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Abstract

We review a semi-classical transport theory for non-Abelian plasmas based on a

classical picture of coloured point particles. Within this formalism, kinetic equa-

tions for the mean particle distribution, the mean fields and their fluctuations are

obtained using an ensemble-average in phase space. The framework permits the

integrating-out of fluctuations in a systematic manner. This leads to the derivation

of collision integrals, noise sources and fluctuation-induced currents for the effective

transport equations of QCD. Consistency with the non-Abelian gauge symmetry is

established, and systematic approximation schemes are worked out. In particular,

the approach is applicable to both in- and out-of-equilibrium plasmas. The formal-

ism is applied explicitly to a hot and weakly coupled QCD plasma slightly out of

equilibrium. The physics related to Debye screening, Landau damping or colour

conductivity is deduced in a very simple manner. Effective transport equations are

computed to first and second order in moments of the fluctuations. To first order,

they reproduce the seminal hard-thermal-loop effective theory. To second order, the

fluctuations induce collisions amongst the quasi-particles, leading to a Langevin-

type transport equation. A complementary Langevin approach is discussed as well.

Finally, we show how the approach can be applied to dense quark matter systems.

In the normal phase, the corresponding kinetic equations lead to the hard-dense-

loop effective theory. At high density and low temperature diquark condensates are

formed, changing the ground state of QCD. In the superconducting phase with two

massless quark flavours, a transport equation for coloured excitations is given as

well. Possible future applications are outlined.

PACS: 12.38.Mh, 11.10.Wx

(submitted to Physics Reports)



Contents

I Introduction 1

A Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B Semi-classical approach for hot plasmas . . . . . . . . . . . . . . . . . . . 2

C Hot QCD plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

D Dense quark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

E Further applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

F Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Microscopic approach 14

A Wong equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B Classical limit in a non-Abelian quantum field theory . . . . . . . . . . . . 15

C Microscopic distribution functions . . . . . . . . . . . . . . . . . . . . . . 18

D Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E Dynamical equations and conservation laws . . . . . . . . . . . . . . . . . 22

F Gauge symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III Macroscopic approach 25

A General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B Ensemble average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C Basic equal-time correlators . . . . . . . . . . . . . . . . . . . . . . . . . . 28

IV Effective transport theory 30

A Mean fields vs. fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B Effective transport equations . . . . . . . . . . . . . . . . . . . . . . . . . 31

C Collision integrals, noise and induced currents . . . . . . . . . . . . . . . . 34

D Systematic approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

G Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



V Gauge symmetry 42

A Background gauge symmetry vs. fluctuation gauge symmetry . . . . . . . 43

B Current conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

VI Plasmas close to equilibrium 50

A Classical plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B Quantum plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

VII HTL effective theory 54

A Non-Abelian Vlasov equations . . . . . . . . . . . . . . . . . . . . . . . . 54

B Solution to the transport equation . . . . . . . . . . . . . . . . . . . . . . 56

C Soft amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

D Energy-momentum tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VIII Beyond the Vlasov approximation 62

A Leading order dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Integrating-out the fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 64

C Correlators and Landau damping . . . . . . . . . . . . . . . . . . . . . . . 67

D Domain of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

E Collision integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

F Stochastic noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

G Ultrasoft amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

H Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

IX Langevin approach 79

A Coarse-graining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B Classical dissipative systems . . . . . . . . . . . . . . . . . . . . . . . . . 81

C Non-Abelian plasmas as a classical dissipative system . . . . . . . . . . . 82

D Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

E Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

ii



X Dense quark matter 89

A Normal phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B Superconducting phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C Quasiparticles in the 2SC phase . . . . . . . . . . . . . . . . . . . . . . . 91

D Vlasov approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

E Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

XI Summary and outlook 99

A Sample computation for correlators 102

B Correlators of Wigner functions in the classical limit 103

iii



I. INTRODUCTION

A. Motivation

In recent years, there has been an increasing interest in the dynamics of non-Abelian

plasmas at both very high temperature and density. One of the most spectacular predictions

of quantum chromodynamics is asymptotic freedom, which implies that quarks and gluons

behave as free particles in such extreme conditions because their coupling becomes very weak

at short distances. It is expected that a specific state of matter with quarks and gluons

unconfined – the so-called quark-gluon plasma – can exist. Many efforts for its experimental

detection in the core region of heavy-ion collisions will be made at RHIC and LHC within

the next years.

Other possible applications concern relativistic non-Abelian plasmas in extreme cos-

mological and astrophysical conditions, like the electro-weak plasma in the early universe,

the physics of dense neutron stars or the physics of supernovae explosions. If baryogene-

sis can be understood within an electroweak scenario, an understanding of the physics of

the electroweak plasma in the unbroken phase is essential for a computation of the rate

of baryon number violation. In different astrophysical settings, the density reached can be

such that the hadrons melt into their fundamental constituents, which gives rise to a very

rich phenomenology.

It is therefore mandatory to devise reliable and maniable theoretical tools for a quan-

titative description of non-Abelian plasmas both in and out-of equilibrium. While some

progress has been achieved in the recent years, we are still far away from having a satisfac-

tory understanding of the dynamics of non-Abelian plasmas. There are different approaches

in the literature in studying non-Abelian plasmas, ranging from thermal quantum field

theory to transport equations or lattice studies. Every approach has its advantages and

drawbacks, and each one appears to be suited to answer a specific subset of questions. A

quantum field theoretical description should be able to describe all possible aspects of the

plasma. Most applications have concerned to the weakly coupled plasma close to equilib-

rium. But even there, the situation is complicated due to the non-perturbative character of

long-wavelength excitations. Lattice simulations, which in principle can handle large gauge

couplings, have proven particularly successful for non-perturbative studies of static quanti-

ties like equal-time correlation functions. However, it seems very difficult to employ them

for the dynamical case. Furthermore, the standard Monte Carlo simulations of QCD with

a finite quark chemical potential fail. A kinetic or transport theory approach has proven

most efficient for the computation of macroscopic properties of the plasma, like transport

coefficients such as viscosities or conductivities. In turn, a direct evaluation of transport

coefficients in the framework of quantum field theory is quite involved. Already the leading

order result at weak coupling requires the resummation of infinitely many perturbative loop
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diagrams, an analysis which at present has only been performed for a scalar theory.

A new semi-classical transport theory, based on a classical point particle picture, has

been introduced recently [105–108]. There are several motivations for such a formalism.

First of all, it is expected that the main characteristics of non-Abelian plasmas can be

understood within simple semi-classical terms. Secondly, this approach allows for the study

of transport phenomena without the difficulties inherent to a full quantum field theoretical

analysis. Finally, the formalism is even applicable to hot out-of-equilibrium plasmas, which

are of particular relevance for the case of heavy ion collisions, or to dense quark matter in

the superconducting phase.

This article reviews in detail the conceptual framework for the semi-classical approach.

In addition, we discuss applications to the case of a hot and weakly coupled non-Abelian

plasma, and to dense quark matter systems. In the remainder of the introduction, we review

the ideas behind the semi-classical approximation which are at the basis of the present

formalism. We also review the present understanding for constructing effective theories of

hot and weakly coupled non-Abelian plasmas, where the formalism is finally put to work.

For an application to the physics of dense quark matter, we briefly summarise the present

understanding about superconducting phases of matter at large baryonic density. A detailed

outline of the review is given at the end of the introduction.

B. Semi-classical approach for hot plasmas

There are several reasons for considering a semi-classical approximation. A heuristic

argument is that the occupation number per mode vector |p| of ‘soft’ (h̄|p| ≪ T ) gauge

fields in a hot plasma at temperature T is very high, due to the Bose-Einstein enhancement.

This suggests that the long wave-length limit corresponds to the classical limit where the

fundamental constant h̄ vanishes. Therefore, one has reasons to believe that the soft quantum

fields are, to leading order, well approximated by soft classical ones. Such a reasoning has

been substantiated by various workers in the field (see [38] for a recent review). On the

other hand, the ‘hard’ modes of the plasma cannot be approximated this way as their

occupation number is of order unity. However, it has been established that weakly coupled

hard modes behave like quasi-particles [33]. They can be described, to leading order in a

gradient expansion, by an ensemble of coloured classical point particles moving on world

lines. Therefore it is conceivable that the main characteristics of such plasmas can be

understood within a purely semi-classical language.

For QED plasmas, semi-classical methods have been known and applied for a long

while [97,94]. They consist in describing the charged constituents of the plasma as classical

point particles moving on world lines. Their interactions are determined self-consistently

through the Maxwell equations induced by the current of the particles. On the mean
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field level, the resulting Boltzmann equation for the one-particle distribution function is

known as the Vlasov equation. Beyond the mean field approximation, several approaches

for the construction of a full kinetic theory for such plasmas are known in the literature,

the most famous one being the BBGKY hierarchy for correlator functions within non-

relativistic statistical mechanics [20]. Alternative approaches have been put forward as well.

Of particular interest is the approach by Klimontovitch, who constructed a kinetic theory on

the basis of the one-particle distribution function and the correlators of fluctuations about

them [94]. This leads naturally to a description in terms of mean fields and fluctuations.

Conceptually, the new ingredient in his approach is that the plasma is not considered as

a continuous medium. Instead, the stochastic fluctuations of the particles are taken into

account, and the dissipative character of effective long-range interactions enters naturally in

this framework. The procedure leads to a Boltzmann-Langevin type of effective transport

equations, which, on phenomenological grounds, have been already proposed for non-charged

particles by Bixon and Zwanzig [26]. This approach has been extended for the study of

nuclear collisions [127,14,54] (see [2] for a recent review of applications to nuclear dynamics).

It also appeared that systematic approximations within the Klimontovitch approach are

better behaved than those based on the BBGKY hierarchy [94]. Finally, this approach

permits the derivation of collision integrals, like the Balescu-Lenard one for Abelian plasmas

[99,94].

For non-Abelian plasmas, semi-classical transport equations can be obtained in essen-

tially two distinct manners. The first one starts from a quantum field theoretical framework,

which is used to construct a (quantum) transport theory, for example in terms of Wigner

functions, or for hierarchies of Schwinger-Dyson equations [89,20,61]. The semi-classical

approximation is performed in a second step on the level of the transport theory, that is, on

the ‘macroscopic’ level (see, for example [61,117,27]). Alternatively, one may perform the

semi-classical approximation already on the ‘microscopic’ level, in analogy to the Abelian

case outlined above. In this case the concept of an ensemble of classical coloured point par-

ticles moving on world lines has to be invoked. The new ingredients are the SU(N) colour

charges of the particles. Their classical equations of motion for high dimensional represen-

tations were first given by Wong [146] and can be understood as equations of motion for

expectation values of quantum wave packets, as shown by Brown and Weisberger [49].

A transport equation based on the classical point particle approximation has been

given by Heinz [69–72]. It consists in a Boltzmann equation for a one-particle distribution

function for gluons, quarks or anti-quarks with a – yet unspecified – collision term. On

the mean field level, neglecting collision terms, these equations are known as the non-

Abelian Vlasov equations. These are intimately linked to a gradient expansion of the Wigner

transform, as pointed out by Winter [145], and to the quantum Boltzmann equation, as

discussed by Elze and Heinz [61]. An important step forward in the understanding of the

semi-classical transport theory has been achieved by Kelly et al. [91,92]. They noticed that
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a gauge-consistent solution of non-Abelian Vlasov equations to leading order in the gauge

coupling reproduces precisely the hard thermal loop effective kinetic theory. In addition,

the authors clarified the role of the non-Abelian colour charges as non-canonical phase

space variables and their explicit link to canonical Darboux variables. This formalism has

also been applied to magnetic screening [112], and to cold dense plasmas [111] which are

characterised by a large chemical potential.

The effects of non-Abelian fluctuations have to be considered to go beyond the Vlasov

approximation. In the context of QCD transport theory this was pointed out by Selikhov,

who, motivated by the earlier work of Klimontovitch, derived a collision term of the Balescu-

Lenard type for non-Abelian Boltzmann equations [133]. This method, applied by Selikhov

and Gyulassy to the problem of colour conductivity, uncovered a logarithmic sensitivity

of the colour relaxation time scale [134,135]. However, in their considerations only the

local part of the corresponding collision term has been identified, which implies that the

corresponding colour current is not covariantly conserved. Along similar lines, Markov

and Markova applied the procedure of Klimontovitch to a classical non-Abelian plasma

and formally derived a Balescu-Lenard collision integral [113]. The strategy is similar to

Selikhov’s approach, except that it embarks from a purely classical starting point. This

approach overlooked the important point that the colour charges are non-standard phase

space variables, which is crucial for a definition of an ensemble average. Also, neither the

non-linear higher-order effects due to the non-Abelian interactions have been considered,

nor the requirements implied due to gauge symmetry.

A fully self-contained approach, aimed at filling this gap in the literature of clas-

sical non-Abelian plasmas was presented recently and is the subject of the review

[105–108,103,104,109]. It is based on a classical point particle picture and uses the Klimon-

tovitch procedure, extended to the non-Abelian case, to describe non-Abelian fluctuations.

The essential contribution is considering the non-Abelian colour charges as dynamical vari-

ables and introducing the concept of ensemble average to the non-Abelian kinetic equations.

