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Abstract

Intersecting stacks of N = 1 supersymmetric fractional branes on the Z
′

6
orientifold may be used

to construct the supersymmetric Standard Model. If a, b are the stacks that generate the SU(3)colour

and SU(2)L gauge particles, then, in order to obtain just the chiral spectrum of the (supersymmetric)
Standard Model (with non-zero Yukawa couplings to the Higgs mutiplets), it is necessary that the
number of intersections a ∩ b of the stacks a and b, and the number of intersections a ∩ b′ of a with
the orientifold image b′ of b satisfy (a∩b, a∩b′) = (2, 1) or (1, 2). It is also necessary that there is no
matter in symmetric representations of the gauge group, and not too much matter in antisymmetric
representations, on either stack. Fractional branes having all of these properties may be constructed
on the Z

′

6
orientifold. We construct a (four-stack) model with two further stacks, each with just

a single brane, which has precisely the matter spectrum of the supersymmetric Standard Model,
including a single pair of Higgs doublets. However, the gauge group is SU(3)colour × SU(2)L ×
U(1)Y × U(1)H . Only the Higgs doublets are charged with respect to U(1)H .

1D.Bailin@sussex.ac.uk
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An attractive, bottom-up approach to constructing the Standard Model is to use intersecting D6-
branes [1]. In these models one starts with two stacks, a and b with Na = 3 and Nb = 2, of D6-branes
wrapping the three large spatial dimensions plus 3-cycles of the six-dimensional internal space (typically
a torus T 6 or a Calabi-Yau 3-fold) on which the theory is compactified. These generate the gauge
group U(3) × U(2) ⊃ SU(3)c × SU(2)L, and the non-abelian component of the standard model gauge
group is immediately assured. Further, (four-dimensional) fermions in bifundamental representations
(Na,Nb) = (3,2) of the gauge group can arise at the multiple intersections of the two stacks. These
are precisely the representations needed for the quark doublets QL of the Standard Model, and indeed
an attractive model having just the spectrum of the Standard Model has been constructed [2]. The D6-
branes wrap 3-cycles of an orientifold T 6/Ω, where Ω is the world-sheet parity operator. The advantage
and, indeed, the necessity of using an orientifold stems from the fact that for every stack a, b, ... there
is an orientifold image a′, b′, .... At intersections of a and b there are chiral fermions in the (3,2)
representation of U(3) × U(2), where the 3 has charge Qa = +1 with respect to the U(1)a in U(3) =
SU(3)colour × U(1)a, and the 2 has charge Qb = −1 with respect to the U(1)b in U(2) = SU(2)L ×
U(1)b. However, at intersections of a and b′ there are chiral fermions in the (3,2) representation, where
the 2 has U(1)b charge Qb = +1. In the model of [2], the number of intersections a∩b of the stack a with
b is 2, and the number of intersections a∩ b′ of the stack a with b′ is 1. Thus, as required for the Standard
Model, there are 3 quark doublets. (They have the same weak hypercharge Y provided that Qb does
not contribute to Y .) These have net U(1)a charge Qa = 6, and net U(1)b charge Qb = −3. Tadpole
cancellation requires that overall both charges, sum to zero, so further fermions are essential, and indeed
required by the Standard Model. 6 quark-singlet states uc

L and dc
L belonging to the (1,3) representation

of U(1)×U(3), having a total of Qa = −6 are sufficient to ensure overall cancellation of Qa, and these
arise from the intersections of a with other stacks c, d, ... having just a single D6-brane. Similarly, 3
lepton doublets L, belonging to the (2,1) representation of U(2)×U(1), having a total U(1)b charge of
Qb = 3, are sufficient to ensure overall cancellation of Qb, and these arise from the intersections of b with
other stacks having just a single D6-brane. In contrast, had we not used an orientifold, the requirement
of 3 quark doublets would necessitate having the number of intersections a ∩ b = 3. This makes no
difference to the charge Qa = 6 carried by the quark doublets, but instead the U(1)b charge carried by
the quark doublets is Qb = −9, which cannot be cancelled by just 3 lepton doublets L. Consequently,
additional vector-like fermions are unavoidable unless the orientifold projection is available. This is why
the orientifold is essential if we are to get just the matter content of the Standard Model or of the MSSM.

