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THE MOMENT INDEX OF MINIMA (II)

D.J. Daley∗

The Australian National University

and Charles M. Goldie

The University of Sussex

Abstract

The moment index κ(X) = sup{k: E(Xk) < ∞} of a nonnegative random variable X has the

property that κ(min(X, Y )) ≥ κ(X) + κ(Y ) for independent r.v.s X and Y . We characterize

conditions under which equality holds for a given r.v. X and every independent nonnegative r.v.

Y , and discuss extensions to related r.v.s and their distributions.

Key words and phrases: exponential index, moment index, regular variation.

1. Introduction

In Daley (2001) to which this note is a sequel, the moment index κ(X) of a nonnegative random

variable (r.v.) X is defined by

κ(X) = sup{k ≥ 0 : E(Xk) < ∞}. (1)

It was shown that for independent nonnegative r.v.s X and Y each with a finite moment index,

κ(min(X, Y )) ≥ κ(X) + κ(Y ), (2)

that equality holds when the tail of the d.f. of either X or Y is regularly varying, and an example

in which X and Y have discrete supports that are ‘increasingly sparse’ and ‘well interspersed’

demonstrated that the inequality at (2) can be strict.

The main purpose of this paper is to prove the theorem below; it characterizes independent

nonnegative r.v.s X and Y for which equality holds in (2). We precede its proof in Section 2 with

further discussion. In Section 3 we note companion results for the exponential index of a r.v., and

Section 4 looks at questions surrounding the finiteness or otherwise of E(Xκ(X)).
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1



Definition 1. (a) Mα denotes the class of all nonnegative r.v.s X with moment index κ(X) = α

for which, for every nonnegative r.v. Y independent of X,

κ(min(X, Y )) = κ(X) + κ(Y ).

(b) For α < ∞, Mα+ ⊆ Mα consists of those r.v.s X ∈ Mα for which E(Xα) < ∞, and

Mα− = Mα \Mα+.

Note that M0+ = M0. For intermediate values 0 < α < ∞ the inclusion (b) is proper.

Theorem 2. X ∈ Mα if and only if the tail F of its d.f. F satisfies

lim
x→∞

[− log F (x)]/ log x = α = κ(X). (3)

We remark that the class Mα of d.f.s for α < ∞, which by Daley (2001) includes d.f.s with

regularly varying tails of index α, is indeed larger than the latter family. This follows essentially

as in Proposition 2.2.8 of Bingham, Goldie and Teugels (1989) (hereafter, [BGT]), where there is

an example of a monotone function whose lower and upper orders coincide (see equations (5)–(6)

below) but for which the representation theorem [BGT 2.2.7] is not of the form of the corresponding

theorem [BGT Theorem 1.3.1] for regularly varying functions.

We owe to a referee the idea that Theorem 2 might have implications for statistical estimation

of the moment index. Estimation of tail properties of a random variable is a ‘difficult’ statistical

question, being the estimation of a rare event. The definition of moment index does not suggest

any estimating procedure: can one maybe estimate α by (3) for the subclass Mα? Assuming the

problem is cast in the setting of a sequence of i.i.d. r.v.s, one immediately runs up against the

obstacle that the Strong Law of Large Numbers holds only when the first moment is finite. Now

considering the class of Paréto distributions on (1,∞), namely those with Pr{X > x} = x−α for

x ≥ 1, we have

Pr{X > x} = Pr{X > y}Pr{X > x/y} (1 < y < x),
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and this suggests that observations should be aggregated from indicators of tail events such as

{X ≥ x} rather than using the values of individual realizations xi, because we can then plot

∑n
i=1 1{xi > x}

n lnx

for a range of values x > 1. This leads us to something like the Hill estimator for a tail index.

In other words, we are led to the further subclass of distributions with regularly varying tails, for

which there is extensive experience (and knowledge of the problems) of estimating α, as a tail index.

A recent contribution to such estimation problems is Goncalves and Riedi (2005).

2. Discussion and proof of Theorem 2

The identification of α in (3) with κ(X) is a matter of definition. Also, it is known (though perhaps

not well known; see Baltrūnas, Daley and Klüppelberg, 2004) that

lim inf
x→∞

− log F (x)

log x
= κ(X), (4)

so we give it as Lemma BDK below and indicate its proof; note that for a positive function f , its

lower order µ(f) is just

µ(f) = lim inf
x→∞

[log f(x)]/ log x, (5)

while the companion upper order ν(f) say is

ν(f) = lim sup
x→∞

[log f(x)]/ log x (6)

[BGT Section 2.2.2]. Consequently, what is new in Theorem 2 is the identification of Mα with tails

of d.f.s F for which µ(1/F ) = ν(1/F ).

