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Phase transition dynamics in the hot Abelian Higgs model

M. Hindmarsh
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QJ, United Kingdom
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~Received 2 April 2001; published 24 August 2001!

We present a detailed numerical study of the equilibrium and nonequilibrium dynamics of the phase tran-
sition in the finite-temperature Abelian Higgs model. Our simulations use classical equations of motion both
with and without hard-thermal-loop corrections, which take into account the leading quantum effects. From the
equilibrium real-time correlators, we determine the plasmon frequency, the plasmon damping rate and the
Landau damping rate, finding significant nonperturbative effects in the last two quantities. We also find that,
close to the phase transition, the static magnetic field correlator shows power-law magnetic screening at long
distances. The information about the damping rates allows us to derive a quantitative prediction for the number
density of topological defects formed in a phase transition. We test this prediction in a nonequilibrium simu-
lation and show that the relevant time scale for defect formation is given by the Landau damping rate.

DOI: 10.1103/PhysRevD.64.065016 PACS number~s!: 11.10.Wx, 11.15.Ex, 11.15.Kc, 98.80.Cq

I. INTRODUCTION

While there are many useful techniques for studying the
equilibrium properties of finite-temperature field theories,
understanding the nonequilibrium dynamics is a much harder
task. Nevertheless, it would be essential for many fields of
physics, for instance cosmology, heavy ion physics and con-
densed matter physics. In all these fields, new empirical data
will be available in the near future, which would allow the
theories to be tested, but the complexity and the non-
equilibrium nature of the phenomena make it difficult to de-
rive theoretical predictions that could be compared with the
data.

One fairly generic consequence of phase transitions is the
formation of topological defects@1,2#. If the phase transition
is associated with a spontaneous breakdown of a global sym-
metry, this process is well understood. The correlation length
of the order parameter cannot keep up with its equilibrium
value, which diverges at the transition point. The direction of
the symmetry breaking must therefore be uncorrelated at
long distances, and at places where these correlated domains
meet, topological defects are formed. This is called the
Kibble-Zurek ~KZ! mechanism~see e.g.@3# for a review!.

If the symmetry that gets broken is a local gauge invari-
ance, the above argument cannot be used directly, because
the direction of the order parameter is not a gauge invariant
quantity. We studied this recently in the context of the Abe-
lian Higgs model@4#, and pointed out that the thermal fluc-
tuations of the magnetic field lead to another mechanism that
forms topological defects. The argument was based on fairly
generic assumptions, but leads to some concrete predictions
that were confirmed in numerical simulations.

The aim of this paper is to study in more detail the dy-
namics of the Abelian Higgs model during the phase transi-
tion from the Coulomb phase to the Higgs phase. In particu-
lar, we concentrate on those degrees of freedom that are
relevant for defect formation. This allows us to test the sce-
nario of Ref.@4# on a more quantitative level.

The theory considered in Ref.@4# was classical, and al-
though the same arguments apply to the quantum theory as
well, the details of the dynamics are different. The full quan-
tum field theory cannot be simulated in practice, but one can
argue that the dynamics of the relevant long-wavelength de-
grees of freedom are classical@5#. By integrating out the
short-wavelength fluctuations perturbatively, one obtains a
classical effective theory with non-local interactions@6–9#,
which we refer to as the hard-thermal-loop~HTL! improved
theory. In order to understand how the quantum effects
change the dynamics, we simulate this HTL improved theory
using the method developed in Ref.@10#.

The structure of the paper is the following. In Sec. II we
present both the classical and HTL improved Abelian Higgs
models. In Sec. III we discuss defect formation in the model,
comparing the mechanism presented in@4# with the Kibble-
Zurek scenario. In Secs. IV and V we describe our numerical
simulations and present the results. Conclusions are given in
Sec. VI and technical details of the HTL improved equations
of motion and the lattice formulation in the two Appendixes.

II. ABELIAN HIGGS MODEL

The Abelian Higgs model is defined by the Lagrangian

L52

1

4
FmnFmn

1uDmfu22m2ufu2
2lufu4, ~1!

whereDm5]m1ieAm andFmn5]mAn2]nAm .
A particularly interesting feature of this theory is the ex-

istence of Nielsen-Olesen vortex solutions@11#. These string-
like topological defects are characterized by a zero of the
Higgs field at the center of the vortex around which the
Higgs phase angle has a non-zero winding number

nC5E
C

drW•¹g~rW !Þ0. ~2!
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HereC is a closed path around the vortex andg is the Higgs
phase angle, i.e.,f5ufuexp(ig).

At finite temperature, perturbation theory is plagued by
infrared divergences@12#, which can be partly cured by a
resummation of the perturbative expansion, but even the re-
summed expansion breaks down near the transition. Static
equilibrium quantities, such as the phase diagram of the
theory, can still be calculated reliably with non-perturbative
Monte Carlo simulations.

The model has a phase transition between the high-
temperature Coulomb phase and the low-temperature Higgs
phase atT2

5Tc
2'12(2m2)/(3e2

14l). In the perturbative
regime (l!e2), the transition is of first order@13#, and at
largerl it becomes continuous@14#. There are no local order
parameters, but a number of non-local ones: the photon mass
and the vortex tension are non-zero in the broken phase and
vanish at the transition@15#. Therefore the transition is not a
smooth crossover like the electroweak phase transition@16#.

Monte Carlo simulations cannot be used for real-time
quantities in the quantum theory, because the necessary path
integral is not Euclidean but consists of a complicated path
in complex time@17#. However, we can utilize the fact that
modes with different momenta behave in very different ways
@5#. The soft, long-wavelength modes (k!T) have large oc-
cupation numbers, and they can be approximated very well
by a classical theory. This makes numerical simulations fea-
sible, because the time-evolution of a classical field theory
can be found simply by solving the equations of motion nu-
merically.

A. Classical theory at finite temperature

Classical field theory at finite temperature is ultraviolet
divergent, and thus the results depend on the lattice spacing
dx. Divergences like these are generic to all low-energy ef-
fective theories, and are exactly cancelled by corrections the
high-momentum modes induce to the effective Lagrangian.
If one is only interested in static equilibrium quantities, these
corrections can be calculated in the limit of high temperature
and small lattice spacingdx @18,19#:

mT
2
5m2

1~3e2
14l !S T2

12
2

3.176T

4pdx D . ~3!