Actually, an orientifold can allow essentially the standard-model spectrum without vector-like matter
even when a ∩ b = 3 and a ∩ b′ = 0 [3]. This is because in orientifold models it is also possible to get
chiral matter in the symmetric and/or antisymmetric representation of the relevant gauge group from open
strings stretched between a stack and its orientifold image. Both representations have charge Q = 2 with
respect to the relevant U(1). The antisymmetric (singlet) representation of U(2) can describe a neutrino
singlet state νc

L (since Qb does not contribute to Y ), and 3 copies contribute Qb = 6 units of U(1)b charge.
If there are also 3 lepton doublets L belonging to the bifundamental representation (2,1) representation
of U(2) × U(1), each contributing Qb = 1 as above, then the total contribution is Qb = 9 which can be
cancelled by 3 quark doublets QL in the (3,2) representation of U(3) ×U(2). Thus, orientifold models
can allow the standard-model spectrum plus 3 neutrino singlet states even when (a ∩ b, a ∩ b ′) = (3, 0).

Non-supersymmetric intersecting-brane models lead to flavour-changing neutral-current (FCNC)
processes that can only be suppressed to levels consistent with the current bounds by making the string
scale rather high, of order 104 TeV, which in turn leads to fine-tuning problems [4]. Further, in non-
supersymmetric theories, such as these, the cancellation of Ramond-Ramond (RR) tadpoles does not
ensure Neveu Schwarz-Neveu Schwarz (NSNS) tadpole cancellation. Thus a particular consequence of
the non-cancellation is that the complex structure moduli are unstable [5]. One way to stabilise these
moduli is for the D-branes to wrap an orbifold T 6/P , where P is a “point group” acting on T 6, rather
than a torus T 6. The FCNC problem can be solved and the complex structure moduli stabilised when
the theory is supersymmetric. First, a supersymmetric theory is not obliged to have the low string scale
that led to problematic FCNCs induced by string instantons. Second, in a supersymmetric theory, RR
tadpole cancellation ensures cancellation of the NSNS tadpoles [6, 7]. An orientifold is then constructed
by quotienting the orbifold with the world-sheet parity operator Ω.
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In this paper we shall be concerned with the orientifold having point group P =Z
′

6. We showed in
a previous paper [8] that this does have (fractional) supersymmetric D6-branes a and b with intersection
numbers (a∩ b, a∩ b′) = (1, 2) or (2, 1), which might be used to construct the supersymmetric Standard
Model having just the requisite standard-model matter content.

The torus T 6 factorises into three 2-tori T 2
1 × T 2

2 × T 2
3 , with T 2

k (k = 1, 2, 3) parametrised by the
complex coordinate zk. The action of the generator θ of the point group Z

′

6 on the coordinates zk is given
by

θzk = e2πivkzk (1)

where
(v1, v2, v3) =

1

6
(1, 2,−3) (2)

Since the point group action must be an automorphism of the lattice, we take T 2
1,2 to be SU(3) lattices, so

that their complex structure moduli satisfy U1 = eiπ/3 = U2, whereas the lattice for and T 2
3 and hence its

complex structure U3 is arbitrary. The anti-holomprphic embedding R of the world-sheet parity operator
Ω acts as complex conjugation on the coordinates zk

Rzk = zk (k = 1, 2, 3) (3)

Requiring that this too is an automorphism of the lattice constrains the orientation of each torus T 2
k

relative to the Re zk axis. Each torus must be in one of two configurations, denoted A and B, defined
in reference [8]. This fixes the real part of the complex structure Re U3 = 0, 1/2 respectively, but the
imaginary part Im U3 remains a priori arbitrary. In this paper, we shall only be concerned with the ABA
lattice.

