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Models wagging the dog: Are Circuits Constructed with Disparate 
Parameters ? 
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Drive, La Jolla, CA 92093-0402, tnowotny@ucsd.edu 

 
Abstract 

 
In a recent paper Prinz et al. (Nature Neurosci. 7, 1345-52 (2004)) have addressed 

the fundamental question, whether neural systems are built with a fixed blueprint of 
tightly controlled parameters or in a way in which properties can vary largely from one 
individual to another, using a database modeling approach. In this article we examine the 
main conclusion that neural circuits indeed are built with largely varying parameters in  
light of our own experimental and modeling observations. We critically discuss the 
experimental and theoretical evidence including the general adequacy of database 
approaches for questions of this kind and come to the conclusion that the last word for 
this fundamental question has not yet been spoken. 

 
Introduction 

 
A major factor in the success of determining the precise synaptic connectivity of 

invertebrate circuits has been the ability to identify individual neurons. The advantage of 
being able to work with identifiable neurons was recognized early on by those working 
on Aplysia and lobster ganglia (Arvanitaki and Chalazonitis 1958; Kandel et al. 1967; 
Otsuka et al. 1967) who gave names  to individual neurons based on their physiological 
and anatomical properties. Although the identified neurons always behaved consistently, 
with small variations attributed to the dissection or the physiological techniques used, 
little thought was given to how different populations of ion channels were combined to 
produce the characteristic voltage output of each cell. When neural circuits were 
established between identified cells, similar questions relating to the variability of 
identified synapses were not addressed either.  

Are identified neurons made up of the same type and density of ionic channels or are 
the channels arranged differently, but in a way that gives each neuron its desired 
properties?  Are the synapses within a particular circuitthe same or different for each 
animal but balanced in a way that insures that the circuit performs equivalent operations 
from animal to animal? These two fundamentally different ways of building cells and 
circuits would have important implications for biologists as well as for modelers. 

A new modeling study based on a three neuron circuit from the lobster pyloric central 
pattern generator (CPG) (Prinz et al. 2004), raises important issues directly related to this 
question. It is well known that when constructing conductance based models with 
different ionic channels and synaptic types, extreme sensitivity to parameter values is 
common, even in relatively simple systems. Thus the method used to assign these values 
becomes a critical matter when trying to “tune” the circuit. Using a unique method to 



address this problem, Prinz et al (2004) developed a large database by computing and 
evaluating the output of thousands of circuits over a wide range of parameter values and 
selecting those sets, which produced outputs that matched the biological pattern. The 
outcome of this modeling work suggested that the values of the neuronal and synaptic 
parameters in the pyloric CPG could in fact be combined in many different ways, each 
being able to generate equivalent pyloric patterns. These results have extremely important 
implications for how neural circuits might be assembled in general. But they also raise 
some questions that would be troubling for research on small CPG circuits.  

There are many reasons to be initially skeptical of the idea that ion channels and other 
cell and circuit properties can, by some unknown mechanism, be mixed and matched but 
still generate the same functional pyloric pattern. One should, however, never dismiss an 
interesting idea without probing it carefully. Therefore, we have tested several 
predictions based on this hypothesis and examined the details of the “database approach”, 
that led to it. On the circuit level, we carried out a series of experiments by blocking a 
single channel type in all neurons in the intact pyloric circuit. We reasoned that if there 
were disparities in the conductance of this channel, there would also be variations in the 
effects of its selective blocking. We repeated the same manipulations in the “equivalent 
circuit models” which did include different values for the conductance of the blocked 
channel. On the single cell level we compared the variability of isolated cell dynamics in 
experiments and models and tested the sensitivity of the models to manipulations to 
assess the explanatory power of a database approach. 
 
