
Models wagging the dog: are circuits constructed with disparate parameters?Models wagging the dog: are circuits constructed with disparate parameters?
Thomas Nowotny, Attila Szucs, Rafael Levi, Allen I. Selverston

Publication datePublication date
01-01-2007

LicenceLicence
This work is made available under the Copyright not evaluated licence and should only be used in accordance
with that licence. For more information on the specific terms, consult the repository record for this item.

Citation for this work (American Psychological Association 7th edition)Citation for this work (American Psychological Association 7th edition)
Nowotny, T., Szucs, A., Levi, R., & Selverston, A. I. (2007). Models wagging the dog: are circuits constructed
with disparate parameters? (Version 1). University of Sussex. https://hdl.handle.net/10779/uos.23312492.v1

Published inPublished in
Neural Computation

Link to external publisher versionLink to external publisher version
https://doi.org/10.1162/neco.2007.19.8.1985

Copyright and reuse:Copyright and reuse:
This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy
and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the
version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For
more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk.
Discover more of the University’s research at https://sussex.figshare.com/

https://rightsstatements.org/page/CNE/1.0/?language=en
https://doi.org/10.1162/neco.2007.19.8.1985
mailto:sro@sussex.ac.uk
https://sussex.figshare.com/


Models wagging the dog: Are Circuits Constructed with 

Disparate Parameters ?

Article  (Unspecified)

http://sro.sussex.ac.uk

Citation:

Nowotny, Thomas, Szucs, Attila, Levi, Rafael and Selverston, Allen I. (2007) Models wagging the 
dog: Are Circuits Constructed with Disparate Parameters ? Neural Computation, 19 (8). pp. 1985-
2003. ISSN 0899-7667 

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/1553/

This document is made available in accordance with publisher policies and may differ from the 
published  version or from the version of record. If you wish to cite this item you are advised to 
consult the publisher’s version. Please see the URL above for details on accessing the published 
version. 

Copyright and reuse: 
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable, the material 
made available in SRO has been checked for eligibility before being made available. 

Copies of full text items generally can be reproduced, displayed or performed and given to third 
parties in any format or medium for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge, provided that the authors, title and full bibliographic 
details are credited, a hyperlink and/or URL is given for the original metadata page and the 
content is not changed in any way. 

http://sro.sussex.ac.uk/


Models wagging the dog: Are Circuits Constructed with Disparate 

Parameters ? 
 

 

Thomas Nowotny, Attila Szücs, Rafael Levi, Allen I. Selverston 

 

Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman 

Drive, La Jolla, CA 92093-0402, tnowotny@ucsd.edu 

 

Abstract 

 

In a recent paper Prinz et al. (Nature Neurosci. 7, 1345-52 (2004)) have addressed 

the fundamental question, whether neural systems are built with a fixed blueprint of 

tightly controlled parameters or in a way in which properties can vary largely from one 

individual to another, using a database modeling approach. In this article we examine the 

main conclusion that neural circuits indeed are built with largely varying parameters in  

light of our own experimental and modeling observations. We critically discuss the 

experimental and theoretical evidence including the general adequacy of database 

approaches for questions of this kind and come to the conclusion that the last word for 

this fundamental question has not yet been spoken. 

 

Introduction 

 

A major factor in the success of determining the precise synaptic connectivity of 

invertebrate circuits has been the ability to identify individual neurons. The advantage of 

being able to work with identifiable neurons was recognized early on by those working 

on Aplysia and lobster ganglia (Arvanitaki and Chalazonitis 1958; Kandel et al. 1967; 

Otsuka et al. 1967) who gave names  to individual neurons based on their physiological 

and anatomical properties. Although the identified neurons always behaved consistently, 

with small variations attributed to the dissection or the physiological techniques used, 

little thought was given to how different populations of ion channels were combined to 

produce the characteristic voltage output of each cell. When neural circuits were 

established between identified cells, similar questions relating to the variability of 

identified synapses were not addressed either.  

Are identified neurons made up of the same type and density of ionic channels or are 

the channels arranged differently, but in a way that gives each neuron its desired 

properties?  Are the synapses within a particular circuitthe same or different for each 

animal but balanced in a way that insures that the circuit performs equivalent operations 

from animal to animal? These two fundamentally different ways of building cells and 

circuits would have important implications for biologists as well as for modelers. 