Now the tail of the d.f. of min(X, Y ) is just the function F G, where G is the d.f. of Y ,

and for any real-valued functions f and g with finite limits infima, lim inft→∞[f(t) + g(t)] ≥

lim inft→∞ f(t) + lim inft→∞ g(t), where equality holds for any given f and all g if and only if
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limt→∞ f(t) exists. In exploiting this property to demonstrate that inequality at (2) may hold for

given F for which ν(1/F ) > µ(1/F ) = α, we need to ensure that the function G we construct with

given lower moment order smaller than its upper order is indeed a distribution function.

Nevertheless, there are pairs of independent r.v.s X and Y for which the limits infima and

suprema are different but for which equality holds at (2). One such pair is as in Lemma 3 (the

proof is at the end of this section), which shows that for strict inequality to hold in (2), the

regions where the ratios at (4) are close to their limits infima must not overlap but rather be well

interspersed as in the example in Daley (2001). Indeed, in an unpublished student essay at the

ANU, Tu Anh Nguyen has given an example for which the limits infima are finite (and hence so

too is the right-hand side of (2)) but the left-hand side of (2) is infinite because the limits suprema

are infinite, the ratios in (4) being ‘large’ in different regions.

Lemma 3. Let the nonnegative r.v. X have finite first moment, and let the nonnegative r.v. Y ,

independent of X, have probability density function proportional to the tail F (·) of the d.f. of X.

Then κ(Y ) = κ(X) − 1 and κ
(

min(X, Y )
)

= 2κ(X) − 1.

Lemma BDK. For a nonnegative r.v. X, the lower order of the reciprocal 1/F (x) of the tail of

its d.f. equals its moment index, i.e.

µ(1/F ) ≡ lim inf
x→∞

− log F (x)

log x
= κ(X) ≡ sup{k ≥ 0 : E(Xk) < ∞}. (7)

Proof. We first show that κ(X) ≥ µ(1/F ). If µ(1/F ) = 0 there is nothing to prove. When

0 < µ(1/F ) < ∞ let λ = µ(1/F ) and observe that for arbitrary ε > 0, − log F (x) ≥ (λ− ε) log x =

log xλ−ε for all x ≥ some x0 = x0(ε). Then for such x, F (x) ≤ 1/xλ−ε and therefore

∫

∞

x0

xλ−1−2εF (x) dx ≤

∫

∞

x0

dx

x1+ε
< ∞. (8)

Since

E(Xk) =

∫

∞

0

kxk−1F (x) dx when k > 0,
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(8) implies that κ(X) ≥ λ − 2ε, and as ε > 0 is otherwise arbitrary, we conclude κ(X) ≥ µ(1/F ).

In the case µ(1/F ) = ∞ the same argument works for all λ > 0, so we conclude κ(X) = ∞ as

wanted.

For the converse assertion, that µ(1/F ) ≥ κ(X), the argument is similarly structured. If

κ(X) = 0 there is nothing to prove. If 0 < κ(X) < ∞ we write λ = κ(X) and note that for

0 < ε < λ,

∞ >

∫

∞

0

xλ−ε dF (x) = E(Xλ−ε) ≥ xλ−εF (x),

so (λ − ε) log x + log F (x) ≤ log E(Xλ−ε) and

− log F (x)

log x
≥ λ − ε −

log E(Xλ−ε)

log x
→ λ − ε (x → ∞) , (9)

and hence µ(1/F ) ≥ λ = κ(X). If κ(X) = ∞ this argument works for all λ > 0, hence µ(1/F ) = ∞

as wanted.

Proof of Theorem 2. The proof of (1.2) in Daley (2001) is probabilistic. Here we apply Lemma

BDK to the r.v. min(X, Y ), whose d.f. has the tail F G, in writing

κ(min(X, Y )) = lim inf
x→∞

− log F (x) − log G(x)

log x
(10)

≥ lim inf
x→∞

− log F (x)

log x
+ lim inf

x→∞

− log G(x)

log x
= κ(X) + κ(Y ), (11)

with equality holding when (3) holds.

For the converse, suppose X has moment index α < ∞ but that 1/F has upper order exceeding

α, i.e.

α = lim inf
x→∞

− log F (x)

log x
< lim sup

x→∞

− log F (x)

log x
≤ ∞.