Equally important is the consistent treatment of the intrinsic non-linearities of non-Abelian

gauge interactions. The fundamental role of fluctuations in the quasi-particle distribution

function has been worked out, and results in a recipe as to how effective semi-classical

transport equations can be derived in a systematic manner. This set of coupled dynamical

equations for mean fields and correlators of fluctuations should be enough to consider all

transport phenomena in the plasma, at least in the domain where the underlying point par-

ticle picture is applicable. This procedure could even be applicable for out-of-equilibrium

situations, since the derivation of the transport equation does not depend on the system

being in equilibrium or not. Although we are not applying the formalism to plasmas out-

of-equilibrium, this observation could open a door for interesting further applications in a

domain relevant for future experiments. It would be very interesting to investigate out-of-

equilibrium situations and plasma instabilities within the present transport theory.
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C. Hot QCD plasmas

The case of a hot and weakly coupled non-Abelian plasma close to thermal equilibrium

has already proven quite rich and involved in structure due to the non-perturbative character

of the long-wavelength fluctuations [102,68]. We shall apply the aforementioned formalism

in detail to the weakly coupled plasma to show how the physics related to Debye screening,

Landau damping and colour relaxation can be understood very efficiently within this simple

semi-classical framework.

Let us briefly summarise the present status for constructing effective (transport) the-

ories for hot and weakly coupled non-Abelian plasmas close to thermal equilibrium at tem-

perature T (see Fig. 1). The physics for the whole range of momentum modes of the non-

Abelian fields requires the framework of thermal QCD [90,100,138]. Effective theories for

the long-range modes are obtained when high-momentum modes are integrated-out. There

is one conceptual limitation for the use of perturbative methods due to the non-perturbative

magnetic sector of QCD, which corresponds to momentum scales about ∼ g2T , the magnetic

mass scale. The interactions of modes with smaller momenta are strictly non-perturbative

[68], hence, any perturbative scheme for integrating-out modes with momenta ∼ |p| relies

on ∼ g2T/|p| as the effective expansion parameter [34].

The first step towards obtaining an effective theory for the long wave-length excitations

has been made by Pisarski [122] and Braaten and Pisarski [43,45]. Standard thermal per-

turbation theory is plagued by severe infrared divergences due to massless modes. Braaten

and Pisarski proposed the resummation of all 1-loop diagrams with hard internal momenta

and soft external ones, the seminal Hard Thermal Loops (HTL). Here, ‘hard’ refers to mo-

menta of the order of the temperature |p| ∼ T . We denote momenta with |p| ∼ gT as ‘soft’

(sometimes also referred to as ‘semi-hard’ in the literature). The HTL-resummed gluon

propagator has its poles not on the light cone and the dispersion relation yields, apart from

a complicated momentum dependence, the Debye (screening) mass ∼ gT for the chromo-

electric fields. The HTL polarisation tensor also has an imaginary part, which describes

the emission and absorption of soft gluons by the hard modes, known as Landau damping.

The resulting effective theory for the soft modes contains highly non-local interactions in

space and time, induced as HTL corrections to the propagator and to the vertices. It leads

to gauge-invariant results for physical observables like the soft gluon damping rate [42,44].

An effective action for the HTLs was given by Taylor and Wong [141]. Further aspects

of the HTL effective theory, for example their link to Chern-Simons theory [58,59,82], to

Wess-Zumino-Novikov-Witten actions [118] and their Hamiltonian structure [119] have been

considered subsequently.

A local formulation of the HTL effective theory was given by Blaizot and Iancu [28–30]

and by Nair [118,119]. Blaizot and Iancu managed to reformulate the HTL effective theory

within the language of kinetic theory. Such equations are similar to those for the HTL effec-
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tive theory of QED plasmas as considered by Silin [136]. The derivation has been achieved

invoking a truncation to a Schwinger-Dyson hierarchy. This has lead to a transport equation

for the distribution function describing the hard or particle-like degrees of freedom. The ad-

vantage of a kinetic description is that the non-local interactions in the HTL effective theory

are replaced by a local transport theory. The crucial step is to consider the quasi-particle

distribution function as independent degrees of freedom, describing the hard excitations of

the plasma. This also has lead to a local expression for the HTL energy in terms of the

soft gauge fields and the colour current density [118,30]. It is worthwhile pointing out that

the HTL effective theory can be derived within a semi-classical transport theory based on

a point particle picture [91,92].

|p|

T

gT

γ

NLLO

LLO

effective classical theoriesfull QFT

HTL

theory

g  T2

1/ln(1/g)2g

effective Langevin dynamics

gExpansion
parameter:

Figure 1: Schematic diagram for the series of effective theories for hot and weakly coupled non-

Abelian plasmas close to thermal equilibrium. The physics of the hard modes with momenta

|p| ∼ T or larger needs the full thermal QCD. Effective classical theories are found for modes

|p| ≪ T . The hard-thermal-loop (HTL) effective theory integrates-out the hard modes, and is

effective for modes at about the Debye mass, |p| ∼ gT . It can be written as a collisionless

Boltzmann equation. The effective expansion parameter is ∼ g2. A collisional Boltzmann equation

is found after integrating-out the modes |p| ∼ gT to leading logarithmic order (LLO), which is

an expansion in g. The effective theory for the ultra-soft gauge fields with spatial momenta

|p| ≪ gT is a Langevin-type dynamical equation. The next step integrates-out the modes with

|p| ∼ γ ∼ g2T ln(1/g), which is an expansion in 1/ ln(1/g) and yields next-to-leading-logarithmic

order (NLLO) corrections without changing the qualitative form of the effective theory [37].
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Some attempts have been made for obtaining effective theories beyond the HTL ap-

proximation [80,11]. Eventually, Bödeker showed the way how the Debye scale can be

integrated-out within a quantum field-theoretical framework [34–36]. His derivation relied

on a semi-classical approximation which treats the soft modes as classical fields, and made

use of the local expression for the HTL effective energy which allowed him to define a weight

function and to perform classical thermal averages over initial conditions. This procedure

has also been understood as an appropriate resummation of certain classes of Feynman

diagrams [35,32]. To leading logarithmic order (LLO), the resulting effective theory cor-

responds to a Langevin-type Boltzmann equation, including a collision term and a source

for stochastic noise. The physics behind it describes the damping of colour excitations due

to their scattering with the hard particles in the plasma. A dynamical scale γ appeared,

which corresponds to the damping rate of hard gluons in the plasma. It is of the order of

∼ g2T ln(1/g).

These findings initiated further developments in the field. Arnold, Son and Yaffe [9,10]

interpreted the kinetic equation in terms of Lenz Law and gave an alternative derivation

of Bödeker’s collision term and the related noise source. The very same effective kinetic

theory has also been obtained within the semi-classical approach which will be discussed

in the present article [105,106]. Subsequently, and making use of an additional fluctuation-

dissipation relation, Valle-Basagoiti presented an equivalent set of transport equations [143].

Finally, Blaizot and Iancu extended their earlier work to higher order and derived the

collision term from a truncated Schwinger-Dyson hierarchy [31].

The Boltzmann-Langevin equation, when solved to leading order in the overdamped

limit p0 ≪ |p| ≪ γ results in a very simple Langevin equation for the ultra-soft gauge fields

only [36]. This effective theory is, quite remarkably, ultra-violet finite [9] and has been

used for numerical simulations to determine the hot sphaleron transition rate [116]. Some

consideration beyond LLO have been made in [35,32]. A non-local Langevin equation, valid

to leading order in g and to all orders in ln(1/g) has been given by Arnold [7]. It is valid for

frequencies p0 ∼ g4T , and has been used by Arnold and Yaffe [12,13] to push the computation

of the colour conductivity to the next-to-leading logarithmic order (NLLO). They made use

of the stochastic quantisation method [148] to convert the stochastic dynamical equations

into path integrals [7], which can be treated with standard techniques. It is interesting that

the effective theory for the gauge fields remains of the Langevin-type even at NLLO. A local

Langevin equation, valid for frequencies p0 <∼ g2T , has been given by Bödeker [39]. It is

expected that the UV divergences are local as well, in contrast to those associated to the

original Boltzmann-Langevin equation [34].

Thus, it is fair to say that the physics related to Debye screening, Landau damping,

and colour relaxation in the close-to-equilibrium plasma is by now well understood. A

variety of different and complementary approaches have lead to identical effective transport

equations. All approaches made use of some semi-classical approximation in the course of
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their considerations. Interestingly, these characteristics of a hot plasma can be understood

within a simple semi-classical language straight away.

D. Dense quark matter

So far we have discussed effective theories for the long distance physics of QCD plasmas

at very high temperature. It is also interesting to consider situations when the baryonic

density is very high, while the temperature is low. Usually such a QCD plasma is called

dense quark matter, or simply quark matter. This state of matter could be realized in

various astrophysical settings, such as in the core of neutron stars, collapsing stars and

supernova explosions. In the presence of strange quarks, and at zero pressure, quark matter

might even be stable, in which case quark stars could exist in nature.

It has been known for a long time that cold dense quark matter should exhibit the

phenomenon of colour superconductivity [22,23,15]. The present microscopic understanding

of colour superconductivity relies on techniques of BCS theory [132] adapted to dense quark

matter (see Refs. [126,4] for recent reviews and related literature). At asymptotically large

baryonic densities, and because of asymptotic freedom, the strong gauge coupling constant

becomes small. Then, the relevant degrees of freedom of the system are those of quarks,

filling up their corresponding Fermi seas up to the value of the Fermi energy EF = µ,

where µ is the quark chemical potential. These highly degenerate fermionic systems are

very unstable to attractive interactions. In dense quark matter the attractive interaction

among quarks is provided by one-gluon exchange in an antitriplet colour channel. This leads

to the formation of diquark condensates, in analogy to the Cooper pairs of electromagnetic

superconductors.

In QCD a diquark condensate cannot be colour neutral, and thus the colour symmetry

is spontaneously broken and gluons acquire a mass through the Anderson-Higgs mechanism.

Because the gauge symmetry is SUc(3) and there are some flavour symmetries for massless or

light quarks, the possible patterns of symmetry breaking are richer than in the Abelian case.

One finds different phases of quark matter, according to the number of quark flavours that

participate in the condensation. The form of the diquark condensate is dictated by Pauli’s

principle and by the fact that it should minimise the free energy of the system. The different

colour superconducting phases of quark matter are characterised by the total or partial

breaking of the gauge group, and by the possible existence of Nambu-Goldstone modes

associated to the breaking of the global symmetries. Using standard techniques of BCS

theory [132] it is possible to study the microscopic properties of the colour superconductor

in the weak coupling regime.

While our knowledge of the microscopic behaviour of quark matter is increasing, little

is known about its macroscopic behaviour. Is quark matter a dissipative or dissipativeless
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system? Is it such a good heat and electricity conductor as an electromagnetic supercon-

ductor? To answer those questions, it is mandatory to compute the transport coefficients of

quark matter in their different possible phases. Kinetic theory provides the perfect frame-

work for such a computation.

A classical transport equation for the gapped quasiparticles of a two-flavour colour su-

perconductor has been proposed recently [109]. When the temperature is increased, thereby

melting the diquark condensates, the transport equation reduces to the classical transport

equation valid for a non-Abelian plasma in the unbroken phase. In the close-to-equilibrium

case and in the Vlasov approximation, the leading-order solution to the transport equation

reproduces the one-loop gluon polarisation tensor for small gluon energy and momenta, as

found within a quantum field theoretical computation. It is also worth mentioning that the

microscopic dynamics of the gapped quasiparticles is not governed by the Wong equations,

as in the normal phase.

E. Further applications

The starting point of this approach are the classical equations of motion obeyed by

coloured point particles, which, in the unbroken phase of a non-Abelian gauge theory, are

the Wong equations [146]. In the past, these equations have also been studied for other

purposes, and we briefly summarise the main applications here. We also comment on other

uses of classical methods for studying the quark-gluon plasma.

After Wong proposed the equations of motion for classical Yang-Mills particles, a

number of publications have been concerned with a more fundamental understanding of

them, either by providing corresponding point particle Lagrangians or by establishing a

link between point particle Lagrangians and one-loop effective actions in quantum field

theories. Balachandran et al. [17,18] and Barducci et al. [21] proposed different Lagrangians

which lead to the Wong equations. Upon quantisation, the several different choices describe

particles which belong to reducible or irreducible representations of the Lie group. A unified

description of the different choices was given in [18]. Balachandran et al. showed that upon

quantisation, some of the parameters which appear in the Lagrangian are restricted to a

certain set of values. This reflects the fact that the spectrum of the Casimir invariants of

the Lie group is discrete.

A different line of research concerned the link between the point particle Lagrangian,

on one side, and quantum field theory on the other. Brown and Weisberger [49] argued

that the Wong equations can be interpreted as classical equations of motion for expectation

values of quantum fields. Strassler [140] showed that the one-loop effective action in quantum

field theory can be expressed in terms of a quantum mechanical path integral over a point

particle Lagrangian. In the case of non-Abelian gauge theories, D’Hoker and Gagne [55,56]
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gave the world-line Lagrangian for a non-Abelian gauge field theory. Pisarski [124] noted

that this Lagrangian is identical to the one for Wong particles. It has been suggested

that this intimate link may provide a deeper explanation for the applicability of the semi-

classical approximation. Jalilian-Marian et al. [84] followed this line of research. They

derived, within a real time many-body formalism for the world line action, a set of effective

transport equations which closely resemble those studied here.

Gibbons et al. [63], and Holm and Kupershmidt [77] employed the Wong equations

to derive a set of chromohydrodynamic transport equations. These equations are the non-

Abelian analogues of the magnetohydrodynamic equations for charged fluids. These authors

did not attempt, however, to link their approach with a quantum field theoretical analysis.

