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Abstract: In conventional single feedback control, the corrective action for disturbances does not 

begin until the controlled variable deviates from the set point. In this case, a cascade control strategy 

can be used to improve the performance of a control system particularly in the presence of 

disturbances. In this paper, an improved cascade control structure and controller design based on 

Standard forms, which was initially given by authors, is suggested to improve the performance of 

cascade control. Examples are given to illustrate the use of the proposed method and its superiority 

over some existing design methods. 



 
 

 

I. INTRODUCTION 

The standard feedback control loop sometimes does not provide a performance good enough for 

processes with long time delays and strong disturbances. Cascade control loops can be used and are a 

common feature in the process control industries for the control of temperature, flow and pressure 

loops. 

Cascade control (CC), which was first introduced many years ago by Franks and Worley [1], is one of 

the strategies that can be used to improve the system performance particularly in the presence of 

disturbances. In conventional single feedback control, the corrective action for disturbances does not 

begin until the controlled variable deviates from the set point. A secondary measurement point and a 

secondary controller, 2cG , in cascade to the main controller, 1cG , as shown in Fig. 1, can be used to 

improve the response of the system to load changes.  

A typical example is the natural draft furnace temperature control problem [2], shown in Fig. 2. When 

there is a change in hot oil temperature, which may occur due to a change in oil flow rate, the 

conventional single feedback control system, Fig. 2, will immediately take corrective action. However, 

if there is a disturbance in fuel gas flow no correction will be made until its effect reaches the 

temperature-measuring element. Thus, there is a considerable lag in correcting for a fuel gas flow 

change, which subsequently results in a sluggish response. With the cascade control strategy shown in 

Fig. 3, an improved performance can be achieved, since any change in the fuel gas flow is immediately 

detected by the flow-measuring element and the flow controller takes corrective action.  

Recent contributions on the tuning of PID controllers in cascade loops include [3]-[5]. More recently, 

Lee et al. [6] suggested using Internal Model Controller (IMC) principles [7, 8] for tuning both the 

inner and outer loop controllers in a cascade control system.  

 

 



 
 

 

 

 

 

 

Fig. 1: Cascade Control System 

 

A cascade control strategy can be used to achieve better disturbance rejections. However, if a long time 

delay exists in the outer loop the cascade control may not give satisfactory closed loop responses for 

set point changes. In this case, a Smith predictor scheme can be used for a satisfactory set point 

response. Therefore, Kaya [9] suggested using a Smith predictor configuration in the outer loop of a 

cascade control system to bring together the best merits of the cascade control and Smith predictor 

scheme. In this paper, a modified form of cascade control structure given in reference [9] is proposed. 

The modified form was first suggested by the authors [10]. In this modified form, the inner loop 

incorporates Internal Model Controller (IMC) principles and the outer loop the Smith predictor 

scheme. In addition, in the modified cascade control scheme [10] a PI-PD Smith predictor is used in 

the outer loop while in reference [9] the standard Smith predictor was used. Using IMC principles for 

the inner loop simplifies the design procedure. Using a PI-PD structure, which is proved to give better 

closed loop performances for process transfer functions with unstable poles or an integrator [11]-[13], 

and large time constants or complex poles [14], improves the performance of the closed loop. The 

outer loop PI-PD controllers’ parameters are identified by the use of standard forms, which is a simple 

algebraic approach to controller design. Another advantage of the standard forms is that one can 

predict how good will be the performance of closed loop system. The inner loop controller is designed 

based on IMC principles, as stated above. Different than reference [10], where the standard forms only 

with ISTE criterion were given, results are also provided for ISE and IST2E criteria. Simulation results 
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are extended for comparison with conventional cascade control configuration. Furthermore, 

simulations are carried out in deep to illustrate the value of proposed cascade control structure. 

The paper is organized as follows: The next section gives a brief review of standard forms for a closed 

loop system with a zero to minimize the integral performance criteria, as it is used to design the outer 

loop controllers. Section 3 provides the design procedure for both the inner and outer loop controllers. 

Section 4 gives simulation results to illustrate the use of the proposed cascade control structure and 

design method. Conclusions are provided in section 5. 

 

 

 

 

 

 

 

Fig. 2: The natural draft furnace temperature control with single feedback control 

 

 

 

 

 

 

 

Fig. 3: The natural draft furnace temperature control with cascade feedback control 
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II. STANDARD FORMS 

The use of integral performance indices for control system design is well known. Many text books, 

such as [15]-[16], include short sections devoted to the procedure. When integral performance criteria 

were first suggested in the early 1950s, digital computers were in their infancy and evaluations could 

take a long computation time. 

