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PHYSICAL REVIEW D, VOLUME 64, 065016

Phase transition dynamics in the hot Abelian Higgs model

M. Hindmarsh
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QJ, United Kingdom

A. Rajantie
DAMTP, CMS, University of Cambridge, Wi berforce Road, Cambridge CB3 OWA, United Kingdom
(Received 2 April 2001; published 24 August 2001

We present a detailed numerical study of the equilibrium and nonequilibrium dynamics of the phase tran-
sition in the finite-temperature Abelian Higgs model. Our simulations use classical equations of motion both
with and without hard-thermal-loop corrections, which take into account the leading quantum effects. From the
equilibrium real-time correlators, we determine the plasmon frequency, the plasmon damping rate and the
Landau damping rate, finding significant nonperturbative effects in the last two quantities. We also find that,
close to the phase transition, the static magnetic field correlator shows power-law magnetic screening at long
distances. The information about the damping rates allows us to derive a quantitative prediction for the number
density of topological defects formed in a phase transition. We test this prediction in a nonequilibrium simu-
lation and show that the relevant time scale for defect formation is given by the Landau damping rate.

DOI: 10.1103/PhysRevD.64.065016 PACS nuni®er11.10.Wx, 11.15.Ex, 11.15.Kc, 98.80.Cq

I. INTRODUCTION The theory considered in Ref4] was classical, and al-
though the same arguments apply to the quantum theory as
While there are many useful techniques for studying thewell, the details of the dynamics are different. The full quan-
equilibrium properties of finite-temperature field theories,tum field theory cannot be simulated in practice, but one can
understanding the nonequilibrium dynamics is a much hardeargue that the dynamics of the relevant long-wavelength de-
task. Nevertheless, it would be essential for many fields ofirees of freedom are classicd]. By integrating out the
physics, for instance cosmology, heavy ion physics and corshort-wavelength fluctuations perturbatively, one obtains a

densed matter physics. In all these fields, new empirical datglassical effective theory with non-local interactiofs-9),
will be available in the near future, which would allow the Which we refer to as the hard-thermal-lo¢#TL) improved

theories to be tested, but the complexity and the nonthe€ory. In order to understand how the quantum effects
equilibrium nature of the phenomena make it difficult to de-change the dynamics, we simulate this HTL improved theory

rive theoretical predictions that could be compared with the“Sing the method developed in Rg0].
data. The structure of the paper is the following. In Sec. Il we

One fairly generic consequence of phase transitions is thBreésent both the classical and HTL improved Abelian Higgs
formation of topological defectil,2]. If the phase transition models.. In Sec. Il we d_lscuss defect formgtlon in the model,
is associated with a spontaneous breakdown of a global syn§omparing the mechanism presented4hwith the Kibble-
metry, this process is well understood. The correlation lengtifurek scenario. In Secs. IV and V we describe our numerical
of the order parameter cannot keep up with its equilibriums'mmat'ons and present th_e results. Con.clusmns are given in
value, which diverges at the transition point. The direction ofS€¢. VI and technical details of the HTL improved equations
the symmetry breaking must therefore be uncorrelated f motion and the lattice formulation in the two Appendixes.
long distances, and at places where these correlated domains
meet, topological defects are formed. This is called the I1. ABELIAN HIGGS MODEL
Kibble-Zurek (KZ) mechanism(see e.g[3] for a review.

If the symmetry that gets broken is a local gauge invari- 1he Abelian Higgs model is defined by the Lagrangian
ance, the above argument cannot be used directly, because

the direction of the order parameter is not a gauge invariant 1 v T 4
quantity. We studied this recently in the context of the Abe- L==7FuF +|D o[ —m?[ |2 = N[, )
lian Higgs model4], and pointed out that the thermal fluc-

tuations of the magnetic field lead to another mechanism th‘%hereDﬂzaMﬂLieAM andF,,=3d,A,~3,A,.

forms topological defects. The argument was based on fairly

generic assumptions, but Ieac_js to some concrete predictiofgence of Nielsen-Olesen vortex solutigiid]. These string-
that were confirmed in numerical simulations.

The aim of thi . qv i detail the d like topological defects are characterized by a zero of the

namic(;as %lfn][h% ;\blzligipligglgjst?nitc;jely d?rirr?gozﬁe Sﬁs; terani_iHiggS field at the center of the vortex around which the

. : . Hi h le h - indi

tion from the Coulomb phase to the Higgs phase. In particu- 'ggs phase angle has a non-zero winding number

lar, we concentrate on those degrees of freedom that are

relevant for defect formation. This allows us to test the sce- nC:J' dI?'Vy(F)7&O. )
C

nario of Ref.[4] on a more quantitative level.

A particularly interesting feature of this theory is the ex-
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HereC is a closed path around the vortex apds the Higgs B. HTL improved theory

phase _a_ngle, L.e¢=|d|exp(). ) ) If the couplings are small, the system is close to thermal
_ At finite temperature, perturbation theory is plagued bygqyilibrium andT x> 1, it is possible to construct a classi-
infrared divergence$12], which can be partly cured by @ ¢4 theory which approximates the dynamics of the original

resummation of t_he perturbative expansion, but even the '&uantum theory to leading-order accuracy in the coupling
summed expansion breaks down near the transition. Stat'tfbnstantig].

equilibrium quantities, such as the phase diagram of the Near the phase transitiom?~ —e2T2, and we can use
theory, can still be calculated reliably with non-perturbative, high temperature approximatid’r}> m, in our loop inte-

Monrt]e Carlg slir‘p]ulationsh ition b . grals, providece is small. We calculate the one-loop correc-
The model has a phase transition between the h'.ghﬂons from the hard modes to the self-energieshodind A, ,
temperature Coulomb phase and the low-temperature Hig95nd resum them into the effective Lagrangjaa]

phase aff?=T2~12(—m?)/(3e?+4\). In the perturbative

regime (\<e?), the transition is of first ordef13], and at 1 1 dQ v vP

larger\ it becomes continuoyd.4]. There are no local order Lyr=— 1 FF* = Zm% TF’“"%FMB
parameters, but a number of non-local ones: the photon mass 7 (v"3,)

and the vortex tension are non-zero in the broken phase and +|D#¢|2—m$|¢|2—)\|¢|4, (5)

vanish at the transitiofiL5]. Therefore the transition is not a
smooth crossover like the electroweak phase transfitiéh 5 . . ) o
Monte Carlo simulations cannot be used for real-timeWherems is given by Eq.(3), and the integration is taken

quantities in the quantum theory, because the necessary paaker the unit sphere of velocities= (1), v2=1. The De-
integral is not Euclidean but consists of a complicated pattbye mass has the value) = $€2T?+ ém3 , wheresm3 is a

in complex time[17]. However, we can utilize the fact that counterterm that cancels the UV divergences and is dis-
modes with different momenta behave in very different wayscussed in more detail in Appendix B 2.