A Simple Test for the Consistency of Parameters in the Pyloric CPG 

 
The results in (Prinz et al. 2004) obtained with a database approach using the pyloric 

subset model, suggest that the entire neural circuit produces similar firing patterns even if 
the parameters of the intrinsic voltage-dependent properties vary over a wide range – in 
fact over several orders of magnitude. Hence, there are several equally acceptable 
combinations of cellular and synaptic parameters that can produce equivalent firing 
patterns. One particular voltage-gated current may be very strong in an identified neuron 
from one animal but be very weak in the same neuron from a different animal. The 
desired network output would then come about as a result of correct combinations of 
cellular and synaptic properties, i.e., strong hyperpolarizing currents would balance 
strong depolarizing currents. This kind of balancing requires compensatory mechanisms 
not only at the network level but also in the individual neurons. Developing muscle cells 
in Xenopus for example compensate for the overexpression of exogenous Na+ channels 
by upregulating the expression of at least two endogenous K+ channels (Linsdell and 
Moody 1994). One way to see if such a possibility exists for the pyloric system is to 
remove one of the currents and observe the behavior of the neuron. We chose to do this 
with the transient potassium current IA, which has long been known to be one of the most 
important voltage-gated currents in shaping the voltage output of single neurons as well 
as the patterned activity of circuits containing those neurons (Tierney and Harris-Warrick 
1992). Neurons with such fast potassium currents would be expected to display strong 
changes in their behavior following blocking of the IA. Therefore if we assume that the 
same type of neuron from different animals may indeed have very different maximal 
conductances for IA, then the compensatory currents, e.g., the H-current which has been 



suggested by others (MacLean et al. 2003), will also vary over a wide range. A total 
blocking of an identified cell’s A-current in different preparations should result in 
populations of neurons with zero conductance in IA but with very different conductances 
in the compensatory type voltage-gated currents. Blocking the IA would therefore 
unbalance the entire pyloric circuit. Accordingly, the activity pattern of single pyloric 
cells as well as the overall pyloric pattern should vary widely among different 
preparations. 

 
Fig. 1 4-aminopyridine induces consistent changes in the voltage output and spike dynamics of the PD 
neuron. Voltage waveforms of PD neurons from four different preparations (arranged in 4 rows) are 
displayed before (left) and during (right) the application of the A-current blocker 4-AP (4 mM). There 
are 6 overlapping bursts in each panel. Red traces with gray lines running on both sides are the average 
intraburst spike desity functions (± S.D.) calculated from ~100 successive bursts of each neuron. In 
control all PD neurons are accelerating type bursters while 4-AP turns them into decelerating type ones. 
Color-coded maps are joint interspike interval (ISI) density plots showing the serial dependence of ISIs 
within the bursts of the PDs neurons. While in control conditions all the neurons display the 
characteristic PD signature (V-shaped and clustered maps, compare Szücs et al. 2003), the joint ISI 
maps during 4-AP indicate a different behavior: rapid onset of the burst with gradually increasing ISI 
durations. The analysis reveals very similar dynamics in the PD neurons from different animals both in 
normal conditions and when they are exposed to 4-AP (modified from (Szücs and Selverston 2006)). 



To test this possibility we performed a set of experiments with bath applied 4-
aminopyridine (4-AP), a potent and specific blocker of IA in lobster pyloric neurons 
(Tierney and Harris-Warrick 1992), and examined how consistent the effects are. At the 
network level, 4-AP had the obvious effect of speeding up the frequency of the pyloric 
rhythm by 52.6 ± 10.8% (n=8). This is consistent with the general expectation that the 
removal of a hyperpolarizing current, without altering other currents, will result in a net 
depolarization of the neurons at the same time. Application of 4-AP did not disrupt the 
phase-relationship between the bursts of the pyloric neurons and the overall regularity of 
the three-phasic rhythm. At the single neuron level, 4-AP affected the voltage output and 
spike patterns of the neurons in a cell-specific manner with the PD neuron showing the 
most profound changes. The key question here is how much variability is observed after 
the A- currents are eliminated? Remarkably, the changes in burst shape and interspike 
interval (ISI) pattern for the PD neuron in 4-AP were very reproducible and characteristic 
(Fig. 1, Table 1). In fact, 4-AP turned the accelerating type (ISIs decreasing) PD neuron 
into a decelerating type neuron. As shown in the table, the standard deviations of the 
changes in the statistical parameters were consistently small. Consequently, 4-AP 
produces very similar effects in pyloric neurons from different animals. These effects are 
consistent and reproducible not only in the network parameters but also in the parameters 
describing the spike dynamics of single neurons. Usually, burst timing based gross 
parameters are used to characterize the activity of oscillatory networks. These gross 
parameters of neural activity are the functionally most important ones and, hence, are 
understandably very similar among different animals. However, even the more subtle 
parameters, like the interspike interval-based metrics and spike density are also 
consistent. The pyloric neurons apparently tune their biophysical properties in a way that 
makes the bursts of the individual neurons remarkably similar across different animals. 
Actually this is one of the reasons why the identification of such neurons is 
straightforward for the experienced neurophysiologist. As we and other investigators 

