropagation does not always work
unless the programmer somehow divines the “correct” architec-
ture, parameters, and schedules.

Acquiring the conditional-approach behavior of the animat in
Figure 3 (sect. 3) proved similarly difficult under several regimens
of backpropagation and other learning algorithms. This problem
was so hard to learn because the robot must detect a relation, the
“ratio between apparent closeness and apparent width” of the
object placed in front of it. When C&T hand-coded the critical
relation explicitly, however, they readily succeeded in training the
robot.

It is at this point in C&T’s article that readers may have their
hopes up for more than the promissory note that relational
problems of the animat type and others are tractable by trading
spaces, which means by “using achieved representation to reduce
the complexity of computation.” What is needed is a computa-
tional mechanism that detects the relations that transform input
into output patterns without programmer intervention or assis-
tance. I worry that if such a mechanism cannot be formulated for
the relatively straightforward animat problem it is less likely to be
discovered for the authors’ second case study, Elman’s (1993) rule
learning case.

Elman developed a network model to simulate the acquisition
of long-distance dependencies in English sentences involving verb
agreement and clause embedding. His three-layer network was
able to learn sentences with cross-clausal dependencies only in an
incremental learning scheme in which simple examples were
presented in a first stage and more complex ones in the second
stage. The first stage was necessary to fine-tune the network
toward the relevant dimensions of the stimuli. C&T’s final illustra-
tion, Karmiloff-Smith’s (1992) notion of representational re-
description in cognitive development, may be more abstract than
the previous examples. According to C&T, however, it exemplifies
the same principle, namely, that achieved representations are
traded for complexity in computation.

The concept of “trading spaces” is tantalizing even if no compu-
tational mechanism is available, let alone the “general strategies”
promised in the abstract of the target article. I find the concept
tantalizing because it may be the spark for the development of an
alternative to the idea that nature endows us with the knowledge
to detect such relations automatically.

A fruitful strategy would be to start by examining conceptual
issues using cases of recoding proposed by psychologists. Issues
include the following: Which instances of recoding reflect direct
and indirect mapping? Does it matter whether the learner is
acquiring facts or skills, and whether or not feedback is provided?
In which ways do mappings differ across domains? What justifies
C&T’s optimism for “general strategies” in light of research where
expertise is domain specific? There is a plethora of cases of
recoding to select from, beginning with Miller’s (1956) classical
paper on chunking and Reber’s (1993) synthetic grammar to
Anderson’s (1983) proposal on compiling of procedures. Psycho-
linguistics has been a particularly fertile ground for recoding
schemes, including Elman’s (1993) work. Recoding is postulated
at every level of language processing: from phonemes and graph-
emes to lexical items (Sejnowski & Rosenberg 1986), from phrases
to propositions (Haberlandt et al. 1986; Jarvella 1979), and from
propositions to text bases (Kintsch 1988).

The hunt for general algorithms to solve relational mapping
problems is on. As Anderson (1995) observed, this is a pressing
unsolved problem. He also diagnosed quite accurately that, while
simple memory based associators may provide correct input-
output pairings for specific cases of mapping, general techniques
for reliable generalizations remain to be discovered by future
research.
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Recoding can lead to inaccessible
structures, but avoids capacity limitations

Graeme S. Halford
Psychology Department, University of Queensland, 4072 Queensland,
Australia. gsh666psy.uq.oz.au

Abstract: The distinction between uninformed learning (type-1) and
learning based on recoding using prior information (type-2) helps to clarify
some long-standing psychological problems, including misunderstanding
of mathematics by children, the need for active construction of concepts in
cognitive development, and the difficulty of configural learning tasks.
However, an alternative to recoding some type-2 tasks is to represent the
input as separate dimensions, which are processed jointly. This preserves
the original structure, but is subject to processing capacity limitations.

Clark & Thornton’s (C&T’s) distinction between type-1 and type-2
learning helps clarify some long-standing psychological problems.
Type-2 learning is a major source of difficulty in children’s learning
of mathematics, because their experience with arithmetical opera-
tions provides insufficient constraint for acquisition of the relevant
concepts, leading to “malrules” that superficially resemble, but do
not conform to, correct mathematical procedures. The intrac-
tability of the task of acquiring the knowledge children require for
cognitive development has led to the view that children must
actively formulate the concepts they acquire. In this respect,
constructivism could be seen as a special case of the theory that
type-2 learning requires active recoding. Our experimental
studies of induction of relational schemas have produced large
variance because of the way participants code the task. We realized
after a while that it would be a mistake to regard this as simply
error-variance, because it is really an important part of our
findings.

Conditional discrimination, in which a discrimination between
(say) two shapes is reversed on change of background, is type-2,
and resembles the structure in C&T’s Table 1. Consistent with
type-2 theory, this task has always proved difficult, for both
animals and children (Halford 1993; Rudy 1991). The standard
explanation is that these tasks are learned by forming configura-
tions, or unique combinations of cue and background, which is a
form of recoding.

Recoding the input permits the output function to be computed
and exemplifies a psychologically realistic mechanism, but can
make the structure inaccessible. Notice that the structure in
C&T’s Table 1 cannot be recreated from C&T Table 2 (the
mappings of x1 and x2 into y1 cannot be reconstructed from the
mapping of x4 into y1). In general the original structure is not
necessarily recoverable from the recoded structure.

However, there is an alternative which does not have this
drawback. This can be illustrated with the training set in the C&T
Table 1. While the task is insufficiently constrained by contingen-
cies between either x1 or x2 and y1, it is adequately constrained by
x1 and x2 taken jointly. For example, P(y1 5 1ux1 5 1, x2 5 2) 5 1,
and P(y1 5 0ux1 5 2, x2 5 2) 5 1, and so on. This approach
represents x1 and x2 as separate dimensions, and y1 is computed
as a function of x1 and x2 jointly. There is no recoding, the
elements of the task retain their identity, and the structure is
preserved.

It might be asked why this matters, given that the output
function can be computed by recoding. The answer is that com-
puting output functions is not the only task of cognitive processes.
Sometimes the structure of the task needs to be represented, so as
to provide a mental model of the concept embodied in the task. A
person who performed the task in C&T’s Table 1 by recoding as in
Table 2 would not have an explicit, accessible, and transferable
representation of the concept, and might not recognize another
task as an analog of the task in Table 1. An example of this occurs
with conditional discrimination, where learning a unique configu-
ration for each cue-background combination (directly analogous
to the recoding in Table 2) provides no basis for transfer to an

isomorphic conditional discrimination, because the elements lose
their identity, and mappings from cue and background to response
are not preserved. Thus there is a potential tradeoff between
recoding and accessibility of structure.

The procedure of keeping the input dimensions distinct, and
processing them jointly, as indicated above, preserves the struc-
ture of the original input. It is subject to capacity limitations,
however. Elsewhere we have argued (Halford 1993; Halford et al.,
submitted) that complexity is best measured by dimensionality,
which corresponds to the number of interacting variables in a task.
The task in C&T’s Table 1 is three-dimensional (it comprises three
variables), whereas the task in C&T’s Table 3 is four-dimensional.
Processing load increases with dimensionality, and adult human
processing capacity appears to be limited to approximately four
dimensions processed in parallel. Therefore tasks such as those in
Tables 1 and 3 could be processed without recoding, but tasks with
more dimensions probably could not, because of processing ca-
pacity limitations. Thus there is a potential tradeoff between
processing capacity and the need for recoding.

Informed learning and conceptual structure:
Putting the “birdness” back in the bird

Kenneth Kurtz
Department of Psychology, Stanford University, Stanford, CA 94305.
kurtz666psych.stanford.edu; www-psych.stanford.edu/˜ kurtz

Abstract: The computational notion of “trading spaces” is highly relevant
to the psychological domain of categorization. The “theory” view of
concepts can be interpreted as a recoding view. A design principle for
exploiting learned recodings in order to handle the type-2 problem of
forming sophisticated concepts is outlined.

Clark & Thornton (C&T) develop an important theoretical claim
about learning. The need to recode input data in a manner that
reveals higher-order, task-relevant regularities is a computational
constraint that ought to be brought to bear in the development and
evaluation of psychological theory. Concept formation is one
domain that conforms to C&T’s notion of type-2 learning. As it
happens, the limits of statistical learning is a topic under consider-
able debate in the psychological literature.

The “theory” view of categorization addresses the issue of the
limits of uninformed learning. Proponents of the theory view
contend that feature frequencies and correlations underdeter-
mine actual concepts (Murphy & Medin 1985). The theory view
portrays accounts built on similarity-based comparison and
feature-based representation as either insufficiently constrained
or insufficiently powerful to account for categorization (see Gold-
stone 1994). Murphy and Medin (1985) argue that intuitive
theories are needed (1) to explain the coherence of concepts, (2) to
provide constraints on what the relevant features are, and to show
(3) how these features should be weighted for importance, and
(4) what tolerances should be allowed in their values.

According to theory-based categorization, an input activates
underlying principles (Murphy & Medin 1985) which serve to link
data to world knowledge. Categorization thus consists of
knowledge-guided processes such as reasoning with causal contin-
gencies, applying rules, and instantiating schema-like knowledge
structures in order to generate an account, rather than a best
match, for the input. While the critique of similarity as an explana-
tory construct has proven powerful, the theory-view has been
undermined by the lack of a psychologically plausible models of
the nature and role of intuitive theories.

Wisniewski and Medin (1994) have suggested that world knowl-
edge mediates the instantiation of abstract, intermediate proper-
ties of the input which in turn determine category membership.
This notion of knowledge as something other than data remains ill-
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defined and problematic. However, such knowledge is presum-
ably somewhere to be found in the space of functions (too large to
search effectively) of possible recodings for solving complex
type-2 mappings (C&T). If hard learning can be informed by prior
recodings, then perhaps complex categorization can be accom-
plished without quitting the tangible realm of experience and data.
Avoiding this dualism of epistemological content is effectively the
same goal as avoiding “heavy duty nativism” (sect. 4, para. 1).
Appropriate computation and management of the data set can be
sufficient to reveal the “theory” hidden in the data, that is, to
discover what is key for accomplishing a task. Thus, “theories” are
the basis for informed recoding of the data in a manner that
captures critical properties which are not visible or discoverable by
unguided search. But how can such a theory be gleaned from
computation over available data?

Beyond perceptual similarity, groups of exemplars cohere as
conceptual classes on the basis of commonalities in their relevance
and usefulness to people. Exemplars converge and diverge in the
roles they play relative to particular tasks and goals. This variance
provides a critical set of constraints on the organization of con-
cepts. Kurtz (1996) presents evidence for differences in rated
overall similarity of pairs of novel items depending on prior
classification of the items.