[5]. The soft, long-wavelength modek<€T) have large oc- All the degrees of freedom remaining in this effective
cupation numbers, and they can be approximated very wetheory are classical, and therefore it can be treated as a clas-
by a classical theory. This makes numerical simulations feasical theory. The time evolution of the fields will then be
sible, because the time-evolution of a classical field theoryletermined by the equations of motifef. Eq. (4)]:

can be found simply by solving the equations of motion nu-
merically.

L
E'-2elm ¢*D”

vk, elm ¢*D"4,

A. Classical theory at finite temperature (6)

Classical field theory at finite temperature is ultraviolet D,D#¢=—mZp—2\(¢* ¢) ¢.
divergent, and thus the results depend on the lattice spacing
ox. Divergences like these are generic to all low-energy efAs such, the equations of motidgf) are not well suited for
fective theories, and are exactly cancelled by corrections theur purposes. Firstly, it is not obvious how to find the corre-
high-momentum modes induce to the effective Lagrangiansponding Hamiltonian, which is necessary for preparing the
If one is only interested in static equilibrium quantities, theseinitial configurations. And secondly, the equations of motion
corrections can be calculated in the limit of high temperatureare non-local both in space and time.
and small lattice spacingx [18,19: In Ref.[10], a convenient local formulation was presented
T2 3 1761') along the lines of Ref.8]. The latter work introduces a new

— - ©)) local field W(t,)?,z?), representing the departure from the
12 4mox equilibrium distribution function for hard particles with ve-

locity v. Since the hard particles move at the speed of light,
The approach we use in Sec. IV is to take this correction intq, consists of two free coordinates, makingy a six-

wv_ 2 dQ
aMF =mp E

m2=m?+(3e?+4\)

account and solve the classical equations of motion dimensional field. In our formulation, part of the velocity
dependence decouples from the dynamics of the soft modes,
J9,F*'=—2elm ¢*D"¢, and we can describe exactly the same dynamics with two

(4) five-dimensional fieIds,F(t,f,z) and 0(t,>z,z), where z
e[0,1] is the cosine of the angle between the hard mode

— 2 , ) o .
DD ¢=—mrdp—2\(¢" $) . velocity and the gradient of the distribution function. The

details of this formulation are given in Appendix A.
However, as was pointed out in RE20], these equations do In order to simulate the model numerically, we define the

not reproduce the real-time dynamics of the quantum theorgheory on a periodic spatial lattice, and thdependence of
correctly. Thus, the results are not reliable on a quantitativend @ is discretized by expressing them as sums over a finite
level, but they can still give a reasonably good qualitativenumber of Legendre modes, whose order ranges from 0 to
picture of the dynamics, and provide a non-trivial test for theN ., [10]. The resulting equations of motion are detailed in
scenario presented in Sec. lll. Appendix A. We merely note here that, as shown in Ref.
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[10], for a given value oN,,and a given momentuty the  frustrations, vortices, where these domains meet. Up to a
approximation breaks down at times numerical factor, the number of vortices piercing a unit area
is

t=to(K)=4N a5/ K. (7 n=N/A~%2 9)

Therefore strictly speaking one can only measure correlators In practice, the maximal rate of change of the correlation
up to At~Npx%, but since the modes that are in equilib- length may be well below the speed of light, and this argu-
rium will remain in equilibrium even beyond that, one can ment can indeed be made more precise by considering the
essentially trust the results untit~t (k), wherek is the  dynamics of the system in more detg2R,3].
relevant momentum scale. In Ref.[4], we argued that this picture is not complete if

In Sec. V, we study the dynamics of the model using thee>0. After all, the phase angle of the Higgs field is not
HTL improved equations of motion, and describe how theseyauge invariant, and therefore arguments based on it cannot
corrections change the results from the classical case. apply. Nevertheless, if the amplitude of the magnetic field is
small, we can fix the gauge in whigk~0, and then we can
use the above picture in this gauge. In these cases the above
Kibble-Zurek scenario should work. However, if the initial

In cosmology, the temperature of the Universe decreasegjate is at a non-zero temperature, magnetic field is never
as a result of its expansion, and this leads to phase transéxactly zero, and it must be taken into account.
tions. If we write the equations of motion in conformal co-  In the symmetric phase, the thermodynamics of the gauge
ordinates, the effect of the expansion can be absorbed corfield is described by ordinary electrodynamics. The energy of
pletely into a varying zero temperature Higgs mass termany magnetic field configuration is approximately given by
m?=m2(t). 1

In order to see this, we perform the conformal rescaling 32\ — _f 3y R[22
dx“—adx*, v*—av*, A,—~a A, and¢—a ‘¢, where Hen[ BOOT=5 | d*XBO)%, (0
a=a(t) is the scale factor of the Universe. If we can neglect . _ . )
the expansion rate in comparison to the microscopic timénd the probability with which the thermal fluctuations can

scales of the theory, which are given by * andmz?, the generate thgt confi_guration is proportional to expigy /T).
Y o -b% - Letus consider a circular loap that bounds a surfac® The

magnetic flux through the surface is

I11. DEFECT FORMATION

termsm2 andm3 by (mra)? and (mpa)? respectively. The
hard modes are assumed to be ultra-relativistic, so they will .
stay close to a thermal distribution with temperatufe Q)s:J ds-B. (11