At present, it is not clear whether consistent chromohydrodynamic equations can be derived

from QCD in the first place, due to the (yet) unknown dynamics of the chromomagnetic fields

in the plasma. In this respect, the Abelian and non-Abelian cases are qualitatively different,

because magnetic fields are never screened in a Coulomb plasma, while chromomagnetic

fields are supposed to be screened by a non-perturbative magnetic mass.

The transport equations associated to the Wong particles have been used to study

non-Abelian dynamics, both analytically and numerically, in combination with lattice sim-

ulations. Based on assumptions linked to the colour flux model, some aspects of the quark-

gluon plasma during the very early stages of an ultrarelativistic heavy-ion collision have

been studied in [120,121,57]. This concerns the production and evolution of a quark [120]

or a quark-gluon plasma [121], created in a constant colour-electric field. The production

of gluons from a space-time dependent chromofield has been discussed in [57]. The use of

lattice simulations in combination with the Wong point particle degrees of freedom have

first been pointed out by Hu and Müller [79], and Hu, Müller and Moore [115]. Here, the

classical Yang-Mills equation is formulated on a spatial lattice, following the standard Kogut-

Susskind implementation. Then one adds the classical point particle degrees of freedom.

This technique has been used to construct a lattice implementation of the HTL effective the-

ory [115], which allowed for the computation of the Chern-Simons diffusion rate, a quantity

which is essential for the evaluation of baryogenesis in an electroweak scenario.

A few further applications and extensions have been considered in the literature. In

a quantum mechanical framework, the non-Abelian charges have been used to describe the

non-Abelian analogue of the Aharanov-Bohm effect [16]. The dual of the Wong equations

have been studied in [53]. These are the equations obeyed by particles which are the non-

Abelian analogues of the Dirac magnetic monopole of electromagnetism. Explicit analytical

solutions to the Wong equations for several coloured point particles, have been found in

[96]. The extension of Wong’s equations for QCD to curved space time has been studied by

Brandt, Frenkel and Taylor [48]. They constructed the corresponding effective action and

obtained an exact, but implicit, solution of the classical Boltzmann equation. Semi-classical

methods have been applied in the context of small x physics. Here, the Wong equations
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have been used to construct a small x effective action [83], which opens an interesting door

to future applications.

An important domain of research concerns the computation of transport coefficients

of hot and dense non-Abelian plasmas, such as the shear and bulk viscosities, heat and

electrical conductivities, and baryon, lepton and flavour diffusion. In the past, a derivation

of shear and bulk viscosity from quantum field theory has only been performed for a scalar

theory [85,86]. Based on classical transport theory, a number of leading order computations

have been done, though not necessarily within the Wong particle picture. The first compu-

tations made use of a relaxation time approximation, which allowed a correct determination

of the functional dependence of transport coefficients on the gauge coupling [78]. The con-

siderations in [25,75,76,88,114,24] improved on the relaxation time approximation in that

the relevant collision terms were deduced from the scattering amplitudes resulting from the

particle interactions. All earlier computations have been recently reviewed in [8], where

some numerical errors in the existing literature were detected and corrected. At present,

the results of these transport coefficients are only known to leading logarithmic order in

the non-Abelian gauge coupling. While computations of transport coefficients are typically

based on linear response, the case of non-linear response has recently been emphasised in

[52], for the example of the quadratic shear viscosity of a weakly coupled scalar field. It has

been argued that an intimate link between classical transport theory and response theory

ensures that the non-linear response is correctly described by classical transport theory.

F. Outline

This review presents an approach to semi-classical transport theory for non-Abelian

plasmas based on a classical point particle picture. Both conceptual and computational

issues are considered. The first part, Sections II – V, addresses the various conceptual

aspects of the approach, while the second part, Sections VI – X, presents an application

to hot plasmas close to thermal equilibrium, and to dense quark matter. We summarise,

whenever appropriate, the main results at the end of the sections.

In Section II, the microscopic formalism is reviewed. This starts with the classical

equations of motions for coloured point particles carrying a non-Abelian colour charge (Sec-

tion IIA) and the derivation as equations of motions of expectation values for quantum

wave packets (Section IIB). The basic definitions of microscopic kinetic functions are given

(Section IIC) and the phase space variables associated to the colour charges introduced

(Section IID). The dynamical equations for the distribution function (Section II E) and the

microscopic gauge symmetry (Section II F) are discussed.

In Section III, the step from a microscopic to a macroscopic formulation is performed.

The general assumptions made when switching to an effective description are explained
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(Section IIIA), followed by a brief description of the Gibbs ensemble average which is the

starting point for the subsequent applications (Section IIIB). Finally, the basic equal-

time correlation functions for the quasi-particle distribution function are given explicitly

(Section IIIC)

In Section IV, the ensemble average is performed for the transport equations itself.

The split of the distribution function and the gauge fields into mean and fluctuating parts is

considered next (Section IVA), followed by a derivation of the effective transport equations

in their most general form for mean fields and correlators (Section IVB). The new terms

in the effective kinetic equations are interpreted as collision integrals, sources for stochastic

noise, and fluctuation-induced currents (Section IVC). Systematic approximation schemes,

able to truncate the infinite hierarchy of coupled differential equations, are detailed (Sec-

tion IVD). This is followed by a discussion of the basic macroscopic conservation laws

(Section IVE) and the kinetic entropy (Section IVF). The section is finished by a brief

discussion (Section IVG).

All aspects connected to the requirements of gauge symmetry in the effective transport

theory are discussed in Section V. The intimate relationship to the background field method

and the invariance under both the background and the fluctuation field gauge transforma-

tions are discussed (Section VA). Current conservation for the mean and the fluctuation

field implies non-trivial cross-dependences amongst different correlation functions. Their

consistency is shown for the general case (Section VB), and for approximations to it (Sec-

tion VC).

The remaining part is dedicated to applications of the method to hot non-Abelian plas-

mas close to thermal equilibrium. In Section VI, the relevant physical scales and parameters

for classical (Section VIA) and quantum plasmas (Section VIB) are discussed.

In Section VII we discuss how the HTL effective theory is recovered within the present

formalism. To leading order in the gauge coupling one obtains the non-Abelian Vlasov

equation (Section VIIA). Their solution (Section VIIB) allows us to identify all HTL

amplitudes, including the HTL polarisation tensor (Section VIIC). As an application, it

is shown how a local expression for the Hamiltonian and the Poynting vector is obtained

(Section VIID).

Non-Abelian fluctuations have to be taken into account beyond the HTL approxima-

tion. This is done in Section VIII. All approximations are controlled by a small gauge

coupling, and the leading order dynamical equations are given (Section VIIIA). The dy-

namics of fluctuations is solved explicitly in terms of initial fluctuations of the quasi-particle

distribution function (Section VIIIB). The basic equal-time correlators are obtained, and

the example of Landau damping is discussed (Section VIIIC). The domain of validity is de-

rived from the two-particle correlators and the associated correlation length (Section VIIID).

The correlators in the effective transport equation are evaluated, and the relevant collision
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integral (Section VIII E) and the corresponding noise source (Section VIII F) are identified

to leading logarithmic accuracy. The resulting transport equation is discussed. Iterative

solutions allow the computation of the ultra-soft amplitudes (Section VIIIG). In the over-

damped limit, Bödeker’s Langevin-type dynamical equation for the ultra-soft gauge fields

is recovered (Section VIIIH).

In Section IX, a phenomenological approach to non-Abelian fluctuations is discussed.

It is based on the idea of coarse-graining the microscopic transport equations (Section IXA).

We describe the line of reasoning for the example of classical dissipative systems (Sec-

tion IXB). This is extended to the case of non-Abelian plasmas, where the basic spectral

functions and equal-time correlators for stochastic fluctuations are derived from the kinetic

entropy (Section IXC). As an application, Bödeker’s effective kinetic theory is re-considered

and shown to be compatible with the fluctuation-dissipation theorem (Section IXD). We

close with a discussion of the results and further applications (Section IXE).

In Section X we consider dense quark matter. When the effects of quark pairing

can be neglected, the transport equations are the same as for the hot non-Abelian plasma

(Section XA). In the superconducting phase, the ground state is given by a diquark con-

densate (Section XB). For two massless quark flavours, the thermal colour excitations of

the condensate are described by quasiparticles (Section XC). The corresponding transport

equation is given and solved to leading order (Section XD). We close with a brief discussion

of the results (Section XE).

Two Appendices contain technical details.
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II. MICROSCOPIC APPROACH

The microscopic approach to semi-classical transport theory considers an ensemble of

classical point particles. In the Abelian case, these are simply electrons or ions, interacting

self-consistently through the Maxwell equations. Based on this picture, a complete effective

theory for classical Coulomb or Abelian plasmas has been worked out in the literature (see

for example [93–95,99,137]).

For the non-Abelian case, the concept of an electro-magnetically charged classical

point particle is replaced by a coloured point particle, where ‘colour’ stands for a non-

Abelian colour charge. The classical equations of motion for such particles have been given

by Wong [146], and a transport theory based on it has been discussed in [69–74,61]. In

this section, we review the microscopic approach to non-Abelian plasmas based on classical

equations of motions for such ‘particles’. We also introduce the basic notation to be used

in the following sections for the construction of a kinetic theory [67].

A. Wong equations

Let us consider a system of particles carrying a non-Abelian colour charge Qa, where

the colour index runs from a = 1 to N2−1 for a SU(N) gauge group. Within a microscopic

description, the trajectories in phase space are known exactly. The trajectories x̂(τ), p̂(τ)

and Q̂(τ) for every particle are solutions of their classical equations of motions, known as

the Wong equations [146]

m
dx̂µ

dτ
= p̂µ , (2.1a)

m
dp̂µ

dτ
= gQ̂a F µν

a (x̂) p̂ν , (2.1b)

m
dQ̂a

dτ
= −gfabcp̂µAb

µ(x̂) Q̂c . (2.1c)

Here, Aµ denotes the microscopic gauge field. A dependence on spin degrees of freedom,

which can be incorporated as well [71], is not considered in the present case. The microscopic

field strength F a
µν and the energy momentum tensor of the gauge fields Θµν are given by

F a
µν [A] = ∂µA

a
µ − ∂νA

a
µ + gfabcAb

µA
c
ν , (2.2)

Θµν [A] = 1
4g

µνF a
ρσF

ρσ
a + F µρ

a F a ν
ρ (2.3)

and fabc are the structure constants of SU(N). We set c = kB = h̄ = 1 and work in natural

units, unless otherwise indicated. Note that the non-Abelian charges are also subject to
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dynamical evolution. Eq. (2.1c) can be rewritten as DτQ = 0, where Dτ = dx̂µ

dτ
Dµ is

the covariant derivative along the world line, and Dac
µ [A] = ∂µδ

ac + gfabcAb
µ the covariant

derivative in the adjoint representation.

The colour current can be constructed once the solutions of the Wong equations are

known. For every particle it reads

jµ
a (x) = g

∫

dτ
dx̂µ

dτ
Q̂a(τ) δ

(4)[x− x̂(τ)] . (2.4)

Employing the Wong equations (2.1) we find that the current is covariantly conserved,

Dµj
µ = 0 [146]. Similarly, the energy momentum tensor of the particles is given by [146]

tµν(x) =
∫

dτ
dx̂µ

dτ
p̂ν(τ) δ(4)[x− x̂(τ)] . (2.5)

The Wong equations couple to classical non-Abelian gauge fields. The Yang-Mills equations

are

DµF
µν(x) = Jν(x) . (2.6)

The source for the Yang-Mills fields

Jν(x) =
∑

particles

jν(x) (2.7)

is given by the sum of the currents of all particles.

B. Classical limit in a non-Abelian quantum field theory

One may wonder under which conditions the point particle picture and Wong equations

are a good approximation to the full quantum field theory. Originally, the Wong equations

have been derived as the non-Abelian generalisation of equations of motion for electrically

charged point particles. Here, we shall outline how the Wong equations are obtained as

equations of motions for wave packets, in a gauge field theory coupled to matter. The

derivation is valid for a system with matter interacting with non-Abelian gauge fields, and

it does not apply for the gluons themselves. This line of reasoning is due to Brown and

Weisberger [49]. It is argued that these equations derive from the conservation laws

∂νt
µν = F µν

a Ja
ν , (2.8a)

Dµ J
µ = 0 , (2.8b)
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as classical equations of motion for sufficiently localised quantum states (or ‘wave packets’),

provided that the gauge fields are ‘soft’, i.e. vary only slowly over typical scales associated

to the particles. We begin with the following definitions,

Xµ(t) =

∫

d3xxµ 〈t00(x, t)〉
∫

d3x 〈t00(x, t)〉 ≡ 1

P 0

∫

d3xxµ〈t00(x, t)〉 , (2.9a)

P µ(t) =
∫

d3x 〈t0µ(x, t)〉 , (2.9b)

g Qa(t) =
∫

d3x 〈J0
a(x, t)〉 . (2.9c)

The variable P µ(t) describes the particle’s mechanical four-momentum at the time t ≡ x0 ≡
X0 as an expectation value of the quantum fields, X i(t) the center-of-energy expectation

value of the quantum fields, and Qa(t) the expectation value for the associated colour charge.