Task-based commonalities can be used as the targets for a
backpropagation network (Rumelhart et al. 1986) that constructs
internal representations to perform complex mappings from per-
ceptual cues to conceptual targets. These systems have the prop-
erty of transforming representational space to construct a func-
tional similarity whereby like internal representations lead to like
outputs (Rumelhart et al. 1995). Such a mapping from perceptual
inputs to abstract classes can be integrated with an auto-encoding
system that discovers structure in order to learn to reconstruct the
input information at the output level. The two mappings can be
superimposed so that the recoding occurs over one shared set of
hidden units. Through such learning, objects that do not appear
alike yet possess useful conceptual commonalities will be repre-
sented more closely.

C&T suggest that language itself is a form of preserved recod-
ings. Language serves as a framework for the organization of
entities into classes that are useful for understanding and commu-
nicating about the environment. Such lexical classes can provide a
set of targets that complement and constrain the structure derived
from perceptual regularities in the environment. Another mode of
task-based or functional re-representation arises from the domain
of problem solving or goal attainment. As particular needs or wants
arise across experience and are resolved by particular objects in
the environment, a backpropagation network can be trained to
learn this mapping from perceptual data about objects to the roles
the objects play or the goals they fulfill. This complementary
mapping can also be integrated with the auto-associative system.
Accordingly, properties relevant to the interaction between organ-
ism and environment are integrated into the conceptual represen-
tation. Relevant knowledge is merged into the same content as the
perceptually grounded data.

Task-driven, linguistic, and perceptual bases of similarity can be
assimilated in an underlying conceptual representation of shared
hidden units. The features that comprise this representation are
recodings of the input mediated by the multiple modes of appro-
priate generalization which interactively constrain and enrich the
emerging representations.

Armstrong et al. (1983) argue that the concept of bird is greater
than the sum of bird attributes; that is, the critical quality of
“birdness” is notably missing from such a representation. The
present proposal is to put the “birdness” back in the bird through
the use of recodings built up interactively across multiple map-
pings. Such rich concepts are organized by distance in a functional
similarity space that is relevant to actual concept use and is
constructed according to the design principle of parallel mappings
through a shared recoding space.

The dynamics of cumulative knowledge

David Leiser
Department of Behavioral Sciences, Ben-Gurion University of the Negev,
Beer Sheva, Israel. dleiser666bgumail.bgu.ac.il
www.bgu.ac.il/beh/leiser.html

Abstract: Exploiting existing representations implies tapping an enor-
mous domain, coextensive with human understanding and knowledge, and
endowed with its own dynamics of piecewise and cumulative learning. The
worth of Clark & Thornton’s proposal depends on the relative importance
of this dynamics and of the bottom-up mechanism they come to comple-
ment. Radical restructuring of theories and patterns of retrieval from long-
term memory are discussed in the context of such an evaluation.

Clark & Thornton’s (C&T’s) basic point is akin to the observation
that finding optimal coefficients for multivariate linear regression
is straightforward, whereas devising an appropriate nonlinear
model is much harder. To do so effectively, existing knowledge
must be exploited. While it is difficult to take issue with this, the
full significance of the observation must be realized: no mere
tactical recommendation, it implies tapping an enormous domain,
coextensive with human understanding and knowledge; a domain,
moreover, endowed with its own epigenetic dynamics of piecewise
and cumulative learning. If it turns out that most of the novelty
required to solve a type-2 problem is ultimately based on that
dynamics, then it is misleading to present the enjoyment of the
fruits of quite different learning mechanisms as a trick to comple-
ment uninformed learning.

Exploiting existing knowledge. C&T contend that a purely
bottom-up approach is not enough, and that solving type-2 prob-
lems requires the exploitation of previous learning. This could
mean transferring knowledge across connectionist systems, a
notion of great potential importance, but still in its infancy.
Instead, they present a range of dissimilar approaches, all consid-
ered equivalent from their very abstract viewpoint: to maximize
the role of achieved representation.

But how does that knowledge develop? It is hardly itself a
product of type-1 bottom-up learning. Constructions at the con-
ceptual and theoretical level obey coherence and coordination
requirements (Thagard 1989) and assume a much richer repre-
sentational language. The idea was first propounded by Piaget
(1974) under the name of reflective abstraction and cognitive
phenocopy: what is acquired at one level must be reconstructed
and reorganized at another. Piaget’s views are being rediscovered
in various contexts. According to Keil (1994), there is no obvious
mapping from the kinds of environmental regularities most salient
to simple associative systems operating on perceptual primitives to
sets of explanatory beliefs. This discrepancy arises for a range of
reasons. One is the richer representational language. Another may
stem from restructuring. Consider cascade correlation: suc-
cessively generated hidden variables are akin to epicycles; they
only explain residual variance (Schultz et al.). Theories, however,
may change radically. Some forms of learning may give rise to a
weak restructuring, involving the accumulation of new facts and
the formation of new relations between existing concepts. Others
involve a radical restructuring that includes changes in core
concepts, structure, and the range of phenomena to be explained
(Carey & Spelke 1994; Gold 1987; Vosniadou & Brewer 1987).
This phenomenon is not necessarily incompatible with Clark and
Thornton’s view, since no actual restructuring needs to take place.
One possible interpretation is that the new conceptual structure
grows alongside the old one, and eventually comes to replace it
(Chi 1992); this interpretation could be handled by a modular
connectionism. My point here was to indicate the types of phe-
nomena that may occur at the conceptual level because of the
latter’s mode of development would be very different from devel-
opments that might take place without it.

Retrieval propensities. Another point to consider is organiza-
tion and retrievability in long-term memory. Here, too, there is
ample room for cumulative progress that would then dominate
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bottom-up factors. As experience accrues, the store of potentially
relevant information grows and must do so in a way that – with an
appropriate retrieval mechanism – might guide novel problem
solving. Research on analogy suggests that retrieval relies mostly
on superficial features and hence tends to stay within domain
boundaries. Only as subjects become experts do they develop the
abstract tools that enable them to represent the essence of new
problems and to apply relevant schemes learned in the past. This
suggests that bottom-up and local learning is superseded by more
conceptually based general understanding, but only for domain
experts (Gentner et al. 1993; Goswami 1991; Reeves 1994).
It seems accordingly that the pattern of retrieval propensities
from long-term memory does not contribute much to bottom-up
learning.

In sum, I have tried to illustrate how the proposal by Clark &
Thornton should be critically evaluated. Their basic point is almost
trivially true. Assessing its significance demands an appraisal of the
relative importance of other mechanisms involved. In the event, I
have concluded that the complexities of theory formation should
be acknowledged, that restructuring is not necessarily a problem,
and that the structure of retrieval from long-term memory does
not raise any particular difficulty except in experts.

Extracting higher-level relationships
in connectionist models

Gary F. Marcus
Department of Psychology, University of Massachusetts, Amherst, MA
01003. marcus666psych.umass.edu;
www-unix.oit.umass.edu/-marcus

Abstract: Connectionist networks excel at extracting statistical regu-
larities but have trouble extracting higher-order relationships. Clark &
Thornton suggest that a solution to this problem might come from Elman
(1993), but I argue that the success of Elman’s single recurrent network is
illusory, and show that it cannot in fact represent abstract relationships that
can be generalized to novel instances, undermining Clark & Thornton’s
key arguments.

Clark & Thornton (C&T) provide a compelling argument that
statistical learners face problems in learning higher-level rela-
tionships. Less compelling, though, is their proposed solution,
“achieved representational spaces.” The centerpiece of their argu-
ment is the incremental version of Elman’s (1993) model, which
they and Elman argue is learning something about grammatical
dependencies like subject-verb agreement.

But has Elman’s model truly abstracted a higher-order regu-
larity that is not attested in the input? Elman himself does not
show this, since the only quantitative comparison he provides is
“the degree to which the network’s predictions match the . . .
probability distributions of the training data.”

In fact, Elman’s model depends entirely on the statistics of
lexical concurrence, never deriving abstract higher-order rela-
tions. I discovered this by conducting network simulations that
contrasted statistical and relational information (Marcus 1996a).
For example, in one experiment, I trained a version of Elman’s
model on sentences constructed from the grammar an X is an X,
using a set of twenty different instances of X (rose, duck, iguana,
butterfly, etc.). What happens if we test how this generalization is
applied to a novel word? Given the sentence fragment a dax is a 

, humans readily predict the continuation dax.
Elman’s model behaves quite differently: while it easily learns

all of the training sentences, it is unable to extend the abstract
underlying relationship to the novel word dax. This failure is
robust, unaffected by the number of hidden units, the number of
hidden layers, the number of training examples, or the sequence in
which those training examples is presented.

The reason the network fails to extend the abstract relations lies
in its roots as a statistical approximator: within the training corpus

the conditional probability of the word dax appearing in the frame
a . . . is a  is zero. The model merely mimics those
conditional probabilities; it is unable to step beyond those statistics
and derive the higher-level abstract relation, substantially weaken-
ing C&T’s central arguments.

Another problem that might actually demand that the learners
go beyond mere input statistics has been the focus of detailed
empirical inquiry. My colleagues and I have argued that general-
izations of default linguistic inflection (cat-cats, walk-walked) are
not closely correlated with statistical properties (e.g., Marcus et al.
1995). For example, the German plural -s is generalized in much
the same cases as the English -s, even though the German plural -s
is required by less than 10% of German nouns.

Most of the dozen or so connectionist models of linguistic
inflection – because they are strongly driven by input statistics –
face difficulty in explaining these data. Interestingly, one connec-
tionist model accounts for some of these data (Hare et al. 1995),
but only by resorting to several innate architectural details of the
sort that C&T scorn as “profligate,” including an innate, localist
node dedicated to the regular -ed past tense morpheme, innate
inhibitory links between the -ed output node and all the irregularly
inflected vowel outputs, and innate excitatory links between -ed
and the unchanged vowels that typically occur in regular past tense
forms. Unfortunately, without innate rewiring, the model is unable
to learn blends like sleep-slept or inflectional systems in which the
default is any morpheme other than the model’s innately wired -ed
(Marcus 1996b).

In sum, C&T are right to raise the issue of how connectionist
models can generalize beyond simple statistics, but the solutions
they offer are too limited. Will networks that lack innate resources
ever solve these sorts of problems? Although C&T scorn nativism
they give no arguments against it; meanwhile their argument that
nonnativist connectionist models could solve these problems
doesn’t go through.