A new modeling study based on a three neuron circuit from the lobster pyloric central 

pattern generator (CPG) (Prinz et al. 2004), raises important issues directly related to this 

question. It is well known that when constructing conductance based models with 

different ionic channels and synaptic types, extreme sensitivity to parameter values is 

common, even in relatively simple systems. Thus the method used to assign these values 

becomes a critical matter when trying to “tune” the circuit. Using a unique method to 



address this problem, Prinz et al (2004) developed a large database by computing and 

evaluating the output of thousands of circuits over a wide range of parameter values and 

selecting those sets, which produced outputs that matched the biological pattern. The 

outcome of this modeling work suggested that the values of the neuronal and synaptic 

parameters in the pyloric CPG could in fact be combined in many different ways, each 

being able to generate equivalent pyloric patterns. These results have extremely important 

implications for how neural circuits might be assembled in general. But they also raise 

some questions that would be troubling for research on small CPG circuits.  

There are many reasons to be initially skeptical of the idea that ion channels and other 

cell and circuit properties can, by some unknown mechanism, be mixed and matched but 

still generate the same functional pyloric pattern. One should, however, never dismiss an 

interesting idea without probing it carefully. Therefore, we have tested several 

predictions based on this hypothesis and examined the details of the “database approach”, 

that led to it. On the circuit level, we carried out a series of experiments by blocking a 

single channel type in all neurons in the intact pyloric circuit. We reasoned that if there 

were disparities in the conductance of this channel, there would also be variations in the 

effects of its selective blocking. We repeated the same manipulations in the “equivalent 

circuit models” which did include different values for the conductance of the blocked 

channel. On the single cell level we compared the variability of isolated cell dynamics in 

experiments and models and tested the sensitivity of the models to manipulations to 

assess the explanatory power of a database approach. 

 

A Simple Test for the Consistency of Parameters in the Pyloric CPG 

 

The results in (Prinz et al. 2004) obtained with a database approach using the pyloric 

subset model, suggest that the entire neural circuit produces similar firing patterns even if 

the parameters of the intrinsic voltage-dependent properties vary over a wide range – in 

fact over several orders of magnitude. Hence, there are several equally acceptable 

combinations of cellular and synaptic parameters that can produce equivalent firing 

patterns. One particular voltage-gated current may be very strong in an identified neuron 

from one animal but be very weak in the same neuron from a different animal. The 

desired network output would then come about as a result of correct combinations of 

cellular and synaptic properties, i.e., strong hyperpolarizing currents would balance 

strong depolarizing currents. This kind of balancing requires compensatory mechanisms 

not only at the network level but also in the individual neurons. Developing muscle cells 

in Xenopus for example compensate for the overexpression of exogenous Na
+ 

channels 

by upregulating the expression of at least two endogenous K
+ 

channels (Linsdell and 

Moody 1994). One way to see if such a possibility exists for the pyloric system is to 

remove one of the currents and observe the behavior of the neuron. We chose to do this 

with the transient potassium current IA, which has long been known to be one of the most 

important voltage-gated currents in shaping the voltage output of single neurons as well 

as the patterned activity of circuits containing those neurons (Tierney and Harris-Warrick 

1992). Neurons with such fast potassium currents would be expected to display strong 

changes in their behavior following blocking of the IA. Therefore if we assume that the 

same type of neuron from different animals may indeed have very different maximal 

conductances for IA, then the compensatory currents, e.g., the H-current which has been 



suggested by others (MacLean et al. 2003), will also vary over a wide range. A total 

blocking of an identified cell’s A-current in different preparations should result in 

populations of neurons with zero conductance in IA but with very different conductances 

in the compensatory type voltage-gated currents. Blocking the IA would therefore 

unbalance the entire pyloric circuit. Accordingly, the activity pattern of single pyloric 

cells as well as the overall pyloric pattern should vary widely among different 

preparations. 

 
Fig. 1 4-aminopyridine induces consistent changes in the voltage output and spike dynamics of the PD 

neuron. Voltage waveforms of PD neurons from four different preparations (arranged in 4 rows) are 

displayed before (left) and during (right) the application of the A-current blocker 4-AP (4 mM). There 

are 6 overlapping bursts in each panel. Red traces with gray lines running on both sides are the average 

intraburst spike desity functions (± S.D.) calculated from ~100 successive bursts of each neuron. In 

control all PD neurons are accelerating type bursters while 4-AP turns them into decelerating type ones. 