Making use only of the conservation laws Eqs. (2.8), and partial integrations, one derives

the following equation of motion for the particles,

dX i

dt
=
P i

P 0
+

1

(P 0)2

∫

d3x d3y 〈F 0k(x, t) Jk(x, t)〉〈t00(y, t)〉(xi − yi) , (2.10a)

dP µ

dt
=
∫

d3x 〈F µν
a (x, t)Ja

ν (x, t)〉 , (2.10b)

g
dQa

dt
= −g fabc

∫

d3x 〈Ab
µ(x, t) J

µ,c(x, t)〉 . (2.10c)

These equations of motion still involve integrals over all space on the right-hand side. To

obtain a classical limit, these equations can be simplified in the case where the characteristic

length-scales of the particles are much smaller than those associated to the gauge fields. In

this case, the particle current J(x, t) is localised close to the location of the particle, and

equally t00(x, t). If the gauge fields do vary very slowly over these short distance scales, we

can perform the following approximation,

∫

d3x 〈F µν(x, t)Jρ(x, t)〉 ≈ F µν(X, t)
∫

d3x 〈Jρ(x, t)〉 , (2.11a)

by replacing the gauge fields in the integrand through their values at the location of the

particle. Equally, we approximate

∫

d3x 〈Aµ(x, t)Jρ(x, t)〉 ≈ Aµ(X, t)
∫

d3x 〈Jρ(x, t)〉 . (2.11b)

This implies in addition that

∫

d3x d3y 〈F 0k(x, t) Jk(x, t)〉〈t00(y, t)〉(xi − yi) ≈ 0 (2.11c)
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to leading order. The approximation Eq. (2.11) corresponds to the leading order in a gradient

expansion. Employing Eq. (2.11), the equations of motion become

dX i

dt
=
P i

P 0
, (2.12a)

dP µ

dt
= F µν

a (X, t)
∫

d3x 〈Ja
ν (x, t)〉 , (2.12b)

g
dQa

dt
= −g fabc A

b
µ(X, t)

∫

d3x 〈Jµ,c(x, t)〉 . (2.12c)

We shall now exploit the fact that the particle’s mass m with

m2 = P µ Pµ (2.13)

is a constant of motion, dm2/dt = 0. With Eq. (2.12b), this yields the constraint

0 = F µν
a (X, t)Pµ P0

∫

d3x 〈Ja
ν (x, t)〉 (2.14)

which has to hold for any field configuration. The field strength is an arbitrary antisymmetric

tensor, therefore, the constraint implies

Pµ

∫

d3x 〈Ja
ν (x, t)〉 = Pν

∫

d3x 〈Ja
µ(x, t)〉 . (2.15)

This is automatically the case if the current density is proportional to the momentum

density. Evaluating (2.15) for ν = 0 and using the definition (2.9c) we indeed find

P0

∫

d3x 〈Ja
µ(x, t)〉 = g PµQ

a , (2.16)

and the approximate equations of motion read

dX i

dt
=
P i

P 0
, (2.17a)

dP µ

dt
= g F µν

a

P ν

P 0
Qa , (2.17b)

dQa

dt
= −g fabc A

b
µ

P µ

P 0
Qc . (2.17c)

Let us finally introduce the proper time τ for the particles, which serves as a normalisation

condition for Eq. (2.17a). The proper time relates the mass of the particles to the 00-

component of the energy-momentum tensor through the requirement mdX/dτ = P , hence

m
d

dτ
= P 0 d

dt
. (2.18)
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Using Eqs. (2.17) and (2.18), the equations of motion become

m
dXµ

dτ
= P µ , (2.19a)

m
dP µ

dτ
= gQa F µν

a Pν , (2.19b)

m
dQa

dτ
= −gfabc P µAb

µ Q
c , (2.19c)

and agree with the equations found by Wong, Eqs. (2.1), if the replacements X → x̂,

P → p̂ and Q → Q̂ are made. We conclude that the Wong equations are the leading order

approximate equations of motions for point particles, if the induced gauge fields are soft.

This scale separation between hard particles and soft fields is at the root of the present

approach.

C. Microscopic distribution functions

Instead of describing every particle individually, it is convenient to introduce a phase

space density for the ensemble of particles, that is a distribution function which depends

on the whole set of coordinates xµ, pµ and Qa. To that end, we introduce two functions

n(x, p,Q) and f(x, p,Q), which only differ by appropriately chosen normalisation factors.

We begin with the function

n(x, p,Q) =
∑

i

∫

dτ δ(4)[x− x̂i(τ)] δ
(4)[p− p̂i(τ)] δ

(N2−1)[Q− Q̂i(τ)] , (2.20)

where the index i labels the particles. This distribution function is constructed in such a

way that the colour current

Jµ
a (x) = g

∫

d4p d(N2−1)Q
pµ

m
Qa n(x, p,Q) (2.21)

coincides with the sum over all currents associated to the individual particles Jµ
a =

∑

i j
µ
a ,

Eq. (2.7). The current is covariantly conserved, DµJ
µ = 0. It is convenient to make the

following changes in the choice of the distribution function. For convenience, we introduce

a momentum and a group measure such that the physical constraints like the on-mass shell

condition, positive energy and conservation of the group Casimirs are factored out into the

phase space measure. Consider the momentum measure

dP = d4p 2θ(p0) δ(p
2 −m2) , (2.22)

which accounts for the on-mass-shell constraint. The measure for the colour charges is
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dQ = d3QcR δ(QaQa − q2) , (2.23)

in the case of SU(2). For SU(3) the measure is

dQ = d8QcR δ(QaQa − q2) δ(dabcQ
aQbQc − q3) . (2.24)

For SU(N), N − 1 δ-functions ensuring the conservation of the set of N − 1 Casimirs have

to be introduced into the measure for the colour charges. We have also introduced the

representation-dependent normalisation constant cR into the measure, which is fixed by the

normalisation condition
∫

dQ = 1. Furthermore, we have
∫

dQQa = 0. The quadratic

Casimir C2 is defined as
∫

dQQaQb = C2δab , (2.25)

and depends on the group representation of the particles. For particles in the adjoint

representation of SU(N) we have C2 = N (gluons). For particles in the fundamental

representation, C2 = 1
2

(quarks). Notice that the colour charges have to be quantised within

a quantum field theoretical approach.

We will define a second distribution function f(x, p,Q) such that the physical con-

straints within n(x, p,Q) have been factored out,

dP dQf(x, p,Q) = d3p
dp0

m
d(N2−1)Qn(x, p,Q) . (2.26)

With this convention the colour current of the particles Eq. (2.21) now reads

Jµ
a (x) = g

∫

dPdQpµQa f(x, p,Q) . (2.27)

The energy-momentum tensor associated to the particles is

tµν(x) =
∫

dPdQ pµpν f(x, p,Q) (2.28)

when expressed in terms of the distribution function f .

D. Phase space

We have introduced the distribution function f(x, p,Q) to further a description in

phase space. While x and p are standard phase space variables with a canonical Poisson

bracket, the colour charges Qa are not. However, it is always possible to define the set of

canonical (Darboux) variables associated to the Qa charges. For SU(N), there are N(N −
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1)/2 pairs of canonical variables which we denote as φ = (φ1, . . . , φN(N−1)/2) and π =

(π1, . . . , πN(N−1)/2). The canonical variables define the canonical Poisson bracket

{A,B}PB =
∂A

∂xi

∂B

∂pi
− ∂A

∂pi

∂B

∂xi
+
∂A

∂φa

∂B

∂πa
− ∂B

∂φa

∂A

∂πa
, (2.29)

and obey trivially

{xi, pk}PB = δik , {φa, πb}PB = δab . (2.30)

The colour charges Qa are a representation of SU(N). When expressed as functions of the

canonical variables, their Poisson bracket reads

{Qa, Qb}PB = fabcQc , (2.31)

where fabc are the structure constants of SU(N).

The explicit construction of Darboux variables for SU(2) and SU(3) has been per-

formed in [91]. Let us first consider the SU(2)-case. We define the set of variables φ1, π1

and J by the implicit transformation

Q1 = cosφ1

√

J2 − π2
1 , Q2 = sinφ1

√

J2 − π2
1 , Q3 = π1 , (2.32)

where the variable π1 is bounded by −J ≤ π1 ≤ J . The variables φ1, π1 form a canon-

ically conjugate pair and obey Eq. (2.30), while J is fixed by the value of the quadratic

Casimir, which is constant under the dynamical evolution. One confirms that Eq. (2.32)

obey Eq. (2.31) with fabc = ǫabc. The phase space volume element Eq. (2.23) becomes

dQ = dπ1 dφ1 dJ J cR δ(J
2 − q2) (2.33)

in terms of the Darboux variables. With the above change of variables, one can fix the value

of the representation-dependent normalisation constant cR introduced in (2.23). From the

condition
∫

dQ = 1 one finds cR = 1/2π
√
q2. From the condition

∫

dQQaQb = C2δab one

gets q2 = 3C2. This entirely fixes the value of cR as a function of C2.

The group SU(3) has eight charges, (Q1, . . . , Q8) and two conserved quantities,

the quadratic and the cubic Casimirs, QaQa and dabcQ
aQbQc, respectively. The phase-

space colour measure is quoted above in (2.24). As in the SU(2) case, new coordi-

nates (φ1, φ2, φ3, π1, π2, π3, J1, J2) may be introduced by means of the following transfor-

mations [87]:

Q1 = cos φ1 π+ π− , Q2 = sin φ1 π+ π− ,

Q3 = π1 ,

Q4 =C++ π+A+ C+− π−B , Q5 = S++ π+A+ S+− π−B ,

Q6 =C−+ π−A− C−− π+B , Q7 = S−+ π−A− S−− π+B ,

Q8 = π2 ,

(2.34)
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in which we have used the definitions:

π+ =
√
π3 + π1 , π− =

√
π3 − π1 ,

C±± = cos
[

1
2
(±φ1 +

√
3φ2 ± φ3)

]

, S±± = sin
[

1
2
(±φ1 +

√
3φ2 ± φ3)

]

,
(2.35)

and A, B are given by

A =
1

2π3

√

√

√

√

(

J1 − J2

3
+ π3 +

π2√
3

)(

J1 + 2J2

3
+ π3 +

π2√
3

)(

2J1 + J2

3
− π3 −

π2√
3

)

,

B =
1

2π3

√

√

√

√

(

J2 − J1

3
+ π3 −

π2√
3

)(

J1 + 2J2

3
− π3 +

π2√
3

)(

2J1 + J2

3
+ π3 −

π2√
3

)

.

Note that in this representation, the set (Q1, Q2, Q3) forms an SU(2) subgroup with

quadratic Casimir Q2
1 +Q2

2 +Q2
3 = π2

3 . It can be verified, using the values of the structure

constants given in Tab. 1, that the expressions above for Q1, . . . , Q8 form a representation

of the group SU(3).

fabc f123 f147 f156 f246 f257 f345 f367 f458 f678

1 1
2

−1
2

1
2

1
2

1
2

−1
2

√
3

2

√
3

2

Table 1: The non-zero constants fabc for SU(3).

dabc d118 d146 d157 d228 d247 d256 d338 d344 d355 d366 d377 d448 d558 d668 d778 d888

1√
3

1
2

1
2

1√
3

−1
2

1
2

1√
3

1
2

1
2

−1
2

−1
2
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
− 1√

3

Table 2: The non-zero constants dabc for SU(3).

As is implicit in the above, the two Casimirs depend only on J1 and J2. They can be

computed, using the values given in the Tab. 2, as:

QaQa =
1

3
(J2

1 + J1J2 + J2
2 ) , (2.36a)

dabcQ
aQbQc =

1

18
(J1 − J2)(J1 + 2J2)(2J1 + J2) . (2.36b)

The phase-space colour measure for SU(3), given in (2.24), may be transformed to the new

coordinates through use of (2.34) and evaluation of the Jacobian
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∣

∣

∣

∣

∣

∂(Q1, Q2, . . . , Q8)

∂(φ1, φ2, φ3, π1, π2, π3, J1, J2)

∣

∣

∣

∣

∣

=

√
3

48
J1 J2 (J1 + J2) . (2.37)

The measure reads:

dQ = cR dφ1 dφ2 dφ3 dπ1 dπ2 dπ3 dJ1 dJ2

√
3

48
J1 J2 (J1 + J2) δ

(1

3
(J2

1 + J1J2 + J2
2 ) − q2

)

×

δ
( 1

18
(J1 − J2)(J1 + 2J2)(2J1 + J2) − q3

)

. (2.38)

Since the two Casimirs are linearly independent, the delta-functions uniquely fix both J1

and J2 to be representation-dependent constants. Upon integrating over J1 and J2, (2.38)

reduces to a constant times the proper canonical volume element
∏3

i=1 dφi dπi. The value

of the normalisation constant cR will now depend both on q2 and q3.

For SU(N), the canonical variables can be constructed along similar lines [3]. For the

quadratic and cubic Casimir, one finds q2 = (N2 − 1)C2, and C2 = 1
2

for particles in the

fundamental (quarks), and C2 = N for particles in the adjoint (gluons). The constant q3
reads q3 = (N2−4)(N2 −1)/4N for particles in the fundamental, and q3 = 0 for particles in

the adjoint. We also comment in passing that in the pure classical framework, the quadratic

Casimir C2 carries the dimensions of h̄c. After quantisation, the quadratic Casimirs should

take quantised values proportional to h̄. The Poisson brackets then have to be replaced by

commutators.

The microscopic phase space density, expressed in terms of the real phase space vari-

ables, is given by

n̂(x,p,φ,π) =
∑

i

δ(3)[x − x̂i(t)] δ
(3)[p − p̂i(t)] δ[φ − φ̂i(t)] δ[π − π̂i(t)] , (2.39)

where the sum runs over all particles of the system, and (x̂i, p̂i, φ̂i, π̂i) refers to the trajectory

of the i-th particle in phase space. Then n̂ dx dp dφdπ gives the number of particles at time

t in an infinitesimal volume element of phase space around the point z = (x,p,φ,π). The

function n̂(x,p,φ,π) agrees with the microscopic function f(x, p,Q) introduced above,

except for a representation-dependent normalisation constant.