=Ta L. Hence fnpa)? stays constant, as do the rescaled

thermal corrections to the Higgs mass, leaving the only timeAlthough this is zero on the average, it is non-zero in almost
dependence in the parametef(t) = m?a®(t). In the follow-  all configurations, and therefore the typical value, given by
ing, we will assume that the phase transition is triggered in\/Eg is non-zero. We can estimate its value by calculating
this way, by a mass term decreasing below a critical valuethe energy of the field configuration that minimizes the en-
but we believe that the qualitative features would not be veryergy for a given value ofo5. This minimal configuration is
different if some of the other parameters were changing agimply a magnetic dipole, and its energy is

the same time. Near the transition, the behavioméft) is

approximately linear: Emin( Ps) ~ PR, (12
2n o 5 whereR is the radius of the loog. Thermal fluctuations can
m*(t)=mg— omt/7q, 8 create this configuration = E, (@9, and solving this for

@4 shows that the typical flux through the loop is
wherem? is the critical value of the mass parameter.

When the system enters the Higgs phase, Nielsen-Olesen ds~\TR. (13
vortices are formed. In the limig— 0, this can be under-
stood in terms of the Kibble mechanigii. Whenm? ap-
proaches its critical value, the Higgs correlation length
grows, and if the system could remain in equilibrium it
would eventually diverge at the transition point. Howe\r, .
cannot grow arbitrarily fast, because at the very least it ié)etween the flux tubes d(_ec_:re_ases ra_1p|dly. .
constrained by the finite speed of light. Therefore it remains We can be more specific in Fourier space. Weﬁ can write
finite if the transition takes place in finite time. At the tran- the two-point correlator of the magnetic flux dendiyas
sition point, the system consists of correlated domains of size
¢ determined by the maximum correlation length reached. In (Bi(IZ)B,-(IZ’)>=( 8ij— m) (27)38(k+K')G(K).
each of these domains, the phase angle of the Higgs field is k2
chosen independently of all others, and this gives rise to (14

When the system enters the Higgs phase, magnetic flux is
confined into flux tubes, which costs energy. Therefore the
dynamics tries to decrease the magnetic flux, but it can only
do so at short distances, because the range of the interaction

065016-3



M. HINDMARSH AND A. RAJANTIE PHYSICAL REVIEW D 64 065016

In the symmetric phase, different Fourier mod#&k) be-  figurations with the canonical equilibrium distribution
have as independent oscillators in thermal bath, and thugxP(~BH), whereg=1/T and the HamiltoniarH is

each of them has the same amplitu@g(k)=T. When the

system enters the broken phase, the magnetic field becomes H:f d3x

1., 1 . .
. N oS, S . SE?+ 5 (VXA)?+7* 7+ (D;¢p)* (D ¢)
massive, and the equilibrium distribution changes into 2 2

2 . (19

GO=T (15 +MP* p+N (G §)?

2 2"
k+m7

. o . Here m=dy¢ is the canonical momentum @b, and in the
In order to stay in equilibrium, the amplitude of the long-

wavelength modes must drop rapidly, but the time seéle tempPraI gaugg KO:O)’, the electric f|eld Is SimplyE=
of the dynamics of these modes is very slow. It depends o %oA- In addition, the fields must satisfy the Gauss law as
the individual system, but in general limyr(k)=c. Thus &N extra constraint

the modes withk less than some critical value cannot re-

o TR h V.E=2elm ¢* 7. (20)
main in equilibrium. If we knowr(k), we can calculaté
from the condition Because of the constraif®0), a straightforward Metropo-
. lis algorithm would not work very well(See, however, Ref.
dinG(k)| 1 16 [23].) Instead, we used a hybrid algorithm, in which we ther-
dt | k) 19 malized the component of orthogonal to Eq(20) with a

heat bath algorithm, and performed a number of Metropolis
The consequence of the above process is that there will bgpdates to the gauge fiels. Becaused does not appear in
long-wavelength magnetic fields present even in the Higg€q. (20), this leaves the constraint unchanged. Then we
phase. In particular, at distances less t§ar2/k it looks  evolved the system with the equations of motion
like there was a uniform external magnetic field. We can

estimate that its amplitudB g is doA=—E,
k d3k . (i A3k’ -
Bgvg% jk—Bi(k)fk—Bi(k’) ‘90¢27T-
0(2m)° 0(2m)3 2
F a3k ) doE=VXVXA+2eIm ¢*D;¢,
~ Go(k)~Tk3. a7
0(2m)? dom=DiD;p—mih—2\(¢* $) b,

This magnetic flux must be confined into vortices, and bewhich, again, leave the Gauss law unchanged. We repeated
cause each vortex carries one flux quantdg=2m/e, the  this procedure a number of times so that the system thermal-

number density of vortices per unit area is ized.
In our simulations, we used the couplings- 0.3 andx
& & e =0.18. The lattice size was 12020x 20 (the reason for
N~ 5—Bag~ 5— T%32 (18) _ : S el ;
2 2w choosing one short dimension is discussed in Sec. )M

. . lattice spacing wass>x=6T ! and the time step wast
Even if we do not knowr(k), we can still make some —q 3r-1 The details of the lattice implementation are given
concrete predictions based on this scenario. For instance, thi¢ Appendix B 1.

spatial distribution of vortices turns out to be completely  gjnce)>e2 the phase transition is continuous. In order
different than in the KZ scenario. At distances shorter thang getermine the location of the transition point, and to test
&=2m/k, the magnetic field points in the same direction,the accuracy of the tree-level res(it5), we measured the
which means that the vortices tend to be aligned, while in theorrelator(14) at various values ofn?, starting deep in bro-
KZ scenario they prefer to be anti-aligned. This predictionken phase. For thermalization to each valuemf we used

was confirmed in the simulations in Ré#]. 24 hybrid Monte Carlo cycles each consisting of 400 Me-
tropolis sweeps and time evolution fat=600T 1. We car-
IV. CLASSICAL SIMULATIONS ried out the measurement in nine independently thermalized
_ configurations, measuring the average correlator in an unper-
A. Equilibrium turbed run of lengtit = 120007 ~* (andAt= 72000 ~* for