The approach we use in Sec. IV is to take this correction into
account and solve the classical equations of motion

]mFmn
522e Im f* Dnf,

~4!

DmDmf52mT
2f22l~f* f !f.

However, as was pointed out in Ref.@20#, these equations do
not reproduce the real-time dynamics of the quantum theory
correctly. Thus, the results are not reliable on a quantitative
level, but they can still give a reasonably good qualitative
picture of the dynamics, and provide a non-trivial test for the
scenario presented in Sec. III.

B. HTL improved theory

If the couplings are small, the system is close to thermal
equilibrium andTdx@1, it is possible to construct a classi-
cal theory which approximates the dynamics of the original
quantum theory to leading-order accuracy in the coupling
constants@9#.

Near the phase transition,m2;2e2T2, and we can use
the high temperature approximationT@m in our loop inte-
grals, providede is small. We calculate the one-loop correc-
tions from the hard modes to the self-energies off andA i ,
and resum them into the effective Lagrangian@21#

LHTL52

1

4
FmnFmn

2

1

4
mD

2 E dV

4p
Fma

vav
b

~v
n]n!2

Fmb

1uDmfu2
2mT

2ufu2
2lufu4, ~5!

wheremT
2 is given by Eq.~3!, and the integration is taken

over the unit sphere of velocitiesv5(1,vW ), v
W 2

51. The De-
bye mass has the valuemD

2
5

1
3 e2T2

1dmD
2 , wheredmD

2 is a
counterterm that cancels the UV divergences and is dis-
cussed in more detail in Appendix B 2.

All the degrees of freedom remaining in this effective
theory are classical, and therefore it can be treated as a clas-
sical theory. The time evolution of the fields will then be
determined by the equations of motion@cf. Eq. ~4!#:

]mFmn
5mD

2 E dV

4p

v
n
v

i

v
m]m

E i
22e Im f* Dnf,

~6!

DmDmf52mT
2f22l~f* f !f.

As such, the equations of motion~6! are not well suited for
our purposes. Firstly, it is not obvious how to find the corre-
sponding Hamiltonian, which is necessary for preparing the
initial configurations. And secondly, the equations of motion
are non-local both in space and time.

In Ref. @10#, a convenient local formulation was presented
along the lines of Ref.@8#. The latter work introduces a new
local field W(t,xW ,vW ), representing the departure from the
equilibrium distribution function for hard particles with ve-
locity v

W . Since the hard particles move at the speed of light,

v
W consists of two free coordinates, makingW a six-
dimensional field. In our formulation, part of the velocity
dependence decouples from the dynamics of the soft modes,
and we can describe exactly the same dynamics with two
five-dimensional fields,fW(t,xW ,z) and u(t,xW ,z), where z
P@0,1# is the cosine of the angle between the hard mode
velocity and the gradient of the distribution function. The
details of this formulation are given in Appendix A.

In order to simulate the model numerically, we define the
theory on a periodic spatial lattice, and thez dependence offW
andu is discretized by expressing them as sums over a finite
number of Legendre modes, whose order ranges from 0 to
Nmax @10#. The resulting equations of motion are detailed in
Appendix A. We merely note here that, as shown in Ref.
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@10#, for a given value ofNmax and a given momentumk, the
approximation breaks down at times

t*tc~k !54Nmax/k. ~7!

Therefore strictly speaking one can only measure correlators
up to Dt;Nmaxdx, but since the modes that are in equilib-
rium will remain in equilibrium even beyond that, one can
essentially trust the results untilDt'tc(k), wherek is the
relevant momentum scale.

In Sec. V, we study the dynamics of the model using the
HTL improved equations of motion, and describe how these
corrections change the results from the classical case.

III. DEFECT FORMATION

In cosmology, the temperature of the Universe decreases
as a result of its expansion, and this leads to phase transi-
tions. If we write the equations of motion in conformal co-
ordinates, the effect of the expansion can be absorbed com-
pletely into a varying zero temperature Higgs mass term,
m2

5m2(t).
In order to see this, we perform the conformal rescaling

dxm
→adxm, v

m
→av

m, Am→a21Am andf→a21f, where
a5a(t) is the scale factor of the Universe. If we can neglect
the expansion rate in comparison to the microscopic time
scales of the theory, which are given bymT

21 andmD
21 , the

effect of this rescaling on the action is to replace the mass
termsmT

2 andmD
2 by (mTa)2 and (mDa)2 respectively. The

hard modes are assumed to be ultra-relativistic, so they will
stay close to a thermal distribution with temperatureT

5T̄a21. Hence (mDa)2 stays constant, as do the rescaled
thermal corrections to the Higgs mass, leaving the only time
dependence in the parameterm2(t)5m2a2(t). In the follow-
ing, we will assume that the phase transition is triggered in
this way, by a mass term decreasing below a critical value,
but we believe that the qualitative features would not be very
different if some of the other parameters were changing at
the same time. Near the transition, the behavior ofm2(t) is
approximately linear:

m2~ t !5mc
2
2dm2t/tQ , ~8!

wheremc
2 is the critical value of the mass parameter.

When the system enters the Higgs phase, Nielsen-Olesen
vortices are formed. In the limite→0, this can be under-
stood in terms of the Kibble mechanism@1#. Whenm2 ap-
proaches its critical value, the Higgs correlation lengthj
grows, and if the system could remain in equilibrium it
would eventually diverge at the transition point. However,j
cannot grow arbitrarily fast, because at the very least it is
constrained by the finite speed of light. Therefore it remains
finite if the transition takes place in finite time. At the tran-
sition point, the system consists of correlated domains of size
ĵ determined by the maximum correlation length reached. In
each of these domains, the phase angle of the Higgs field is
chosen independently of all others, and this gives rise to

frustrations, vortices, where these domains meet. Up to a
numerical factor, the number of vortices piercing a unit area
is

n5N/A' ĵ22. ~9!

In practice, the maximal rate of change of the correlation
length may be well below the speed of light, and this argu-
ment can indeed be made more precise by considering the
dynamics of the system in more detail@22,3#.

In Ref. @4#, we argued that this picture is not complete if
e.0. After all, the phase angle of the Higgs field is not
gauge invariant, and therefore arguments based on it cannot
apply. Nevertheless, if the amplitude of the magnetic field is
small, we can fix the gauge in whichA i'0, and then we can
use the above picture in this gauge. In these cases the above
Kibble-Zurek scenario should work. However, if the initial
state is at a non-zero temperature, magnetic field is never
exactly zero, and it must be taken into account.