E. Dynamical equations and conservation laws

Now we come to the dynamical equation of the microscopic distribution functions

n(x, p,Q), n̂(x,p,φ,π) and f(x, p,Q), which will serve as the starting point for the sub-

sequent formalism. Although the independent degrees of freedom are given by the phase

space variables (x,p,φ,π), it is more convenient to derive the dynamical equations in terms
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of the variables (x, p,Q). The Darboux variables will become important when an ensemble

average is defined in the following section. Secondly, we note that the dynamical equation

for n(x, p,Q) is the same as for f(x, p,Q). This is so because the physical constraints which

we have factored out to obtain f(x, p,Q) are not affected by the Wong equations. Employing

Eqs. (2.1), we find

pµ

(

∂

∂xµ
− gfabcAb

µQ
c ∂

∂Qa
− gQaF

a
µν

∂

∂pν

)

f(x, p,Q) = 0 , (2.40a)

which can be checked explicitly by direct inspection of Eq. (2.20) into Eq. (2.40a) [92].

Equivalently, one could have made use of Liouville’s theorem df/dτ = 0, which states that

the phase space volume is conserved. In combination with Eqs. (2.1), one obtains Eq. (2.40a).

In a self-consistent picture this equation is completed with the Yang-Mills equation,

(DµF
µν)a(x) = Jν

a (x) , (2.40b)

and the current being given by Eq. (2.27). It is worth noticing that Eqs. (2.40) are exact

in the sense that no further approximations apart from the quasiparticle picture have been

made. This Boltzmann equation looks formally as collisionless. However, it effectively

contains collisions inasmuch as the Wong equations account for them, that is, due to the

long range interactions between the particles.

For the microscopic energy-momentum tensor of the gauge fields Eq. (2.3) we find

∂µΘµν(x) = −F νµ
a (x)Ja

µ(x) . (2.41)

On the other hand, using Eq. (2.40a) and the definition Eq. (2.28) we find

∂µt
µν(x) = F νµ

a (x)Ja
µ(x) (2.42)

for the energy-momentum tensor of the particles, hence

∂µ T
µν(x) = 0, T µν(x) = Θµν(x) + tµν(x) (2.43)

which establishes that the combined energy-momentum tensor of the particles and the fields

is conserved.

F. Gauge symmetry

To finish the discussion of the microscopic description of the system, let us recall the

gauge symmetry properties of the Wong Eqs. (2.1) and the set of microscopic dynamical

23



equations (2.40) (a detailed discussion is given in Section V). With Qa and F a
µν transforming

in the adjoint representation, the Wong equations are invariant under gauge transformations.

The equation (2.1c) ensures that the set of N − 1 Casimir of the SU(N) group is conserved

under the dynamical evolution. For SU(2), it is easy to verify explicitly the conservation of

the quadratic Casimir QaQa. For SU(3), both the quadratic and cubic Casimir dabcQaQbQc,

where dabc are the symmetric structure constants of the group, are conserved under the

dynamical evolution. The last conservation can be checked using (2.1c) and a Jacobi-like

identity which involves the symmetric dabc and antisymmetric fabc constants [92].

From the definition of the distribution function f(x, p,Q) we conclude that it trans-

forms as a scalar under (finite) gauge transformations, f ′(x, p,Q′) = f(x, p,Q). This implies

the gauge covariance of Eq. (2.40b) because the current Eq. (2.27) transforms like the vec-

tor Qa in the adjoint representation. The non-trivial dependence of f(x, p,Q) on the non-

Abelian colour charges implies that the partial derivative ∂µf(x, p,Q) does not transform

as a scalar. Instead, its covariant derivative Dµf(x, p,Q), which is given by

Dµ[A]f(x, p,Q) ≡ [∂µ − gfabcQcAµ,b∂
Q
a ]f(x, p,Q) , (2.44)

does. Notice that Eq. (2.44) combines the first two terms of Eq. (2.40a). Here and in the

sequel we use the shorthand notation ∂µ ≡ ∂/∂xµ, ∂p
µ ≡ ∂/∂pµ and ∂Q

a ≡ ∂/∂Qa. The

invariance of the third term in Eq. (2.40a) follows from the trivial observation that QaF
a
µν is

invariant under gauge transformations, which establishes the gauge invariance of Eq. (2.40a).

This terminates the review of the basic microscopic quantities.
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III. MACROSCOPIC APPROACH

A. General considerations

Within the semi-classical approach introduced in Section II, all information about

properties of the non-Abelian plasma is given by the microscopic dynamical equations as

written down in the previous section. However, for most situations not all the microscopic

information is of relevance. Of main physical interest are the characteristics of the system

at large length scales. This includes quantities like damping rates, colour conductivities

or screening lengths within the kinetic regime, or transport coefficients like shear or bulk

viscosities within the hydrodynamic regime. The microscopic length scales, like typical

inter-particle distances, are much smaller than such macroscopic scales.

There are two closely related aspects worth noticing when performing the transition

from a microscopic to an effective, or macroscopic, description. We first observe that the

classical problem as described in the previous section is well-posed only if all initial con-

ditions for the particles are given. If the system under study contains a large number of

particles it is impossible to follow their individual trajectories. A natural step to perform

is to switch to a statistical description of the system. In this way, the stochastic character

of the initial conditions are taken into account. It follows that the microscopic distribution

function can no longer be considered a deterministic, but rather a stochastic quantity. This

program is worked out in detail in the following two sections.

Given the statistical ensemble which represents the state of the system, the macro-

scopic properties should be given as functions of the fundamental parameters and the in-

teractions between the particles. This requires an appropriate definition of macroscopic

quantities as ensemble averages. Within kinetic theory, the basic ‘macroscopic’ quantity

is the one-particle distribution function, from which all further macroscopic observables

can be derived. The aim of a kinetic theory is to construct, with as little restrictions or

assumptions as possible, a closed set of transport equations for this distribution function

[67]. Such an approach assumes implicitly that the ‘medium’, described by the distribu-

tion function, is continuous. If the medium is not continuous, stochastic fluctuations due

to the particles can be taken into account as well, and their consistent inclusion leads to

effective transport equations for correlators of fluctuations and the one-particle distribution

function [93–95]. The random fluctuations of the distribution function are at the root of

the dissipative character of the effective transport theory.

An alternative reading of the above invokes the notion of coarse-graining. This

amounts to an averaging of both the microscopic distribution function and of the non-

Abelian fields over characteristic physical volumes. The resulting effective kinetic equations

dissipative due to the coarse-graining over microscopic quantities, and require the consis-

tent inclusion of a corresponding noise term. This is very similar to the phenomenological
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Langevin approach to dissipative systems [97]. In the regime where fluctuations can be

taken as linear these two approaches are equivalent [94]. We come back to this point of view

in Section IX, where its application to the theory of non-Abelian fluctuations in plasmas is

discussed [108].

In this section, we work out the first line of thought. The basics related to the Gibbs

ensemble average in phase space are discussed, and the basic correlators reflecting the

stochastic fluctuations are derived. In the following section, this procedure is applied to

the microscopic transport equations, ultimately resulting in a closed set of macroscopic

transport equations.

B. Ensemble average

As we are studying classical point particles in phase space, the appropriate statistical

average corresponds to the Gibbs ensemble average for classical systems [94,97]. We will

review the main features of this procedure as defined in phase space. Let us remark that

this derivation is completely general, valid for any classical system, and does not require

equilibrium situations.

We introduce two basic functions. The first one is the phase space density function n(z)

which gives, after integration over a phase space volume element, the number of particles

contained in that volume. Microscopically the phase space density function reads

n(z) =
L
∑

i=1

δ[z − zi(τ)] , (3.1)

where z are the phase space coordinates, and zi the trajectory of the particle i in phase space.

Let us also define the distribution function ρ of the microstates of a system of L identical

classical particles. Due to Liouville’s theorem, dρ/dt = 0. Thus, it can be normalised as

∫

dz1dz2 . . . dzL ρ(z1, z2, . . . , zL, t) = 1 . (3.2)

For simplicity we have considered only one species of particles. The generalisation to several

species of particles is straightforward.

The statistical average of any function G defined in phase space is given by

〈G〉 =
∫

dz1dz2 . . . dzLG(z1, z2, . . . , zL) ρ(z1, z2, . . . , zL, t) . (3.3)

A particularly important example is the one-particle distribution function, which is obtained

from ρ as
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f1(z1, t) = V
∫

dz2 . . . dzL ρ(z1, z2, . . . , zL, t) . (3.4)

Here V denotes the phase space volume. Correspondingly, the two-particle distribution

function is

f2(z1, z2, t) = V 2
∫

dz3 . . . dzL ρ(z1, z2, . . . , zL, t) , (3.5)

and similarly for the k-particle distribution functions. A complete knowledge of ρ would

allow us to obtain all the set of (f1, f2, . . . , fL) functions; this is, however, not necessary for

our present purposes.

Notice that we have allowed for an explicit dependence on the time t of the function

ρ, as this would typically be the case in out-of-equilibrium situations. We will drop this t

dependence from now on to simplify the formulas.

Using the above definition one can obtain the first moment (mean value) of the mi-

croscopic phase space density. The statistical average of this function is

〈n(z)〉 =
∫

dz1dz2 . . . dzL ρ(z1, z2, . . . , zL)
L
∑

i=1

δ(z − zi) = L
V f1(z) . (3.6)

The second moment 〈n(z)n(z′)〉 can similarly be computed, and it is not difficult to see

that it gives

〈n(z)n(z′)〉 = L
V δ(z − z′)f1(z) + L(L−1)

V 2 f2(z, z
′) . (3.7)

Let us now define a deviation of the phase space density from its mean value

δn(z) ≡ n(z) − 〈n(z)〉 . (3.8)

By definition 〈δn(z)〉 = 0, although the second moment of this statistical fluctuation does

not vanish in general, since

〈δn(z) δn(z′)〉 = 〈n(z)n(z′)〉 − 〈n(z)〉〈n(z′)〉 . (3.9)

If the number of particles is large, L≫ 1, we have

〈δn(z) δn(z′)〉 =
(

L
V

)

δ(z − z′)f1(z) +
(

L
V

)2
g2(z, z

′) , (3.10)

where the function

g2(z, z
′) = f2(z, z

′) − f1(z)f1(z
′) (3.11)
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measures the two-particle correlations in the system. Notice that the above statistical aver-

ages are well defined in the thermodynamic limit, L, V → ∞ but L/V remaining constant.

Similarly, one can define the k-point correlator of fluctuations, and the k-point corre-

lation function gk(z, z
′, . . .). In an ideal (non-interacting) system, the k-particle distribution

function factorizes fk =
∏k

i=1 f1, and hence gk ≡ 0, simply because all particles in the sys-

tem are statistically independent from each other. Interactions induce correlations among

particles. Typically, higher order correlations depend on the distance between particles and

have a characteristic (finite) range or correlation length. Exceptions are met close to critical

points of phase transitions, where correlation lengths tend to diverge.

Starting from the Liouville equation, obeyed by the distribution function ρ, it is possi-

ble to deduce a set of chained equations for the k-point distribution functions fk. For non-

relativistic systems this is the BBGKY hierarchy. These equations exhibit a hierarchical

structure: the determination of the k-particle distribution function requires the knowledge

of the (k + 1) particle function. Alternatively, one can describe the set of equations obeyed

by the correlation functions gk. These equations are non-linear due to the non-linear rela-

tionship between fk and gk. In the following section we will describe a different approach.

It is based on deducing the equations for the statistical fluctuations, and their correlators.

When using some approximate methods, this approach is more effective in a number of

cases, as we will explicitly illustrate in the following sections.

C. Basic equal-time correlators

We now return to the case of our concern. The statistical averages have to be performed

in phase space. The phase space density function Eq. (2.39) is a function of the time

t, the vectors x and p, and the set of canonical variables φ and π. We scale for later

convenience the density factors L/V into the mean functions 〈f〉. Those small changes in

the normalisation simplify slightly the notations of the equations. Also, to adopt a unified

description of both the classical and quantum plasmas, from now on we will use dimensionless

distribution functions, replacing the measure d3xd3p by d3xd3p/(2πh̄)3 (although working

in natural units h̄ = 1). This change in the measure also affect the normalisation of the

basic correlators, as we will show below.

We now turn to the basic correlators which will be of relevance for later applications.

For a classical plasma, the basic equal-time correlator obtained from averaging over initial

conditions follows from Eq. (3.10) after the redefinitions as indicated above as

〈δfx,p,Q δfx′,p′,Q′〉t=0 = (2π)3δ(3)(x − x′)δ(3)(p − p′)δ(Q−Q′) f̄

+g̃2(x, p, Q;x′, p′, Q′) (3.12)

for each species of particles and each internal degree of freedom. The function g̃2 comes

28



from the two-particle correlator, and

δ(Q−Q′) =
1

cR
δ(φ − φ′) δ(π − π) , (3.13)

and φ, π are the Darboux variables associated to the colour charges Qa. The appearance

of the factor 1/cR in the above expression is due to the change of normalisation factors

associated to the functions n and f .