In order to test the scenario presented in Sec. lll, we carm?=—0.083T2). The results are shown in Fig(d. The
ried out a number of numerical simulations. Let us first dis-solid lines show that the agreement with Ef5) is excel-
cuss the simulations of the classical mog®l lent, and we find that the phase transition takes plaga?at

Because we are interested in transitions that start from= —0.0832.
close to thermal equilibrium, we will first have to thermalize  In the symmetric phase, the tree-level regdf) corre-
the system. This means preparing an ensemble of field cosponds to a consta(k) =T, but the data measured
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(@) (b) 11 - - -

3 '
09 |
L 3
= =3
O o1} o
08 |
©-0.083 T? (HTL) & 0-0.083 T (HTL)
= -0.089 T (quench) % -0.083 T
x —0.083 T° T K/ +6°KT/16)
©-0.086 T -
m-0.089 T’
A-0.092T
0.01 = 0.6 - : :
0.01 0.1 0 0.05 0.1 0.15 0.2
KT KT

FIG. 1. The spatial correlator of the magnetic field in the Fourier sgac&he solid lines are fits to Eq15) and show that the system
is in the Higgs phase whan?< —0.083T2. The gray squares show the spatial correlator after a quench as discussed in Sec. IV B. The open
circles correspond to the HTL simulations in Sec. V(8) The m?>= —0.08312 data on a linear scale. The short-dashed and long-dashed
lines show the fits to Eq$24) and(37), respectively, and the solid line shows the perturbative ré2gjt

=—0.083r? [see Fig. 1b)] clearly turn down at small mo- nonzero effective Higgs field mass, which arises because we
menta. It is customary to parametrize the corrections to thare not exactly at the transition point. Wili>0, the one-
tree-level result by introducing the static photon self-energyloop result is[24]

I1+, defined by

ek _ EMT[4M?+k? k L 04

p (k)= yp= KM urctanZ—M— . (24)
GkK)=T——". (22 . ) .

k?+T1+(k) A fit using the bootstrap method givet=(0.0041

+0.0007)T, and is shown in Fig. (b) as a short-dashed line.
nit is curious how well it agrees with the measurements, be-
cause one would expect perturbation theory to break down at
low momenta near the phase transition.

Our measurements seem to contradict the results of Krae
meret al. and Blaizotet al. [21,24], who showed that after a

resummation, the lowest-order termIdf; is proportional to X ' i .
k2. Such a quadratic term would only change the overall Assuming that the Higgs field mass vanishes at the tran-

normalization of the correlator and any higher-order termsls.'tIon point, all that remains is Eq23). The existence of a

would only modify the highk end of the spectrum. However, linear term in t_he self-e_nergi][T_ Is surpri_sing_, because it
they considered specifically the case in which the seroiMplies magnetic screening. This screening is not as strong

temperature Higgs field mass vanishes, @=0. In that as it would be if there was a constant term, in which case the

case, the thermally generated effective mass for the Hig erelat_o r would fall exponentially in the coqrdlnate space.
. 9 L . > . ith a linear term, the low-momentum behavior of the trans-
field M4, which is approximately equal ton:, is always

o2 . . verse gauge field correlator isk ™%, and consequently, the
N T [see Eq.(3)J and acts as an mfrared Fegu'agor n thelong-distance behavior in the coordinate space-is 2 in-
loop integral, makindI(k) an analytic function ok“. Be-

1
cause one can show that the constant term is forbidden, the

stead of the usual-r~-.
5 We also measured real-time correlators in the same simu-
lowest-order term must b@ (k).
In our case, this argument breaks down because we ar

Irgtions. In each of the nine independent configurations, we
studying the system at the transition point where the effec easured the correlat@(t,k) and took the average of the

tive Higgs field mas$ becomes very small. In the momen- resilts. Two examples, measured kr0.026T" at m’=
99 y : —0.083r? andm?= — 0.086T2, are shown in Fig. @). At all

tum rangeM<|IZ|<§eT, the perturbative behavior dir(k)  yajues ofm? and k we measured, the data were well de-
at one loop order is scribed by the function

e’T Gir(t) =agexp( — yit) + a,exp( — ypt)cog wpt + 9),
(k) = 5 k=0.005625k. 23) 25

whereay, a1, v, ¥p, wp, andd are free parameters. Physi-
This is shown as a solid line in Fig(d), and agrees fairly cally, y, is the Landau damping ratey, is the plasmon
well with the data. Assuming that perturbation theory is ap-damping rate, ando, is the plasmon frequency. We fitted
plicable, the discrepancy at very Idncan be explained by a this function to the data at each point and estimated the er-
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@@ 1 ; — . . (b) 0.14 . . : . : :
0.12 | o
,,,,,, T
0.1 ———_6_—"'_6_"'—.0. g A = - i
S
- A 5 E=S @
o8| = w - .
£ -
5 5 . *
s -
L 006 ® e
0-0.083 I_: (HTL)
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x-0.083 T
©-0.086 T
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(c) 001 . . : . : . @ 10— . . —
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FIG. 2. The real-time correlators measured at different valuesi?of(a) Two examples of real-time correlators, measurednat
—0.083r? (solid) andm?= —0.086T2 (dashed] k= 0.026T, together with fits of the forni25). The inset shows the amplitudag anda, at
m?= —0.0831? as a function ok for the classicalfilled symbol$ and HTL (open symbolscases(b) The fitted plasmon frequencies, ,
and the perturbative estimates) The fitted plasmon damping rateg, . (d) The fitted Landau damping rateg , and the perturbative
estimates. In plot$b)—(d), the gray squares correspond to the state of the system after a quench and open circles to the HTL simulations
discussed in Sec. V A.