The fractional branes κ with which we are concerned have the general form

κ =
1

2

(

Πbulk
κ + Πex

κ

)

(4)

where
Πbulk

κ =
∑

p=1,3,4,6

Aκ
pρp (5)

is an (untwisted) invariant 3-cycle, and

Πex
κ =

∑

j=1,4,5,6

(ακ
j εj + α̃κ

j ε̃j) (6)

is an exceptional 3-cycle associated with the θ3-twisted sector. It consists of a collapsed 2-cycle at a
θ3 fixed point in T 2

1 × T 2
3 times a 1-cycle in the (θ3-invariant plane) T 2

2 . The 4 basis invariant 3-cycles
ρp, (p = 1, 3, 4, 6) and the 8 basis exceptional cycles εj and ε̃j , (j = 1, 4, 5, 6) are defined in reference
[8]. Their non-zero intersection numbers are

ρ1 ∩ ρ4 = −4, ρ1 ∩ ρ6 = 2 (7)
ρ3 ∩ ρ4 = 2, ρ3 ∩ ρ6 = −4 (8)

and
εj ∩ ε̃k = −2δjk (9)

The wrapping numbers (na
k,m

a
k) of the basis 1-cycles (π2k−1, π2k) of T 2

k for the U(3) stack a are
given by

(na
1,m

a
1;n

a
2,m

a
2, n

a
3,m,a3 ) = (1,−2;−1, 0; 1,−2) (10)

Using the formulae given in [8],

A1 = (n1n2 + n1m2 + m1n2)n3 (11)
A3 = (m1m2 + n1m2 + m1n2)n3 (12)
A4 = (n1n2 + n1m2 + m1n2)m3 (13)

A6 = (m1m2 + n1m2 + m1n2)m3 (14)
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we can compute the bulk coefficients Aa
p for Πbulk

a . Then the fractional brane a has

Πbulk
a = ρ1 + 2ρ3 − 2ρ4 − 4ρ6 (15)
Πex

a = (−1)τa

0

(

2[ε1 + (−1)τa

2 ε4] + [ε̃1 + (−1)τa

2 ε̃4]
)

(16)

On the ABA lattice, the orientifold O6-plane is

ΠO6 = 2ρ1 + ρ3 − 3ρ6 (17)

and the orientifold images of Πbulk
a and Πex

a are

Πbulk
a

′

= ρ1 − ρ3 + 2ρ4 − 2ρ6 (18)
Πex

a
′ = = (−1)τa

0

(

−[ε1 + (−1)τa

2 ε4] + [ε̃1 + (−1)τa

2 ε̃4]
)

(19)

Then

a ∩ ΠO6 =
1

2
Πbulk

a ∩ ΠO6 = 3 (20)

= a ∩ a′ (21)

from which it follows, as required, that there are no symmetric representations Sa = 6 on the stack a.
On this lattice, supersymmetry requires that the bulk coefficients Aa

p satisfy
√

3Aa
1 + (Aa

4 − 2Aa
6) Im U3 > 0 (22)

−Aa
1 + 2Aa

3 + Aa
4

√
3 Im U3 = 0 (23)

where U3 is the complex structure on T 2
3 . Using the bulk coefficients for a given in (15), it follows that

Im U3 =

√
3

2
(24)

Likewise, the wrapping numbers (nb
k,m

b
k) for the U(2) stack b are given by

(nb
1,m

b
1;n

b
2,m

b
2, n

b
3,m,b3 ) = (0, 1; 0,−1; 0, 1) (25)

and the fractional brane b has

Πbulk
b = −ρ6 = Πbulk

b
′ (26)

Πex
b = = (−1)τb

0
+1[ε1 + (−1)τb

2 ε5] = −Πex
b

′ (27)

It follows that b too is supersymmetric and that

b ∩ ΠO6 = 0 = b ∩ b′ (28)

so, again, there are no symmetric representations Sb = 3 on the stack b. Then, as required,