Within the semi-classical approach, the quantum statistical properties of the particles

are taken into account as well. For bosons, and for every internal degree of freedom, this

amounts to replacing Eq. (3.12) by

〈δfx,p,Q δfx′,p′,Q′〉t=0 = (2π)3δ(3)(x − x′)δ(3)(p − p′)δ(Q−Q′)f̄B(1 + f̄B)

+g̃B
2 (x, p, Q;x′, p′, Q′) , (3.14)

for the quadratic correlator of fluctuations. For fermions, the corresponding equal-time

correlator is

〈δfx,p,Q δfx′,p′,Q′〉t=0 = (2π)3δ(3)(x − x′)δ(3)(p − p′)δ(Q−Q′)f̄F(1 − f̄F)

+g̃F
2 (x, p, Q;x′, p′, Q′) . (3.15)

The functions g̃B
2 or g̃F

2 are the bosonic or fermionic two-particle correlation function, up

to a normalisation factor. The above relations could be derived from first principles in a

similar way as Eq. (3.12). In the limit f̄B/F ≪ 1 they reduce to the correct classical value.

We present a justification of the use of the above correlators in Appendix B. It also has

to be pointed out that the correlators (3.14) and (3.15) have been derived for the cases of

both an ideal gas of bosons and ideal gas of fermions close to equilibrium. Hence, the above

correlators can be taken as the correct answer in the case where the non-Abelian interactions

are perturbative.
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IV. EFFECTIVE TRANSPORT THEORY

The goal of transport theory is to derive a closed system of dynamical equations based

on the one-particle distribution function from which all macroscopic characteristics can

be derived [67]. Given the prescription as to how statistical averages over the particles in

phase space have to be performed, we apply this formalism to the quasi-particle distribution

function, the non-Abelian gauge fields and the dynamical equations themselves. This first

step results in a set of transport equations for the distribution function coupled to correlators

of statistical fluctuations [106]. The dynamical equations are worked out in their most

general form. Integrating-out the fluctuations, in a second step, yields the seeked-for effective

kinetic theory for the mean fields only. Such a procedure amounts to a derivation of collision

terms, noise sources and fluctuation-induced currents. As usual, applications are tied to

certain systematic approximations, which are discussed as well. We mainly follow the lines

of reasoning as first outlined in [105,106]. For a brief summary, see [108].

A. Mean fields vs. fluctuations

To perform the step from the microscopic to the macroscopic formulation of the prob-

lem, we take the ensemble average of the microscopic equations (2.40). As argued above,

this implies that the distribution function f(x, p,Q), which in the microscopic picture is a

deterministic quantity, now has a probabilistic nature and can be considered as a random

function, given by its mean value and statistical (random) fluctuation about it. Let us define

the quantities

f(x, p,Q) = f̄(x, p,Q) + δf(x, p,Q) , (4.1a)

Jµ
a (x) = J̄µ

a (x) + δJµ
a (x) , (4.1b)

where the quantities carrying a bar denote the mean values, e.g. f̄ = 〈f〉, J̄ = 〈J〉, while the

mean value of the statistical fluctuations vanish by definition, 〈δf〉 = 0 and 〈δJ〉 = 0. This

separation into the mean distribution function and the mean current on the one side, and

their fluctuations on the other, takes into account in particular the stochastic (or source)

fluctuations of the one-particle distribution function. These fluctuations in the quasi-particle

distribution function and in the induced current are responsible for fluctuations in the gauge

fields as well, and we therefore split the gauge fields accordingly as

Aa
µ(x) = Āa

µ(x) + aa
µ(x) , (4.2a)

〈A〉 = Ā , 〈a〉 = 0 . (4.2b)

Notice that the split of the gauge fields Eq. (4.2a) has to be seen on a different footing as

the split for the one-particle distribution function. These gauge field degrees of freedom
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are not defined in phase space. Their fluctuations are induced by those of the particles.

We postpone a detailed discussion on further implications due to gauge symmetry until

Section V.

Effectively, such a split corresponds to a separation of the low frequency or long wave-

length modes associated to the mean quantities from the high frequency or short wavelength

modes associated to the fluctuations. As we shall see below, the relevant momentum scales

depend on the approximations employed. They are identified explicitly for a plasma close

to thermal equilibrium (see Sections VI-VIII).

The induced fluctuations in the gauge fields Eq. (4.2a) require additionally the split

of the field strength tensor as

F a
µν = F̄ a

µν + fa
µν , (4.3a)

F̄ a
µν = F a

µν [Ā] , (4.3b)

fa
µν = (D̄µaν − D̄νaµ)a + gfabcab

µa
c
ν . (4.3c)

We used D̄µ ≡ Dµ[Ā]. The term fa
µν contains terms linear and quadratic in the fluctuations.

Note that the statistical average of the field strength 〈F a
µν〉 is not only given by F̄ a

µν , but

rather by

〈F a
µν〉 = F̄ a

µν + gfabc〈ab
µa

c
ν〉 , (4.4)

due to quadratic terms contained in fa
µν .

B. Effective transport equations

We now perform the step from the microscopic to the macroscopic Boltzmann equation

by taking the statistical average of Eqs. (2.40). This yields the dynamical equation for the

mean values,

pµ
(

D̄µ − gQaF̄
a
µν∂

ν
p

)

f̄ = 〈η〉 + 〈ξ〉 . (4.5a)

We have made use of the covariant derivative of f as introduced in Eq. (2.44). The macro-

scopic Yang-Mills equations are

D̄µF̄
µν + 〈Jν

fluc
〉 = J̄ν . (4.5b)

In Eqs. (4.5), we collected all terms quadratic or cubic in the fluctuations into the functions

η(x, p,Q), ξ(x, p,Q) and Jfluc(x). These terms are qualitatively new as they are not present
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in the original set of microscopic transport equations. Their physical relevance is discussed

in Section IVC below. Written out explicitly, they read

η(x, p,Q) ≡ gQa p
µ
(

D̄µaν − D̄νaµ

)a
∂ν

p δf(x, p,Q)

+g2Qa p
µ fabc ab

µa
c
ν ∂

ν
p δf(x, p,Q) , (4.6a)

ξ(x, p,Q) ≡ g pµfabcQc ab
µ ∂

a
Qδf(x, p,Q)

+g2pµfabcQc aa
µ a

b
ν ∂

ν
p f̄(x, p,Q), (4.6b)

Jaν
fluc

(x) ≡ g
[

fdbcD̄µ
adabµa

ν
c + fabcabµ (D̄µaν − D̄νaµ)c

]

+g2fabcf cde abµ a
µ
d a

ν
e . (4.6c)

We remark in passing that the split of the fluctuation-induced terms into η and ξ is, to

some extend, arbitrary. The term η stems entirely from the fluctuations of the field strength

tensor Eq. (4.3c) and the fluctuation of the distribution function. In turn, ξ contains two

contributions of different origin: the fluctuation fields from the covariant derivative term,

and the fluctuation gauge fields to quadratic order of the field strength tensor multiplied with

the mean value of the distribution function. The first term is due to fluctuations of the ‘drift

term’ in the Boltzmann equation. The second term can be seen as a fluctuation-induced

force. Both vanish identically in the Abelian case (see Section IVC below).

The effective transport equations (4.5) are not yet a closed system of differential equa-

tions involving only the mean fields. They still contain correlators of fluctuations, for which

the appropriate transport equations have to be studied separately. They are obtained by

subtracting Eqs. (4.5) from Eqs. (2.40). The result is

pµ
(

D̄µ − gQaF̄
a
µν∂

ν
p

)

δf = gQa(D̄µaν − D̄νaµ)apµ∂p
ν f̄

+gpµabµf
abcQc∂

Q
a f̄

+η + ξ − 〈η + ξ〉 (4.7a)
[

D̄2aµ − D̄µ(D̄νa
ν)
]a

+ 2gfabcF̄ µν
b acν = δJaµ − Jaµ

fluc
+ 〈Jaµ

fluc
〉 . (4.7b)

The above set of dynamical equations – in addition to the initial conditions as derived in

the previous section from the Gibbs ensemble average – is at the basis for a description of

all transport phenomena in the plasma.

While the dynamics of the mean fields Eqs. (4.5) depends on correlators quadratic and

cubic in the fluctuations, the dynamical equations for the fluctuations Eqs. (4.7) also depend

on higher order terms (up to cubic order) in the fluctuations themselves. The dynamical

equations for the higher order correlation functions are contained in Eqs. (4.7). To see this,

consider for example the dynamical equation for the correlators 〈δf δf〉. After multiplying

Eq. (4.7a) with δf ′ and taking the statistical average, we obtain
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pµ
(

D̄µ − gQaF̄
a
µν∂

ν
p

)

〈δf δf ′〉 = gQap
µ∂p

ν f̄
〈

(D̄µaν − D̄νaµ)aδf ′
〉

+gpµfabcQc∂
Q
a f̄ 〈ab,µ δf

′〉

+ 〈(η + ξ − 〈η + ξ〉) δf ′〉 . (4.8)

(To simplify the notation, we have not given the arguments of all fields explicitly. In

particular, 〈δf δf ′〉 means 〈δf(x, p,Q) δf(x′, p′, Q′)〉, and the derivatives act only on the

(x, p,Q) dependences.) In the same way, we find for 〈δf δf ′ δf ′′〉 the dynamical equation

pµ
(

D̄µ − gQaF̄
a
µν∂

ν
p

)

〈δf δf ′ δf ′′〉 = gQap
µ∂p

ν f̄
〈

(D̄µaν − D̄νaµ)a δf ′ δf ′′
〉

+gpµfabcQc∂
Q
a f̄ 〈ab,µ δf

′ δf ′′〉

+ 〈(η + ξ − 〈η + ξ〉) δf ′ δf ′′〉 , (4.9)

and similarly for higher order correlators. Typically, the dynamical equations for correlators

of n fluctuations will couple to correlators ranging from the order (n−1) up to order (n+2)

in the fluctuations. From cubic order onwards, the back-coupling contains terms non-linear

in the correlation functions.

The correlators of gauge field fluctuations, like 〈a δf ′〉 and 〈a a′〉 or higher order ones,

are related to those of the one-particle distribution function through the Yang-Mills equa-

tions. For example, from Eq. (4.7b), we deduce for the quadratic correlators

[

(

D̄2δµν − D̄µD̄ν
)ab

+ 2gfacbF̄ µν
c

]

〈aνb δf
′〉 =

∫

dPdQpµQa 〈δf δf ′〉

− 〈(Jµa
fluc

− 〈Jµa
fluc

〉) δf ′〉 (4.10)

and
[

(

D̄2δµν − D̄µD̄ν
)ab

+ 2gfacbF̄ µν
c

]

〈

aνb a
′
ρd

〉

=
∫

dPdQpµQa
〈

δf a′ρd

〉

−
〈

(Jµa
fluc

− 〈Jµa
fluc

〉) a′ρd

〉

. (4.11)

In this manner, the full hierarchy of coupled dynamical equations for all n-point correlation

functions are obtained. The initial conditions are the equal-time correlation functions as

derived from the ensemble average.

The resulting hierarchy of dynamical equations for the correlators is very similar to the

BBGKY hierarchy within non-relativistic statistical mechanics [20]. A decisive difference

stems from the fact that the present set of dynamical equations is dissipative even in their un-

approximated form, while the complete BBGKY hierarchy remains time-inversion invariant

[20,95].
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C. Collision integrals, noise and induced currents

Let us comment on the qualitatively new terms η, ξ and Jfluc as defined in Eqs. (4.6).

In the effective Boltzmann equation, the functions 〈η〉 and 〈ξ〉 appear only after the splitting

Eqs. (4.1) has been performed. These terms are qualitatively different from those already

present in the initial transport equation. The correlators 〈η〉 and 〈ξ〉 are interpreted as

effective collision integrals of the macroscopic Boltzmann equation. The fluctuations in

the distribution function of the particles induce fluctuations in the gauge fields, while the

gauge field fluctuations, in turn, induce fluctuations in the motion of the quasi-particles.

In the present formalism, the correlators of statistical fluctuations have the same effect as

collisions. This yields a precise recipe for obtaining collision integrals within semi-classical

transport theory.

The term 〈η〉 contains the correlator 〈fa
µνδf〉 between the fluctuations of the field

strength and the fluctuations of the distribution function. In the Abelian limit, only the

collision integral 〈η〉 survives and Eqs. (4.5) and (4.7) reduce to the known set of kinetic

equations for Abelian plasmas [94]. Then, 〈η〉 can be explicitly expressed as the Balescu-

Lenard collision integral [19,101] after solving the dynamical equations for the fluctuations

and computing the correlators involved [94,99]. This proves in a rigorous way the corre-

spondence between fluctuations and collisions in an Abelian plasma.

The term 〈ξ〉 contains two contributions. The term proportional to 〈δDδf〉 leads to

a collision integral due to the fluctuations of the ‘drift covariant derivative’. The term

proportional to 〈δfa
µν〉f̄ is interpreted as a fluctuation-induced force term, because 〈δfa

µν〉 is

to be seen as a fluctuation-induced field strength in the effective transport equation. Both

terms describe a purely non-Abelian effect, they vanish identically in the Abelian limit.

At the same time we observe the presence of stochastic noise in the effective equations.

The noise originates in the source fluctuations of the particle distributions and induces

field-independent fluctuations to the gauge fields. The corresponding terms in the effective

Boltzmann equations are therefore η, ξ and Jfluc at vanishing mean field or mean current.

An explicit example is given in Section VIII F.

Finally, we observe the presence of a fluctuation-induced current 〈Jfluc〉 in the effective

Yang-Mills equation for the mean fields. This current, due to its very nature, stems from

the induced correlations of gauge field fluctuations. It vanishes identically in the Abelian

case. While the collision integrals are linear in the quasi-particle fluctuations, the induced

current only contains the gauge field fluctuations. As the fluctuations of the one-particle

distribution function are the basic source for fluctuations, we expect that a non-vanishing

induced current will appear as a subleading effect.