Pyloric burst freq., control  Hz 1.56 ± 0.13 

Pyloric burst freq. with 4-AP Hz 2.37 ± 0.14 

Change in pyloric burst freq. % +52.6 ± 10.8 

PD number of spikes, control  10.3 ± 1.7 

PD number of spikes with 4-AP  6.9 ± 1.3 

Change in number of spikes % -32.4 ± 5.6 

PD intrab. spike freq. , control Hz 54.9 ± 9.2 

PD intrab. spike freq. with 4-AP Hz 78.9 ± 15.3 

Change in PD intrab. spike freq. % +43.6 ± 11.0 

LP-PD relative phase, control  0.42 ± 0.03 

LP-PD relative phase, 4-AP  0.59 ± 0.03 

Change in LP-PD relative phase % +41.7 ± 9.0 
 

Table 1 4-AP induces consistent effects in the gross burst parameters and in the spike patterns of the 
PD neuron from different preparations (n=8). The intraburst spike frequency was calculated by dividing 
the number of spikes with the duration of the bursts. The LP-PD relative phase was calculated by 
dividing the intervals between the LP and PD burst onset times with the PD burst cycle period. 



have previously shown, synaptic and neuromodulatory factors not only induce consistent 
changes to the overall burst pattern of the pyloric circuit but they also do the same 
consistently to the burst waveforms of the individual cells (Szücs et al. 2005; Szücs et al. 
2003). When inspecting the experiments individually, we did not notice any clear 

differences in the changes in the circuit characteristics listed summarily in table 1. In 
particular, there were no indications that the remaining variability, as indicated by the 
non-zero standard deviations, was due to differences in the effect of blocking IA rather 
than due to the a priori variability of the quantities in the intact circuits.  

Figure 2 demonstrates the range of 4 parameter values before and during 4-AP 
application for the 8 preparations. Natural variations of the burst frequency, PD spike 
number, PD intraburst spike frequency as well as the LP-to-PD relative phase are are 
reflected by the 1.3 to 1.9-fold variability in the scatter plots (max/min ratios of the 
populations are indicated in each plot). A closer look at the burst frequency data (Fig. 
2A) reveals that the population mean frequency is increased by 4-AP, but the dispersion 
of the data points remains very similar. The ratios are 1.29 and 1.21 for the control data 
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Fig. 2 Natural variability and the effect of 4-AP on 4 burst-related temporal parameters in 8 pyloric 
preparations. Each point corresponds to a different preparation. Ratios between the population maxima 
and minima are indicated above the points. A: burst frequency; B: Intraburst spike number of the PD 
neuron; C: Intraburst spike frequency of the PD neuron; D: LP-to-PD relative phase. Relative changes of 
the parameters were calculated by normalizing the 4-AP values with their corresponding control data. The 
spread of relative changes is remarkably low, never exceeding 1.25. 



and the 4-AP data, respectively. Relative changes of the burst frequency of each pyloric 
circuit are displayed in a similar format and we find low dispersion of the data (1.23 
ratio). Following the same procedure for the other three temporal parameters, we find that 
4-AP clearly shifts the populations, but the variability does not change significantly in 
either case. Remarkably, max/min ratio for the relative changes is always close to or less 
than 1.25. These values as well as the max/min ratios of the raw data are much less than 
those reported by Golowasch or Schulz for maximal conductance densities of selected K-
currents. Looking at the original data (before normalization) we find somewhat greater 
variability in the PD intraburst spike number and spike frequency (close to 2-fold 
variability). Nonetheless, 4-AP does not increase the variability of these parameters 
either. 