Then there is a sequence xn → ∞ and constant ε > 0 such that

− log F (xn) ≥ (α + 2ε) log xn for all n, (12)
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and moreover we may choose the initial member x0 of the sequence so large that

− log F (x) ≥ (α − ε) log x for all x ≥ x0. (13)

Further, we can assume without loss of generality, just by taking a subsequence of xn if need be,

that

log xn+1 > log x′′

n ≡
α + 2ε

α + ε
log xn . (14)

The idea now is to choose β > 2(α + ε) and construct Y , or rather the tail G of its d.f., with

κ(Y ) = β and the additional properties that

− log G(x) ≥ (β + 2ε) log x whenever − log F (x) ≤ (α + ε) log x, (15)

and that on some sequence x′

n → ∞,

− log G(x′

n) = β log x′

n for all n. (16)

We will ensure that − log G has lower order β, and hence κ(Y ) = β, by insisting that

− log G(x) ≥ β log x for all x ≥ x0. (17)

If we can do all this then

− log F (x) − log G(x) ≥ (α + β + ε) log x for all x ≥ x0, (18)

as this is so by (15) and (13) when − log F (x) ≤ (α + ε) log x, and by (17) when − log F (x) >

(α + ε) log x. By (18), (10) exceeds α + β = κ(X) + κ(Y ), so X /∈ Mα as is to be proved.

There remains the construction of G, i.e. of a non-decreasing function − log G satisfying (15),

(16) and (17). To the right of any xn, because − log F (x) is non-decreasing, we have

− log F (x) ≥ − log F (xn) ≥ (α + 2ε) log xn > (α + ε) log x for all x ∈ [xn, x′′

n),
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where

log x′′

n :=
α + 2ε

α + ε
log xn.

Within this interval, F does not satisfy the condition that activates (15). Let us define G to have

the constant value

− log G(x) := (β + 2ε) log xn for x ∈ [xn, x′

n], (19)

where

log x′

n :=
β + 2ε

β
log xn.

Our having fixed β > 2(α + ε) ensures that

β + 2ε

β
= 1 +

2ε

β
<

α + 2ε

α + ε
,

and so x′

n < x′′

n and thus (19) does not conflict with (15). Note that (19) implies (16).

For the rest of the definition of G, just put

− log G(x) := (β + 2ε) log x for all x ∈ (x0,∞) \
( ∞

⋃

n=1
(xn, x′

n]
)

. (20)

Then − log G is non-decreasing, and (20) and (19) together ensure (17). The construction is com-

plete.

Proof of Lemma 3. That κ(Y ) = κ(X) − 1 follows from the definition (1) as noted in Daley

(2001). For the rest, let α = κ(X), and let {xn} be an increasing sequence for which xn → ∞ as

n → ∞ and

lim
n→∞

− log F (xn)

log xn
= α. (21)

For any fixed c > 1,

− log F (xn/c)]

log(xn/c)
≤

− log F (xn)

log xn − log c
→ α (n → ∞), (22)
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where we have used monotonicity of F and the limit from (21). From the limit infimum property

of α, it then follows that the left-hand side of (22) must have α as its limit for n → ∞.

Next consider

− log
( ∫

∞

xn/c
F (u) du/E(X)

)

log(xn/c)
, (23)

whose limit infimum is bounded below by α − 1 because this equals the moment index of Y , while

the numerator with the factor E(X) omitted (without affecting the limit property) is bounded

above by

− log

[
∫ xn

xn/c

F (u) du

]

≤ − log [xn(1 − c−1)F (xn)] .

It is readily checked that this quantity, when divided by log xn, has limit as n → ∞ equal to −1+α.

Then (23) has a limit as n → ∞, and it equals α − 1, which result can be combined with the limit

of (22) to give

− log F (xn/c) − log
∫

∞

xn/c
F (u) du

log(xn/c)
→ α + (α − 1) = 2α − 1.

3. The exponential index of a nonnegative r.v.

We hope that the following discussion will facilitate greater use of moment generating functions as

a handy technical device.

Definition 4. The exponential index ε(X) of a real-valued r.v. X for which F (x) = Pr{X ≥ x},

is defined by

ε(X) = sup
{

t: E(etX) < ∞
}

. (24)

We could now develop analogues of Lemma BDK and Theorem 2 for ε(·). However there is

no point in reproducing the earlier construction and arguments because the moment index of a

positive r.v. X is related to the exponential index of the real r.v. Y = log X by ε(Y ) = κ(X). This

follows immediately, given a r.v. Y , from writing Z = eY in

ε(Y ) = sup
{

t: E(etY ) < ∞
}

= sup
{

t: E(Zt) < ∞
}

= κ(Z) = κ(eY ). (25)
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The analogues to which we have alluded can be stated as follows without need of further proof.

Lemma 5.