Color-coded maps are joint interspike interval (ISI) density plots showing the serial dependence of ISIs 

within the bursts of the PDs neurons. While in control conditions all the neurons display the 

characteristic PD signature (V-shaped and clustered maps, compare Szücs et al. 2003), the joint ISI 

maps during 4-AP indicate a different behavior: rapid onset of the burst with gradually increasing ISI 

durations. The analysis reveals very similar dynamics in the PD neurons from different animals both in 

normal conditions and when they are exposed to 4-AP (modified from (Szücs and Selverston 2006)). 



To test this possibility we performed a set of experiments with bath applied 4-

aminopyridine (4-AP), a potent and specific blocker of IA in lobster pyloric neurons 

(Tierney and Harris-Warrick 1992), and examined how consistent the effects are. At the 

network level, 4-AP had the obvious effect of speeding up the frequency of the pyloric 

rhythm by 52.6 ± 10.8% (n=8). This is consistent with the general expectation that the 

removal of a hyperpolarizing current, without altering other currents, will result in a net 

depolarization of the neurons at the same time. Application of 4-AP did not disrupt the 

phase-relationship between the bursts of the pyloric neurons and the overall regularity of 

the three-phasic rhythm. At the single neuron level, 4-AP affected the voltage output and 

spike patterns of the neurons in a cell-specific manner with the PD neuron showing the 

most profound changes. The key question here is how much variability is observed after 

the A- currents are eliminated? Remarkably, the changes in burst shape and interspike 

interval (ISI) pattern for the PD neuron in 4-AP were very reproducible and characteristic 

(Fig. 1, Table 1). In fact, 4-AP turned the accelerating type (ISIs decreasing) PD neuron 

into a decelerating type neuron. As shown in the table, the standard deviations of the 

changes in the statistical parameters were consistently small. Consequently, 4-AP 

produces very similar effects in pyloric neurons from different animals. These effects are 

consistent and reproducible not only in the network parameters but also in the parameters 

describing the spike dynamics of single neurons. Usually, burst timing based gross 

parameters are used to characterize the activity of oscillatory networks. These gross 

parameters of neural activity are the functionally most important ones and, hence, are 

understandably very similar among different animals. However, even the more subtle 

parameters, like the interspike interval-based metrics and spike density are also 

consistent. The pyloric neurons apparently tune their biophysical properties in a way that 

makes the bursts of the individual neurons remarkably similar across different animals. 

Actually this is one of the reasons why the identification of such neurons is 

straightforward for the experienced neurophysiologist. As we and other investigators 

Pyloric burst freq., control  Hz 1.56 ± 0.13 

Pyloric burst freq. with 4-AP Hz 2.37 ± 0.14 

Change in pyloric burst freq. % +52.6 ± 10.8 

PD number of spikes, control  10.3 ± 1.7 

PD number of spikes with 4-AP  6.9 ± 1.3 

Change in number of spikes % -32.4 ± 5.6 

PD intrab. spike freq. , control Hz 54.9 ± 9.2 

PD intrab. spike freq. with 4-AP Hz 78.9 ± 15.3 

Change in PD intrab. spike freq. % +43.6 ± 11.0 

LP-PD relative phase, control  0.42 ± 0.03 

LP-PD relative phase, 4-AP  0.59 ± 0.03 

Change in LP-PD relative phase % +41.7 ± 9.0 

 

Table 1 4-AP induces consistent effects in the gross burst parameters and in the spike patterns of the 

PD neuron from different preparations (n=8). The intraburst spike frequency was calculated by dividing 

the number of spikes with the duration of the bursts. The LP-PD relative phase was calculated by 

dividing the intervals between the LP and PD burst onset times with the PD burst cycle period. 



have previously shown, synaptic and neuromodulatory factors not only induce consistent 

changes to the overall burst pattern of the pyloric circuit but they also do the same 

consistently to the burst waveforms of the individual cells (Szücs et al. 2005; Szücs et al. 

2003). When inspecting the experiments individually, we did not notice any clear 

differences in the changes in the circuit characteristics listed summarily in table 1. In 

particular, there were no indications that the remaining variability, as indicated by the 

non-zero standard deviations, was due to differences in the effect of blocking IA rather 

than due to the a priori variability of the quantities in the intact circuits.  

Figure 2 demonstrates the range of 4 parameter values before and during 4-AP 

application for the 8 preparations. Natural variations of the burst frequency, PD spike 

number, PD intraburst spike frequency as well as the LP-to-PD relative phase are are 

reflected by the 1.3 to 1.9-fold variability in the scatter plots (max/min ratios of the 

populations are indicated in each plot). A closer look at the burst frequency data (Fig. 