In the symmetric phase, the thermodynamics of the gauge
field is described by ordinary electrodynamics. The energy of
any magnetic field configuration is approximately given by

HEM@BW ~xW !#5

1

2E d3xBW ~xW !2, ~10!

and the probability with which the thermal fluctuations can
generate that configuration is proportional to exp(2HEM /T).
Let us consider a circular loopC that bounds a surfaceS. The
magnetic flux through the surface is

FS5E dSW •BW . ~11!

Although this is zero on the average, it is non-zero in almost
all configurations, and therefore the typical value, given by
AFS

2 is non-zero. We can estimate its value by calculating
the energy of the field configuration that minimizes the en-
ergy for a given value ofFS . This minimal configuration is
simply a magnetic dipole, and its energy is

Emin~FS!'FS
2/R, ~12!

whereR is the radius of the loopC. Thermal fluctuations can
create this configuration ifT*Emin(FS), and solving this for
FS shows that the typical flux through the loop is

FS'ATR. ~13!

When the system enters the Higgs phase, magnetic flux is
confined into flux tubes, which costs energy. Therefore the
dynamics tries to decrease the magnetic flux, but it can only
do so at short distances, because the range of the interaction
between the flux tubes decreases rapidly.

We can be more specific in Fourier space. We can write
the two-point correlator of the magnetic flux densityBW as

^B i~kW !B j~kW8!&5S d i j2
k ik j

k2 D ~2p !3d~kW1kW8!G~k !.

~14!
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In the symmetric phase, different Fourier modesBW (kW ) be-
have as independent oscillators in thermal bath, and thus
each of them has the same amplitudeG0(k)5T. When the
system enters the broken phase, the magnetic field becomes
massive, and the equilibrium distribution changes into

G~k !5T
k2

k2
1mg

2
. ~15!

In order to stay in equilibrium, the amplitude of the long-
wavelength modes must drop rapidly, but the time scalet(k)
of the dynamics of these modes is very slow. It depends on
the individual system, but in general limk→0t(k)5`. Thus
the modes withk less than some critical valuek̂ cannot re-
main in equilibrium. If we knowt(k), we can calculatek̂
from the condition

Ud ln G~ k̂ !

dt
U' 1

t~ k̂ !
. ~16!

The consequence of the above process is that there will be
long-wavelength magnetic fields present even in the Higgs
phase. In particular, at distances less thanĵ52p/ k̂ it looks
like there was a uniform external magnetic field. We can
estimate that its amplitudeBavg is

Bavg
2 'K E

0

k̂ d3k

~2p !3
B i~kW !E

0

k̂ d3k8

~2p !3
B i~kW8!L

'E
0

k̂ d3k

~2p !3
G0~k !;Tk̂3. ~17!

This magnetic flux must be confined into vortices, and be-
cause each vortex carries one flux quantumF052p/e, the
number density of vortices per unit area is

n'
e

2p
Bavg'

e

2p
T1/2k̂3/2. ~18!

Even if we do not knowt(k), we can still make some
concrete predictions based on this scenario. For instance, the
spatial distribution of vortices turns out to be completely
different than in the KZ scenario. At distances shorter than
ĵ52p/ k̂, the magnetic field points in the same direction,
which means that the vortices tend to be aligned, while in the
KZ scenario they prefer to be anti-aligned. This prediction
was confirmed in the simulations in Ref.@4#.

IV. CLASSICAL SIMULATIONS

A. Equilibrium

In order to test the scenario presented in Sec. III, we car-
ried out a number of numerical simulations. Let us first dis-
cuss the simulations of the classical model~4!.

Because we are interested in transitions that start from
close to thermal equilibrium, we will first have to thermalize
the system. This means preparing an ensemble of field con-

figurations with the canonical equilibrium distribution
exp(2bH), whereb51/T and the HamiltonianH is

H5E d3xF1

2
EW 2

1

1

2
~¹W 3AW !2

1p* p1~D if !* ~D if !

1mT
2f* f1l~f* f !2G . ~19!

Here p5]0f is the canonical momentum off, and in the
temporal gauge (A050), the electric field is simplyEW 5

2]0AW . In addition, the fields must satisfy the Gauss law as
an extra constraint

¹W •EW 52e Im f* p. ~20!

Because of the constraint~20!, a straightforward Metropo-
lis algorithm would not work very well.~See, however, Ref.
@23#.! Instead, we used a hybrid algorithm, in which we ther-
malized the component ofp orthogonal to Eq.~20! with a
heat bath algorithm, and performed a number of Metropolis
updates to the gauge fieldAW . BecauseAW does not appear in
Eq. ~20!, this leaves the constraint unchanged. Then we
evolved the system with the equations of motion

]0AW 52EW ,

]0f5p,
~21!

]0EW 5¹W 3¹W 3AW 12e Im f* D if,

]0p5D iD if2mT
2f22l~f* f !f,

which, again, leave the Gauss law unchanged. We repeated
this procedure a number of times so that the system thermal-
ized.

In our simulations, we used the couplingse50.3 andl
50.18. The lattice size was 1203120320 ~the reason for
choosing one short dimension is discussed in Sec. IV B!, the
lattice spacing wasdx56T21 and the time step wasdt
50.3T21. The details of the lattice implementation are given
in Appendix B 1.

Sincel.e2, the phase transition is continuous. In order
to determine the location of the transition point, and to test
the accuracy of the tree-level result~15!, we measured the
correlator~14! at various values ofm2, starting deep in bro-
ken phase. For thermalization to each value ofm2, we used
24 hybrid Monte Carlo cycles each consisting of 400 Me-
tropolis sweeps and time evolution forDt5600T21. We car-
ried out the measurement in nine independently thermalized
configurations, measuring the average correlator in an unper-
turbed run of lengthDt512000T21 ~andDt572000T21 for
m2

520.083T2). The results are shown in Fig. 1~a!. The
solid lines show that the agreement with Eq.~15! is excel-
lent, and we find that the phase transition takes place atm2

'20.083T2.
In the symmetric phase, the tree-level result~15! corre-

sponds to a constantG(k)5T, but the data measured atm2
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520.083T2 @see Fig. 1~b!# clearly turn down at small mo-
menta. It is customary to parametrize the corrections to the
tree-level result by introducing the static photon self-energy
PT , defined by

G~k !5T
k2

k2
1PT~k !