rors using the bootstrap method. The results are shown in T

Figs. 4b)—2(d). The amplitudes, anda; measured am? m§“0-08@2&*0-0013|'2- (27)
=—0.083r? are shown in the inset of Fig.(&® by filled

circles and triangles, respectively, and agree with the pertur-

k—0. nicely with the measured frequenciesrat= —0.0832. In

We can compare these results with perturbative calculaghe Higgs phase, the photon becomes massive due to the
tions, but we must keep in mind that since these simulationgjjggs mechanism and this increases.
were carried out in a classical lattice theory, the result is not  The plasmon damping rate has not been calculated pertur-
the same as in quantum theory in continuum. In the symmebatively for the classical lattice theory. However, a calcula-

ric phase, the plasmon frequency should behave as tion has been carried out in the HTL-improved theory by
Evans and Pearsd®5], who showed that it was peaked just

N 7 ) below the phase transition. Our classical results also show a

@p(K) K=, (26) rising trend as the transition is approached, although we can-

not directly compare the numerical values.
wherem,, is the plasmon mass, which has been calculated in The Landau damping rate in the symmetric phase has
classical lattice perturbation theory in Reffi26,27], been calculated perturbatively in Rg26],
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75% k3

However, in our results the dependencefo'rs milder and

we find the best fit withy, ~15T ~1%?! above the transition  §

point. Below the transition point, the exponential decay rate§ 1o

v. becomes very high so that at late times, the correlator%

simply oscillates around zersee Fig. 2a)]. In Fig. 2d),

this behavior can be seen in the values of the Landau damp§g
c

ing rate.

C

ber

. . X classical
In the defect formation scenario, the freeze-out occurs oﬁ:f;fa I\
o A
~

when Eq.(16) ceases to be satisfied. This happens most eas 5T BN,=16
ily at the transition point, and there the real-time correlators
are still the same as in the symmetric phase. Therefore, it is

the symmetric phase correlators that determine the relevan 100 1000 10000

time scaler(k). Figure 2 shows clearly that for the long- 7T

wavelength modes, the lowest time scale is that of Landau

damping. When the left hand side of E46) is comparable FIG. 3. The dependence of the final number of vortices on the

with the Landau damping ratg _, the plasmon contribution guench rfitleTQ.' The dashed line is a power-law fit of the data at
remains in equilibrium but the Landau damping contributionT_Q>|ZOOTd with the exponen: ?-2;'] pﬁ%‘_ﬁ?d blyt_Eq(.3%)_. The 0
- : . circles and squares correspond to the simulations discussed in

does-not' Since the ampl_nudaq, of the.Landau Qamplng Sec.VB angthe solid Iinepisa ower-law fit g§>100T ~* usin
contribution is generally highdisee the inset of Fig.(d)], VB, O et b E e o} 9
we can approximate that the relevant time scale is simplyi® €xponent-0.2 predicted by Eq43).
given by 7(k)~ y (k) . .

Assuming a linear quencli8) and substituting (k) much shorter than the other twbut still much longer than

— (k)" ! to Eq. (16), we find the micrOfcopic Iength scales such as _the Debye screening
lengthmpy ™). A long time after the transition, when the sys-
1 Sm? . tem is deep in the broken phase, these vortices still remain
E T—~7L~15|'71'1k2'1, (29 and are well-defined macroscopic objects, and they can be
Q

counted without any ambiguities using the gauge-invariant
lattice definition for the winding numbgg8,29.
Because the scenario of defect formation discussed here is
_ {0.0061 41 based on the assumption that the distribution of the magnetic
k~( J) T%O.Zgr(TTQ)*O-Z“oc 7-50-24_ (30) field freezes in the transition, we can carry out a very simple
T7q test for the scenario by quenching the system through the
transition and measuring the spatial correlator. We uggd
B. Phase transition =300T"! and stopped the quench at’=—0.089° to
carry out the measurement. The spatial correlator is shown in
Fig. 1(a) as gray squares, and indeed, resembles much more
the symmetric phase correlator than the equilibrium cor-
relator at the same value af?>. We also measured the real-
time correlator, and the corresponding time scales are shown
4 1 in Figs. 4b) and Zc). The plasmon frequency and decay rate
mz(t)=m§— sm? 3—arctamt/rQ—1)+ 3 (31 do not differ significantly from their equilibrium values, but
& Landau damping gets extremely slow. This means that once a

where sm2=0.089r2. This form ofm(t) has the advantage mode has fallen oqt of eqU|I|br_|um at th_e transition point, it
}akes a very long time before it thermalizes.

that a long time after the transition, the system is in therma ) i . . -

equilibrium, making it possible to compare the final states.  When one of the dimensions is shorter than2/k, the
The vortices produced in the transition are closed loopsPrediction(18) changes int¢4]

and in general they will soon shrink to a point and disappear,

which makes it very difficult to even define what we mean e A

by the final vortex number. However, on a periodic lattice H%ZTUZLZ_Mk*l- (32

some of the vortex loops can be non-contractible, i.e. wind

around the lattice in some direction. These loops can only

disappear if they annihilate with another vortex of oppositeWe tested this prediction by simulating the time evolution

direction, but this process is very slow, since the interactionsvith different values ofro and measuring the vortex number

between the vortices are exponentially suppressed at lorg long time after the transition at= 74+ 24007 1. The re-

distances. Therefore we chose one of the lattice dimensiorsults were published in Ref4], and are shown in Fig. 3.

which implies

We simulated the phase transition by thermalizing a num
ber of configurations wittm?=m3= —0.044T2, and solving
numerically the equations of motio21), varying the mass
term with time according to
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Each point is an average over around 15 runs starting frortheory with only the soft fieldgp andA; and their canonical
different initial configurations. momenta. The Gauss law leads to an extra Debye screening