2A) reveals that the population mean frequency is increased by 4-AP, but the dispersion 

of the data points remains very similar. The ratios are 1.29 and 1.21 for the control data 
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Fig. 2 Natural variability and the effect of 4-AP on 4 burst-related temporal parameters in 8 pyloric 

preparations. Each point corresponds to a different preparation. Ratios between the population maxima 

and minima are indicated above the points. A: burst frequency; B: Intraburst spike number of the PD 

neuron; C: Intraburst spike frequency of the PD neuron; D: LP-to-PD relative phase. Relative changes of 

the parameters were calculated by normalizing the 4-AP values with their corresponding control data. The 

spread of relative changes is remarkably low, never exceeding 1.25. 



and the 4-AP data, respectively. Relative changes of the burst frequency of each pyloric 

circuit are displayed in a similar format and we find low dispersion of the data (1.23 

ratio). Following the same procedure for the other three temporal parameters, we find that 

4-AP clearly shifts the populations, but the variability does not change significantly in 

either case. Remarkably, max/min ratio for the relative changes is always close to or less 

than 1.25. These values as well as the max/min ratios of the raw data are much less than 

those reported by Golowasch or Schulz for maximal conductance densities of selected K-

currents. Looking at the original data (before normalization) we find somewhat greater 

variability in the PD intraburst spike number and spike frequency (close to 2-fold 

variability). Nonetheless, 4-AP does not increase the variability of these parameters 

either. 

The observed consistency of the pyloric CPG with respect to removal of IA can now 

be compared to corresponding results with the model used by Prinz et al. (2004). Figure 3 

shows two control patterns that would meet their criteria for identification as pyloric 

rhythms (the same models as shown in Fig. 5 of (Prinz et al. 2004)). If the IA values of the 

 

Fig. 3 Effect of reducing IA in the CPG models in Prinz et al. (2004). The left panels in A and B show 

the output of two “equivalent models” of the lobster pyloric CPG (parameters taken from figure 5 in 

Prinz et al. (2004)). Scale bars are 50 mV/0.5 s. The middle and right panel show the output of the 

models with IA in all three neurons reduced to 75 % and to 50 % of its original conductance. The panels 

in C show the spike density functions (σ= 20 ms) of CPG A (black) and B (gray) in comparison. The 

vertical scale bar here is 2. While one would not reasonably expect the models to correctly reproduce 

the behavior of the pyloric CPG, they also fail to show equivalent dynamics in contrast to the claim of 

equivalence. The failure of reproducibility is in strong contrast with the observations in the pyloric 

system cf. Fig 1. Neuron models were integrated with a 5/6 order variable time step Runge-Kutta 

algorithm with maximal time step 20 µs and relative error goal per time step of 10-9. 



three neurons are different in the two models, one would expect a uniform reduction of 

this conductance to produce different effects in each model. As expected, a small 

reduction in IA already shows noticeable differences in frequency between the two models 

whereas a larger reduction of 50% leads to completely different behavior for each. For 

complete removal of IA, both models cease bursting in sharp contrast to the real system, 

which continues almost normal activity. Compare the AB/PD model trace in Fig. 3 A & 

B with the effects of complete IA removal from PDs shown in Fig. 1. 

The pyloric CPG has many regulatory mechanisms and internal feedback loops 

driving it to a stable pattern even when some of its components are severely disrupted. 

Could this make the experimentally observed changes consistent in spite of very disparate 

parameter sets?   While one should not exclude this possibility from the outset, there is no 

evidence that regulatory mechanisms can act in acute preparations. Furthermore, one 

would expect feedback mechanisms to stabilize the normal physiological pattern rather 

than the deviation from it. Instead of large, but consistent, changes one would expect to 

see no, or very slight changes overall. Along the same lines, one would expect the 

presumably functionally more important properties like frequencies and duty cycles to be 

 
 

Fig. 4 Models and data of isolated LP neurons. A) models LP2 through LP5 from Prinz et al. (2004) at 6 

levels of current injection. Current injections range from –0.15 nA to 0 nA (control) in steps of 0.03 nA. 