The observed consistency of the pyloric CPG with respect to removal of IA can now 
be compared to corresponding results with the model used by Prinz et al. (2004). Figure 3 
shows two control patterns that would meet their criteria for identification as pyloric 
rhythms (the same models as shown in Fig. 5 of (Prinz et al. 2004)). If the IA values of the 

 
Fig. 3 Effect of reducing IA in the CPG models in Prinz et al. (2004). The left panels in A and B show 
the output of two “equivalent models” of the lobster pyloric CPG (parameters taken from figure 5 in 
Prinz et al. (2004)). Scale bars are 50 mV/0.5 s. The middle and right panel show the output of the 
models with IA in all three neurons reduced to 75 % and to 50 % of its original conductance. The panels 
in C show the spike density functions (σ= 20 ms) of CPG A (black) and B (gray) in comparison. The 
vertical scale bar here is 2. While one would not reasonably expect the models to correctly reproduce 
the behavior of the pyloric CPG, they also fail to show equivalent dynamics in contrast to the claim of 
equivalence. The failure of reproducibility is in strong contrast with the observations in the pyloric 
system cf. Fig 1. Neuron models were integrated with a 5/6 order variable time step Runge-Kutta 
algorithm with maximal time step 20 μs and relative error goal per time step of 10-9. 



three neurons are different in the two models, one would expect a uniform reduction of 
this conductance to produce different effects in each model. As expected, a small 
reduction in IA already shows noticeable differences in frequency between the two models 
whereas a larger reduction of 50% leads to completely different behavior for each. For 
complete removal of IA, both models cease bursting in sharp contrast to the real system, 
which continues almost normal activity. Compare the AB/PD model trace in Fig. 3 A & 
B with the effects of complete IA removal from PDs shown in Fig. 1. 

The pyloric CPG has many regulatory mechanisms and internal feedback loops 
driving it to a stable pattern even when some of its components are severely disrupted. 
Could this make the experimentally observed changes consistent in spite of very disparate 
parameter sets?   While one should not exclude this possibility from the outset, there is no 
evidence that regulatory mechanisms can act in acute preparations. Furthermore, one 
would expect feedback mechanisms to stabilize the normal physiological pattern rather 
than the deviation from it. Instead of large, but consistent, changes one would expect to 
see no, or very slight changes overall. Along the same lines, one would expect the 
presumably functionally more important properties like frequencies and duty cycles to be 

 
 

Fig. 4 Models and data of isolated LP neurons. A) models LP2 through LP5 from Prinz et al. (2004) at 6 
levels of current injection. Current injections range from –0.15 nA to 0 nA (control) in steps of 0.03 nA. 
Scale bars are 1s / 50 mV. B) Data from isolated LP neurons (PD and VD neurons were killed by 
photoablation, 10 μM Picrotoxin) in 4 preparations of the stomatogastric ganglion of the lobster. Current 
injections into the soma through a separate sharp electrode were –4 nA to 0.5 nA as noted next to the 
graphs. Scale bars are 1s / 25mV. Taken the chaotic nature of the LP neuron and the expected 
experimental variability in the isolation procedure, the data appears, at least qualitatively, rather 
consistent across preparations. The models, on the other hand, appear to differ quantitatively and 
qualitatively from each other. Models were integrated with the same algorithm as in Figure 3. 



stabilized, but not details like the ISI signature of each neuron. 
 
When are models equivalent? 

 
The apparent discrepancies between the two circuit models with respect to blocking 