Data coding takes place within a context

Daniel Memmi
LEIBNIZ-IMAG-CNRS, 46 avenue Felix Viallet, 38000 Grenoble, France.
memmi666imag.fr

Abstract: Recoding the data for relational learning is both easier and more
difficult than it might appear. Human beings routinely find the appropri-
ate representation for a given problem because coding always takes place
within the framework of a domain, theory, or background knowledge. How
this can be achieved is still highly speculative, but should probably be
investigated with hybrid models.

Clark & Thornton’s (C&T’s) target article is important and timely,
expressing clearly and precisely what practicing connectionists
have experienced and suspected for some time. The difficulty of
learning relational regularities from raw data has indeed been a
tacit limit of connectionist modeling, and making this explicit is
truly useful work. This can also be viewed as a more general
question: purely statistical learnings’ difficulty in drawing away
from the immediate data and building hierarchies of features and
representations that could be reused beyond the narrow context of
a single task.

We suspect, however, that the problem is both easier in practice
and even more complicated in theory than C&T make it out to be.
As a practical matter, the difficulty is not so serious as it might first
appear. Engineers and scientists routinely find the appropriate
features and the right coding to make a problem tractable. From
everyday cognition to scientific research, this is a modeler’s daily
bread, and it is mostly a question of domain knowledge and
experience. As C&T rightly observe, the real issue concerns why
recoding is in fact so common and so successful.

The theoretical answer, however, must be much more complex
than the panoply of ploys C&T discuss. For not only is the space of
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possible recodings open-ended, but there might be different
solutions to the same problem. For example, even a simple parity
problem admits of several solutions: data could be accounted for
by more complex functions than mere parity. On a higher plane,
several scientific theories often compete to explain phenomena in
the same domain: wave versus particle explanations of light,
historical versus structural accounts of language, and so on. Each
interpretation selects very different basic features and properties.

In fact solutions are found and chosen within the framework of a
whole domain, system or theory, and not in a vacuum. So recoding
always takes place in a given context, which can be crucial in
guiding and constraining the search for adequate representations.
Overall economy, generality, usefulness, coherence, and clarity
may then be taken into account. (Thus, in the absence of further
data to the contrary, simple parity is a better explanation than a
more arcane function.) In this way we try to build (fairly) coherent
interpretations of our world, in everyday life as well as in science.
The relevant context can range from perception and a background
knowledge of the practical world to the most formal cultural
constructs of science and technology.

Let us again take up the example (from sect. 3) of a small robot
trying to learn the real size of objects from their distance and
apparent width. This is indeed a relational learning problem, but
one which should appear much less puzzling (though not any
simpler) in the context of real biological development. Achieving
perceptual constancy in the face of highly variable input is a very
general problem (including size, color, and shape as well as
sounds), and a prerequisite for categorization and object recogni-
tion. Object constancy seems to be partly innate, partly acquired,
but the point is that it probably does not develop independently for
each feature, modality, and task. There is a general tendency at
work here for a whole class of cognitive systems, and it remains to
explain how it came about.

Similarly, Elman’s (1993) innovative and elegant work on con-
nectionist grammar acquisition from a corpus of sentences is
probably only a part of the whole story. Language is acquired in
real-world settings, where the semantic and pragmatic function of
words is quite obvious (if not always clear). Language develop-
ment also goes hand in hand with categorization and concept
formation. Thus, a basic linguistic distinction such as noun/verb
might be worked out as much from a semantic object/event
dichotomy as from statistical regularities in the language input.
Again, the overall context of the task could well constrain the
search for possible solutions.

C&T seem to allude to such a contextual view when they write
about the importance of language and culture, but they do not
elaborate about actual mechanisms. It is true that very little is
known about how knowledge structures could emerge and be
progressively reorganized within whole domains and cognitive
systems. Apart from Piaget’s (1971) grand but frustratingly vague
developmental framework, there is little theory available, whether
in cognitive psychology or in Artificial Intelligence (Leiser 1995).
Work in symbolic machine learning does not help much, because it
avoids the fundamental problem of how to choose basic features
and properties. And Karmiloff-Smith’s (1992) brave attempt in
psychology remains imprecise.

Yet we feel that this avenue of research cannot be pursued for
the time being with purely connectionist techniques because
these are still not powerful enough. The complexity of the knowl-
edge structures and mechanisms necessary to account for in-
context learning would most probably require hybrid systems.
Only with such symbolic-connectionist models could we hope to
deal with the systematic interaction between prior knowledge and
the acquisition of new regularities (Wilson & Hendler 1993; Sun &
Bookman 1996).

Of ants and academics: The computational
power of external representation

Jon Oberlander
Human Communication Research Centre, University of Edinburgh,
Edinburgh EH8 9LW Scotland. J.Oberlander666ed.ac.uk
www.cogsci.ed.ac.uk/people/jon/

Abstract: Clark & Thornton speculate that intervening in the real world
might be a way of transforming type-2 problems into type-1, but they state
that they are not aware of any definite cases. It is argued that the active
construction of external representations often performs exactly this func-
tion, and that recoding via the real world is therefore common, if not
ubiquitous.

Towards the end of their discussion, Clark & Thornton (C&T)
observe that in dividing up the cottage cheese,

we actively manipulate the real world so as to translate the abstract
mathematical problem into a form that exploits the specific computa-
tional powers of our visual systems. We do not know of any concrete
cases in which such physical interventions act so as to transform a type-2
search into some more tractable form, although it may prove fruitful to
examine cases in which color-coding, chemical trails, and so on, are used
to simplify recognition and tracking. (sect. 4, final paragraph)
It is true that an ant’s chemical trail is a physical intervention;

but so too are the many different ways in which people mark
surfaces within their environment. Thus, writing text, drawing
diagrams, sketching maps, filling in forms, drafting a histogram –
even typing on a computer keyboard – are all ways of constructing
external representations and adding new structure to our environ-
ment, thereby guiding our future behaviour.

In particular, such external representations – of which diagrams
are a paradigm – can play a powerful role in assisting human
inference, for a number of reasons. First, it is commonly ob-
served that they reduce memory load, and this is especially true if
the diagram is incrementally modified during problem-solving,
thereby storing the results of reasoning episodes (cf. Larkin &
Simon 1987). Second, as C&T note, our visual system has special-
purpose hardware that solves certain problems extremely rapidly
(cf. Funt 1980). Finally, when we make marks on a surface, the
physical nature of that surface introduces a whole set of additional
constraints. For example, following Bishop Berkeley, we can see
that a triangle drawn on a sheet of paper has to have a specific set of
angles and line lengths – it cannot, without further conventional
interpretation, be a “generic” triangle. Similarly, if I draw a set of
entities in a blocks world diagram, there will be a specific number
of blocks. Stenning & Oberlander (1995) investigated such cases,
and concluded that external representations trade in these con-
straints – which prevent complex propositions from being ex-
pressed – for computational efficiency. The point is just this: a
surface in the world has certain affordances, which force represen-
tations constructed upon it to precompile a huge number of
inferences, thereby saving effort later (cf. Lindsay 1988).

This precompilation implies that building an external represen-
tation effectively involves recoding the problem space. In particu-
lar, there are plenty of instances of representation construction
that actually convert type-2 problems into type-1.

Funt’s work is one example, but it seems plausible to make the
general suggestion that everyday data visualisation tools – such as
tables, graphs, and charts – perform exactly the type-2-to-type-1
recoding function; their fitness for this task explains why good
visualisation tools survive, alongside natural language. To see that
this is so, consider the training data in Table 1, which C&T discuss
in (sect. 2, paras. 12–14). With two input variables (x1 and x2), and
one output (y1), the problem as presented in Table 1 is charac-
terised as type-2. C&T suggest that if we recode the input “with a
single variable whose value is just the difference between the
original variables” then we will quickly derive useful probability
statistics within the recoded data.

Different visualisations offer different recodings, and their
utility can be evaluated by eye. Take C&T’s Table 1: it can be
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Figure 1 (Oberlander). Recoding Clark & Thornton’s Table 1
by visualising a space.

recoded as a two-dimensional table, with x1 and x2 in rows and
columns, and y1 as values for cells in the table:

x2
1 2 3

x1 1 0 1 0
2 1 0 1
3 0 1 0

Because we have formed a Cartesian space, the diagonal of 0s is
immediately salient, and one way of viewing the 1s is as flanking
the diagonal; hence we can see that y1 5 1 where x1 and x2 differ
in value by 1, and y1 5 0 otherwise. The point is made even more
vivid if we render a 3D bar chart of a larger training set, extended
so as to remain compatible with C&T’s generalisation (see Fig. 1).
Although C&T do not use either of these visually oriented recod-
ings on their Table 1 data, it is clear from the target article that they
must be academics who subscribe to the power of visualisation;
otherwise, we cannot explain why their paper does contain a line-
graph (Fig. 1 of the target article).

Academics – and other people – habitually mark the environ-
ment in the process of problem-solving; because the environment
has certain affordances, recoding happens as a matter of course;
and because our visual system is remarkably good at detecting
certain features of the environment, higher-order relationships
leap out of the now modified environment.

The moral of this story is that the study of diagrammatic
reasoning, data visualisation – and external representation use
more generally – should provide a rich source of “concrete cases of
physical interventions which serve to transform type-2 search into
some more tractable form.” Ants certainly are interesting, and
studying their chemical trails should provide insight into the way
that marking the environment helps to reduce computational load.
But in the long run, academics may prove even more interesting
than ants.

Old ideas, new mistakes:
All learning is relational

Stellan Ohlsson
Department of Psychology, University of Illinois at Chicago, (M/C 285),
Chicago, IL 60607-7137. stellan666uic.edu

Abstract: Learning is the acquisition of knowledge, not of input/output
mappings. The distinction between statistical and relational learning, as
Clark & Thornton define those terms, is not useful because all human
learning is relational. However, prior knowledge does influence later
learning and the sequence in which learning tasks are encountered is
indeed crucial. Simulations of sequence effects would be interesting.

Clark & Thornton (C&T) provide solid evidence that some con-
nectionist systems cannot learn to recognize the difference be-
tween large and small objects. This result is not accidental; the
authors see “a robust pattern of failure” on this and other, equally
simple tasks (sect. 2). Somewhat surprisingly, this failure is taken
as a basis for far-reaching speculations about the nature of mind,
the function of culture, and the course of hominid evolution.