Scale bars are 1s / 50 mV. B) Data from isolated LP neurons (PD and VD neurons were killed by 

photoablation, 10 µM Picrotoxin) in 4 preparations of the stomatogastric ganglion of the lobster. Current 

injections into the soma through a separate sharp electrode were –4 nA to 0.5 nA as noted next to the 

graphs. Scale bars are 1s / 25mV. Taken the chaotic nature of the LP neuron and the expected 

experimental variability in the isolation procedure, the data appears, at least qualitatively, rather 

consistent across preparations. The models, on the other hand, appear to differ quantitatively and 

qualitatively from each other. Models were integrated with the same algorithm as in Figure 3. 



stabilized, but not details like the ISI signature of each neuron. 

 

When are models equivalent? 

 

The apparent discrepancies between the two circuit models with respect to blocking 

the IA current led us to a more fundamental question: When can one consider two models 

equivalent or similar enough to be in the same relationship to each other as the identified 

cells of two different animals? To approach this question we compared the variability 

between the dynamics of the models that are equivalent with respect to the criteria in 

(Prinz et al. 2004) to the variability of dynamics observed in isolated cells of the lobster 

stomatogastric ganglion. Figure 4 illustrates our findings. The panels show the membrane 

potential of 4 “equivalent models” (A) and four different isolated LP neurons (B) in 

response to 6 typical levels of DC current injection. Clearly, the LP cells show a 

noticeable variability but their overall bifurcations from slow, short bursting over long, 

irregular bursting, to irregular spiking and eventually to fast, tonic spiking are very 

typical. It is important to note that, as in the case of the network, regulatory mechanisms 

such as feedback loops are not likely to shape the dynamics of the isolated neurons, 

because the natural system has never been exposed to such conditions making it unlikely 

that a special mechanism to control the activity of the LP neuron in isolation would have 

evolved. Therefore, it seems fair to compare the results from isolation experiments to the 

behavior of single model neurons. The model neurons reproduce the irregular spiking for 

0 nA current injection, the criterion on which they were selected, but otherwise do not 

match the data, nor each other, very well. Apparently the models chosen from the 

database were not yet quite adequate. Assuming there are models in the pool of tested 

models with matching dynamics over a wide range of stationary current injections, would 

this requirement restrict their parameters to similar values? And, if not, are there other 

criteria that would do so? 

One might argue that in order to address this question one just needs to go into the 

database of models and select with increasingly restrictive criteria to answer this question 

easily. This assumes that all possible models are covered by the database and conversely 

that all parameter sets in the database constitute in some sense equivalent and viable 

“model entities”. To gain some insight into this question we analyzed a subset of models 

from the pyloric neuron model database of (Prinz et al. 2003a). 

Database approaches 

At first sight, it is an intriguing and bold idea to map out the complete parameter 

space of a model in a database approach and observe all of the dynamical regimes, 

especially the bifurcations. Furthermore, this approach seems to offer a completely new 

wealth of information on how typical certain dynamical properties of models are; for 

example by allowing statements about how many of all “equivalent LP models” have a 

large IA conductance, etc. After careful inspection our enthusiasm was, however, 

somewhat damped by the following observations: 

Conductance-based models of the Hodgkin-Huxley type are fairly complex, 

containing on the order of tens of parameters. Even if one restricts the free parameters to 

maximal conductances only, one is easily left with five to ten parameters for a given 

neuron. This already raises some skepticism on the feasibility of a complete database. 

Furthermore, experience with this type of model has demonstrated that they are highly 



sensitive to the values of some parameters, see Fig. 4 for an example. Parameter 

mismatches often lead not only to dynamics inappropriate for the neurons being 

described but also inappropriate for neurons in general. Two common and very 

surprising, examples from conductance-based models are metastable depolarized states or 

lack of stability in the hyperpolarized regime. Because of the sensitivity of the models to 

some of the parameters (and their combinations), a complete survey of the parameter 

space obviously needs to be done with appropriately small increments in each of the 

parameters. This quickly increases the computational cost. For example, if we take just 

1000 different values for each of, say, 5 parameters, we have to compute the dynamics of 

10
15

 models which might take on the order of 10
16 

seconds on a modern PC, i.e., about 3 

billion years. On the other end of the spectrum of possibilities, if we take only five 

different values for each of five parameters we will not cover any relevant portion of the 

parameter space (compare the gray panels in figure Fig. 4 to the wealth of different 

dynamics in the remaining panels). Continuing this approach to the network level makes 

the combinatorial complexity even more daunting.  

 

Figure 5 illustrates a few further difficulties of brute force database approaches. 