(a ∩ b, a ∩ b′) = (2, 1) or (1, 2) (29)

the former occurring when τ a
0 = τ b

0 mod 2 and the latter when τ a
0 6= τ b

0 mod 2.
The weak hypercharge Y is a linear combination

Y =
∑

κ

yκQκ (30)

of the charges Qκ associated with the U(1)κ group for each stack κ. As explained above, the intersections
a ∩ b give chiral supermultiplets in the (3,2) representation of U(3) × U(2) and a ∩ b ′ give chiral
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supermultiplets in the (3,2) representation. Since both of these give quark doublets QL having Y = 1/6,
we infer that

ya =
1

6
(31)

yb = 0 (32)

(As noted earlier, the stack Qb makes no contribution to Y .) Using (20) we find that the number of
antisymmetric representations on the stack a is

#(Aa) =
1

2
(a ∩ a′ + a ∩ ΠO6) = 3 (33)

Since the antisymmetric part Aa = (3 × 3)antisymm = 3 for the group SU(3), and since 3 has Qa = 1,
it follows that there are 3 (3,1) representations of SU(3)colour × SU(2)L having Y = 1/3. Thus, there
are 3 dc

L quark-singlet states on the stack a. Similarly, from (28), it follows that

#(Ab) = 0 (34)

so that there are no lepton-singlet νc
L states on the stack b. To complete the standard-model spectrum, it is

therefore necessary to add further stacks, c, d, e, ... each having just a single (fractional) brane Nc,d,e... =
1. In principle, it might be possible to obtain the full spectrum with the addition of just one further stack
c with yc = 1/2. The remaining 3 quark-singlet states uc

L having weak hypercharge Y = −2/3 might
arise at the intersections of a and c, the 3 lepton and 2 Higgs doublets with Y = ±1/2 from intersections
of b with c, with the 3 charged lepton-singlet states `c

L having Y = 1 possibly arising as symmetric
representations on c. However, we have not so far been able to find such an example. The example that
we shall present has two further U(1) stacks.

The wrapping numbers (nc
k,m

c
k) for the first of these stacks are

(nc
1,m

c
1;n

c
2,m

c
2, n

c
3,m,c3 ) = (1, 0; 1, 0; 3, 2) (35)

and the fractional brane c has

Πbulk
c = 3ρ1 + 2ρ4 (36)
Πex

c = (−1)τc

0
+1

(

2[ε1 + (−1)τc

2 ε4] + [ε̃1 + (−1)τc

2 ε̃4]
)

(37)

Then c is supersymmetric and

Πbulk
c

′

= 3ρ1 + 3ρ3 − 2ρ4 − 2ρ6 (38)
Πex

c
′ = = (−1)τc

0
+1

(

−[ε1 + (−1)τc

2 ε4] + [ε̃1 + (−1)τc

2 ε̃4]
)

(39)

Taking

τa
0 + τ c

0 = 0 mod 2 (40)
τa
2 + τ c

2 = 0 mod 2 (41)

and using (15) and (16) then gives
(a ∩ c, a ∩ c′) = (0,−3) (42)

Hence, if
yc =

1

2
(43)

we get just the required 3 quark-singlet states uc
L with weak hypercharge Y = −2/3. Further, the number

#(Sc) of symmetric representations on the stack c is

#(Sc) =
1

2
(c ∩ c′ − c ∩ ΠO6) (44)

= 3 (45)
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so that we get just the required 3 charged lepton-singlet states `c
L having weak hypercharge Y = 1.

Similarly, using (26) and (27), we find that

(b ∩ c, b ∩ c′) = (2,−1) or (1,−2) (46)

the former occurring when τ b
0 + τ c

0 = 0 mod 2 and the latter when it is 1 mod 2. Either way, this gives
3 lepton (or Higgs) doublets each having weak hypercharge Y = −1/2. Evidently a further stack is
required to generate a pair of doublets with opposite weak hypercharges Y = 1/2 and Y = −1/2.