The conceptual bridge between the failure and the speculations
is a distinction between “statistical” and “relational” learning tasks,
plus the three ideas that (a) the learning mechanisms in our heads
can only handle statistical learning, (b) relational learning tasks
can only be solved if prior learning reduces them to statistical tasks
by enabling the learner to recode the relevant information, and (c)
the effect of prior knowledge on later learning implies that the
sequence in which learning tasks are encountered is crucial.

This is an interesting argument. Unfortunately, C&T define
“the process of learning . . . as the attempt to acquire a target
input/output mapping” (sect. 2). This is, of course, exactly what
learning is not. The idea that what is learned is an input/output
mapping (or a set of stimulus-response connections) was aban-
doned in the 1950s because people began taking the generativity
of human cognition seriously (Chomsky 1959).

It appears that the case against behaviorism bears repeating:
People adopt perspectives and form beliefs; they remember the
past, visualize the future, and imagine the impossible; they have
intentions and goals; they plan and make decisions. People act
differently in one and the same situation, depending on what they
believe and want. In short, human behavior is generated centrally,
not peripherally; action is adaptive, not reactive. Hence, learning
cannot be understood as the acquisition of an input/output map-
ping, regardless of type and complexity. There is no reason to
revive the behaviorist view.

We are thus faced with an interesting argument formulated
within an uninteresting framework. Can we extract the former
from the latter? Are there any real world examples of C&T’s
concept?

There are abundant examples of the idea that prior learning is a
major determinant of new learning, because this is one of the
oldest ideas in cognitive research (Ausubel 1963). Effects of prior
knowledge have been documented in text comprehension, per-
ception, problem solving, and learning (Eysenck & Keane 1995).
The idea that prior learning enables the learner to recode informa-
tion is also well documented, although it is usually referred to as
“chunking” rather than “recoding” (Miller 1956). Examples of the
importance of sequential order of learning tasks are particularly
easy to find in educational contexts: vocabulary comes before
reading, algebra before calculus, and so on (Gagne 1962).

So far, so good. However, when we get to C&T’s own proposal –
namely, that there are two qualitatively different types of learning
and that an instance of the computationally more demanding type
can be reduced to a sequence of less demanding ones – then I’m
stuck. I am unable to think of a single convincing example. There
are many distinctions between qualitative types of learning (em-
pirical vs. theoretical, declarative vs. procedural, explicit vs. im-
plicit), and prior learning of one type can certainly facilitate
learning of another type. Prior knowledge helps, but it does not
help in the particular way proposed by Clark & Thornton. For
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example, a good vocabulary does not “recode” a text so as to reduce
the computational complexity of reading, nor does knowledge of
algebra “recode” calculus problems in such a way as to reduce the
computational complexity of learning calculus. In general, prior
knowledge does not help by changing a learning task from one
type (with high computational complexity) to another, quali-
tatively different type (with lower computational complexity).

I believe that C&T have it exactly backwards: They claim that
statistical learning “is really all we currently know how to achieve”
(sect. 5). On the contrary, it seems to me that all human learning is
relational learning in the sense that prior knowledge is used to
interpret (“recode”) the learning situation and new learning pro-
ceeds on the basis of the interpretation. Statistical learning is all
that connectionist learning systems know how to do; this has no
implications for human learning.

In short, lifted out of its behaviorist framework and shorn of its
pseudo-mathematical trappings, the distinction between statis-
tical and relational learning has nothing going for it; but the
emphasis on the role of prior knowledge and the sequential order
of learning tasks is right on target. Although there are simulations
of the effects of prior knowledge on learning (e.g., Ohlsson 1996;
Ohlsson & Rees 1991), sequence effects have not been studied in
depth. Simulating such effects in a real learning scenario would
require a lot of work. Perhaps C&T will get around to it once they
finish teaching their current system to recognize the difference
between large and small objects.

Neural computation, architecture,
and evolution

Paul Skokowski
McDonnell-Pew Centre for Cognitive Neuroscience, Oxford University,
Oxford, OX1 3UD, England. paul.skokowski666psy.ox.ac.uk

Abstract: Biological neural computation relies a great deal on architec-
ture, which constrains the types of content that can be processed by
distinct modules in the brain. Though artificial neural networks are useful
tools and give insight, they cannot be relied upon yet to give definitive
answers to problems in cognition. Knowledge re-use may be driven more
by architectural inheritance than by epistemological drives.

The nativism/empiricism debate is intriguing, but perhaps a little
overblown for high-level cognition. It is clear that much of the
architecture of the brain is pre-determined. The various regions
studied by neuroscientists and psychologists and the neural path-
ways between and through them do not vary substantially from
subject to subject. This much speaks for nativism. Yet people (and
animals) manage to learn new things, including some very difficult
cognitive tasks indeed, throughout their lifetimes. Despite the
evidence that its overall architecture appears to be genetically
determined, the brain still turns out to be plastic. This is because of
the modifiability of synaptic connections within this predeter-
mined structure. A main contender for how this feat is accom-
plished at the neural level is Long Term Potentiation, or LTP, yet if
we cut certain neural pathways in the right places, in man or beast,
some types of cognitive function may never be recovered. People
with certain kinds of localized brain damage become blind. No
other region of the brain can compensate and allow them to see,
despite the massive number of interconnections remaining in the
brain. Plasticity, therefore, has its limits.

The point is that the brain is partially predetermined, and
partially plastic. It has inherited certain tricks that help it to solve
certain problems. Architecture and direct wiring is one very
powerful trick our evolution has provided us. Few would deny that
the visual cortex has evolved to solve visual tasks. But having said
that, learning is still required for proper vision. Children learn to
focus on objects and distinguish actual sizes of objects that occupy
equivalent solid angles of their visual field. Deprivation of visual
stimuli at certain key developmental stages in cats leads to blind-

ness. The brain is a bag of tricks, to use Dennett’s (1992) terminol-
ogy, to be sure, but it is a bag of tricks that still requires learning –
plasticity – at numerous levels in order to use these tricks for the
benefit of the organism.

Clark & Thornton (C&T) now tell us that there are other tricks
in store. We are told that cognitive systems need an informed
search to solve certain problems. There is some merit to this claim,
but I wonder about their approach. We are told that neural
networks, or animats with neural network drivers, both having
restricted classes of neural net architecture, cannot solve certain
types of problems. We are then reminded of Elman’s (1993) neural
network studies in which early training on one type of input
corpus, followed by training on another type of input corpus,
yields encodings adequate to solve a complex problem in lan-
guage. These examples are meant to support the claim that, in
order to achieve certain tasks, we (successful cognitive systems)
must go beyond finding simple correlations in sensory input, and
manipulate higher order representations. Perhaps for connection-
ists this is a new discovery (which I doubt). But haven’t we known
this for some time about biological systems which have been
endowed with substantial neural machinery: systems like us?

A hidden assumption in C&T’s target article that must be
addressed is that what goes for neural networks goes for biological
cognitive systems. When a fixed-architecture neural network fails
on a certain task, does that really tell us something specific about
our cognitive capacities? Or does it tell us something about feed-
forward neural networks of that sort of architecture? Perhaps
another layer, or simulated annealing, or some other neural
network would have ameliorated the situation and allowed a
solution of the problem with a neural net approach. What would
this imply for C&T’s thesis? Though I find such networks to be
useful tools and to give us insight into our cognitive life, I remain
healthily skeptical about their role as final arbiters on cognition.
Having said this, I must agree with C&T that if the brain does avail
itself of neural net style computation, then it must be a massively
parallel network of such networks.

C&T make the further claim that we have a drive to re-use old
knowledge. But look at the brain again. As mentioned above, it is
architecturally configured in a certain way. If we, as individuals or
as a species, must deal with new environmental contingencies that
haven’t occurred in our evolutionary past, we must use the tools we
have. This much seems trivial. Architecturally speaking, you can’t
teach an old dog new tricks – with the obvious exception of several
thousand years of evolution. Though architecture itself isn’t
knowledge (content), it constrains the types of content that can be
processed by that module. If we use an existing (trained) module
in the brain to try to do a new task, then the only tools it will have to
work with are its architecture and its current content. I’m not sure
if that constitutes a drive: bare necessity may be a more apt
description.

Finally, evolution takes time. Language changes much more
quickly (witness valley or cyber-speak) than species ever could.
C&T are therefore on the right track, in my opinion, in claiming
that language adapts to our capabilities rather than the other way
around. Language, however, is a peculiar beast, being made up of
tokens, meanings, speakers, grammar, and so on. It would take a
lot of hard work to complete this story to everyone’s satisfaction.

Why computation need not be traded
only for internal representation

Robert S. Stufflebeam
Philosophy-Neuroscience-Psychology Program, Washington University,
Campus Box 1073, St. Louis, MO 63130-4899. rob666twinearth.wustl.edu

Abstract: Although Clark & Thornton’s “trading spaces” hypothesis is
supposed to require trading internal representation for computation, it is
not used consistently in that fashion. Not only do some of the offered
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computation-saving strategies turn out to be nonrepresentational, others
(e.g., cultural artifacts) are external representations. Hence, C&T’s hy-
pothesis is consistent with antirepresentationalism.

Using achieved representations reduces computational labor
while also enabling a computational device to solve what would
otherwise be an intractable mapping problem. Such is the crux of
Clark & Thornton’s C&T’s representation-dependent “trading
spaces” hypothesis. There are two facets of their gloss on the
hypothesis about which I shall comment, one pertaining to the
representational status of the sorts of “ploys, stratagems, and
tricks” (sect. 4, para. 6) they identify, the other pertaining to
whether the hypothesis depends on internal representations.

This commentary is motivated by my research into the nature of
representation and its relation to computation. Since C&T’s hy-
pothesis is predicated on the interrelationship between these
notions, let me begin by exploring a bit of the dialectic between
computationalists and their opponents.

Although C&T fail to state precisely what they take to be an
internal representation – apart from “a recoding scheme” (sect. 3,
para. 16) – it is clear that they feel internal representations play a
crucial role in biological computational processing. They are not
alone: computationalism and representationalism underlie vir-
tually every naturalistic attempt to explain how the mind/brain
works. The former is the view that a computational framework is
essential to explain the workings of “intelligent” systems. The
latter is the view that computational systems require a sophisti-
cated system (or “medium”) of internal representations, without
which they cannot compute (Fodor 1975, p. 27). So, regardless of
whether one’s preferred computational framework is symbolic or
nonsymbolic, the status of internal representations in explanations
of computational processing seems to be secure. Or so we have
been conditioned to believe.