For linear systems, the ISE can be evaluated efficiently on digital computers using the s-domain 

approach with Åström's recursive algorithm [17]. Thus for 
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)()/()([] sFdsdttfL −= , where L  denotes the Laplace transform and )()]([ sFtfL = . Minimizing a 

control system using 0J , that is the ISE criterion, is well known to result in a response with relatively 

high overshoot for a step change. However, it is possible to decrease the overshoot by using a higher 

value of n and responses for 1=n . Typically, for n=0, 1, 2 overshoots of 20-30%, around 5-10% and 

<5% can be expected, with possibly very small increases in settling time as n increases. Responses for 



 
 

 

n=1, that is the ISTE criterion, are often quite similar to those for the ITAE (integral of time weighted 

absolute error) criterion.   

Another approach to optimization which has been little discussed for many years is the direct synthesis 

approach where the closed loop transfer function is synthesized to a standard form. Using this 

approach, it is possible to obtain the optimal parameters of a closed loop transfer function, which will 

provide a minimum value of the ISE. Tables of such transfer functions with poles only were given 

many years ago [18] but are of little use in design, because even with an all pole plant transfer function 

the addition of a typical controller produces a closed loop transfer function with a zero. Results with a 

single zero were also given so that the feedback loop would follow a ramp input with zero steady-state 

error but these expressions are not appropriate for step response design. For a closed loop transfer 

function with one zero it is easy to present results for these optimum transfer functions as the position 

of the zero varies and this is done in reference [11].  

Consider an open loop plant transfer function with no zero, )(sG , and a controller with a zero, )(sGc , 

then a closed loop transfer function, )]()(1/[)()(1 sGsGsGsGT ccj += , of the form 
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can be obtained, where the subscript ‘1’ in jT1  indicates a zero in the numerator of the standard form 

and the subscript ‘j’ indicates the order of the denominator. Also, for a unit step set point, the error is 

obtained as 
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Minimizing jE1  for different performance indices, namely the ISE, ISTE and IST2E, the optimum 

values of the d ’s as functions of 1c  are shown in Fig. 4 for )(13 sT  and in Fig. 5 for )(14 sT . Fig. 6 



 
 

 

shows how 0J , 1J  and 2J , the minimum value for the ISE, ISTE and IST2E criteria respectively, 

varies as 1c  increases for )(13 sT . Similar results for )(14 sT  are given in Fig. 7. Both figures illustrate 

that as 1c  increases the step response of the closed loop improves. However, it is also seen from the 

figure that any further increase in 1c  above the value of 4 or 5 has a negligible improvement in the 

response. Also, the step responses for the 1J  criterion for a few different 1c  values are shown in Fig. 8 

for )(13 sT . It is seen that as 1c  increases the step responses are faster. It should be noted that a similar 

result can be obtained for )(14 sT  as well. 
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Fig. 4: Optimum values of 1d and 2d  for varying 1c  values. 
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Fig. 5: Optimum values of 1d , 2d  and 3d for varying 1c values. 
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Fig. 6: 0J , 1J  and 2J  integral values for )(13 sT   
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Fig. 7: 0J , 1J  and 2J  integral values for )(14 sT  
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Fig. 8: Step responses for )(13 sT  and 1J  criterion 



 
 

 

III. THE NEW CASCADE CONTROL STRUCTURE AND DESIGN METHOD 

The proposed cascade control structure is shown in Fig. 9. 2cG  is used for stabilization of the inner 

loop while 1cG  and 3cG  are used for the outer loop stabilization. mpG 2  and pmG  are the model 

transfer functions of the inner and outer loops, respectively. Assuming that the plant transfer functions 

are known, then two loops can be tuned simultaneously.  

There are several issues of practical industrial application that must be addressed before carrying on 

finding tuning rules for both loops. First, as the integral action is used in the two forward loop 

controllers, namely 1cG  and 2cG , a scheme to avoid integral anti-windup may be necessary. 