The wrapping numbers (nd
k,m

d
k) for the second of the U(1) stacks are

(nd
1,m

d
1;n

d
2,m

d
2, n

d
3,m,d3 ) = (1, 0; 1, 1; 1, 0) (47)

and the fractional brane d has

Πbulk
d = 2ρ1 + ρ3 = Πbulk

d
′ (48)

Πex
d = (−1)τd

0
+1

(

[ε1 + (−1)τd

2 ε4] + 2[ε̃1 + (−1)τd

2 ε̃4]
)

= Πex
d

′ (49)

Then d is supersymmetric and
d ∩ d′ = 0 = d ∩ ΠO6 (50)

so that there are no (lepton-singlet) states arising as the symmetric representation Sd on the stack d. Also,
taking

τa
0 + τd

0 = 0 mod 2 (51)
τa
2 + τd

2 = 0 mod 2 (52)

and using (15) and (16) then gives
(a ∩ d, a ∩ d′) = (0, 0) (53)

Thus there are no (unwanted) quark-singlet states arising at the intersections of a with d and d ′. Using
(26) and (27), we find that

(b ∩ d, b ∩ d′) = (1, 1) or (−1,−1) (54)

the former occurring when τ b
0 + τd

0 = 0 mod 2 and the latter when it is 1 mod 2. Either way, a pair of
(Higgs) doublets, having the required opposite weak hypercharges occurs, provided that

yd = ±1

2
(55)

Finally, using (40),(41),(51) and (52), we find that

(c ∩ d, c ∩ d′) = (0, 0) (56)

so that there are no charged or neutral lepton singlets at the intersections of c with d or d ′.
In total, we have just the spectrum of the supersymmetric Standard Model, with a single pair of

Higgs doublets, and no neutrino singlet states ν c
L. For this to be a consistent string theory realisation of

the Standard Model it is necessary that there is overall cancellation of the RR tadpoles, and this in turn
requires that the overall homology class of the D6-branes and O6-plane must vanish:

∑

κ

Nκ(κ + κ′) = 4ΠO6 (57)

The sum is over all four stacks κ = a, b, c, d and ΠO6 is given in (17). Note that the left-hand side
has contributions from both bulk and exceptional D6-branes, whereas the right-hand side has only the
former. Both bulk and exceptional parts are required to cancel separately, and it is easy to verify that this
is the case.

In the first instance the gauge group derived from these stacks is

G = U(3)a × U(2)b × U(1)c × U(1)d (58)
= SU(3)colour × SU(2)L × U(1)Y × U(1)3 (59)
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The last three U(1)s are of course unwanted. The gauge boson of any anomalous U(1) gauge group
acquires a mass of order the string scale, O(1017) GeV in a supersymmetric theory, and the U(1) survives
only as a global symmetry. This is what happens in the case of U(1)a, which is the U(1) associated with
(3 times the) baryon number. However, there remains the possibility that the gauge boson of a non-
anomalous U(1) symmetry remains massless (on the string scale) and might therefore be observable in
low-energy experiments. The U(1) gauge boson associated with a general linear combination of the
U(1) charges Qκ

X =
∑

κ

xκQκ (60)

whether anomalous or non-anomalous, does not acquire a mass via the Green-Schwarz mechanism pro-
vided that

∑

κ

xκNκ(κ − κ′) = 0 (61)

In the case under consideration, it is easy to verify that U(1)Y remains massless, as required, but so
too does U(1)d. Thus we have an unwanted further U(1) factor in the gauge group. However, the only
matter which has Qd 6= 0 is the pair of doublets in (54) and it is attractive to identify these with the pair
of Higgs doublets, H and H. Since, Higgs particles have not yet been observed, this scenario has not yet
been falsified.

In summary, we have found an attractive and economical realisation of the supersymmetric Standard
Model using just four stacks of D6-branes on the ABA lattice. It has the correct matter content, with
no neutrino-singlet states. There is one additional U(1) factor in the gauge group, which may only
interact with Higgs doublets. Although the complex structure moduli are stabilised in this model, there
of course remain unstabilised Kähler and dilaton moduli. In principle, these may be stabilised using
background fluxes, perhaps via the “rigid corset” proposed in [9]. In any case, fluxes are presumably
needed to break the N = 1 supersymmetry of the spectrum, as well as the N = 2 supersymmetry of the
gauge supermultiplets. These matters will be discussed elsewhere. Likewise, the results of a systematic
investigation of other possible lattices for the Z

′

6 orientifold will be presented in a separate paper [10].
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