. ~22!

Our measurements seem to contradict the results of Kraem-
meret al. and Blaizotet al. @21,24#, who showed that after a
resummation, the lowest-order term ofPT is proportional to
k2. Such a quadratic term would only change the overall
normalization of the correlator and any higher-order terms
would only modify the high-k end of the spectrum. However,
they considered specifically the case in which the zero-
temperature Higgs field mass vanishes, i.e.,m2

50. In that
case, the thermally generated effective mass for the Higgs
field M 2, which is approximately equal tomT

2 , is always
;e2T2 @see Eq.~3!# and acts as an infrared regulator in the
loop integral, makingPT(k) an analytic function ofk2. Be-
cause one can show that the constant term is forbidden, the
lowest-order term must beO(k2).

In our case, this argument breaks down because we are
studying the system at the transition point where the effec-
tive Higgs field massM becomes very small. In the momen-
tum rangeM!ukW u!eT, the perturbative behavior ofPT(k)
at one loop order is

PT~k !5

e2T

16
k50.005625Tk. ~23!

This is shown as a solid line in Fig. 1~b!, and agrees fairly
well with the data. Assuming that perturbation theory is ap-
plicable, the discrepancy at very lowk can be explained by a

nonzero effective Higgs field mass, which arises because we
are not exactly at the transition point. WithM.0, the one-
loop result is@24#

PT~k !5

e2MT

4p
F4M 2

1k2

2kM
arctan

k

2M
21G . ~24!

A fit using the bootstrap method givesM5(0.0041
60.0007)T, and is shown in Fig. 1~b! as a short-dashed line.
It is curious how well it agrees with the measurements, be-
cause one would expect perturbation theory to break down at
low momenta near the phase transition.

Assuming that the Higgs field mass vanishes at the tran-
sition point, all that remains is Eq.~23!. The existence of a
linear term in the self-energyPT is surprising, because it
implies magnetic screening. This screening is not as strong
as it would be if there was a constant term, in which case the
correlator would fall exponentially in the coordinate space.
With a linear term, the low-momentum behavior of the trans-
verse gauge field correlator is;k21, and consequently, the
long-distance behavior in the coordinate space is;r22 in-
stead of the usual;r21.

We also measured real-time correlators in the same simu-
lations. In each of the nine independent configurations, we
measured the correlatorG(t,k) and took the average of the
results. Two examples, measured fork50.026T at m2

5

20.083T2 andm2
520.086T2, are shown in Fig. 2~a!. At all

values ofm2 and k we measured, the data were well de-
scribed by the function

Gfit~ t !5a0exp~2gLt !1a1exp~2gpt !cos~vpt1d !,
~25!

wherea0 , a1 , gL , gp , vp andd are free parameters. Physi-
cally, gL is the Landau damping rate,gp is the plasmon
damping rate, andvp is the plasmon frequency. We fitted
this function to the data at each point and estimated the er-

FIG. 1. The spatial correlator of the magnetic field in the Fourier space.~a! The solid lines are fits to Eq.~15! and show that the system
is in the Higgs phase whenm2

&20.083T2. The gray squares show the spatial correlator after a quench as discussed in Sec. IV B. The open
circles correspond to the HTL simulations in Sec. V A.~b! The m2

520.083T2 data on a linear scale. The short-dashed and long-dashed
lines show the fits to Eqs.~24! and ~37!, respectively, and the solid line shows the perturbative result~23!.
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rors using the bootstrap method. The results are shown in
Figs. 2~b!–2~d!. The amplitudesa0 and a1 measured atm2

520.083T2 are shown in the inset of Fig. 2~a! by filled
circles and triangles, respectively, and agree with the pertur-
bative expectation that the ratioa0 /a1 diverges in the limit
k→0.

We can compare these results with perturbative calcula-
tions, but we must keep in mind that since these simulations
were carried out in a classical lattice theory, the result is not
the same as in quantum theory in continuum. In the symmet-
ric phase, the plasmon frequency should behave as

vp~kW !5AkW2
1mp

2, ~26!

wheremp is the plasmon mass, which has been calculated in
classical lattice perturbation theory in Refs.@26,27#,

mp
2'0.086e2

T

dx
'0.0013T2. ~27!

We have plotted this curve in Fig. 2~b!, and it agrees very
nicely with the measured frequencies atm2

520.083T2. In
the Higgs phase, the photon becomes massive due to the
Higgs mechanism and this increasesmp .

The plasmon damping rate has not been calculated pertur-
batively for the classical lattice theory. However, a calcula-
tion has been carried out in the HTL-improved theory by
Evans and Pearson@25#, who showed that it was peaked just
below the phase transition. Our classical results also show a
rising trend as the transition is approached, although we can-
not directly compare the numerical values.

The Landau damping rate in the symmetric phase has
been calculated perturbatively in Ref.@26#,

FIG. 2. The real-time correlators measured at different values ofm2. ~a! Two examples of real-time correlators, measured atm2
5

20.083T2 ~solid! andm2
520.086T2 ~dashed!, k50.026T, together with fits of the form~25!. The inset shows the amplitudesa0 anda1 at

m2
520.083T2 as a function ofk for the classical~filled symbols! and HTL ~open symbols! cases.~b! The fitted plasmon frequenciesvp ,

and the perturbative estimates.~c! The fitted plasmon damping ratesgp . ~d! The fitted Landau damping ratesgL , and the perturbative
estimates. In plots~b!–~d!, the gray squares correspond to the state of the system after a quench and open circles to the HTL simulations
discussed in Sec. V A.
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gL'
7dx

e2T
k3'470

k3

T2
. ~28!

However, in our results the dependence onkW is milder and
we find the best fit withgL'15T21.1k2.1 above the transition
point. Below the transition point, the exponential decay rate
gL becomes very high so that at late times, the correlator
simply oscillates around zero@see Fig. 2~a!#. In Fig. 2~d!,
this behavior can be seen in the values of the Landau damp-
ing rate.