Especially, the inner loop control signal may saturate, which may also be the case for a conventional 

cascade control where the integral action is used in both loops, for instance, a PI-PI or PI-PID cascade 

control structure. Secondly, when the system is in the manual mode, the control algorithm will yield a 

control signal which may be different from the value specified manually. Hence, it is necessary to 

make sure that the two outputs match each other.  This is called bumpless transfer, which must be 

considered in practice. Finally, tracking of the outer loop controllers when the inner loop controller is 

not in automatic mode with external set-point is another issue that must be considered. All of these 

issues related to the proposed structure can be solved as in conventional cascade control scheme for the 

inner loop with internal model control, because the output of 2cG  is directly fed into the process 2pG , 

and the model mpG 2  can be running with the same input value independent of the operating mode of 

2cG . In many cases, the principle of internal model control can be used as an design tool to find 

parameters of controller 2cG , and the model mpG 2  is not necessary as a separate function block for 

online control. However, the outer loop needs special attention: the addition of the signal coming from 

3cG  must be inside the controller 1cG , in front of the output limitation, to make sure that the sum of 

the outputs from 1cG  and 3cG  is limited correctly, and the anti-windup strategies of 1cG  are triggered 



 
 

 

as appropriate. If 1cG  is in manual or tracking mode, the internal integrator inside 1cG  must be set 

such that the sum of the outputs from 1cG  and 3cG  is tracking the desired value. In some distributed 

process control systems, this can be achieved by using a special input of the PID function block 1cG  

that is normally intended for an additional disturbance variable compensation. Detailed explanations to 

these issues can be found in the book given in reference [20], which is completely dedicated to PID 

controllers. 

 

 

 

 

 

  

 

 

Fig. 9: Improved Cascade Control Structure 

 

3.1 Designing inner loop controller ( 2cG ): 

As stated in the introduction, the inner loop controller is designed based on IMC principles [8]-[9]. 

The details of design procedure are not given here, since, one can easily obtain them from the 

abovementioned references. 

The inner loop plant transfer function is assumed to be a FOPDT 
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Note that in real case the process can have higher order transfer functions. However, it is assumed that 

it can satisfactorily be approximated by the above FOPDT model transfer function. One of the 

modeling approaches existing in the literature, such as [19], can be used for this purpose.  

It can easily be shown that the inner loop controller, using IMC principles, is given by  
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where, λ  is the only tuning parameter to be found.  

The inner loop should be faster than the outer loop; the bigger the speed difference, the better the 

performance of a cascade control system. That is, the smaller the values of λ  the better the 

performance of the cascade control system. Hence, as a rule of thumb λ can be chosen equal to inner 

loop time delay. If a faster response is requested,  λ  can be chosen as half time delay of the inner loop, 

namely, 2/2θλ = , which is the value used throughout the paper. 

 

3.2 Designing outer loop controllers ( 1cG  and 3cG ): 

It is easy to show that the inner closed loop transfer function is given by 
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Then, the overall plant transfer function for the outer loop is  
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mesGsGsGsG θ−== )()()()( 1            (8) 

where, )(sGpm  is the delay free part of the overall plant transfer function and 21 θθθ +=m . 

Since the Smith predictor scheme is used in the outer loop, it can easily be shown that the closed loop 

transfer function between 1y  and r , assuming a perfect matching, that is s
pmp

mesGG θ−= )( , is 

given by 
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Eqn. (9) reveals that the parameters of two controllers )(1 sGc  and )(3 sGc  can be determined using 

delay free part of the overall plant transfer function. 

The outer loop controllers )(1 sGc  and )(3 sGc  are assumed to be ideal PI and PD controllers, 

respectively, which have the following forms 
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Next sections consider controller designs for two different cases. 

Case 1 (Design for a FOPDT): It is assumed that the outer loop plant transfer function is stable and can 

be modeled by  
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Therefore, from eqn. (8), the overall plant transfer function for the outer loop is 
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Eqn. (13) can be rearranged as 
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Taking delay free part of eqn. (14) equal to )(sG pm  and using delay free part eqn. (9) gives the closed 

loop transfer function 
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Normalization of the eqn. (16), assuming 
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which means the response of the system will be faster than the normalized response by a factor of α , 

results in the standard closed loop transfer function 
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where, 

                 iTc α=1                                 (19a) 

                 α/)(2 fkTad +=                            (19b) 
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In principle α  can be selected by the choice of cK  and 1c  by the choice of iT . Based on the value of 

1c , the coefficients 2d  and 1d  can be found from Fig. 4 and then the value of fT  and fK  can be 

computed from eqns. (19b) and (19c) respectively. 

Note that for a selected iT , choosing larger cK  values result in larger α  and 1c  values. This implies 

faster closed loop system response.  In practice, cK  will be constrained, possibly to limit the initial 



 
 

 

value of the control effort, so that the choice of cK  and iT  may involve a trade off between the values 

chosen for α  and 1c . 