The received view of computationalism is not without its gain-
sayers. Although attacks against it come in a variety of guises, most
(though not all) varieties of anticomputationalism are explicitly
antirepresentational. Some of the more significant critiques in-
clude: (1) attacks against a computational framework being a
plausible framework within which to explain cognition (Port & Van
Gelder 1995; Van Gelder 1995); (2) arguments against the notion
that (biological) computation presupposes a medium of internal
representations (Stufflebeam 1997, Chs. 3–4); (3) attacks against
the biological plausibility of cognitivism and symbolic computa-
tion (Dreyfus 1992; Searle 1990); (4) attacks against the efficacy of
computational simulations as a basis for explanations of how the
mind/brain works (Fodor 1995; Searle 1990); (5) arguments in
defense of situated action (Agre 1993; 1995; Brooks 1991); and (6)
antirepresentational arguments regarding the role and status of
“distributed representations” in explanations of PDP (Stuff-
lebeam 1995). If anyone is familiar with these attacks, it’s Andy
Clark (Clark 1996; Clark & Toribio 1994).

Does any computation-saving ploy, trick, or stratagem qualify as
a representation? Some do – for example, “public language” and
certain cultural artifacts (sect. 4, para. 9). Because to use public
language is to use achieved representations to reduce the com-
putational complexity regarding (at least) the transmission of
knowledge, since public language is clearly representational, it
exemplifies C&T’s hypothesis. But “real-world actions” are sup-
posed to do that as well (sect. 4, para. 15; sect. 5., para. 4). Here’s
the rub: C&T are careful not to call such computation-saving ploys
“representations,” though they do feel real-world actions are
consistent with their hypothesis. As such, it is odd that C&T are
insensitive to the antirepresentationalist arguments coming from
proponents of situated action.

More important, C&T’s hypothesis does not seem to depend on
trading internal representation for computation, as is their claim.
Instead, it seems to depend rather on trading something for
computation, even if that something is an external representation
(as is the case with cultural artifacts and public language ut-
terances). It may still be the case that “the computationally weak

will inherit the earth” (sect. 5, para. 5). But, one could argue, it is
the external representations that make the computationally weak
“representationally rich enough to afford it” (sect. 5, para. 5). And
since real-world actions also get traded for computation, their
hypothesis is far less representation-dependent than Clark &
Thornton seem to realize.

Prospects for automatic recoding of inputs
in connectionist learning

Nicolas Szilas and Thomas R. Shultz
Department of Psychology, McGill University, Montreal, Quebec, Canada
H3A 1B1. nicolas666lima.psych.mcgill.ca; shultz666psych.mcgill.ca;
www.psych.mcgill.ca/labs/lnsc/html/lab.-home.html;
www-leibniz.imag.fr/reseaux/szilas/szilas.html

Abstract: Clark & Thornton present the well-established principle that
recoding inputs can make learning easier. A useful goal would be to make
such recoding automatic. We discuss some ways in which incrementality
and transfer in connectionist networks could attain this goal.

Clark & Thornton’s (C&T) key point, that recoding inputs can
make learning easier, is well established and widely known. The
merit of their approach is to tackle the problem instead of avoiding
it, by showing negative results obtained without recording and
providing a general overview of how manual recoding might work.

The next challenge would be to make such recoding automatic.
Unfortunately, a mechanism for automatic recoding is not pro-
posed by C&T. Ideas that could serve as the basis for automatic
encoding can be found in studies of techniques for making
learning easier, only some of which are mentioned by C&T.

C&T wisely cite Elman’s (1993) work on incremental learning.
There are a few studies showing that learning is sensitive to the
sequencing of tasks (Cloete & Ludik 1993; Szilas & Ronco 1995;
Tetewsky et al. 1995). However, if the sequence of tasks is not very
carefully chosen, learning can be impaired.

A growing subfield in connectionism concerns the study of
knowledge transfer. Some of these studies show that a common
hidden layer can be shared by several tasks, in either simultaneous
(Caruana 1993) or sequential (Baxter 1995) learning.

Transfer from one task to another can be useful only if the tasks
are related in some important way. Otherwise, the two tasks may
merely interfere with each other. If a representation is to be
retained and reused without interference, it should perhaps be
frozen. This is what is achieved by an algorithm like cascade-
correlation (Fahlman & Lebiere 1990), which builds a hierarchical
layered structure in which input weights to hidden units are no
longer adjusted once the unit has been installed.

Simulations confirm that cascade-correlation networks are less
susceptible to retroactive interference and make better models of
human learning on sequential learning tasks than more conven-
tional back-propagation networks that do not freeze hidden units
(Tetewsky et al. 1993). In these simulations, transfer is achieved by
learning connections from an old structure to a new one, whereas
C&T seem to discard this possibility unless the earlier subnet is
copied. With freezing of input-side weights, subnets are not used
up, but simply used.

The constraint that “the dimensionality of the inputs is identical
for both the original task and any later ones” can likewise be
overcome: once again, use connections! A three dimensional input
can be connected to a four dimensional input by a set of weighted
links. Furthermore, in referring to Karmiloff-Smith’s (1992) Rep-
resentation Redescription, C&T seem to identify recoding with
abstract redescription. Even if abstract redescription does exist,
the foregoing examples show that the reuse of knowledge can
occur without abstraction.

C&T stress the importance of using old representations to
facilitate new learning, in effect, trading representation for com-
putation. However, it is worth noting that in open-ended sequen-



Commentary/Clark & Thornton: Trading spaces

82 BEHAVIORAL AND BRAIN SCIENCES (1997) 20:1

tial learning there may be as many representations as there are
learning episodes. Consequently, using achieved representations
implies searching among them, and such search does require
computation. Psychological studies of analogical reasoning show
that even when people have relevant knowledge, they may not be
able to use it without extensive hints (Gick & Holyoak 1980; 1983).
Because such search is not trivial and is often unsuccessful, C&T’s
space trading maneuver is not without potential problems. The
more representations that are available, the more extensive the
search computation is likely to be.

Relational problems are not fully solved
by a temporal sequence
of statistical learning episodes

A. Vinter & P. Perruchet
L.E.A.D., C.N.R.S., University of Bourgogne, 21000 Dijon, France.
vinter666satie.u-bourgogne.fr

Abstract: Clark & Thornton’s conception finds an echo in implicit
learning research, which shows that subjects may perform adaptively in
complex structured situations through the use of simple statistical learning
mechanisms. However, the authors fail to draw a distinction between, on
the one hand, subjects’ representations which emerge from type-1 learn-
ing mechanisms, and, on the other, their knowledge of the genuine
abstract “recoding function” which defines a type-2 problem.

1. Power of statistical learning mechanisms. Much of the
interest of Clark & Thornton’s (C&T’s) target article lies in the fact
that it offers a straightforward demonstration of the power of
statistical learning mechanisms for solving problems which seem,
prima facie, to be beyond the scope of such mechanisms. Empir-
ical support for this conclusion can be found in the recent
literature on implicit learning (Dienes & Berry, in press). In an
often-cited study (Lewicki et al. 1988) for example, participants
were asked to track as fast as possible a long and continuous series
of targets appearing apparently at random locations. Unknown to
participants, the series was composed of a systematic alternation of
two unpredictable and three predictable trials. The discovery of
this structure implies that subjects recode the continuous succes-
sion of trials into adjacent blocks of five successive trials. The
underlying structure of the series remained completely opaque to
participants, even after practice, yet performances were better for
the predictable trials than for the unpredictable ones. Perruchet et
al. (1990) demonstrated that the surprising adaptive performance
of subjects in this situation was a direct consequence of a sensi-
tivity to the frequency of occurrence of certain small chunks of two
or three trials generated by the rules structuring the series. One
could say that subjects solved a type-2 problem after its reduction
to a set of type-1 problems.

The analogy between C&T’s position and some aspects of the
literature on implicit learning may be taken a step further. Per-
ruchet and Gallego (in press) have proposed a theoretical account
of implicit learning which shares striking similarities with C&T’s
claims about the nature and the function of type-1 learning. In this
account, implicit learning is devoted to the formation of the
“subjective units” shaping the perception of events and objects.
Statistical learning mechanisms result in the chunking of informa-
tion into discrete units, the nature and size of which are a function
of the salience of surface features, as well as of the subject’s
background knowledge and general processing constraints and
abilities (active memory and attention mainly). These subjective
units emerge from the association of the primitive features that are
processed conjointly in an attentional focus, and determine how
the environment is attentionally perceived and processed after
experience. With training, these units become increasingly inde-
pendent of the sensory input and hence form internal representa-
tions. In line with C&T’s position, this account construes the
notion of representation as the endproduct of statistical learning

mechanisms, making it possible to deal efficiently with problems
involving what are a priori powerful computational abilities.

2. Limits of statistical learning mechanisms. Placing C&T’s
conception of learning within the context of implicit learning
research reveals a major limitation of this conception, however.
First note that C&T do not distinguish between the formation of
achieved internal representations of the world, which permits
behavioral adaptation to a given situation, and subjects’ knowledge
about the structural features of this situation. Let us illustrate this
distinction. Each of us can state the direction of the source from
which a sound comes. This ability stems from the detection and
analysis of subtle differences in intensity or phase between the
auditory streams processed by each ear. Consequently, location
detection belongs to the class of relational, type-2 problems. The
distinction we refer to is between the formation of achieved
representations of sound space and the knowledge of the principle
which permits these representations, namely, that detection is
possible thanks to the relation between the information provided
to each ear (Vinter & Perruchet 1994). Now, as should be clear
from this example, it makes no sense to endow laymen with
knowledge of this principle. The idea of knowledge makes sense
here only from the observer’s point of view not from the subject’s.

In location detection, the coding of relational information is the
direct product of hard-wired mechanisms. Our proposal is that the
very same logic holds for the recoding provided by type-1 mecha-
nisms of learning. The sensitivity to frequency statistics, and the
representation resulting from this sensitivity, must be carefully
distinguished from the subject’s knowledge of the relational prop-
erties embedded in the task. Let us return to the Lewicki et al.
situation. We noted that the better performance of subjects on the
predictable trials, which apparently indicated that subjects were
sensitive to the underlying structure of the series, relied on the
sensitivity to the frequency of certain chunks forming the series.
The crucial point is that this sensitivity to the surface frequency
features gave the subjects no access at all to the underlying
structure, for the very reason that the relevant frequencies, al-
though a byproduct of the rules, do not make it possible to infer
the rules. Indeed, the rules were concerned with the trajectory
defined by two successive locations, whereas the resulting fre-
quency effects captured by the participants were mostly con-
cerned with perceptually salient units such as back and forth
movements involving three successive locations. In this situation,
it is clear that there is no justification for inferring relational
knowledge from improved performance.