In the defect formation scenario, the freeze-out occurs
when Eq.~16! ceases to be satisfied. This happens most eas-
ily at the transition point, and there the real-time correlators
are still the same as in the symmetric phase. Therefore, it is
the symmetric phase correlators that determine the relevant
time scalet(k). Figure 2 shows clearly that for the long-
wavelength modes, the lowest time scale is that of Landau
damping. When the left hand side of Eq.~16! is comparable
with the Landau damping rategL , the plasmon contribution
remains in equilibrium but the Landau damping contribution
does not. Since the amplitudea0 of the Landau damping
contribution is generally higher@see the inset of Fig. 2~a!#,
we can approximate that the relevant time scale is simply
given byt(k)'gL(k)21.

Assuming a linear quench~8! and substitutingt(k)
5gL(k)21 to Eq. ~16!, we find

1

k̂2

dm2

tQ
'gL'15T21.1k̂2.1, ~29!

which implies

k̂'S 0.0061

TtQ
D 1/4.1

T'0.29T~TtQ!20.24}tQ
20.24. ~30!

B. Phase transition

We simulated the phase transition by thermalizing a num-
ber of configurations withm2

5m0
2
520.044T2, and solving

numerically the equations of motion~21!, varying the mass
term with time according to

m2~ t !5m0
2
2dm2S 4

3p
arctan~ t/tQ21!1

1

3D , ~31!

wheredm2
50.089T2. This form ofm2(t) has the advantage

that a long time after the transition, the system is in thermal
equilibrium, making it possible to compare the final states.

The vortices produced in the transition are closed loops,
and in general they will soon shrink to a point and disappear,
which makes it very difficult to even define what we mean
by the final vortex number. However, on a periodic lattice
some of the vortex loops can be non-contractible, i.e. wind
around the lattice in some direction. These loops can only
disappear if they annihilate with another vortex of opposite
direction, but this process is very slow, since the interactions
between the vortices are exponentially suppressed at long
distances. Therefore we chose one of the lattice dimensions

much shorter than the other two~but still much longer than
the microscopic length scales such as the Debye screening
lengthmD

21). A long time after the transition, when the sys-
tem is deep in the broken phase, these vortices still remain
and are well-defined macroscopic objects, and they can be
counted without any ambiguities using the gauge-invariant
lattice definition for the winding number@28,29#.

Because the scenario of defect formation discussed here is
based on the assumption that the distribution of the magnetic
field freezes in the transition, we can carry out a very simple
test for the scenario by quenching the system through the
transition and measuring the spatial correlator. We usedtQ
5300T21 and stopped the quench atm2

520.089T2 to
carry out the measurement. The spatial correlator is shown in
Fig. 1~a! as gray squares, and indeed, resembles much more
the symmetric phase correlator than the equilibrium cor-
relator at the same value ofm2. We also measured the real-
time correlator, and the corresponding time scales are shown
in Figs. 2~b! and 2~c!. The plasmon frequency and decay rate
do not differ significantly from their equilibrium values, but
Landau damping gets extremely slow. This means that once a
mode has fallen out of equilibrium at the transition point, it
takes a very long time before it thermalizes.

When one of the dimensions is shorter thanĵ52p/ k̂, the
prediction~18! changes into@4#

n'
e

2p
T1/2Lz

21/2k̂21. ~32!

We tested this prediction by simulating the time evolution
with different values oftQ and measuring the vortex number
a long time after the transition att5tQ12400T21. The re-
sults were published in Ref.@4#, and are shown in Fig. 3.

FIG. 3. The dependence of the final number of vortices on the
quench ratetQ . The dashed line is a power-law fit of the data at
tQ.200T21 with the exponent20.24 predicted by Eq.~30!. The
circles and squares correspond to the HTL simulations discussed in
Sec. V B, and the solid line is a power-law fit oftQ.100T21 using
the exponent20.2 predicted by Eq.~43!.
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Each point is an average over around 15 runs starting from
different initial configurations.

Combining the resultk̂;tQ
20.24 from Eq. ~30! with Eq.

~32!, we expectN'c(TtQ)20.24. If we determine the con-
stantc from the best fit to the data attQ.200T21, we find
c539.561.0 andx2

57.6/13 DOF. This is shown in Fig. 3
as the dashed line. If we also leave the exponent as a free
parameter, we findN5(43.967.9)(TtQ)20.25560.026, with
x2

57.2/12 DOF.
If we calculate precisely the prediction~32! using Eq.

~30!, we findc'650 for the above fit parameter. However, it
is not surprising that it differs from the measured value by a
factor of'15, not only because have we neglected factors or
2p and other numerical factors, but also because in our es-
timates we have assumed that the mechanism is ideally effi-
cient and that all the magnetic flux is converted into vortices.

From the cosmological point of view, we are more inter-
ested in the area density of vortices in a fully three-
dimensional case than in a thin box. Because the topology of
the system does not prevent vortex loops from shrinking, the
resulting network is not stable, unless it is stabilized by the
expansion of the Universe. We can therefore only use Eq.
~18! as an estimate for the area density of vortices immedi-
ately after the transition. Comparing Eqs.~18! and ~32!, we
find

n3D'S 2p

e D 1/2

T21/4Lz
3/4n2D

3/2 , ~33!

where n2D is given by Eq. ~32! and n3D is the three-
dimensional area density given by Eq.~18!. In our case,Lz
5120T21 andA55.23105T22, and we find

n3D'166T21n2D
3/2'1.331024~TtQ!20.38. ~34!

V. HTL SIMULATIONS

A. Equilibrium

As discussed in Sec. II, the classical theory discussed
above does not describe the dynamics of the quantum theory
correctly. Therefore we also carried out the same simulations
with the HTL improved theory~5!. In the same way as in
Sec. IV A, we first studied the equilibrium properties of the
theory. We used the same couplingse50.3 andl50.18 as in
the classical case, and the same lattice. With these param-
eters, the Debye mass has the valuemD

2
50.03T2. The num-

ber of Legendre modes wasNmax54. The only effect of the
HTL corrections on the thermodynamics is to give an extra
contribution to electric screening, so we expect that the
phase diagrams of the theories are practically the same.
Therefore we only carried out the equilibrium measurements
at the transition point,m2

520.083T2.
Using the Hamiltonian~A8!, we first prepared the thermal

initial conditions with a Monte Carlo algorithm. This can be
done in two steps:

~i! Generate the soft mode configuration. The part of the
Hamiltonian that involves the hard modes is Gaussian and
therefore they can be integrated out exactly. This results in a

theory with only the soft fieldsf andA i and their canonical
momenta. The Gauss law leads to an extra Debye screening
term

dHDebye5
1

2mD
2 ~¹W •EW 22eImf* p ! ~35!

in the Hamiltonian.1 We used a Metropolis algorithm forf
and a heat bath algorithm for all other fields, and carried out
around 10000 thermalization sweeps.