In order to find explicitly the collision integrals, noise sources or the fluctuation-

induced currents for non-Abelian plasmas, one has to solve first the dynamical equations for
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the fluctuations in the background of the mean fields. This step amounts to incorporating

the fluctuations within the mean particle distribution function (‘integrating-out’ the fluctu-

ations). In general, this is a difficult task, in particular due to the non-linear terms present

in Eqs. (4.7). As argued above, this will only be possible when some approximations have

been performed.

D. Systematic approximations

The coupled set of dynamical equations, as derived and presented here within a semi-

classical point particle picture, are exact. No further approximations apart from the original

assumption have been made. In order to solve the fluctuation dynamics, it is necessary to

apply some systematic approximations, or to find a reasonable truncation for the hierarchy

of dynamical equations for correlator functions. With ‘solving’ we have in mind finding

explicit solutions to the dynamics of fluctuations. When reinserted into the mean field

equations it should be possible to obtain explicit expressions for them. Such a procedure

amounts to incorporating the physics at larger scales, as described by the fluctuations, into

the mean quasi-particle distribution function.

Here, two systematic approximation schemes are outlined: an expansion in moments

of the fluctuations and an expansion in a small gauge coupling. Although they have distinct

origins in the first place, we will see below (Section V) that they are intimately linked due

to the requirements of gauge invariance.

1. Expansion in moments of the distribution function

An expansion in moments of the fluctuations has its origin in the framework of kinetic

equations. Effectively, the kinetic equations describe the coherent behaviour of the particles

within some physically relevant volume. This coherent behaviour is described by the plasma

parameter ǫ, the inverse of which measures the number of particles within a physically

relevant volume element as described by the one-particle distribution function. In a close-

to-equilibrium plasma, the plasma parameter is given by the ratio between the cube of

the mean particle distance and the Debye radius (see Section VI). The fluctuations in

the number of particles become arbitrarily small if the physical volume – or the number

of particles contained in it – can be made arbitrarily large. For realistic situations, both

the physical volume and the particle number are finite. Still, the fluctuations remain at

least parametrically small and suppressed by the plasma parameter [94,97]. Hence, the

underlying expansion parameter for an expansion in moments of fluctuations is a small

plasma parameter
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ǫ≪ 1 . (4.12)

The leading order approximation in an expansion in moments is the first moment approxi-

mation. It consists in imposing

f = f̄ , or δf ≡ 0 , (4.13)

and corresponds to neglecting all fluctuations throughout. Sometimes it is referred to as the

mean field or Vlasov approximation. It leads to a closed system of equations for the mean

one-particle distribution function and the gauge fields. In particular, the corresponding

Boltzmann equation is dissipationless. It remains time-inversion invariant∗ as does the

original microscopic transport equation.

Beyond leading order, the second moment approximation takes into account the cor-

rections due to correlators up to quadratic order in the fluctuations 〈δfδf〉. All higher order

correlators like

〈δf1δf2 . . . δfn〉 = 0 (4.14)

for n > 2 are neglected within the dynamical equations for the mean fields and the quadratic

correlators. This approximation is viable if the fluctuations remain sufficiently small (see

also Section VI). We remark that the second moment approximation, the way it is intro-

duced here, and unlike the first moment approximation, no longer yields a closed system

of dynamical equations for the one-particle distribution function and quadratic correlators.

The reason for this is that the initial conditions for the evolution of correlators, which are

given by the equal-time correlation functions as derived from the Gibbs ensemble average,

still do involve the two-particle correlation functions. Hence, in addition to Eq. (4.14),

we have to require that two-particle correlators remain small as compared to products of

one-particle distribution functions,

g2 ≪ f1 f1 , (4.15)

so that f2 ≈ f1f1 (see Eq. (3.11)). This is the case if the effective dynamical equations are

valid at scales larger than typical scales of two-particle correlations. Once the method is

put to work, it is possible to check explicitly whether Eq. (4.15) holds true or not. The

combined approximations Eqs. (4.14) and (4.15) are known as the approximation of second

correlation functions, sometimes also referred to as the polarisation approximation [94].

∗This holds as long as the initial conditions do not violate explicitly time-inversion invariance

(cf. Landau damping) [94].
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For the dynamical equations of the fluctuations Eqs. (4.7) these approximations imply

that the terms non-linear in the fluctuations should be neglected to leading order. This

corresponds to setting

η − 〈η〉 = 0 , (4.16a)

ξ − 〈ξ〉 = 0 , (4.16b)

Jfluc − 〈Jfluc〉 = 0 . (4.16c)

The essence of this step is that the dynamical equations for the correlators become ho-

mogeneous. It is easy to see that Eq. (4.8) or Eq. (4.9) depend only on quadratic or cubic

correlators, respectively, once Eqs. (4.16) are imposed. This approximation permits truncat-

ing the infinite hierarchy of equations for the mean fields and the correlators of fluctuations

down to a closed system of differential equations for both mean quantities and quadratic

correlators. The mean fields then couple only to quadratic correlators, and all higher order

correlators couple amongst themselves. This turns the dynamical equation for the fluctua-

tions Eqs. (4.7) into a differential equation linear in the fluctuations. Notice, however, that

the approximation Eq. (4.16) can be improved even within the second moment approxima-

tion, if these differences are found to be again linear in the fluctuations.

The polarisation approximation is the minimal choice necessary to genuinely describe

dissipative processes, because it takes into account the feed-back of stochastic fluctuations

within the particle distribution function.

In the light of the discussion in Section IVC, the second moment approximation

Eq. (4.14) can be interpreted as neglecting three-particle collisions in favour of two-particle

collisions within the collision integrals for the mean fields. Notice that no explicit corre-

lators higher than cubic order appear in the collision integral Eq. (4.5a). Effective four-

or more-particle interactions will only appear due to the back-coupling of the quadratic

and cubic correlators to higher order ones. The approximation Eq. (4.16) for the fluctu-

ations can be interpreted as neglecting the back-coupling of collisions to the dynamics of

the fluctuations. Beyond leading order, this approximation is modified and the right-hand

side of Eqs. (4.16) will be replaced by the effective collision terms as obtained to leading

order. If such terms turn out to be linear in the fluctuations we can perform a ‘resummed’

polarisation approximation, taking the higher order effects iteratively into account.

2. Expansion in the gauge coupling

A qualitatively different approximation scheme concerns the non-Abelian sector of the

theory, characterised by a small gauge coupling g. It is possible to perform a systematic

perturbative expansion in powers of the gauge coupling g, keeping only the leading order
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terms. This can be done because the differential operator appearing in the effective Boltz-

mann equation Eq. (4.5a) admits such an expansion. In a small coupling expansion, the

force term g pµQaF̄
a
µν∂

ν
p is suppressed by a power of g as compared to the leading order term

pµD̄µ. Notice that expanding the covariant derivative term pµD̄µ of Eq. (2.44) into powers

of g is not allowed as it will break gauge invariance. In this spirit, we expand

f̄ = f̄ (0) + g f̄ (1) + g2 f̄ (2) + . . . (4.17)

and similarly for δf . This is at the basis for a systematic organisation of the dynamical

equations in powers of g.

To leading order, this concerns in particular the cubic correlators appearing in 〈η〉 and

〈Jfluc〉. They are suppressed by a power of g as compared to the quadratic ones. Hence, the

second moment approximation and an expansion in a small gauge coupling are mutually

compatible. At the same time, the quadratic correlator ∼ fabc〈ab ac 〉 within 〈ξ〉 is also

suppressed by an additional power of g and should be suppressed to leading order. We shall

show in the following section that such approximations are consistent with the mean field

gauge symmetry.

A word of caution is due at this point. While a small gauge coupling appears to be

at the basis for perturbative expansions, it cannot be excluded that another dimensionless

expansion parameter becomes relevant due to particular dynamical properties of the system.

Indeed, as we shall see below in the close-to-equilibrium plasma, at higher order the natural

expansion parameter happens to be [ln(1/g)]−1 instead of g. This implies that expansions

like Eq. (4.17) might be feasible only for the first few terms.

In principle, after these approximations are done, it should be possible to express the

correlators of fluctuations appearing in Eqs. (4.5) through known functions. This requires

finding a solution of the fluctuation dynamics first.

E. Conservation laws

After this discussion of the basic set of dynamical equations we return to the conser-

vation laws for the energy-momentum tensor and current conservation. In the same spirit

as the splitting of the fundamental variables into fluctuations and mean values we split the

energy-momentum tensor of the gauge fields into the part from the mean fields and the

fluctuations, according to

Θµν = Θ̄µν + θµν , (4.18a)

Θ̄µν = 1
4g

µνF̄ a
ρσF̄

ρσ
a + F̄ µρ

a F̄ a ν
ρ , (4.18b)

θµν = 1
2g

µνF̄ a
ρσf

ρσ
a + F̄ µρ

a fa
ρν + F̄ νρ

a fa
ρµ + 1

4g
µνfρσ,af

ρσ,a + fµρ
a fa ν

ρ . (4.18c)
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The term θµν contains the fluctuations up to quartic order. Due to the non-linear character

of the theory, we find that the ensemble average of the energy momentum tensor is not only

given by Θ̄µν , but

〈Θµν〉 = Θ̄µν + 〈θµν〉 . (4.19)

The dynamical equation for the energy momentum tensor of the gauge fields comes from

the average of Eq. (2.41). The corresponding one for the particles is found after integrating

Eq. (2.40a) over dPdQpµ. The two of them read

∂νΘ̄
µν + ∂ν 〈θµν〉 = −F̄ µν

a J̄νa − 〈fµν
a δJνa〉 − 〈fµν

a 〉 J̄a
ν , (4.20a)

∂ν t̄
µν = F̄ µν

a J̄νa + 〈fµν
a δJνa〉 + 〈fµν

a 〉 J̄a
ν . (4.20b)

Hence, we confirm that the total mean energy-momentum tensor 〈T µν〉 is conserved,

∂ν〈T µν〉 = 0 . (4.21)

The condition for the microscopic current conservation translates, after averaging, into

two equations, one for the mean fields, and another one for the fluctuation fields. From

〈DµJ
µ〉 = 0 we obtain

(D̄µJ̄
µ)a + gfabc〈ab

µδJ
cµ〉 = 0 . (4.22)

For the fluctuation current, we learn from DµJ
µ − 〈DµJ

µ〉 = 0 that

(D̄µδJ
µ)a + gfabc

(

ab
µJ̄

µ
c + ab

µδJ
µ
c − 〈ab

µδJ
µ
c 〉
)

= 0 . (4.23)

Similar equations are obtained from the Yang-Mills equations themselves. Here, we only re-

mark that these two set of equations are mutually consistent, which is shown in Section VB.

F. Entropy

Finally, we shall also introduce the kinetic entropy S associated to these particles. The

entropy density Sµ(x), as a function of the one-particle distribution function, is defined as

Sµ(x) =
∫

dPdQpµ Σ[f ](x, p,Q) , (4.24)

from which the entropy obtains as

S(t) =
∫

d3xS0(x) . (4.25)
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The function Σ[f ](x, p,Q) depends on the statistics of the particles. For classical (Maxwell-

Boltzmann) statistics, we have [67]

Σcl[f ] = −f (ln f − 1) (4.26)

while for quantum (Bose-Einstein or Fermi-Dirac) statistics, we use

Σqm[f ] = −f ln f ± (1 ± f) ln (1 ± f) (4.27)

instead. The ‘−’ sign stands for bosonic degrees of freedom, and the ‘+’ sign for fermionic

ones. Microscopically, the entropy Eq. (4.24) is conserved, dS/dt = 0. This follows from

the vanishing of

∂µS
µ(x) = 0 , (4.28)

which, for both classical or quantum plasmas, can be deduced from inserting the microscopic

Boltzmann equation Eq. (2.40a) into Eq. (4.24). Ultimately, this is linked to the fact that

the Boltzmann equation contains no explicit collision term.

On the macroscopic level, and after separation into mean field contributions and fluc-

tuations, the entropy four-flow reads

Sµ(x) = S̄µ(x) + ∆Sµ(x) (4.29a)

S̄µ(x) =
∫

dPdQpµ Σ[f̄ ] (4.29b)

∆Sµ(x) =
∫

dPdQpµ
[

∆Σ(1) + ∆Σ(2)
]

. (4.29c)

We have separated the terms of linear order in δf into ∆Σ(1), and all the higher order terms

into ∆Σ(2). They read explicitly

∆Σ
(1)
cl = −δf ln f̄ (4.30a)

∆Σ
(2)
cl = −(f̄ + δf) ln

(

1 + δf/f̄
)

+ δf (4.30b)

for the classical plasma, and

∆Σ(1)
qm = −δf

[

ln f̄ − ln(1 ± f̄)
]

(4.31a)

∆Σ(2)
qm = −(f̄ + δf) ln

(

1 + δf/f̄
)

± (1 ± f̄ ± δf) ln
[

1 ± δf/(1 ± f̄)
]

(4.31b)

for quantum plasmas. The presence of fluctuations is closely linked to dissipative processes.

In particular, the mean entropy density is no longer given by the entropy density of the

mean particle distribution, but rather by

〈Sµ(x)〉 = S̄µ(x) +
∫

dPdQpµ 〈∆Σ(2)〉 , (4.32)

which involves arbitrarily high order correlation functions of the fluctuations.
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G. Discussion

A self-contained semi-classical transport theory has been derived from a microscopic

point particle picture. The ensemble average transformed the microscopic kinetic equation

into a coupled set of dynamical equations for mean distribution functions, mean fields, and

correlator functions of fluctuations. Usually, a kinetic description considers the plasma as

a continuous medium. Here, the stochastic fluctuations are taken into account as well.