3. The need to introduce higher-level processes. We suggest
that the solution provided by statistical learning mechanisms to
type-2 problems is only a first step in the full course of human
learning. The genuine knowledge of the relation embedded in
type-2 problems involves processes that C&T fail to consider. In
order to gain knowledge about the mechanisms involved in the
detection of sound location for instance, scientists need to proceed
by reasoning, hypothesis testing, and logical inference. The fact
that they are themselves able to detect, as can everyone else, the
location of a sound is of no help. In other words, knowledge of the
“recoding function” can only be achieved by using processes
fundamentally different from those involved in statistical learning.
These high-level processes are needed to infer any abstract rela-
tion and to integrate it into a coherent view of the world or even to
transfer it to another domain. The formation of abstract knowl-
edge implies the use of processes which rely on the specific power
of conscious thought. Overall, C&T’s suggestion that there is no
other type of learning to be had than type-1 learning, needs
revision.
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Evolution’s gift is the right account
of the origin of recoding functions

Andrew Wells
Department of Social Psychology, The London School of Economics and
Political Science, London WC2A 2AE, England. a.j.wells666lse.ac.uk

Abstract: Clark & Thornton argue that the recoding functions which are
used to solve type-2 problems are, at least in part, the ontogenetic products
of general-purpose mechanisms. This commentary disputes this and
suggests that recoding functions are adaptive specializations.

Clark & Thornton (C&T) have enhanced our understanding of the
nature of problem spaces with their distinction between type-1
and type-2 problems. Type-1 problems are solved directly. Type-2
problems are solved indirectly via recoding functions which make
manifest otherwise hidden regularities in input domains. Recod-
ing reduces type-2 problems to type-1. This is a valuable insight
and the statistical framework within which the distinction is
formalized is both apt and informative. C&T suggest that type-2
problems are commonplace in a wide variety of domains but are
regularly solved despite their computational intractability, which
results from the infinity of potential recoding functions.

A central question, therefore, concerns where the recoding
functions used to solve type-2 problems come from, and it is here
that C&T’s analysis is problematic. One possibility, which is
currently at the heart of much promising work in evolutionary
psychology (Barkow et al. 1992), is that recoding functions are
task-specific, evolved adaptations. C&T are clearly unsympathetic
to this idea, which they call “heavy-duty nativism” and they accept
only that it “is no doubt sometimes plausible” (Abstract).

The reasons for C&T’s hostility to the evolutionary solution are
not made clear, but they appear to be uncomfortable with the idea
of a large number of adaptively specialized type-2 problem solving
devices. One of their goals is, therefore, to show how more
general-purpose mechanisms and processes might be used in the
solution of type-2 problems. Their preferred account of recoding
functions builds them via a two-stage ontogenetic process which
retains a central role for associative learning. C&T argue that the
first stage consists of associative learning over type-1 problem
domains which results in the achievement of specific representa-
tional states. In the second stage the achieved states can be used
more generally on a trial and error basis as potential recoding
functions for arbitrary problems which might thus be reduced
from type-2 to type-1.

The trouble with C&T’s ontogenetic scheme is that it does not
solve the problem and hence there is no reason to prefer it to the
phylogenetic account of the origins of recoding functions. Let us
suppose that associative learning can modify the connectivity of a
module or a subnet, as hypothesized by C&T, to realize a specific
function which solves a type-1 problem. Let us further suppose
that the module can then be made more widely accessible for use
by other input domains, perhaps in one of the ways suggested by
Rozin (1976). It is hard to see what advantage this confers. The
difficulty with type-2 problems is that the space of potentially
applicable recoding functions is infinite. All that the first stage of
the ontogenetic process can achieve is to make one of these
recoding functions available to the problem solver. But unless
problem spaces have related structures, the second, trial and error,
stage of the process would be of no value, because the probability
is vanishingly small that the acquired recoding function would just
happen to reduce an independent type-2 problem in a useful way.
C&T appear to have no way to avoid this conclusion because they
accept that the principle relating achieved representations to
problem spaces is chance. “Each such recoding may just happen to
reduce a problem that was previously type-2.” (sect. 4, para. 6).

C&T’s reluctance to accept a phylogenetic account of the
origins of recoding functions is all the more curious in the light of
their enthusiasm for trading computation for representation.
Given that type-2 problems “permeate biological cognition right
down to its roots” (sect. 5, para. 1) it is clearly the case that selective

pressure would be exerted in favour of mechanisms which instan-
tiated more powerful representations and thus solved problems
faster or more accurately than those that did not. It is a computa-
tional truism that special purpose machines are faster and more
efficient than general purpose machines and it is also evident that
natural selection preserves mechanisms which offer selective
advantage with respect to specific problems. Evolution’s gift of an
appropriate set of type-2 problem-relevant recoding biases is
exactly what we ought to expect.

Authors’ Response

Relational learning re-examined

Chris Thorntona and Andy Clarkb

aCognitive and Computing Sciences, University of Sussex, Brighton,
BN1 9QH, United Kingdom; bPhilosophy/Neuroscience/Psychology
Program, Washington University in St. Louis, St. Louis, MO 63130.
chris.thornton666cogs.Sussex.ac.uk; andy666twinearth.wustl.edu

Abstract: We argue that existing learning algorithms are often
poorly equipped to solve problems involving a certain type of
important and widespread regularity that we call “type-2 regu-
larity.” The solution in these cases is to trade achieved representa-
tion against computational search. We investigate several ways in
which such a trade-off may be pursued including simple incre-
mental learning, modular connectionism, and the developmental
hypothesis of “representational redescription.”

The target article explores a familiar topic (the limits of
simple statistical learning) in what we hope is a rigorous and
challenging way. Its motivation was simply the observation
that certain types of problem are both frequently solved (by
biological learning devices) and yet appear highly intrac-
table from a statistical point of view. These intractable (so-
called “type-2”) scenarios are ones in which the learner
must identify relations among raw input elements rather
than associations. The puzzle is: how is it possible for
limited biological agents to negotiate such statistically im-
penetrable problem domains? The answer is (we claim)
that short of being provided with antecedent search-space-
shrinking knowledge (in which case the problem does not
arise) the only hope lies in a “bag of tricks” approach that
exploits general strategies for pressing maximal effect from
those rare cases in which, by chance, a useful re-coding has
been found. Re-coding is essential since it is a process that
can take a relational property and turn it into a bona fide
higher level element in a new space in which previously
complex and elusive properties (such as relations between
relations) appear as simple patterns (relations).

This thesis, we concede, can seem by turns trivial (of
course higher order relational learning is tough!), wildly
speculative (surely there are more direct ways of solving
this kind of learning problem?), over-technical (did we
really need statistics to make our point?), and under-
technical ( just how precise is the type-1/type-2 distinction
anyway?). It is to the great credit of the commentators that,
pretty much without exception, they responded construc-
tively, repeatedly underlining our central theme and offer-
ing a wealth of useful suggestions and links to other bodies
of work. Their responses bear mainly on six issues and we
divide our Response accordingly.
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R1. Is there still a Grand Ploy waiting
to be discovered?

Our claim was that no general algorithm can exist for the
systematic discovery of type-2 regularities in unrestricted
domains. The most nature can do is to press maximal utility
from whatever re-codings are found by chance or by simple
search in less problematic domains, or to adjust the prob-
lem space itself so as to better exploit the existing biases of
the human learning device (as in the Newport [1990]
conjectures about morphology). Some commentators, how-
ever, proved unable to suppress a laudable optimism and
felt (Berkeley, Haberlandt) that some more powerful and
general mechanism might yet be available. Thus Berkeley,
while appearing to be in agreement with much of our the-
sis, suggests that backpropagation networks using non-
monotonic units can in fact deal with the type-2 parity-
generalization scenario which we refer to in our paper. He
cites a number of simulation results which back this up. We
have no difficulty with this proposal and would only com-
ment that the use of such “nonmonotonic” units equips the
learning method in question with an implicit recoding
ability and that this just happens to be appropriate for the
problem domain he concentrates on, namely parity gener-
alization. Thus Berkeley effectively demonstrates that a
suitably biased type-2 method can solve a type-2 problem.
Such a demonstration, however, is in no way suggestive of
the re-coders grail: a fully general algorithm that achieves
type-2 learning whatever the domain.

Several commentators (Oberlander, Stufflebeam,
and, to some extent, Kurtz) suggested that the nearest
thing that nature provides to such a general Grand Ploy may
be the use (by a lucky few evolved creatures) of a variety of
external representational systems such as language, maps,
graphs, and other kinds of real world structure. This is a
powerful and important suggestion, and one that we merely
touched upon in our original treatment (see our comments
on Dennett in sect. 3 and on the potential role of real world
structures and action in sect. 4). We are, however, in full
agreement with the idea that external representations play a
very major role in empowering biological learning devices
(Clark, 1989, Ch. 7; Clark 1997).

We found Oberlander’s thoughtful and constructive
commentary of special help in this regard. Oberlander
develops a number of very compelling examples of ways in
which we can simplify inner computations by adding struc-
ture to the local environment. This is a theme whose time
has clearly come, for it is surfacing again and again in recent
and influential work on so-called embodied and embedded
cognition (see e.g., Hutchins 1995 and Clark 1997), and it is
one that we intend to pursue in detail in our future work.

We cannot resist relating a further example, shown to us
by Roger Thompson (personal communication), that seems
perfectly to illustrate this theme. It concerns the ability of
certain chimpanzees (pan troglodytes) to use experience
with external tokens to enable them to perform higher
order matching tasks that they would otherwise find impos-
sible. The basic result, described at length in Thompson et
al. (in press) is that when trained to associate a relational
feature of some inputs (e.g., the feature of sameness) with
an arbitrary external token (such as a plastic heart), the
chimps can go on to learn to perform a higher order task
(matching relations between relations) that would other-
wise defeat them. Thus they become able to judge of two

pairs of objects – such as two identical shoes and two
identical cups – that the pair of pairs is an instance of the
sameness relation at a higher level, that is, sameness in
respect of sameness, each pair being itself an instance of the
basic relation of object level sameness. This task of match-
ing relation between relations is, we think, a clear instance
of a type-2 learning scenario. But one in which, as predicted
by Oberlander, the existence of external tokens capable of
reifying the relations between basic domain elements ren-
ders the problem tractable to on-board biological cognition.
We here trade externally provided props and structures
against expensive and perhaps even intractable episodes of
inner computation.