Combining the resulk~75%%* from Eq. (30) with Eq. ~ term

(32, we expectN~c(T7g) *?. If we determine the con- 1

stantc from the best fit to the data at,>200T ', we find SHpepye= —— (V- E—2elmg* ) (35)
c=39.5+1.0 andy?=7.6/13 DOF. This is shown in Fig. 3 Y Zm%

as the dashed line. If we also leave the exponent as a free

parameter, we findN=(43.9:7.9)(T7q)  °%*%%%% with  in the Hamiltoniar: We used a Metropolis algorithm fap
x*=7.2/12 DOF. and a heat bath algorithm for all other fields, and carried out
If we calculate precisely the predictiof82) using Eq.  around 10000 thermalization sweeps.
(30), we findc~650 for the above fit parameter. However, it (ji) Generate the hard modes in the background of the soft
is not surprising that it differs from the measured value by anodes generated in stép. Since the Hamiltonian is Gauss-
factor of ~ 15, not only because have we neglected factors ofan it could in principle be diagonalized and the field values
2 and other numerical factors, but also because in our esould be taken directly from a normal distribution. However,
timates we have assumed that the mechanism is ideally effive did this only fore and its momentunil. Note that the
cient and that all the magnetic flux is converted into vorticesjowest Legendre mode df is fixed by the Gauss law,
From the cosmological point of view, we are more inter-
ested in the area density of vortices in a fully three- 1
dimensional case than in a thin box. Because the topology of H9=—-_—(V.E- 2elmo™* 7). (36)
the system does not prevent vortex loops from shrinking, the Mp
resulting network is not stable, unless it is stabilized by the
expansion of the Universe. We can therefore only use EdThe fieldf and its momenturk were generated using a heat
(18) as an estimate for the area density of vortices immedibath algorithm with around 5000 sweeps.
ately after the transition. Comparing Eq48) and(32), we Again, we evolved the configurations taken from the ther-
find mal ensemble using the equations of moti@®6) for the
time At=12000r ~!, measuring the equal-time and real-time
correlators. The equal-time correlator is shown as open
circles in Fig. 1, and it agrees fairly well with the corre-
sponding classical correlator. This time, the fit to the pertur-
where n,p is given by Eg.(32) and n;p is the three- bative one-loop resul4) favorsM =0, which suggests that
dimensional area density given by H48). In our casel.,  because of the presence of the hard modes, the transition

20 1/2
nao=| 27| T 222 33

=120T"* andA=5.2x 10°T 2, and we find point is at slightly largem? than in the classical case, and
thatm?= —0.083T2 is very close to it.
N3p~166T In35~1.3x10 4(Trg) *% (34) Because perturbation theory cannot be trusted at low mo-

menta, we do not adopt the perturbative re$28), but in-
stead we simply assume that the self energy is linear at small
V. HTL SIMULATIONS momenta
A. Equilibrium

As discussed in Sec. ll, the classical theory discussed TT7(k) = Knpk, (37)
above does not describe the dynamics of the quantum theory
correctly. Therefore we also carried out the same simulationand determine the coefficiehk, from the best fit to the data,
with the HTL improved theory5). In the same way as in which gives
Sec. IV A, we first studied the equilibrium properties of the
theory. We used the same coupliregs 0.3 and\ =0.18 as in Knp=(0.0071+0.0009T, (39)
the classical case, and the same lattice. With these param-
eters, the Debye mass has the vaife=0.03T2. The num- and use this in our later estimates.

ber of Legendre modes waa—4. The only effect of the The hard modes have a significant effect on the real-time
HTL corrections on the thermodynamics is to give an extrayqe|ators, shown in Figs.(@—2(d). Because they mimic
contribution to electric screening, so we expect that thg,. effect of the hard modes in the continuum quantum
phase diagrams of the theories are practically the samgneqry e should now be able to compare the results with
Therefore we only carried out the equilibrium measurementse siandard perturbative calculations. For the plasmon mass,

at the transition pointm?= —0.083T2. the perturbative result 81,21
Using the HamiltoniarfA8), we first prepared the thermal

initial conditions with a Monte Carlo algorithm. This can be

don.e in two steps: . . i principle, the canonical momenta could also be integrated out
(i) Generate the soft mode configuration. The part of theat this stage, resulting in a theory with an extra neutral scalar field

Hamiltonian that involves the hard modes is Gaussian ang,. This would lead to an effective theory that is equivalent with

therefore they can be integrated out exactly. This results in dimensional reduction at one-loop ord&0].
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1 rations atm?= —0.044T? and evolving the system with a
m,=—=mp=0.1T. (399  time-dependent mass tei(®1). We used two different values
3 for Ny, 4 and 16.
o . In Fig. 3, we show how the final vortex number, measured
The dashed line in Fig.(B) shows the corregpondlng CUIVE ot t=27,+2400T * depends on the quench ratg. Each
wp=k?+mg. The measured values are slightly below thisgata point is an average over 20-30 runs. In fast transitions,
curve, but the agreement is still very good. 7o=1000T ", the results foN,,,,=4 and 16 agree, but in
The continuum plasmon damping rate at zero momentungjower transitions there is a statistically significant differ-
has been computed perturbatively in the HTL approximatiorence. This can be understood in terms of &ty: For small

in Refs.[21,25, 7o, Nmax=4 is sufficient because by the time the approxi-
5 mation breaks down, the system is already so deep in the
7o(T)= ﬂA(T/TC Med). (40) Higgs phase that the vortex number cannot change any more.

24 When 74, gets larger, eventually a point is reached at which

the breakdown occurs so early that it would have an effect on
The fUnCtionA(T/Tc ,)\/ez) takes the value 1 at the critical the final state. This may have happened evem\]mix: 16 in
point, peaks at value-1 just below it, and vanishes above it the slowest transitions Wity = 60007 L.
v_vhen mp>2M. In our case, the damping rate at the transi- Combining Eq(43) with Eq. (32), we ﬁndN,\,Tao-Z_ A fit
tion point would be to the Npa=16 data atro>100T 1 with N=c(Trq) 02
givesc=45.5+0.9 with y°=6.8/6 dof, which shows that the
¥p(T)~0.001, 4D results are compatible with the prediction. The fit is shown in
Fig. 3 as a solid line. The prediction of E@2) is c~660,
which is greater than the measured value by a facter 5.
This is the same factor found in the classical case, which

SUA2) theory, the pertrbative caleulation underesimates hiUITer SUPPOITS our scenario. If we keep the exponen as a
’ ree parameter, we find\=(45.94.6)(Trg)  %-200013

plasmon damping rate significantly. We can also note that the . 2
damping rate is lower than in the classical theory. with x _ 6.8/5 DOF. . . .