the IA current led us to a more fundamental question: When can one consider two models 
equivalent or similar enough to be in the same relationship to each other as the identified 
cells of two different animals? To approach this question we compared the variability 
between the dynamics of the models that are equivalent with respect to the criteria in 
(Prinz et al. 2004) to the variability of dynamics observed in isolated cells of the lobster 
stomatogastric ganglion. Figure 4 illustrates our findings. The panels show the membrane 
potential of 4 “equivalent models” (A) and four different isolated LP neurons (B) in 
response to 6 typical levels of DC current injection. Clearly, the LP cells show a 
noticeable variability but their overall bifurcations from slow, short bursting over long, 
irregular bursting, to irregular spiking and eventually to fast, tonic spiking are very 
typical. It is important to note that, as in the case of the network, regulatory mechanisms 
such as feedback loops are not likely to shape the dynamics of the isolated neurons, 
because the natural system has never been exposed to such conditions making it unlikely 
that a special mechanism to control the activity of the LP neuron in isolation would have 
evolved. Therefore, it seems fair to compare the results from isolation experiments to the 
behavior of single model neurons. The model neurons reproduce the irregular spiking for 
0 nA current injection, the criterion on which they were selected, but otherwise do not 
match the data, nor each other, very well. Apparently the models chosen from the 
database were not yet quite adequate. Assuming there are models in the pool of tested 
models with matching dynamics over a wide range of stationary current injections, would 
this requirement restrict their parameters to similar values? And, if not, are there other 
criteria that would do so? 

One might argue that in order to address this question one just needs to go into the 
database of models and select with increasingly restrictive criteria to answer this question 
easily. This assumes that all possible models are covered by the database and conversely 
that all parameter sets in the database constitute in some sense equivalent and viable 
“model entities”. To gain some insight into this question we analyzed a subset of models 
from the pyloric neuron model database of (Prinz et al. 2003a). 

Database approaches 
At first sight, it is an intriguing and bold idea to map out the complete parameter 

space of a model in a database approach and observe all of the dynamical regimes, 
especially the bifurcations. Furthermore, this approach seems to offer a completely new 
wealth of information on how typical certain dynamical properties of models are; for 
example by allowing statements about how many of all “equivalent LP models” have a 
large IA conductance, etc. After careful inspection our enthusiasm was, however, 
somewhat damped by the following observations: 

Conductance-based models of the Hodgkin-Huxley type are fairly complex, 
containing on the order of tens of parameters. Even if one restricts the free parameters to 
maximal conductances only, one is easily left with five to ten parameters for a given 
neuron. This already raises some skepticism on the feasibility of a complete database. 
Furthermore, experience with this type of model has demonstrated that they are highly 



sensitive to the values of some parameters, see Fig. 4 for an example. Parameter 
mismatches often lead not only to dynamics inappropriate for the neurons being 
described but also inappropriate for neurons in general. Two common and very 
surprising, examples from conductance-based models are metastable depolarized states or 
lack of stability in the hyperpolarized regime. Because of the sensitivity of the models to 
some of the parameters (and their combinations), a complete survey of the parameter 
space obviously needs to be done with appropriately small increments in each of the 
parameters. This quickly increases the computational cost. For example, if we take just 
1000 different values for each of, say, 5 parameters, we have to compute the dynamics of 
1015 models which might take on the order of 1016 seconds on a modern PC, i.e., about 3 
billion years. On the other end of the spectrum of possibilities, if we take only five 
different values for each of five parameters we will not cover any relevant portion of the 
parameter space (compare the gray panels in figure Fig. 4 to the wealth of different 
dynamics in the remaining panels). Continuing this approach to the network level makes 
the combinatorial complexity even more daunting.  

 
Figure 5 illustrates a few further difficulties of brute force database approaches. 

The region in which a parameter change is relevant to the neuron dynamics is a priori not 
known. In the example of Fig. 5 it is only meaningful to vary gNa between 0 and about 
220 mS/cm2. For all values beyond this range the dynamics of the model neuron is 
insensitive to changes in gNa. Following (Prinz et al. 2003b) in counting the number of 
model neurons with a certain property, e.g., all neurons that are tonic spikers, one will 
count basically the same model several times, for gNa = 300, 400, and 500 mS/cm2. The 
wealth of different models between gNa = 20 and 90 mS/cm2, however, will go unnoticed. 
The head count of models with given properties apparently strongly depends on the 
choice of parameter values examined (both in terms of spacing and total range) and thus 
could become a highly ambiguous statement. Inspecting the data manually, like we did 
here for illustration purposes, does not resolve this problem because the relevant range of 
values of, e.g., the sodium conductance, will likely depend in a non-trivial way on the 
values of all the other parameters.  