In addition to the dedicated seekers after a Grand
Ploy, some commentators suggested useful additional lo-
cally effective props and stratagems that might be added
to our bag of tricks. Szilas & Shultz note the virtues of
cascade correlation networks and suggest that a greater
use of between network connections may do much to
reduce the need for whole network copying and to over-
come mismatches of input size during episodes of analog-
ical reasoning. We agree that these and other technical
tricks may help explain in detail how codings developed
in one domain get to be transferred to others in which
they may, at times, reduce type-2 complexity to type-1
tractability. The basic strategy however is still simply the
re-use of achieved representation – it is trading spaces
just as we envisaged it.

R2. The role of evolution

One contentious move in our original treatment was to
avoid reliance on what we (perhaps unadvisedly) termed
“heavy-duty nativism.” Many otherwise sympathetic com-
mentators (Bullinaria, Wells, Elton, Dartnall) felt this to
be a too hasty dismissal of a potentially rich source of re-
coding functions. With this, however, we have no argument.
Our move was rather a strategic one, designed to focus
attention on the problematic (but surely inevitable?) resid-
ual range of cases in which evolution has not already done
our re-coding work for us. We thus accept Wells’s (see also
Marcus) suggestion that “evolution’s gift of an appropriate
set of type-2 problem-relevant recoding biases is exactly
what we ought to expect,” at least as far as various evolu-
tionarily central learning functions are concerned. But if
evolution is to be the only source of such re-codings, the
lenses of human thought and science must be much weaker
and narrower that we had supposed. It seems implausible,
to us, to thus limit the space of humanly possible thought
(though it surely has limits – just not ones directly set by an
evolved set of recoding functions). Hence our desire was to
explore any other strategies that might be available to us on
an ontogenetic or cultural-evolutionary time scale.

An interesting suggestion, from Bullinaria, is that learn-
ing algorithms that build in a few simple and biologically
plausible constraints may show improved performance on
many problems that would otherwise involve intractable
search. Such constraints include assumptions of symmetry
between certain weights and the assumption that local
information is more likely to matter than distal information.
Such fixes and biases constitute, it seems to us, some very
plausible ways in which a thrifty nature might subtly bias
learning systems so as to promote the successful learning of
specific skills in ecologically normal settings (see Karmiloff-
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Smith 1992; Clark 1993, Chs. 4 and 5). But once again our
primary target lies elsewhere in any residue of cases that
must be dealt with by ontogenetic or cultural-evolutionary
means.

Similar remarks apply to Skokowski’s admonition to
look more closely at the architectural inheritance of our
biological brains. Of course, as Dartnall nicely points out,
this is hardly an all-or-nothing matter. Our ontogenetic
forays into type-2 space must be primed and rooted in early
episodes of thought and learning that exploit quite evolu-
tionarily basic mechanisms for apprehending and respond-
ing to our world. Like Dartnall, we envisage a cascade of
information-processing activity in which evolution’s gifts
(Wells, Skokowski) and cultural and ontogenetic luck and
hard labor come together. Getting straight about their
relative contributions and complex interactions is, we think,
one of the most pressing tasks facing contemporary cogni-
tive science. The type-1/type-2 distinction is intended as a
heuristic tool in the service of just such an endeavor.

If, however, we live in a world in which evolutionarily
unanticipated type-2 learning scenarios are regularly en-
countered, the possibility arises (Bullinaria, Dominey)
that we may evolve if not fully general, at least multi-
purpose built-in strategies to support such learning. One
plausible contender for such a built-in ploy is whatever on-
board machinery supports the process of analogical reason-
ing. Analogical reason, as noted in our original treatment,
provides an open-ended means of re-using achieved re-
codings so as to view a new problem space through a highly
structured lens. Dominey’s helpful and illuminating com-
mentary presents a convincing and powerful demonstration
of our basic thesis and clearly shows how analogical transfer
can at times help to overcome the problem. The central
example involved learning sequences not related by surface
structure but only by abstract underlying relational struc-
ture. Bullinaria shows both the (anticipated) failure of
type-1 learning and the success of an augmented model that
applies filters (see also Dartnall) transferred from other
learning experiences. We were especially impressed with
Bullinaria’s demonstration that the filters for re-use could
be selected by a type 1 process of sequence recognition, as
this goes some way toward addressing the very real worry
(Wells) that it is unclear how to choose an achieved re-
coding for use in a new domain.

A very different set of issues comes to the fore in Elton’s
interesting and provocative comments concerning some
important differences between evolutionary and ontogene-
tic learning scenarios. Elton claims that since problems and
solutions can co-evolve it is misleading to think of the issue
(over evolutionary time) as one of finding a kind of pre-
determined target mapping. Instead, he says, it is a matter
of finding a kind of behavioral profile that works and then
sticking to it. We agree but we do not see that this re-
statement in any way undermines our project. First, be-
cause our principal focus is, as we have said, on individual
and perhaps cultural-evolutionary learning. Second, be-
cause we already anticipated the role of co-evolution in our
original treatment (see our discussion of Newport [1990] in
sect. 3). And third, because there is really nothing in our
framework that commits us to the view that learning or
evolution is anything like passing an exam. In fact our entire
argument could be reformulated using Elton’s own notion
that “creatures stick with [behaviours] that work.” Our
central notion would become the idea that recoding was

only involved in the acquisition of certain “behaviors that
work.” The rest of our story would remain the same.

R3. Statistics and theories

In pursuing arguments predicated upon the limitations of
simple kinds of statistically driven learning, we expose
ourselves to the rapid rejoinder that there are simply more
things on heaven and earth . . . specifically, what about
theory-driven thought, explicit, conscious reflection and
the like? Thus Leiser reminds us that advanced learning
answers to requirements of coherence and coordination
and suggests that we should attend more closely to the
peculiar dynamics of theory-formation. Memmi, like-
wise, suggests that the presence of rich theoretical contexts
and background knowledge deeply inform our advanced
searches for recoding biases for relational learning. And
Vinter & Perruchet (see also sect. R4 below) highlight the
role of explicit, conscious reflection in going beyond simple
statistical learning.

The general debate here, between theory-based and
statistics-based conceptions, is addressed from a connec-
tionist perspective in Clark 1993, Chapter 5. Our general
feeling, however, is that the distinction, though clearly
important, is easily overplayed. For we still need some
account of the origin of the theoretical pictures that thus
inform subsequent reasoning. And that origin, as far as we
can see, can involve only some combination of innate biases
and the fruits of an incremental cascade of statistically
driven learning.

One crucial link between “mere statistics” and explicit
human theorizing is powerfully displayed in Kurtz’s very
pertinent commentary. Like us, Kurtz hopes to account for
complex theory-driven categorization without “quitting the
tangible realm of experience and data.” This involves, Kurtz
suggests, going beyond mere perceptual similarity without
losing the solid statistical foundations that are, we believe,
the root of all learning. And this in turn involves the
recognition and reification of additional functional regu-
larities, that is, abstract features that unite disparate in-
stances via the common actions they evoke, the common
goals they relate to, and so on. In this way the idea of in-
crementally constructed, statistically-based feature spaces
phases, rather naturally, into the idea of something akin to a
theory based take on the various domains of human activity.
Our goal is thus not to sever statistical and theory-driven
learning but to understand various levels of theoretical
understanding as themselves the fruits of an incremental
sequence of episodes of type-1 learning, augmented by
various tricks involving the re-use of achieved representa-
tional resources.

The latter stratagems will often include the uses of
analogical reason, and the roles of culture, language, and
conscious reflection as stressed by Memmi, Leiser, Vinter
& Perruchet, and others. But what we should not do, we
believe, is simply to invoke “theories and background
knowledge” as the sufficient answer to the hard question,
How is type-2 learning possible at all? For such an invoca-
tion is ultimately unexplanatory, trading a problematic
chicken for an unexplained egg. Instead, we need to see
how such theoretical knowledge can arise from real con-
frontation with environmental data and how it can be
maximally exploited in future learning.
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R4. Cognitive psychology

One of the most fruitful and exciting outcomes of the BBS
process was, for us, the discovery of a quite unexpected
wealth of links and connections between our (machine
learning based) work and ongoing research in various areas
of cognitive psychology, such as implicit learning (Vinter &
Perruchet, Dominey), analogical reason (Dominey), cat-
egorization (Kurtz), and general research on re-coding
(Haberlandt). Vinter & Perruchet, in particular, reveal
very promising links between some of our claims and work
on so-called implicit learning (learning without conscious
or linguistic reflection). They agree that the ploys and
stratagems we uncover help reveal how very complex prob-
lems can be dealt with by elementary, statistics-based
processes and note that the course of such learning as
predicted by our model is in good accord with experimen-
tal research (their own and others) on implicit learning in
human subjects. They worry, however (and this ties in with
the theory/statistics issues mentioned above) that we fail to
address more explicit modes of thought and hence fail to do
justice to the full spectrum of human learning.

Our reason for thus stopping short is – as noted above –
that we really do believe that in a certain sense there really
is no other kind of learning to be had. Such learning, at the
very least, lies at the heart of all existing algorithms capable
of learning about a domain and not equipped with heavy,
task-specific initial biases. We do not deny, of course, that
acquired knowledge can be used precisely so as to induce
biases that will in effect take the system beyond the domain
of visible statistical features of the inputs. Indeed, this is
exactly our point: that the only way to go “beyond” the
statistics is to use knowledge, itself acquired through earlier
instances of type-1 learning (or else innate) so as to re-shape
the space for future learning.

Vinter & Perruchet seem to suggest, in addition, that
there may be special features of conscious thought and
reflection that enable us to do more than simply re-shape
the space for learning. Such features would include, for
example, the use of “processes which rely on the specific
power of conscious thought.” Once again, however, we fear
a chicken and egg scenario. Our goal is to understand how
biological agents can come to wield the knowledge to which
such powers may be applied. We do concede, however, that
certain aspects of very high level thought look to lie beyond
the scope of our treatment. Thus Vinter & Perruchet (also
Dartnall) mention the human ability not just to know a
recoding function but to know that we know it. Such
knowledge is not of the world so much as of the ways in
which we know the world. This certainly does seem like an
important ability though the extent to which it figures in
daily problem solving is perhaps open to doubt. Whether
such top level, meta-reflective capacities merely represent
the culmination of a cascade of processes of type-1 learning
and re-deployment of achieved representation (as we sus-
pect) or rely on the operation of some wholly different
faculty (perhaps tied up with conscious thought) is an
important topic for further research. It is, of course, very
likely that different neurological structures play a role in
type-1 learning and type-2 re-coding (see, e.g., Dominey’s
comments on the role of the frontostriatal system in type-1
learning). But this is consistent with our claim that the
combination of these strategies is effectively all that nature
can provide.