The Landau damping rate can be obtained directly from Again, we relate the results to three dimensions using Eg.
the HTL improved Lagrangian and [81] (33), and find

which is shown in Fig. &) as a dashed line and is lower
than the value the measurednat= —0.083T2 by roughly a

@ @ N3p~1.4X10"4(7oT) %% (45)
n= m3 (k+k“p)%42'4-|-_2(k+ Knp): (“42) The conjectured non-perturbative behavior at low momenta

(37) would change this scaling law in very slow transitions.
where we have taken into account the linear contributiorEquation (18) would becomen=k? and Eq.(44) would
(37) to the self-energy. This curve is shown as the dashetherefore implyno 7-50-5_
line in Fig. 2d), and agrees well with the measured values.

The Landau damping amplitudg, and the plasmon am-
plitude a; are shown in the inset of Fig(& by open circles
and triangles, respectively. Agaigg is higher, and we can In this paper we have presented a thorough study of the
conclude that the relevant time scale is that of Landau dampdynamics of the high temperature phase transition in the
ing. If we can ignore the linear correction, we fipef. Eq.  Abelian Higgs model, using both classical and HTL im-
(30)] proved approximations. The aims were twofold. The first
was to measure the equilibrium properties of the theory, and
in particular to find the relevant time scale for the decay of
the long wavelength modes of the gauge field, which were
identified in [4] as crucial to the understanding of vortex
and in the slowest transitions, we have formation.

In Ref. [4], we performed numerical simulations of the
025 025 Abelian Higgs model phase transition in real time by using
~0.74T(T7q) "™~79 ™. (44 the classical theory and changing the mass parameter of the

Higgs field over a characteristic quench timg. In this
However, this corresponds te,>10°T~%, which is much ~ Paper, our second aim was to do the same quenches with the

larger than the values af, we are able to use in our simu- HTL improved theory, and to compare the resulting scaling
lations. law for the number of vorticebl formed as a function of the

quench time.
Our measurements of the equilibrium correlators show
that perturbation theory gives a reasonable account of their
As in Sec. IV B, we studied the non-equilibrium dynam- behavior, except perhaps for the plasmon damping rate. A
ics of the phase transition by starting from thermal configu-new and unexpected result is that near the transition, the

V1. CONCLUSIONS

0.2
~|rmi—| =~0.29T(Trq) 2~15%%, (49

" (77 25m2
4 TQ

: <w mh am2| 022

4 knp TQ

B. Phase transition
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equal-time correlator exhibits power-law magnetic screening, L 1—72
with a coefficient that is similar but not equal to the pertur- r?gf(z): — 22V X VX f+mpz
bative one. In the HTL improved simulations, the numerical
values of the plasmon mass and the Landau damping rate , ve 2 -
agree well with the perturbative values in the Coulomb 98(2)=2"V-(VI—mpA).
phase. For the plasmon damping rate, however, the measured .
value was significantly higher than the perturbative estimateSince these equations fdrand ¢ are linear, it is easy to
As might be expected, the agreement is not as good in thgolve them and show that the dynamicsgoindA; is iden-
classical theory: although the plasmon mass agrees well, tHi€al to the original non-local theor6).
dependence of the Landau damp|ng rﬂ!mn wave number Not Only is this reformulation of the theory IOcaI, but the
k is y, ~k?! rather than the expectdd. equations of motion are in a canonical form and we can
We found significant differences between the scaling lawsherefore write down the corresponding Hamiltonian
for the classical simulations, and for HTL improved
qguenches withN,,,=4 and N,.,=16. The difference be- H:f d3xfldz
tween the classical scaling law and the HTL improved one 0
with N,,,=16 can be ascribed to the discrepancy in the Lan-
dau damping rate, and lends force to the contention made in
[4] that it is the balancing of the cooling rate with the Landau
damping rate which decides the length scale above which the
fields fall out of equilibrium. The difference betwedd,.,
=4 andN,,,,=16 can be understood as stemming from a
lack of phase space in the hard modes, which causes the HTL
approximation to break down at times greater thafk) wherelf:aof andIl=d,6 are the canonical momenta of
=4N /K. and 6, respectively. We also need two extra conditions,
Our simulations have been carried out to leading order ihgmely the transversenessfoind Gauss’s law
the couplingse and\, and hence do not include the effect of
high momentum transfer scattering between the hard modes. vV.f
However, because the hard modes can still scatter by ex-
changing soft modes, we do not expect this to change the o 1
dynamics qualitatively on the relatively short time scales V'E=—me dzll(z) +2elmg¢* 7. (A4)
which we have been able to study. In very slow transitions, it 0
may be that hard mode scattering and also non-perturbative - o ) .
effects in the photon self-energy start to become important 1€ Z dependence of and ¢ is discretized 10] by intro-
and the predicted scaling lame 4% ceases to be valid. ducing the Legendre modes
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APPENDIX A: HTL IMPROVED EQUATIONS OF MOTION

1., 1 . .
§E2+E(VXA)2+7T*7T+(Di¢)*(Di¢)

2 2 1_’2 1 2 22 5 v £12
+mid* dp+N(d* @) +§F +§H +§(VXf)
2 . -, 1-27°
+E(V6—mDA) —Mpz 5

f.VXA|, (A2)

-

V-E=0, (A3)

1
In Sec. Il the local formulation of the HTL improved Abe- 1M = j dzP,,(2)I1(2). (A5)
lian Higgs model was described. In this appendix we detail 0

the resulting equatlonsaof m9t|on for the fielgsand A a”fj Note that we have used slightly different definitions from
Legendre mode® and f, which encode the effect of high Ret [10], in order to write the Hamiltonian in a practical

momentum k=T) particles. form.
These fields satisfy the equations of motion In terms of these modes, the equations of motion become
28 v/ v/ A *
=—VXVXA— .
PA=—VxVXA—2elm¢*D o S (A8)
1 - R 1-722. . R R R R
—0—me0 dzz?| Vo—mpA+ g2 VXt], AofM=CFM D+ COFM +Cc F(-1),