Case 2 (Design for a SOPDT): In this case, it is assumed that the outer loop plant transfer function is 

stable and can be modeled by 
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Hence, the overall plant transfer function for the outer loop is 
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Rearranging eqn. (21) gives 
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Taking delay free part of eqn. (22) equal to )(sG pm  and using delay free part eqn. (9) results in closed 

loop transfer function 
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Normalization of the eqn. (24), assuming 
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where, 

                 iTc α=1                                 (27a) 

                 α/3 ad =                               (27b) 
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In this case, the time scale α  and the four coefficients cannot be selected independently using the four 

controller parameters, namely, cK , iT , fK  and fT . Achieving independency would require feedback 

of an additional state but often a satisfactory response, provided that a  has a reasonable value, is 

possible. The compromise is between α , 1c  and 3d  as 2d  and 1d  can be chosen independently using 

fK  and fT . As in case 1, the larger values of α implies faster closed loop system for a fixed value of 

iT . However, the choice of the value of α  depends on the value of a  if a suitable value of 3d  is to be 

obtained. Therefore, the larger the value of a , the faster the possible response satisfying the integral 

performance criteria which can be obtained. The procedure for calculating controller parameters can 

thus be summarized as: For a chosen value of α , 3d  is determined from eqn. (27b). Once 3d  is 

calculated, 1c , 2d  and 1d  coefficients can be identified from Fig. 5 for a chosen criteria form 

corresponding to the calculated value of 3d  to obtain an optimum overall closed loop performance. 

Note that a  must be positive, as seen from Fig. 5, in order to use standard forms in this case. 



 
 

 

IV. SIMULATION EXAMPLES 

Two examples are given to illustrate the use of the proposed cascade control structure and design 

procedure. The first example assumes FOPDT plant transfer functions in both loops. The second 

example assumes a FOPDT plant transfer function in the inner loop and a SOPDT plant transfer 

function with poorly located poles in the outer loop. 

Example 1: Here, the case studied by Lee et al. [6] is considered, where
1100
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p . Taking λ =1, which is the half inner loop time delay, gives 

)22/()120()(2 ++= sssGc . The resulting overall plant transfer function is given by eqn. (13). Hence, 

using the above λ  value in eqns. (15a)-(15c), results in 01.0=k , 01.1=a  and 01.0=b . Limiting cK  

to 0.5 and choosing 25.0=
i

T  gives α =0.27 and 1c =0.068. The standard form )(13 sT  to minimize 

2J  for 1c =0.068 has 84.12 =d  and 16.21 =d , which gives 59.51−=fT  and 25.14=fK . 

Alternatively, choosing 0.1=cK  and keeping iT  as before results in 12.38−=fT  and 24.23=fK  

for 2J . Similarly, limiting 0.1=cK  gives 58.21−=fT  and 20.37=fK  for 2J . Responses of the 

proposed design method with calculated controllers’ parameters for 1y  and 2y  are shown in Fig. 10 

for a unit magnitude of set-point change and disturbance 2D  introduced at t =70 s. As expected, 

increasing cK  results in slightly faster output responses 1y . On the other hand, increasing cK  causes 

higher overshoots in the inner loop responses 2y . The disturbance rejection capabilities of all criteria 

are almost the same.  
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Fig. 10: Responses for the proposed design method to a unity step set point change and disturbance 

2D  for example 1 

 

Fig. 11 compares the performance of the closed loop system for the proposed design method with the 

design method of Lee et al. [6], where the IMC principles are used to design both the inner and outer 

loop controllers, and the conventional cascade control. For the proposed method controller parameters 

corresponding to 5.0=cK  were used. Lee et al. [6] suggested controller parameters of 44.3=piK , 

66.20=iiT  and 64.0=diT  for the inner loop and 83.5=poK , 00.105=ioT  and 80.4=doT  for the 

outer loop. For the traditional cascade control, a P only controller for the inner loop and a PI controller 

for the outer loop were used. The well known Ziegler- Nichols tuning method [21] was used to find the 

controller parameters, which were found to be 35.3=piK  for the inner loop and  57.5=poK , 

38.40=ioT  for the outer loop. The traditional cascade control gives the worst result in the sense of 



 
 

 

maximum overshoot and settling time. The proposed structure when compared to design method of 

Lee et al. [6] gives a faster response. Although, both design methods gives similar overshoots, the 

design method of Lee et al. [6] is very sluggish and do not settle down for a very long time period.  
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Fig. 11: Responses to a unity step set point change for example 1 

 

To illustrate the robustness to parameter variations, a ± 10% change in the outer loop time delay is 

assumed, as this is the most deteriorative on the system performance, and results for this case are given 

in Fig. 12. Disturbance rejection capabilities of three structures and controller design methods are 

given in Fig. 13 for 1D  and 2D . In both cases, the disturbance magnitudes were assumed to be unity. 