~ii ! Generate the hard modes in the background of the soft
modes generated in step~i!. Since the Hamiltonian is Gauss-
ian it could in principle be diagonalized and the field values
could be taken directly from a normal distribution. However,
we did this only foru and its momentumP. Note that the
lowest Legendre mode ofP is fixed by the Gauss law,

P (0)
52

1

mD
~¹W •EW 22eImf* p !. ~36!

The field fW and its momentumFW were generated using a heat
bath algorithm with around 5000 sweeps.

Again, we evolved the configurations taken from the ther-
mal ensemble using the equations of motion~A6! for the
time Dt512000T21, measuring the equal-time and real-time
correlators. The equal-time correlator is shown as open
circles in Fig. 1, and it agrees fairly well with the corre-
sponding classical correlator. This time, the fit to the pertur-
bative one-loop result~24! favorsM50, which suggests that
because of the presence of the hard modes, the transition
point is at slightly largerm2 than in the classical case, and
that m2

520.083T2 is very close to it.
Because perturbation theory cannot be trusted at low mo-

menta, we do not adopt the perturbative result~23!, but in-
stead we simply assume that the self energy is linear at small
momenta

PT~k !5knpk, ~37!

and determine the coefficientknp from the best fit to the data,
which gives

knp5~0.007160.0005!T, ~38!

and use this in our later estimates.
The hard modes have a significant effect on the real-time

correlators, shown in Figs. 2~a!–2~d!. Because they mimic
the effect of the hard modes in the continuum quantum
theory, we should now be able to compare the results with
the standard perturbative calculations. For the plasmon mass,
the perturbative result is@31,21#

1In principle, the canonical momenta could also be integrated out
at this stage, resulting in a theory with an extra neutral scalar field
A0. This would lead to an effective theory that is equivalent with
dimensional reduction at one-loop order@30#.
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mp5

1

A3
mD50.1T. ~39!

The dashed line in Fig. 2~b! shows the corresponding curve
vp5Ak2

1mp
2. The measured values are slightly below this

curve, but the agreement is still very good.
The continuum plasmon damping rate at zero momentum

has been computed perturbatively in the HTL approximation
in Refs.@21,25#,

gp~T !5

e2T

24p
A~T/Tc ,l/e2!. ~40!

The functionA(T/Tc ,l/e2) takes the value 1 at the critical
point, peaks at value;1 just below it, and vanishes above it
when mp.2M . In our case, the damping rate at the transi-
tion point would be

gp~T !'0.0012T, ~41!

which is shown in Fig. 2~c! as a dashed line and is lower
than the value the measured atm2

520.083T2 by roughly a
factor of 3. It has been observed earlier@27#, that also in the
SU~2! theory, the perturbative calculation underestimates the
plasmon damping rate significantly. We can also note that the
damping rate is lower than in the classical theory.

The Landau damping rate can be obtained directly from
the HTL improved Lagrangian and is@31#

gL5

4k2

pmD
2 ~k1knp!'42.4

k2

T2
~k1knp!, ~42!

where we have taken into account the linear contribution
~37! to the self-energy. This curve is shown as the dashed
line in Fig. 2~d!, and agrees well with the measured values.

The Landau damping amplitudea0 and the plasmon am-
plitudea1 are shown in the inset of Fig. 2~a! by open circles
and triangles, respectively. Again,a0 is higher, and we can
conclude that the relevant time scale is that of Landau damp-
ing. If we can ignore the linear correction, we find@cf. Eq.
~30!#

k̂'S p

4
mD

2 dm2

tQ
D 0.2

'0.29T~TtQ!20.2;tQ
20.2, ~43!

and in the slowest transitions, we have

k̂'S p

4

mD
2

knp

dm2

tQ
D 0.25

'0.74T~TtQ!20.25;tQ
20.25. ~44!

However, this corresponds totQ@108T21, which is much
larger than the values oftQ we are able to use in our simu-
lations.

B. Phase transition

As in Sec. IV B, we studied the non-equilibrium dynam-
ics of the phase transition by starting from thermal configu-

rations atm2
520.044T2 and evolving the system with a

time-dependent mass term~31!. We used two different values
for Nmax, 4 and 16.

In Fig. 3, we show how the final vortex number, measured
at t52tQ12400T21 depends on the quench ratetQ . Each
data point is an average over 20–30 runs. In fast transitions,
tQ&1000T21, the results forNmax54 and 16 agree, but in
slower transitions there is a statistically significant differ-
ence. This can be understood in terms of Eq.~7!: For small
tQ , Nmax54 is sufficient because by the time the approxi-
mation breaks down, the system is already so deep in the
Higgs phase that the vortex number cannot change any more.
WhentQ gets larger, eventually a point is reached at which
the breakdown occurs so early that it would have an effect on
the final state. This may have happened even forNmax516 in
the slowest transitions withtQ56000T21.

Combining Eq.~43! with Eq. ~32!, we findN;tQ
20.2. A fit

to the Nmax516 data attQ.100T21 with N5c(TtQ)20.2

givesc545.560.9 withx2
56.8/6 dof, which shows that the

results are compatible with the prediction. The fit is shown in
Fig. 3 as a solid line. The prediction of Eq.~32! is c'660,
which is greater than the measured value by a factor of'15.
This is the same factor found in the classical case, which
further supports our scenario. If we keep the exponent as a
free parameter, we findN5(45.964.6)(TtQ)20.20160.015,
with x2

56.8/5 DOF.
Again, we relate the results to three dimensions using Eq.

~33!, and find

n3D'1.431024~tQT !20.30. ~45!

The conjectured non-perturbative behavior at low momenta
~37! would change this scaling law in very slow transitions.
Equation ~18! would becomen} k̂2, and Eq. ~44! would
therefore implyn}tQ

20.5.

VI. CONCLUSIONS

In this paper we have presented a thorough study of the
dynamics of the high temperature phase transition in the
Abelian Higgs model, using both classical and HTL im-
proved approximations. The aims were twofold. The first
was to measure the equilibrium properties of the theory, and
in particular to find the relevant time scale for the decay of
the long wavelength modes of the gauge field, which were
identified in @4# as crucial to the understanding of vortex
formation.