Halford’s useful and interesting commentary suggests
that the type-1/type-2 distinction can help to clarify several
issues in the development of children’s understanding of
mathematics. Halford then makes the important point that
not all re-codings are reversible, that is, that it may not be
possible to re-create the original data from the recoded
data. To avoid this loss of potentially useful information, he
suggests a technique that involves representing the input as
multiple distinct dimensions that are then processed to-
gether. The basic idea sounds interesting, but we found the
details of the suggestion elusive. One worry is that, in
Halford’s own example, the probabilities are based on
complete entries in the target mapping. But a complete
listing would here constitute a direct recapitulation of the
training set – a fact which seems to reduce the technique to
the use of a look-up table. In any case, it seems to us that, in
this case, one simply cannot have one’s code and eat it! In a
sense the information-losing properties of the recoding
process are crucial since they power the simplification and
data compression that in turn lead to the properties of
improved search and generalization that the whole process
is designed to support. The only real hope in this area, it
seems to us, lies in the use of what Karmiloff-Smith (see her
1992, pp. 21–24) once termed conservative redescription –
a process in which re-codings are generated but the original
representations remain intact and available for use in cer-
tain contexts.

In general, then, we were especially pleased to discover
these rich links between our themes and treatment and
ongoing work in cognitive psychology. One commentator,
however (Ohlsson), felt that our treatment amounted to a
reversion to a discredited behaviorist vision of psychology –
one which concerned itself not with the understanding of
inner mechanisms but only with patterns of stimulus and
response. Here (as with Elton) it seems we may have
misled by our use of the vocabulary of target mappings,
input-output mappings, and so on. But of course we do not
wish to claim that no important and contentful inner states
mediate between inputs and outputs. Indeed, our whole
argument is devoted to displaying the sheer complexity and
importance of the search for fruitful inner transformations
to be applied to raw input patterns. When Ohlsson says that
“the idea that what is learned [by human learners] is an
input/output mapping (or a set of stimulus-response con-
nections) was abandoned in the 1950s because people
began taking the generativity of human cognition seri-
ously,” we are in complete agreement! We are perplexed
that Ohlsson sees our paper as in any way disputing this.
Our central aim was, in fact, to argue that interesting forms
of learning involved not the acquisition of stimulus-
response conditions but rather the construction of complex
recoding structures (possibly under incremental learning
regimes), which would then provide the basis for generative
knowledge enabling the learner to go beyond any presented
data.

R5. Internal representation

All our talk of inner re-codings raised the hackles of some
commentators who seem a little leery of the very idea of
internal representation (Stufflebeam) or who wanted at
least to suggest some possible alternative mechanisms
(both internal and external) for achieving the same kinds of
result (Dartnall, Oberlander). We have already endorsed
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the suggestion (Oberlander, Stufflebeam) that external
structures may sometimes contribute mightily to successful
type-2 learning. Stufflebeam seems, in addition, to want to
cast doubt on the idea that inner states properly thought of
as representation have any role to play in the process at all.
We demur, but this is a large and lively debate that we
cannot hope to do justice to here – see Clark (1997) for a
defense of a kind of modest representationalism consistent
with our claims. We would, however, comment that to
whatever extent a system creates inner states that effec-
tively reify relational features of the inputs that carry
adaptively significant information (as where the chim-
panzees learn to match higher order sameness), it is hard to
see why we should refuse to label such states internal
representations.

Dartnall draws a useful distinction between this (weak)
notion of internal representation and one more closely tied
to the idea of conscious thought and reflection. Dartnall
usefully locates our discussion as part of a larger research
program whose goal is to understand the transition between
connectionist competence and structured thought. In this
context, he suggests that the early stages of our “re-coding”
cascade may be more fruitfully conceived in terms of a
sequence of increasingly powerful ways of accessing the
knowledge rather than in terms of re-codings of the knowl-
edge itself. This is an interesting idea and one that seems to
invite a slightly different perspective on Karmiloff-Smith’s
notion of representational re-description – a notion that
provided much of the motivation and inspiration for the
present treatment [see multiple book review of Karmiloff-
Smith’s Beyond Modularity BBS 17(4) 1994]. We are not
yet convinced, however, that this distinction (between
changing access and changing knowledge) is deep and well-
defined. But it certainly suggests some directions for future
research, perhaps using some concrete computational
models to refine our currently hazy intuitions.

R6. Technicalia

A number of commentators made useful technical sugges-
tions concerning the description of the type-1/type-2 dis-
tinction, and raised important questions about the relations
between the parity considerations and generalization and
the example of the Elman net. Thus Damper (see also
Gaskell) worries that holding back even a single pattern on
the classical (2 variable, XOR) parity problem simply makes
the problem insoluble (the machine would need to read our
minds to know the intended function) as the learning
algorithm lacks sufficient data. He concludes that it must be
wrong to link parity learning to issues about generalization.
But let us step back a little here and review our strategy in
more detail. In the paper we suggested that backpropaga-
tion learning does not provide a ready-made solution to the
problem of type-2 scenarios and backed this up with a
demonstration that backpropagation reliably fails on some
forms of parity-generalization problem. The slight novelty
in this was indeed the utilization of parity as a generalization
problem. Where parity problems have been used in ma-
chine learning, they have typically been presented as mem-
ory tasks, that is, learning methods have been required to
acquire complete mappings. One of the justifications put
forward for this approach is the idea that parity constitutes
an “unfair” generalization problem. Damper’s commentary

is valuable because is shows how muddled the thinking
behind this judgment can be.

Damper implies that parity cannot be a generalization
problem because parity mappings exhibit neutral statistics,
that is, chance-level output probabilities. This observation
was a fundamental component in our own presentation.
But it demonstrates not that parity problems are un-
generalizable but merely that they cannot be generalized
on the basis of statistical effects.

In coming to terms with the idea of parity generalization,
it is useful to turn attention away from the familiar XOR
case towards higher-order cases. In 4-bit parity there are 16
cases. The removal of a single case leaves 15 cases as a basis
for generalization. Somehow this does not seem quite so
unreasonable. It may also be helpful to consider the two-
spirals problem in which the learning algorithm must learn
to correctly assign a 2-d point to one of two interlocking
spirals in an image. The problem is parity-like since
nearest-neighbors in the input space always have opposite
classifications. And indeed, the statistics of a typical training
set are usually nearly neutral. And yet, as far as we are
aware, this problem has never been treated as anything
other than a generalization problem.

Despite Damper’s objections to our use of parity gener-
alization problems, he has no difficulty with our central
thesis that learning problems which require recoding pre-
sent a special and cognitively important case.

Turning to the type-1/type-2 distinction itself, Chater
argues that the distinction is simply ill-defined and hence
will confuse rather than clarify matters. Notice, however,
that we took some care, in section 1 of the paper, to stress
that “there is no obvious operational definition for the class
of type-2 problems.” However, by proceeding on the basis
that such a definition exists, and indeed that our paper was
supposed to provide it, Chater has arrived at a number of
interesting though strictly speaking irrelevant observations.
His approach involves taking our analysis of the ways in
which supervisory feedback can provide justifications for
assignments of particular probabilities to particular outputs
as a formal definition of a problem class. He shows that this
soon leads to nonsensical results and enables dubious
maneuvers such as the adding of “dummy variables” so as
to change the “formal” characterisation of a particular
problem.

These arguments may be of interest to the computational
learning theorist. However, they completely miss the point
of our paper and in some cases actually mislead. For
example, Chater contrives to show that if we try to give
identity-function learning a classification using his “formal-
ization” of our framework, certain ambiguities result. How-
ever, this conceals that fact that identity-function learning
actually has a rather natural characterization as a type-2
operation within our framework.

Assume that the input for the learner is based on two
variables – one representing the input to the identity
function and the other representing the output – and that
the target output for the learner is a value which shows
whether the input forms a valid application of the identity
function (i.e., whether the two input values are the same).
In this scenario the learner’s guessing of a particular output
cannot be justified on the basis of observed frequencies in
the training data since every input value is unique. How-
ever, were we to recode the learner inputs by applying an
identity recognition function to them, we would produce a
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recoding of the problem which could be solved in exactly
that “statistical” way. Thus identity function learning is
naturally characterized in our framework as requiring re-
coding and hence is type-2.

Golden, in his gracious and intriguing commentary,
offers an amendment to our account of type-1 learning. He
suggests that the category can be broken down into sub-
cases using a “parametric, model-based approach” and that
this may help avoid some potential problems. Alas, we are
not sufficiently familiar with the background material for
this proposal to properly judge its value or necessity. We
agree, however, that there may well exist other (perhaps
more elegant) ways of picking apart the kinds of cases we
wish to distinguish, and we look forward to Golden (forth-
coming) to learn more about the methods he has in mind.

Finally, some questions were raised concerning the role
of the Elman network in our discussion. Thus Marcus
argues that the Elman network (Elman 1993) fails to
illustrate our central point as it does not, after all, learn
about higher order regularities in the data set. The evidence
that Marcus relies on, however, concerns only the failure of
such a net to generalize an abstract structure (an X is an X)
when presented with a case involving a totally novel “filler”
(a dax is an . . . ). It may be that such extensions simply
require more than the kind of grammatical knowledge that
the data set makes available. In any case, it does not follow
from this kind of failure that the original network does not
acquire grammatical knowledge that is higher order in the
sense we require. For the successful network did indeed
proceed by first identifying lower level grammatical fea-
tures and then going on to learn about regularities involving
relations between these lower level features. In fact, this is
exactly what the incremental batching/staged memory ma-
nipulations were designed to encourage. Gaskell seems to
worry that the need for such manipulations renders the
network unsuitable for our purposes. We do not see why:
our point here is simply that the desired performance is
achieved only by the prior isolation (by whatever means) of
a “building block” set of regularities which then mediate
between the raw data and the target mapping so as to shrink
the search space to a manageable size. The network thus
trades prior learning against subsequent search.

Taken together, the various commentaries have done
much to advance (and where necessary, to unsettle) our
thinking about the nature of learning and the canny ways in
which biological cognizers may trade achieved representa-
tion against potentially infinite computational search. Our
treatment, we readily concede, can easily appear either trite
or wildly speculative. Few disagree with the central tenet
(re-coding matters!). Few will concede our central claim
(that the maximal exploitation of the fruits of simple learn-
ing or chance penetrations into type-2 space is the best
nature can provide). We hope, however, to have fueled the
fires of debate. And we thank all the commentators for their
thoughtful and genuinely constructive responses. We have
learnt a lot, and we look forward to trading it against our
future search in computational space.
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