The region in which a parameter change is relevant to the neuron dynamics is a priori not 

known. In the example of Fig. 5 it is only meaningful to vary gNa between 0 and about 

220 mS/cm
2
. For all values beyond this range the dynamics of the model neuron is 

insensitive to changes in gNa. Following (Prinz et al. 2003b) in counting the number of 

model neurons with a certain property, e.g., all neurons that are tonic spikers, one will 

count basically the same model several times, for gNa = 300, 400, and 500 mS/cm
2
. The 

wealth of different models between gNa = 20 and 90 mS/cm
2
, however, will go unnoticed. 

The head count of models with given properties apparently strongly depends on the 

choice of parameter values examined (both in terms of spacing and total range) and thus 

could become a highly ambiguous statement. Inspecting the data manually, like we did 

here for illustration purposes, does not resolve this problem because the relevant range of 

values of, e.g., the sodium conductance, will likely depend in a non-trivial way on the 

values of all the other parameters.  

Furthermore, given the different ways parameters enter into models it even seems 

unclear whether linear, logarithmic or other increments in parameter values might be 

appropriate. A simple example illustrates this basic problem: For simplicity, let us 

assume that we are looking for sets of three parameters with the property 1321 ≤⋅⋅ ppp . 

If we sample the three parameters on a logarithmic scale, e.g. from { }5,2,1,5.0,2.0,1.0,0 , 

we get the result that 82.8 % of parameter sets have this property. If we sample from a 

linear scale, like { }5,4,3,2,1,0 , however, we obtain a count of 42.6 % of the parameter 

sets with this property. The percentage count almost entirely depends on our prior choice 

of the sampling method. 



Another dangerous pitfall is the assumption that, if the relevant range of 

 
 

Fig. 5 Illustration of the principle difficulties of a database approach. A) Each panel shows 6 membrane 

potential traces of the model LP5 of Prinz et. al. (2004) with a given value for the Na conductance as 

noted above the panels. The 6 traces correspond to DC current injection from -0.125 to 0 nA in 

increments of 0.025 nA (top to bottom). Gray panels are models that were examined in the database of 

Prinz et al. (2003), the other panels were not. Relevant bifurcations in the neuron dynamics (transitions 

from silent to fast tonic spiking to slower tonic activity and eventually irregular bursting) were not 

included into the database. The remaining models for even stronger Na currents (not shown here) are all 

comparatively similar and need not have been examined. B) The 10 fold finer resolution in the parameter 

values shown in panel A still reveals further transitions in the activity patterns. Panel C) shows another 10 

fold increase in resolution from panel B. The model appears to be so sensitive to this parameter that even 

this resolution does not suffice to clearly resolve the transition between fast tonic spiking and irregular 

bursting. It seems that the necessary resolution to really cover the whole dynamics of a neuron model is 

very fine whereas, on the other hand, this resolution is only necessary in very small but a priori unknown 

regions. A brute force database approach leads to either incomplete observations or to an explosion in 

computational cost (see main text). Neuron models were integrated with the same procedure as before. 

Correct integration was controlled in some examples with a linear Euler algorithm of time step 10
-6 ms 

which revealed no relevant deviation. 



parameter values were tightly constrained by additional knowledge, counting models 

with a given property becomes more meaningful. A simple back-of-the-envelope 

calculation shows that if we assume we know the relevant parameter range to ±10% 

accuracy, e.g., we know that 6 parameters have relevant values between 0 and 1 ± 0.1,  

then the parameter space volume examined varies between 0.9 
6 

≈ 0.531 and  1.1 
6 

≈ 

1.772. Therefore, one could easily obtain a result where the fraction of models having a 

given property varies between 90 % and 27 % depending whether one sampled with the 

lower or upper value for the parameter range. The problem becomes even more 

aggravated for higher dimensional parameter spaces. 

With respect to the models that are overlooked by too coarse parameter sampling, 

one could argue that parameter regions for which the models are highly sensitive to their 

parameters and initial conditions (like the models for between gNa = 20 and 90 mS/cm
2 

above) are not relevant for describing neural systems, which need to be robust and 

reliable. It has, however, been observed that neurons can have chaotic regimes (Elson et 

al. 1999; Ren 1997; Schiff et al. 1994) and it is known that self-organized systems often 

approach such instable parameter regions for greater flexibility (Bak et al. 1988; 

Bertschinger and Natschlager 2004; Kauffman and Johnsen 1991). In this light, 

disregarding models solely based on the observation of sensitive and/or irregular 

dynamics appears to be somewhat presumptuous. 