Furthermore, given the different ways parameters enter into models it even seems 
unclear whether linear, logarithmic or other increments in parameter values might be 
appropriate. A simple example illustrates this basic problem: For simplicity, let us 
assume that we are looking for sets of three parameters with the property 1321 ≤⋅⋅ ppp . 
If we sample the three parameters on a logarithmic scale, e.g. from { }5,2,1,5.0,2.0,1.0,0 , 
we get the result that 82.8 % of parameter sets have this property. If we sample from a 
linear scale, like { }5,4,3,2,1,0 , however, we obtain a count of 42.6 % of the parameter 
sets with this property. The percentage count almost entirely depends on our prior choice 
of the sampling method. 



Another dangerous pitfall is the assumption that, if the relevant range of 

 
 

Fig. 5 Illustration of the principle difficulties of a database approach. A) Each panel shows 6 membrane 
potential traces of the model LP5 of Prinz et. al. (2004) with a given value for the Na conductance as 
noted above the panels. The 6 traces correspond to DC current injection from -0.125 to 0 nA in 
increments of 0.025 nA (top to bottom). Gray panels are models that were examined in the database of 
Prinz et al. (2003), the other panels were not. Relevant bifurcations in the neuron dynamics (transitions 
from silent to fast tonic spiking to slower tonic activity and eventually irregular bursting) were not 
included into the database. The remaining models for even stronger Na currents (not shown here) are all 
comparatively similar and need not have been examined. B) The 10 fold finer resolution in the parameter 
values shown in panel A still reveals further transitions in the activity patterns. Panel C) shows another 10 
fold increase in resolution from panel B. The model appears to be so sensitive to this parameter that even 
this resolution does not suffice to clearly resolve the transition between fast tonic spiking and irregular 
bursting. It seems that the necessary resolution to really cover the whole dynamics of a neuron model is 
very fine whereas, on the other hand, this resolution is only necessary in very small but a priori unknown 
regions. A brute force database approach leads to either incomplete observations or to an explosion in 
computational cost (see main text). Neuron models were integrated with the same procedure as before. 
Correct integration was controlled in some examples with a linear Euler algorithm of time step 10-6 ms 
which revealed no relevant deviation. 



parameter values were tightly constrained by additional knowledge, counting models 
with a given property becomes more meaningful. A simple back-of-the-envelope 
calculation shows that if we assume we know the relevant parameter range to ±10% 
accuracy, e.g., we know that 6 parameters have relevant values between 0 and 1 ± 0.1,  
then the parameter space volume examined varies between 0.9 6 ≈ 0.531 and  1.1 6 ≈ 
1.772. Therefore, one could easily obtain a result where the fraction of models having a 
given property varies between 90 % and 27 % depending whether one sampled with the 
lower or upper value for the parameter range. The problem becomes even more 
aggravated for higher dimensional parameter spaces. 

With respect to the models that are overlooked by too coarse parameter sampling, 
one could argue that parameter regions for which the models are highly sensitive to their 
parameters and initial conditions (like the models for between gNa = 20 and 90 mS/cm2 

above) are not relevant for describing neural systems, which need to be robust and 
reliable. It has, however, been observed that neurons can have chaotic regimes (Elson et 
al. 1999; Ren 1997; Schiff et al. 1994) and it is known that self-organized systems often 
approach such instable parameter regions for greater flexibility (Bak et al. 1988; 
Bertschinger and Natschlager 2004; Kauffman and Johnsen 1991). In this light, 
disregarding models solely based on the observation of sensitive and/or irregular 
dynamics appears to be somewhat presumptuous. 

The approach of systematically mapping the dynamics resulting from all possible 
parameter combinations might be better-suited for models that are fairly insensitive to the 
parameters in question or for which the structure of the bifurcations is well known and 
simple enough such that sampling only a few points in every known dynamical regime 
will permit the identification of the dynamics over wide regions of the parameter space. 
Both of these limitations are probably not true for any Hodgkin-Huxley type model 
(Izhikevich 2006). 

A different, more important function of building databases of model neurons can 
be to identify potentially useful models for other modeling purposes or to gain a general 
overview over possible model behaviors. As such, it can help circumvent tedious hand-
adjustments of models and become a valuable part of the portfolio of modeling tools used 
in neuroscience. 