ε(X) = lim inf
x→∞

− log F (x)

x
. (26)

Theorem 6. For independent real-valued r.v.s X and Y ,

(i) ε(X + Y ) = min(ε(X), ε(Y ));

(ii) ε(max(X, Y )) = min(ε(X), ε(Y )); and

(iii) ε(min(X, Y )) ≥ ε(X) + ε(Y ), where equality holds for all r.v.s Y if and only if

lim sup
x→∞

− log F (x)

x
= ε(X).

In this theorem, parts (i) and (ii) are included for the sake of completeness (cf. Daley, 2001),

while (iii) follows from Theorem 2.

4. Discussion

For independent r.v.s X ∈ Mα+ and Y ∈ Mβ+ it follows from E
(

[min(X, Y )]α+β
)

≤ E(XαY β)

= E(Xα)E(Y β) < ∞ that min(X, Y ) ∈ M(α+β)+. Indeed, we have the following.

Lemma 7. For independent r.v.s Xj ∈ Mαj and for nonnegative αj (j = 1, . . . , k), Z ≡

min(X1, . . . , Xk) ∈ Mα where α = α1 + · · · + αk.

If, for each j, αj is finite and X ∈ Mαj+, then Z ∈ Mα+.

On the other hand, there exist r.v.s X and Y ∈ Mα− but min(X, Y ) ∈ Mα+. For example it

is enough that they have d.f.s given by F (x) = G(x) = 1/[x(1 + log x)3/5] for x ≥ 1.

Finiteness of the moment of the order of the moment index is also preserved for given X and Y

under addition (without requiring independence: just use the cr-inequality), and, for independent X

and Y , when α = κ(X) < κ(Y ) so that κ(max(X, Y )) = min(κ(X), κ(Y )) = α, we have X ∈ Mα+

if and only if max(X, Y ) ∈ Mα+.
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In work underlying Scheller-Wolf (2003), interest centres on independent nonnegative r.v.s X

and Y with finite positive moment indexes α and β for which both

E(Xα) = ∞ = E(Y β) (27)

and

E
(

[min(X, Y )]α+β
)

= ∞ (28)

hold. Clearly, E
(

[min(X, Y )]α+β−ǫ
)

< ∞ for arbitrary 0 < ǫ < α + β, and elementary algebra

yields the rest of Lemma 8.

Lemma 8. Let independent nonnegative r.v.s X and Y satisfy κ(X) = α ∈ (0,∞), κ(Y ) = β ∈

(0,∞), and Condition (27). If also Condition (28) holds for given X and all Y as described, then

κ(min(X, Y )) = κ(X) + κ(Y ), and the d.f. F of X satisfies (3).

A sufficient condition on X for (27) to imply (28) is that

lim inf
x→∞

xαF (x) > 0. (29)

It remains to consider conditions under which (27) does not imply (28). Let X ∈ Mα−, and

suppose that for some ǫ > 0 and positive integer k ≥ 2, its d.f. F satisfies

lim sup
x→∞

(

Logk−1(x)
)ǫ

xαF (x) < ∞, (30)

where the positive monotonic nondecreasing function Logk(x) is defined for x > 0 by

Logk(x) =

{

max(1, x) (k = 0),

max
(

1, log Logk−1(x)
)

(k = 1, 2, . . .)

(this function Logk is similar to but not the same as the functional iterate of log denoted logk

and defined in [BGT 1.3.3]). We assert that there exists a r.v. Y satisfying (27) such that

E
(

[min(X, Y )]α+β
)

< ∞.
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To check this assertion, observe that the function Logk(x) has derivative

(

Logk(x)
)

′

=











0 if Logk(x) = 1,
(

Logk−1(x)
)

′

Logk−1(x)
=

1

Logk−1(x) · · ·Log0(x)
otherwise.

In the latter case, this function is monotone decreasing to 0 as x → ∞. Its product with

(

max(1, x)
)

−(β−1)
, where β ≥ 1, can therefore be taken as the upper tail G say, of the d.f. of

a nonnegative r.v. YL say for which E(Y β
L ) = ∞, and E(Y β−ǫ

L ) < ∞ for every positive ǫ ≤ β. Thus,

YL ∈ Mβ−.

From (30) it follows that for some finite positive A,

F (x) ≤ Ax−α
(

Logk−1(x)
)

−ǫ
.

Then E
(

[min(X, YL)]α+β
)

< ∞ because the function F (x)G(x), which equals the tail of the d.f. of

the r.v. min(X, YL), has xα+β−1F (x)G(x) bounded above for sufficiently large x, x ≥ x0 say, by

A
(

Logk−1(x)
)1+ǫ

Logk−2(x) · · ·Log0(x)
,

and this function, being the derivative of −A
(

Logk−1(x)
)

−ǫ
/ǫ, is integrable on (x0,∞).
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