In Ref. @4#, we performed numerical simulations of the
Abelian Higgs model phase transition in real time by using
the classical theory and changing the mass parameter of the
Higgs field over a characteristic quench timetQ . In this
paper, our second aim was to do the same quenches with the
HTL improved theory, and to compare the resulting scaling
law for the number of vorticesN formed as a function of the
quench time.

Our measurements of the equilibrium correlators show
that perturbation theory gives a reasonable account of their
behavior, except perhaps for the plasmon damping rate. A
new and unexpected result is that near the transition, the
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equal-time correlator exhibits power-law magnetic screening,
with a coefficient that is similar but not equal to the pertur-
bative one. In the HTL improved simulations, the numerical
values of the plasmon mass and the Landau damping rate
agree well with the perturbative values in the Coulomb
phase. For the plasmon damping rate, however, the measured
value was significantly higher than the perturbative estimate.
As might be expected, the agreement is not as good in the
classical theory: although the plasmon mass agrees well, the
dependence of the Landau damping rategL on wave number
k is gL;k2.1 rather than the expectedk3.

We found significant differences between the scaling laws
for the classical simulations, and for HTL improved
quenches withNmax54 and Nmax516. The difference be-
tween the classical scaling law and the HTL improved one
with Nmax516 can be ascribed to the discrepancy in the Lan-
dau damping rate, and lends force to the contention made in
@4# that it is the balancing of the cooling rate with the Landau
damping rate which decides the length scale above which the
fields fall out of equilibrium. The difference betweenNmax
54 and Nmax516 can be understood as stemming from a
lack of phase space in the hard modes, which causes the HTL
approximation to break down at times greater thantc(k)
54Nmax/k.

Our simulations have been carried out to leading order in
the couplingse andl, and hence do not include the effect of
high momentum transfer scattering between the hard modes.
However, because the hard modes can still scatter by ex-
changing soft modes, we do not expect this to change the
dynamics qualitatively on the relatively short time scales
which we have been able to study. In very slow transitions, it
may be that hard mode scattering and also non-perturbative
effects in the photon self-energy start to become important
and the predicted scaling lawn}tQ

20.3 ceases to be valid.
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APPENDIX A: HTL IMPROVED EQUATIONS OF MOTION

In Sec. II the local formulation of the HTL improved Abe-
lian Higgs model was described. In this appendix we detail
the resulting equations of motion for the fieldsf andAW and
Legendre modesu and fW , which encode the effect of high
momentum (k*T) particles.

These fields satisfy the equations of motion

]0
2AW 52¹W 3¹W 3AW 22eImf* DW f

1mDE
0

1

dzz2S ¹W u2mDAW 1A12z2

2z2
¹W 3 fW D ,

~A1!

]0
2fW~z !52z2¹W 3¹W 3 fW1mDzA12z2

2
¹W 3AW ,

]0
2u~z !5z2¹W •~¹W u2mDAW !.

Since these equations forfW and u are linear, it is easy to
solve them and show that the dynamics off andA i is iden-
tical to the original non-local theory~6!.

Not only is this reformulation of the theory local, but the
equations of motion are in a canonical form and we can
therefore write down the corresponding Hamiltonian

H5E d3xE
0

1

dzF1

2
EW 2

1

1

2
~¹W 3AW !2

1p* p1~D if !* ~D if !

1mT
2f* f1l~f* f !2

1

1

2
FW 2

1

1

2
P2

1

z2

2
~¹W 3 fW !2

1

z2

2
~¹W u2mDAW !2

2mDzA12z2

2
fW•¹W 3AW G , ~A2!

whereFW 5]0fW andP5]0u are the canonical momenta offW

and u, respectively. We also need two extra conditions,
namely the transverseness offW and Gauss’s law

¹W • fW5¹W •FW 50, ~A3!

¹W •EW 52mDE
0

1

dzP~z !12eImf* p. ~A4!

The z dependence offW andu is discretized@10# by intro-
ducing the Legendre modes

fW (n)
5E

0

1

dzzA 2

12z2
P2n~z ! fW~z !,

u (n)
5E

0

1

dzP2n~z !u~z !,

FW (n)
5E

0

1dz

z
A 2

12z2
P2n~z !FW ~z !,

P (n)
5E

0

1

dzP2n~z !P~z !. ~A5!

Note that we have used slightly different definitions from
Ref. @10#, in order to write the Hamiltonian in a practical
form.

In terms of these modes, the equations of motion become

]0AW 52EW , ~A6!

]0fW (n)
5Cn

1FW (n11)
1Cn

0FW (n)
1Cn

2FW (n21),

]0u (n)
5P (n),
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]0EW 5¹W 3¹W 3AW 12eImf* DW f1

1

3
mD

2 AW

2

1

3
mD~¹W u (0)

12¹W u (1)
1¹W 3 fW (0)

2¹W 3 fW (1)!,

]0FW (n)
52¹W 3¹W 3 fW (n)

1mD¹W 3AW dn,0 ,

]0P (n)
5Cn

1¹W 2u (n11)
1Cn

0¹W 2u (n)
1Cn

2¹W 2u (n21)

2mD¹W •AW S 1

3
dn,01

2

15
dn,1D ,

where

Cn
1

5

~2n11!~2n12!

~4n11!~4n13!
,

Cn
0
5

1

4n11 S ~2n11!2

4n13
1

4n2

4n21D ,

Cn
2

5

2n~2n21!

~4n11!~4n21!
. ~A7!

The Hamiltonian becomes

H5E d3xH 1

2
EW 2

1

1

2
~¹W 3AW !2

1p* p1~D if !* ~D if !

1mT
2f* f1l~f* f !2

1 (
n50

` F1

4

1

4n13
@~2n11!FW (n)

1~2n12!FW (n11)#2
2

4n11

4
~Cn

1FW (n11)
1Cn

0FW (n)

1Cn
2FW (n21)!2

1

4n11

4
~¹W 3 fW (n)!2

2

1

4

1

4n13

3@~2n11!¹W 3 fW (n)
1~2n12!¹W 3 fW (n11)#2

1

4n11

2
~P (n)!2

1

1

2

1

4n13
@~2n11!¹W u (n)

1~2n12!¹W u (n11)#2
1

mD

3
¹W •AW ~u (0)

12u (1)!