The approach of systematically mapping the dynamics resulting from all possible 

parameter combinations might be better-suited for models that are fairly insensitive to the 

parameters in question or for which the structure of the bifurcations is well known and 

simple enough such that sampling only a few points in every known dynamical regime 

will permit the identification of the dynamics over wide regions of the parameter space. 

Both of these limitations are probably not true for any Hodgkin-Huxley type model 

(Izhikevich 2006). 

A different, more important function of building databases of model neurons can 

be to identify potentially useful models for other modeling purposes or to gain a general 

overview over possible model behaviors. As such, it can help circumvent tedious hand-

adjustments of models and become a valuable part of the portfolio of modeling tools used 

in neuroscience. 

 

Summary and Conclusions 
Modeling is an extremely useful tool when handling large amounts of 

neurophysiological data from complex, nonlinear systems. If it goes hand in hand with 

experimental approaches it can help explain the experimental findings as well as generate 

new hypotheses. Models can also provide consistency tests and testbeds for principles 

that may underlie the observations. All models in neuroscience are, however, by 

necessity phenomenological in nature and a tight connection to experimental observations 

is therefore indispensable. Without direct experimental foundation, models can be fairly 

ambiguous because they are - unlike theories in physics - not constrained by clear 

fundamental principles nor are all specific details, e.g., values of parameters, precisely 

known. Furthermore, the very nature of biological systems is to vary between animals, 

which might not allow to build universal models of biological systems in the way one can 

in chemistry or physics. This exact premise led Prinz at al (2004) to the intriguing idea of 



circuits being assembled in very different ways with very different components across 

animals.  

Does existing data support the idea that individual neurons and entire circuits can 

be made with such variable combinations of parameters? If each circuit is assembled de 

novo, from one animal to another, so that each one is unique, we would have to take the 

following into consideration: 

 

Regulatory mechanisms 

Assuming that neurons and circuits in every animal can be considerably different, 

there must be a mechanism that regulates neuron and synapse properties to lead to a 

successful activity pattern. Furthermore, once this is achieved, individual biophysical and 

synaptic properties have to be maintained in the face of continuous protein turnover and 

activity-dependent changes (Turrigiano 1999). While potential regulatory mechanisms 

have been suggested on the single cell level (Golowasch et al. 1999; LeMasson et al. 

1993; Liu et al. 1998), it remains rather unclear how this could be realized for synapses 

on the network level. 

 

The action of neuromodulators. 

When CPG circuits are exposed to neuromodulators delivered artificially or by 

stimulation of the neurons which contain them, they produce characteristic changes in 

ongoing motor patterns that are consistent from animal to animal (Harris- Warrick and 

Marder 1991). A large body of evidence exists that indicates that the modulators bind to 

particular receptors on specific identified neurons and that they activate second 

messenger systems which are also cell specific (Hempel et al. 1996). These actions in 

turn lead to specific changes in membrane conductances and alterations in the biophysical 

properties of the neurons and synapses in a circuit. Would consistent effects of 

neuromodulatory action be possible if the types and distribution of ion channels in 

identifiable neurons were inconsistent? One could argue that regulatory mechanisms and 

specific neuromodulator actions are tuned carefully to allow consistent effects in spite of 

highly variable substrates. But our experiment with 4AP also showed very consistent 

effects of blocking IA channels, a perturbation that the system has never been and would 

not be exposed to in natural circumstances. 

The fact that neuromodulators always produce consistent results is neither a 

paradox nor a conundrum that can be dismissed and relegated to future research (Marder 

and Goaillard 2006). Modulators have reproducible effects on networks because each has 

specific target cells to which they bind and specific second messenger pathways and 

phosphorylation sites that are affected. Of course modulators exist within the framework 

of the entire system so it is not surprising that they can produce variable results when 

other modulators or sensory inputs are present. But a single modulator applied to a 

ganglion in its standard experimental condition will always produce consistent effects. 

This would be extremely unlikely if the target channel had a thirty fold density range. 

 

 

Feedback and descending control mechanisms. 

For a CPG to be effective in the control of a behavior it must be able to respond to 

sensory inputs. Such sensory feedback may impinge directly onto CPG circuitry or it may 



be in the form of commands from higher centers after different sensory inputs have been 

integrated and decisions made about how to respond. These feedback pathways are 

specific to particular neurons. Can feedback control mechanisms provide consistent 

results if the target neurons are inconsistent? 

 

Time constants of channels. 