(A1) A0 =11,
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. S
9oE=V XV XA+ 2elme* D¢+ zmpA
1 . .
—§mD(V6(°)+2V9(1)+V><f(o)—VXf(l)),

GoFW=—-VXVxfM+myVXAS,,

JllM=Crv2gn D4 Cov2eM+C Ve

2
155”'l ’

. .1
_mDV'A(g(Sn’()"‘
where
+=(2n+1)(2n+2)
" (4n+1)(4n+3)’

4n?
4n—1

1
T 4n+1

(2n+1)?
4n+3

CO

n

|

2n(2n—1)

Co =G D@n-1 (A7)

The Hamiltonian becomes

H:f d3x[%I§2+ %(V*x/i)2+w*w+(Di¢)*(Di¢)

[(2n+1)F™

o[
MLt pEN(T PP 2 |7

4n+1

+(2n+2)F(MF 2 2

- -
(CHFM D4 cOFM

4n+1
4

1
4 4n+3

+C,F(M )24 (V x f(m)2

X[(2n+1)VX M+ (2n+2)V x f(+ 172

4n+1

1
(n)y2
5 (I1M)2+

- S ()
5 anial2n+ Ve

> Mp . .
+(2n+2)V e+ 24 ?DV-A( 6(©) 4 291)

Mp. . . N 1 -
- ?DVXA(f(O)—f(l))nL gszAZH. (A8)
APPENDIX B: LATTICE DISCRETIZATION
1. Classical theory

In order to carry out numerical simulations described in
Sec. IV, we discretize the Hamiltoniah9) and the equations
of motion (21) in the standard leap-frog fashion. The Higgs

PHYSICAL REVIEW D 64 065016

between lattice sites, and the electric fiédby temporal
plaquettes that connect these links. Therefofg; is actu-
ally defined at the pointt¢ 8t/2x), A; .5 at (t,x+1/2) and
Ei 1 at (t+ 8t/2x+1/2). Herel is a vector of lengthdx in
thei direction.

The lattice version of the Hamiltonial9) is

1 1
E EI E|+§ E (GijkAjJrAk)z‘i‘W*’Tr

H=2 o°
X

2 . L

_QZ Re‘ﬁ(;)ui,(x)(f’(xﬂ)

+ (B1)

6
2 2 4
my+ 5x2)|¢| +\[ )|

where
U, =exp(iedxA),
A py==X Hpen— deo)-
We also define the lattice version of the covariant derivative

D" =X (Ui sy~ b))

(B2)

. (B3)
D =X b~ Ul iy @)

The value of the bare lattice mam§ is given by Eq.(3)
and was chosen in such a way that the Hamiltor(iam)
describes the thermodynamics of the finite-temperature
theory with renormalized mass? correctly[18,19.

The discretized equations of motion are

AtEi,(t,i):EijkEkImA;ArAi,(t,i)_zelmcﬁa,;)DiJrﬁb(t,)Z),

Acm=Di Di by~ Mibi— 2N e 2bee s »

(B4)
AA 4o~ ~Ei 0
Ad(tt 5,0~ T(t,5) s
WhereAt¢(t) = 5‘:71[ d)(t) — d)(’[* 50] etc.
The lattice version of the Gauss [aR0) is
Ei: AfEi'(t';)=Zelm(ﬁ;’;)ﬂ'(t’;) . (BS)

This is an extra constraint the initial field configuration must
satisfy.

2. HTL theory

In the HTL simulations described in Sec. V, the soft
modes were discretized in the same way as in the classical

field ¢ was defined at the lattice sites, and its canonicafase. The extra field is defined at lattice sites arfel at the
momentum at temporal links between time slices. The gaugplaquettes. We denote Wy ;) the field value at {,x+x/2

field A was represented by real numbers defined at linksty/2+2/2—1/2).
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The lattice version of the HTL-improved Hamiltonian

(A8) is
Huro=H+ 8 [He+Hi+Hy+Hol,  (B6)
X
where
H :i - i[(zm1)|f<“>+(2n+2)|f<“+1>]2
Fi&h4[4n+3
—(4n+1)(c;|5(“+1>+cﬂlf(“>+c;|f<“—1>)2},
“ [4n+1 1
Hs e 4 (eljkAJ fi”) 4n+3
X[(2n+1) €[ FV+(2n+2) €A, F(M D)2
Mp + (0)_ £(1) 1 2 A2
_?GijkAj A7 =1+ ngAi ,
. (B7)
4n+1
HH: -
. 1 + p(n) + p(n+1)72
2 > A0+ (2n+2)A; gD

m
+?DAfAi(0(O)+20(1)).

The Gauss lawA4) can be written in the form

1
0). _ - - * -
H(t,;)_ 2]: Ai Ei,(t,x)_Zelmd)(tj)ﬂ-(t,x) ,

o ®9)

and therefore we can eliminaté® from the Hamiltonian.
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The bare Higgs mass has the value given in @By.and
the Debye mass ik18,19

, 1 212_ 5 ,3.176T B
Mo=3¢€ S (B9)
These counterterms were calculated by matching static corr-
elators, and in the absence of Lorentz invariance they do not
remove all the ultraviolet divergences from real-time quanti-
ties. However, since our lattice spacing is relatively large,
this leads only to small errors.

The discretized equations of motion are

AEi (1= €ijkemA [ A A (1)~ Zelm¢a’;)D T i 9

©)
€A Fi s

Mp 4 (0) + (1)
—?(A 0(tx)+2A 0(tx)

—€ijid) fk(t x))

A =D D ey = M5~ 2N e )| by

(n) (n)
AF fm (%)

) — €ijkEamA | A + On oMp €A | A 1.%)

(), _ (n+1), ~0 (n)
AtH(tX) ChATA; G(tx) +CAAT G(IX)

+CIATAT O

o~ MpAi A

X

3 5n 0+ 15 n 1)
(B10)

AA 1160~ ~Ei 6,0 s

Attt st0=

(n)
Atfl (t+6t,X)

T(t,%) »

+C F Y

(n+1) , ~0(N)
=C,F. +C,F. ()

i,(t, x) i,(t, x)

(n)
Ate(wat X)) -
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