 
Summary and Conclusions 

Modeling is an extremely useful tool when handling large amounts of 
neurophysiological data from complex, nonlinear systems. If it goes hand in hand with 
experimental approaches it can help explain the experimental findings as well as generate 
new hypotheses. Models can also provide consistency tests and testbeds for principles 
that may underlie the observations. All models in neuroscience are, however, by 
necessity phenomenological in nature and a tight connection to experimental observations 
is therefore indispensable. Without direct experimental foundation, models can be fairly 
ambiguous because they are - unlike theories in physics - not constrained by clear 
fundamental principles nor are all specific details, e.g., values of parameters, precisely 
known. Furthermore, the very nature of biological systems is to vary between animals, 
which might not allow to build universal models of biological systems in the way one can 
in chemistry or physics. This exact premise led Prinz at al (2004) to the intriguing idea of 



circuits being assembled in very different ways with very different components across 
animals.  

Does existing data support the idea that individual neurons and entire circuits can 
be made with such variable combinations of parameters? If each circuit is assembled de 
novo, from one animal to another, so that each one is unique, we would have to take the 
following into consideration: 

 
Regulatory mechanisms 

Assuming that neurons and circuits in every animal can be considerably different, 
there must be a mechanism that regulates neuron and synapse properties to lead to a 
successful activity pattern. Furthermore, once this is achieved, individual biophysical and 
synaptic properties have to be maintained in the face of continuous protein turnover and 
activity-dependent changes (Turrigiano 1999). While potential regulatory mechanisms 
have been suggested on the single cell level (Golowasch et al. 1999; LeMasson et al. 
1993; Liu et al. 1998), it remains rather unclear how this could be realized for synapses 
on the network level. 

 
The action of neuromodulators. 

When CPG circuits are exposed to neuromodulators delivered artificially or by 
stimulation of the neurons which contain them, they produce characteristic changes in 
ongoing motor patterns that are consistent from animal to animal (Harris- Warrick and 
Marder 1991). A large body of evidence exists that indicates that the modulators bind to 
particular receptors on specific identified neurons and that they activate second 
messenger systems which are also cell specific (Hempel et al. 1996). These actions in 
turn lead to specific changes in membrane conductances and alterations in the biophysical 
properties of the neurons and synapses in a circuit. Would consistent effects of 
neuromodulatory action be possible if the types and distribution of ion channels in 
identifiable neurons were inconsistent? One could argue that regulatory mechanisms and 
specific neuromodulator actions are tuned carefully to allow consistent effects in spite of 
highly variable substrates. But our experiment with 4AP also showed very consistent 
effects of blocking IA channels, a perturbation that the system has never been and would 
not be exposed to in natural circumstances. 

The fact that neuromodulators always produce consistent results is neither a 
paradox nor a conundrum that can be dismissed and relegated to future research (Marder 
and Goaillard 2006). Modulators have reproducible effects on networks because each has 
specific target cells to which they bind and specific second messenger pathways and 
phosphorylation sites that are affected. Of course modulators exist within the framework 
of the entire system so it is not surprising that they can produce variable results when 
other modulators or sensory inputs are present. But a single modulator applied to a 
ganglion in its standard experimental condition will always produce consistent effects. 
This would be extremely unlikely if the target channel had a thirty fold density range. 

 
 

Feedback and descending control mechanisms. 
For a CPG to be effective in the control of a behavior it must be able to respond to 

sensory inputs. Such sensory feedback may impinge directly onto CPG circuitry or it may 



be in the form of commands from higher centers after different sensory inputs have been 
integrated and decisions made about how to respond. These feedback pathways are 
specific to particular neurons. Can feedback control mechanisms provide consistent 
results if the target neurons are inconsistent? 

 
Time constants of channels. 

The mixing and matching of channels in a neuron in a way that produces the same 
overall physiological properties could be done in theory if it was only the effective 
polarity of the response that mattered, i.e., a little too much inward current could be offset 
with a corresponding amount of an outward current. But ionic currents also have different 
activation and inactivation curves as well as different kinetics, ranging from transient to 
persistent. These factors would make it almost impossible to mix ionic currents in a way 
that would achieve similar actions in a wide enough dynamic regime because not only 
would the polarity have to be compensated for, the balancing currents would have to 
possess identical activation/inactivation curves and kinetic properties as well. 