Control signals for all methods are compared in Fig. 14. 

In practice, signals may contain measurement noises. Responses for band-limited white noise with 

maximum power of 0.02 are given in Fig. 15. Among all methods, the conventional method is the most 

insensitive to noises, which is understandable as it does not involve the derivative term in the 



 
 

 

controllers. However, if a conventional cascade control scheme with a PI or PID controller in the inner 

loop and a PID controller in the outer loop is used, this insensitivity to noise may not be the case. It 

must be noted that for the method of Lee et al. [6], both the inner and outer loop PID controllers must 

be used with approximate derivative terms. Otherwise, completely unacceptable results are obtained. 

On the other hand, the proposed method gives quite moderate responses. 
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Fig. 12: Responses for example 1 with assumed +10% change (upper) and -10% change (lower) in the 

outer loop time delay 
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Fig. 13: Responses to disturbance 2D  (upper) and 1D  (lower) with unity magnitude for example 1 
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Fig. 14: Control signal magnitudes for example 1 
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Fig. 15: Responses under measurement noises for example 1 

Example 2: The following plant transfer functions 
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considered. Note that the process transfer function in the outer loop has complex poles. Taking λ  

equal to the half inner loop time delay, i.e. λ =1, gives )1/()1.0()(2 ++= sssGc . Following the 

procedure given in section 3.2, 0.1=k , 2.1=a , 2.1=b  and 0.1=c . In order to obtain a suitable value 

of 3d  to give a standard form for 2J , as shown in Fig. 5, requires α <0.6. Selecting α =0.4, gives 

00.33 =d  from eqn. (27b). The standard form from Fig. 5 requires 391.31 =c , 67.52 =d  and 

81.41 =d . These values can be obtained with 48.8=iT  from eqn. (27a), 22.0=cK  from eqn. (25), 

29.0−=fT  from eqn. (27c) and 91.0−=fK  from eqn. (27d). With these calculated controller 

parameters the performance of the proposed controller design method, together with design method of 

Lee et al. [6] and the conventional cascade control, are shown in Fig. 16 for a unit magnitude of set-



 
 

 

point change. The method proposed by Lee et al. [6] have controller parameters of 36.0=piK , 

67.10=iiT  and 63.0=diT  for the inner loop and 36.0=poK , 20.3=ioT  and 13.1=doT  for the 

outer loop. The conventional cascade control have controller parameters of 35.0=piK  for the inner 

loop and  34.0=poK , 50.12=ioT  for the outer loop, which were found from Ziegler-Nichols tuning 

rules. The proposed design method clearly gives better performance than the other two methods in the 

sense of overshoot and settling time. Responses for all structures to disturbance 1D  and 2D , with 

magnitude of 1, are shown in Fig. 17. Fig. 18 illustrates the control effort for all design methods. 

Performances of the closed loop system for band-limited noise with maximum amplitude of 0.02 are 

illustrated in Fig. 19. Again, for the method of Lee et al. [6], PID controllers with approximate 

derivative term were used in the inner and outer loop of the cascade control system. In this case, the 

proposed cascade control scheme is the most insensitive to noise among the three control structures. 
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Fig. 16: Responses to a unity step set point change for example 2 
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Fig.17: Responses to disturbance 2D  (upper) and 1D  (lower) with unity magnitude for example 2. 
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Fig.18: Control signal magnitudes for example 2. 
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Fig. 19: Responses under measurement noises for example 2 

 

V. CONCLUSIONS 

In this paper, an improved cascade control structure has been introduced. A PI-PD Smith predictor 

scheme is used in the outer loop, and internal model control in the inner loop of the cascade control. 

This has two advantages: First, the best merits of the cascade control and a Smith predictor scheme 

were combined in one structure. Second, the use of PI-PD controller accomplished to obtain improved 

performance when the process has large time constants or poorly located poles, i.e. lightly damped. 

Several procedures for obtaining the parameters of the PI-PD controllers are possible, but one of the 

simplest approaches is to employ standard forms as this enables the design to be completed using 

simple algebra. 
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