2

mD

3
¹W 3AW ~ fW (0)

2 fW (1)!1

1

6
mD

2 AW 2G J . ~A8!

APPENDIX B: LATTICE DISCRETIZATION

1. Classical theory

In order to carry out numerical simulations described in
Sec. IV, we discretize the Hamiltonian~19! and the equations
of motion ~21! in the standard leap-frog fashion. The Higgs
field f was defined at the lattice sites, and its canonical
momentum at temporal links between time slices. The gauge
field AW was represented by real numbers defined at links

between lattice sites, and the electric fieldEW by temporal
plaquettes that connect these links. Thereforep (t,xW ) is actu-
ally defined at the point (t1dt/2,xW ), A i,(t,xW ) at (t,xW1 ı̂ /2) and
E i,(t,xW ) at (t1dt/2,xW1 ı̂ /2). Hereı̂ is a vector of lengthdx in
the i direction.

The lattice version of the Hamiltonian~19! is

H5(
xW

dx3F1

2 (
i

E i1
1

2 (
i

~e i jkD j
1Ak!2

1p* p

2

2

dx2 (
i

Ref (xW )
* U i,(xW )f (xW1 ı̂ )

1S mT
2
1

6

dx2D ufu2
1lufu4G , ~B1!

where

U i5exp~ iedxAi!,
~B2!

D i
6f (xW )56dx21~f (xW6 ı̂ )2f (xW )!.

We also define the lattice version of the covariant derivative

D i
1f (xW )5dx21~U i,(xW )f (xW1 ı̂ )2f (xW )!,

~B3!
D i

2f (xW )5dx21~f (xW )2U i,(xW2 ı̂ )
* f (xW2 ı̂ )!.

The value of the bare lattice massmT
2 is given by Eq.~3!

and was chosen in such a way that the Hamiltonian~B1!
describes the thermodynamics of the finite-temperature
theory with renormalized massm2 correctly @18,19#.

The discretized equations of motion are

D tE i,(t,xW )5e i jkeklmD j
2D l

1A i,(t,xW )22eImf (t,xW )
* D i

1f (t,xW ) ,

D tp (t,xW )5D i
2D i

1f (t,xW )2mT
2f (t,xW )22luf (t,xW )u

2f (t,xW ) ,
~B4!

D tA i,(t1dt,xW )52E i,(t,xW ) ,

Df (t1dt,xW )5p (t,xW ) ,

whereD tf (t)5dt21@f (t)2f (t2dt)# etc.
The lattice version of the Gauss law~20! is

(
i

D i
2E i,(t,xW )52eImf (t,xW )

* p (t,xW ) . ~B5!

This is an extra constraint the initial field configuration must
satisfy.

2. HTL theory

In the HTL simulations described in Sec. V, the soft
modes were discretized in the same way as in the classical
case. The extra fieldu is defined at lattice sites andf i at the
plaquettes. We denote byf i,(t,xW ) the field value at (t,xW1 x̂/2
1 ŷ /21 ẑ/22 ı̂ /2).
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The lattice version of the HTL-improved Hamiltonian
~A8! is

HHTL5H1dx3(
xW

@HF1Hf1HP1Hu#, ~B6!

where

HF5 (
n50

`
1

4 F 1

4n13
@~2n11!FW (n)

1~2n12!FW (n11)#2

2~4n11!~Cn
1FW (n11)

1Cn
0FW (n)

1Cn
2FW (n21)!2G ,

Hf5 (
n50

` F4n11

4
~e i jkD j

2 f k
(n)!2

2

1

4

1

4n13

3@~2n11!e i jkD j
2 f k

(n)
1~2n12!e i jkD j

2 f k
(n11)#2G

2

mD

3
e i jkD j

1Ak~ f k
(0)

2 f k
(1)!1

1

6
mD

2 A i
2 ,

~B7!

HP5 (
n50

`
4n11

2
~P (n)!2,

Hu5 (
n50

`
1

2

1

4n13
@~2n11!D i

1u (n)
1~2n12!D i

1u (n11)#2

1

mD

3
D i

2A i~u (0)
12u (1)!.

The Gauss law~A4! can be written in the form

P (t,xW )
(0)

5

1

mD
S (

i
D i

2E i,(t,xW )22eImf (t,xW )
* p (t,xW )D , ~B8!

and therefore we can eliminateP (0) from the Hamiltonian.

The bare Higgs mass has the value given in Eq.~3!, and
the Debye mass is@18,19#

mD
2

5

1

3
e2T2

22e2
3.176T

4pdx
. ~B9!

These counterterms were calculated by matching static corr-
elators, and in the absence of Lorentz invariance they do not
remove all the ultraviolet divergences from real-time quanti-
ties. However, since our lattice spacing is relatively large,
this leads only to small errors.

The discretized equations of motion are

D tE i,(t,xW )5e i jkeklmD j
2D l

1A i,(t,xW )22eImf (t,xW )
* D1f i,(t,xW )

2

mD

3
~D i

1u (t,xW )
(0)

12D i
1u (t,xW )

(1)
1e i jkD j

2 f k,(t,xW )
(0)

2e i jkD j
2 f k,(t,xW )

(1)
!,

D tp (t,xW )5D i
2D i

1f (t,xW )2mT
2f (t,xW )22luf (t,xW )u

2f (t,xW ) ,

D tF i,(t,xW )
(n)

52e i jkeklmD j
1D l

2 f m,(t,xW )
(n)

1dn,0mDe i jkD j
1Ak,(t,xW ) ,

D tP (t,xW )
(n)

5Cn
1D i

1D i
2u (t,xW )

(n11)
1Cn

0D i
1D i

2u (t,xW )
(n)

1Cn
2D i

1D i
2u (t,xW )

(n21)
2mDD i

2A i,(t,xW )

3S 1

3
dn,01

2

15
dn,1D ,

~B10!
D tA i,(t1dt,xW )52E i,(t,xW ) ,

D tf (t1dt,xW )5p (t,xW ) ,

D t f i,(t1dt,xW )
(n)

5Cn
1F i,(t,xW )

(n11)
1Cn

0F i,(t,xW )
(n)

1Cn
2F i,(t,xW )

(n21) ,

D tu (t1dt,xW )
(n)

5P (t,xW )
(n) .
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