 
Additional experimental evidence. 

(Baro et al. 1997) examined the expression of Shal channels in identified neurons in 
the pyloric CPG and found that it is typical for each identified cell type with small 
variations between cells of the same type. They also found rather small variability in the 
maximal conductance of IA channels for each identified cell in contrast to the results in 
(Golowasch and Marder 1992). Furthermore in a recent work (Schulz et al. 2006) it has 
been shown that there is a certain amount of variability in some channels while other are 
more controlled. This is not unexpected as parameters which have a large impact on the 
system dynamics need to be more tightly controlled than others which have less impact. 
In particular, Schulz et al. (2006) found in LP neurons gKd in the range of 0.09-0.12 
μS/nF, gA in 0.05-0.16 μS/nF, and gKCa in 0.2-0.6 μS/nF, which corresponds to 
maximally 3 fold differences. This is less variability in parameters than postulated from 
the models discussed above but more than most experimenters would have expected. 

 
Implications for the concept of identified cells 

Identifiability of neurons has been a cornerstone of the success of invertebrate 
CPG “circuit chasing”. Identifiable neurons have identical physiological properties, the 
same connections to other identifiable cells, a similar morphology, and identical 
biochemical and molecular signatures. The application of molecular biological techniques 
to the study of CPGs will depend on the assumption that different types of neurons have 
consistent cellular, synaptic channel compositions and receptor properties (Callaway 
2005; Kiehn and Kullander 2004; Wulff and Wisden 2005). The implications of disparate 
parameter compositions occurring in the same neuron type, on the contrary, would make 
such molecular approaches less applicable for pharmacological development because 
channel specific drugs would affect each cell of the same type, differently. 

 Another interesting observation in the recent work of Schulz et al. (2006) is that 
the identified neurons, though having a fairly wide range of certain parameters, are well 
separated in parameter space. In this way, wide ranges of parameter values might be 
consistent with the original idea of identified cells: Each identified cell is characterized 
by a more or less wide region in parameter space. If the action of neuromodulators and 



other neuroactive substances were sufficiently robust, this could still allow for consistent 
effects on the neuronal activity. How much variability would be sustainable in this view 
remains an interesting open research direction. 

The voltage output of a neuron is not a simple algebraic sum of channel 
populations but a complex nonlinear computation that includes both biophysical and 
anatomical factors. The novel methodology of using large-scale databases developed by 
Prinz et al (2003, 2004) is an exciting approach that incites the thinking of how neural 
systems are composed and maintained. One has to remember, though, that modelers, by 
necessity, have to make assumptions and simplifications, which may greatly influence the 
modeling results.This is aggravated by the fact that we do not know, which aspects of the 
observed circuit and neuron dynamics reallymatter. The fact that we observe very typical 
ISI signatures in the neurons of every preparation is suggestive but does not prove that 
ISI properties are indeed important. It might be, for example, that the A-current in the PD 
neuron is critically important to achieve reliable phase shift during the action of a specific 
endogenous neuromodulator such as dopamine and only as a 'side-effect' the A-current 
also reshapes the burst of the PD neuron and produces those nice V-shaped and clustered 
ISI signatures. In a model the modeler will have to choose which properties of the system 
(bursting frequencies, bursting phases, ISIs, ISI signatures, spike shape,etc.) are 
important to model and which can be neglected. When drawing conclusions from models 
the limitationsdue to these assumptions and simplifications have to be very clear in mind. 

 Here we pointed out some problems that come with a database approach, 
including the arbitrary choice of range, step, and type (logarithmic, linear, etc.) of 
parameter sampling, the high sensitivity and non-linearity of Hodgkin-Huxley type 
neuron models, the ambiguities in assessing the accuracy and adequacy of models and the 
difficult interpretation of "model counting" results. All this again stresses the need to 
work closely with experimental data. There is a danger that modeling becomes a 
substitute for experimental work while making assumptions that are not or can not be 
obtained experimentally. To our mind, the important biological question of how 
consistent circuitand neuron parameters really have to be remains wide open. 
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