The mixing and matching of channels in a neuron in a way that produces the same 

overall physiological properties could be done in theory if it was only the effective 

polarity of the response that mattered, i.e., a little too much inward current could be offset 

with a corresponding amount of an outward current. But ionic currents also have different 

activation and inactivation curves as well as different kinetics, ranging from transient to 

persistent. These factors would make it almost impossible to mix ionic currents in a way 

that would achieve similar actions in a wide enough dynamic regime because not only 

would the polarity have to be compensated for, the balancing currents would have to 

possess identical activation/inactivation curves and kinetic properties as well. 

 

Additional experimental evidence. 

(Baro et al. 1997) examined the expression of Shal channels in identified neurons in 

the pyloric CPG and found that it is typical for each identified cell type with small 

variations between cells of the same type. They also found rather small variability in the 

maximal conductance of IA channels for each identified cell in contrast to the results in 

(Golowasch and Marder 1992). Furthermore in a recent work (Schulz et al. 2006) it has 

been shown that there is a certain amount of variability in some channels while other are 

more controlled. This is not unexpected as parameters which have a large impact on the 

system dynamics need to be more tightly controlled than others which have less impact. 

In particular, Schulz et al. (2006) found in LP neurons gKd in the range of 0.09-0.12 

µS/nF, gA in 0.05-0.16 µS/nF, and gKCa in 0.2-0.6 µS/nF, which corresponds to 

maximally 3 fold differences. This is less variability in parameters than postulated from 

the models discussed above but more than most experimenters would have expected. 

 

Implications for the concept of identified cells 

Identifiability of neurons has been a cornerstone of the success of invertebrate 

CPG “circuit chasing”. Identifiable neurons have identical physiological properties, the 

same connections to other identifiable cells, a similar morphology, and identical 

biochemical and molecular signatures. The application of molecular biological techniques 

to the study of CPGs will depend on the assumption that different types of neurons have 

consistent cellular, synaptic channel compositions and receptor properties (Callaway 

2005; Kiehn and Kullander 2004; Wulff and Wisden 2005). The implications of disparate 

parameter compositions occurring in the same neuron type, on the contrary, would make 

such molecular approaches less applicable for pharmacological development because 

channel specific drugs would affect each cell of the same type, differently. 

 Another interesting observation in the recent work of Schulz et al. (2006) is that 

the identified neurons, though having a fairly wide range of certain parameters, are well 

separated in parameter space. In this way, wide ranges of parameter values might be 

consistent with the original idea of identified cells: Each identified cell is characterized 

by a more or less wide region in parameter space. If the action of neuromodulators and 



other neuroactive substances were sufficiently robust, this could still allow for consistent 

effects on the neuronal activity. How much variability would be sustainable in this view 

remains an interesting open research direction. 

The voltage output of a neuron is not a simple algebraic sum of channel 

populations but a complex nonlinear computation that includes both biophysical and 

anatomical factors. The novel methodology of using large-scale databases developed by 

Prinz et al (2003, 2004) is an exciting approach that incites the thinking of how neural 

systems are composed and maintained. One has to remember, though, that modelers, by 

necessity, have to make assumptions and simplifications, which may greatly influence the 

modeling results.This is aggravated by the fact that we do not know, which aspects of the 

observed circuit and neuron dynamics reallymatter. The fact that we observe very typical 

ISI signatures in the neurons of every preparation is suggestive but does not prove that 

ISI properties are indeed important. It might be, for example, that the A-current in the PD 

neuron is critically important to achieve reliable phase shift during the action of a specific 

endogenous neuromodulator such as dopamine and only as a 'side-effect' the A-current 

also reshapes the burst of the PD neuron and produces those nice V-shaped and clustered 

ISI signatures. In a model the modeler will have to choose which properties of the system 

(bursting frequencies, bursting phases, ISIs, ISI signatures, spike shape,etc.) are 

important to model and which can be neglected. When drawing conclusions from models 

the limitationsdue to these assumptions and simplifications have to be very clear in mind. 

 Here we pointed out some problems that come with a database approach, 

including the arbitrary choice of range, step, and type (logarithmic, linear, etc.) of 

parameter sampling, the high sensitivity and non-linearity of Hodgkin-Huxley type 

neuron models, the ambiguities in assessing the accuracy and adequacy of models and the 

difficult interpretation of "model counting" results. All this again stresses the need to 

work closely with experimental data. There is a danger that modeling becomes a 

substitute for experimental work while making assumptions that are not or can not be 

obtained experimentally. To our mind, the important biological question of how 

consistent circuitand neuron parameters really have to be remains wide open. 
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