The source of stochastic noise is given by the fluctuations of the one-particle distribution

function. These enter the initial conditions for the dynamics of the correlation functions.

Fluctuations in the gauge fields are induced by the latter.

The split into mean quantities and fluctuations is convenient for several reasons. First

of all, it separates the short-scale characteristics of the plasma, associated to the fluctu-

ations, from the large-scale ones, associated to the mean quantities. Second, the set of

coupled dynamical equations can be reduced to an effective transport equation for the mean

fields only, at least within some approximations. This amounts to the ‘integrating-out’ of

fluctuations. Only then are the modes associated to the fluctuations incorporated in the

quasi-particle distribution function.

Two systematic approximation schemes have been discussed, an expansion in the

plasma parameter and an expansion in a small gauge coupling. These schemes are mutually

compatible and linked further by the requirement of gauge invariance (Section V). On a

technical level, this procedure corresponds to a recipe for deriving collision integrals and the

corresponding noise sources for the effective transport equation, and a fluctuation-induced

current for the Yang-Mills equation.

We stress that the present formalism is applicable for both in- and out-of-equilibrium

situations. This is due to the fact that the statistical properties of the system are all

encoded in the Gibbs ensemble average, which in turn does not rely on a close-to-equilibrium

situation. A detailed discussion of the gauge symmetry, and in particular the consistency

of the split Eq. (4.2a), is given in Section V.

41



V. GAUGE SYMMETRY

The formalism developed in the two preceding sections is based on a split of non-

Abelian gauge fields into a mean field and a fluctuation field. Accordingly, their original

dynamical equation, the Yang-Mills equation, splits into two separate ones. Ultimately, one

aims at integrating-out the fluctuation fields such that the remaining effective theory only

involves mean fields. It remains to be shown that such a procedure is consistent with the

requirements of gauge symmetry.

The idea of splitting gauge fields into two parts in order to integrate-out the fluctuation

part is not new. The background field method is precisely one such formalism based on

a path integral approach.† Within the background field method, the gauge fields in the

path integral are formally separated into a mean field piece and a quantum piece. The

original gauge symmetry splits accordingly into a background gauge symmetry under which

the quantum field transforms homogeneously, and a quantum gauge symmetry, under which

the mean field transforms trivially. The background field formalism allows the derivation

of an effective theory for the mean fields only, which corresponds to the integrating-out of

the quantum fluctuations. It is to be noticed that the background field is an auxiliary field,

which is identified with the mean field only after the quantum field has been integrated out.

The quantum gauge symmetry is the physical gauge symmetry, which, after the quantum

field is integrated out, is inherited by the mean gauge field symmetry. The converse is not

true [1]. An application of the background field method within the QCD transport equation

for Wigner functions has been considered by Elze [60].

The present formalism is very similar to such a procedure. Here, we aim at integrating-

out induced stochastic fluctuations as opposed to quantum ones. Furthermore, after having

integrated-out these fluctuations within a given approximation, the resulting effective Boltz-

mann equation can be seen as the generating functional for the mean gauge field interactions

entering the effective Yang-Mills equations.

In this section the requirements of gauge symmetry are exploited. It is shown that

the present approach is consistent within the background field approach. This discussion

will concern the consistency of the general set of equations. The question of consistent

approximations will be raised as well. In this section, we shall for convenience switch to a

matrix notation, using the conventions A ≡ Aata, Q ≡ Qata etc., as well as [ta, tb] = fabct
c

and Tr tatb = −1
2δab.

†For a discussion of the background field method applied to QCD, see Abbott [1].
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A. Background gauge symmetry vs. fluctuation gauge symmetry

To begin with, let us consider finite gauge transformations, parametrised as

gA′
µ = U(x)(∂µ + gAµ)U

−1(x) , (5.1a)

U(x) = exp [−gǫa(x)ta] , (5.1b)

with parameter ǫa(x). Under these transformations, we have the transformation laws

Q′ = U(x)QU−1(x) , (5.2a)

∂′Q = U−1(x) ∂Q U(x) , (5.2b)

F ′
µν = U(x)Fµν U

−1(x) . (5.2c)

From the definition of the microscopic distribution function f(x, p,Q) we conclude that it

transforms as a scalar under (finite) gauge transformations,

f ′(x, p,Q′) = f(x, p,Q) , (5.3)

which has been shown in [92] and establishes that the microscopic set of equations (2.40)

transform covariantly under the gauge transformations Eq. (5.1).

When switching to a macroscopic description a statistical average has to be performed.

The averaging procedure 〈. . .〉 as defined in Section III is naturally invariant under gauge

transformations. It remains to be shown that the subsequent split of the gauge field into a

mean (or background) field and a fluctuation field respects the gauge symmetry. We split

the gauge field as

Aµ = Āµ + aµ (5.4a)

〈A〉 = Ā+ 〈a〉 . (5.4b)

For the time being, Ā is an arbitrary constant, and in particular, we shall not yet require

〈a〉 = 0. The field Ā is identified as the mean field only when the additional constraint

〈a〉 = 0 is employed. Only then does the dynamical equation reduce to those discussed in

the preceding section.

The separation Eq. (5.4) is very similar to what is done in the background field method

[1,60]. Two symmetries are left after the splitting is performed, the background gauge

symmetry,

gĀ′
µ = U(x)(∂µ + gĀµ)U

−1(x) , (5.5a)

a′µ = U(x) aµ U
−1(x) , (5.5b)
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and the fluctuation gauge symmetry,

gĀ′
µ = 0 , (5.6a)

ga′µ = U(x)
(

∂µ + g(Āµ + aµ)
)

U−1(x) . (5.6b)

Under the background gauge symmetry, the fluctuation field transforms covariantly (as a

vector in the adjoint).

In the first step, we split the microscopic Boltzmann equation (2.40a) according to

Eq. (5.4a). It follows trivially that the resulting equation is invariant under both the mean

field symmetry Eq. (5.5) and the fluctuation field symmetry Eq. (5.6), if both f̄ and δf

transform as f , that is, as scalars.

Turning to the macroscopic equations, we perform the statistical average and split the

transport equation into those for mean fields and fluctuations. We employ the fundamental

requirement 〈δf〉 = 0, but leave 〈a〉 unrestricted. It is useful to rewrite the effective transport

equations in matrix convention. We have

pµ
(

D̄µ + 2g Tr (QF̄µν) ∂
ν
p

)

f̄ = 〈η〉 + 〈ξ〉 + 〈ζ〉 , (5.7a)
[

D̄µ, F̄
µν
]

+ 〈Jν
fluc

〉 + 〈Jν
lin
〉 = J̄ν . (5.7b)

Notice that Eqs. (5.7) appears to be of the same form as Eqs. (4.5), except for the new

terms 〈ζ〉 and 〈Jν
lin
〉, which contain the pieces linear in 〈a〉. The functions η, ξ and Jfluc read

η(x, p,Q) = −2g Tr
(

Q [D̄µ, aν ] −Q [D̄ν , aµ]
)

pµ∂ν
p δf(x, p,Q)

−2g2 Tr (Q [aµ, aν ]) p
µ∂ν

p δf(x, p,Q) , (5.8a)

ξ(x, p,Q) = −2g pµ Tr ([Q, ∂Q] aµ) δf(x, p,Q)

−2g2pµ Tr ([aµ, aν ]Q) ∂ν
p f̄(x, p,Q) , (5.8b)

Jν
fluc

(x) = g
[

D̄µ, [aµ, a
ν ]
]

+ g
[

aµ, [D̄
µ, aν ]

]

− g
[

aµ, [D̄
ν , aµ]

]

+g2 [aµ, [a
µ, aν ]] . (5.8c)

while the linear terms ζ and Jlin are given by

ζ(x, p,Q) = −2g Tr
(

Q[D̄µ, aν ] −Q[D̄ν , aµ]
)

pµ∂ν
p f̄(x, p,Q)

−2g pµ Tr
(

[Q, ∂Q]aµ

)

f̄(x, p,Q) , (5.9a)

Jν
lin

(x) = g
[

aµ, F̄
µν
]

+
[

D̄µ, [D̄
µ, aν ]

]

−
[

D̄µ, [D̄
ν , aµ]

]

. (5.9b)
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For 〈a〉 = 0, the terms 〈ζ〉 and 〈Jlin〉 vanish, and Eqs. (5.7) reduce to Eqs. (4.5). Along the

same lines, the fluctuation dynamics becomes

pµ
(

D̄µ − g Tr (QF̄µν) ∂
ν
p

)

δf = −2gTr
(

Q[D̄µ, aν ] −Q[D̄ν , aµ]
)

pµ∂ν
p f̄

−2g pµ Tr ([Q, ∂Q]aµ) f̄ − 〈ζ〉

+η + ξ − 〈η + ξ〉 , (5.10a)
[

D̄ν , [D̄
ν , aµ]

]

−
[

D̄µ, [D̄ν , a
ν ]
]

+ 2g[F̄ µν , aν ] = δJµ − Jµ
fluc

+ 〈Jµ
fluc

+ Jµ
lin
〉 . (5.10b)

Again, the vanishing of 〈a〉, and hence of 〈ζ〉 and 〈Jlin〉, reduces Eqs. (5.10) to Eqs. (4.7).

It is straightforward, if tedious, to confirm that this coupled set of differential equations

(5.7) to (5.10) is invariant under both the fluctuation gauge symmetry Eqs. (5.6) and under

the background field symmetry Eqs. (5.5). It suffices to employ the cyclicity of the trace,

and to note that aµ and background covariant derivatives of it transform covariantly. This

establishes that the full gauge symmetry of the underlying microscopic set of equations is

respected at the effective mean field level.

The next step, to finally obtain the set of equations given in the preceding section,

involves the requirement that the statistical average of the gauge field fluctuation vanishes,

〈a〉 = 0. This additional constraint is fully compatible with the background gauge symmetry,

as 〈a〉 = 0 is invariant under Eqs. (5.5). Any inhomogeneous transformation law for a, and

in particular Eq. (5.6), can no longer be a symmetry of the macroscopic equations as the

constraint 〈a〉 = 0 is not invariant under the fluctuation gauge symmetry. This is similar to

what happens in the background field method, where the fluctuation gauge symmetry can

no longer be seen once the expectation value of the fluctuation field is set to zero. As we

have just verified, the symmetry Eqs. (5.6) is observed in both Eqs. (4.5a) and (4.7a), as

long as the terms linear in 〈a〉 are retained.

The value for a is obtained when the dynamical equations for the fluctuations are

solved explicitly. This requires that some gauge for the fluctuation field has to be fixed. For

any (approximate) explicit solution which expresses the fluctuation field a as a functional of

the source fluctuations of the particle distribution function one has to check for consistency

that the intial constraint 〈a〉 = 0 is satisfied. If the solution a turns out to be a linear

functional of δf |t=0, this is automatically satisified. An example for this is encountered in

Section VIII. This justifies the dynamical equations as given in Section IV.

B. Current conservation

In Eqs. (4.22) and (4.23), we have given the equations which imply the covariant

current conservation of the mean and the fluctuation current. However, this information is
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contained both in the transport and in the Yang-Mills equation. It remains to be shown

that these equations are self-consistent. For the reasons detailed above it is sufficient to

consider from now on only the case 〈a〉 = 0.

We start with the mean current J̄ . Performing g
∫

dPdQQ of the transport equation

Eq. (5.7a), we find

0 = [D̄µ, J̄
µ] + g〈[aµ, δJ

µ]〉 . (5.11)

This is Eq. (4.22). In order to obtain Eq. (5.11), we made use of the following moments of

the effective transport equation,
∫

dP η(x, p,Q) = 0 , (5.12a)

∫

dP pµFµν∂
ν
pf(x, p,Q) = 0 , (5.12b)

∫

dPdQQ ξ(x, p,Q) = −[aµ, δJ
µ] , (5.12c)

g
∫

dPdQQ pµD̄µf̄(x, p,Q) = [D̄µ, J̄
µ] . (5.12d)

On the other hand we can simply take the background-covariant derivative of the mean field

Yang-Mills equation, Eq. (5.7b), to find

0 = [D̄µ, J̄
µ] − [D̄µ, 〈Jµ

fluc
〉] . (5.13)

This equation has to be consistent with Eq. (5.11). Combining them, we end up with the

consistency condition

0 = [D̄µ, 〈Jµ
fluc
〉] + g〈[aµ, δJ

µ]〉 . (5.14)

This consistency condition links the background covariant derivative of some correlator of

induced gauge field fluctuations with the correlator between the current fluctuations and

the gauge field fluctuations. Such a condition can hold because the gauge field fluctuations

are induced by those of the current.

In order to prove the consistent current conservation for the mean fields Eq. (5.14),

and the corresponding equation for the fluctuation current, it is useful to establish explicitly

the following identity

0 = [D̄µ, J
µ
fluc

] + g[aµ, δJ
µ] + g[aµ, 〈Jµ

fluc
〉] . (5.15)

The check of Eq. (5.15) is algebraic, and it will make use of symmetry arguments like

the antisymmetry of the commutator and the tensors F̄µν , fµν , and of the Jacobi identity
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[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0. The identity [D̄µ, D̄ν ] = gF̄µν is employed as well.

To simplify the computation, we will separate the fluctuation part of the field strength

Eq. (4.3c) into the terms linear and quadratic in a, according to

fµν = f1,µν + f2,µν , (5.16a)

f1,µν = [D̄µ, aν ] − [D̄ν , aµ] , (5.16b)

f2,µν = g[aµ, aν ] . (5.16c)

Recall furthermore, using Eq. (5.8c) and Eq. (5.10b), that

Jµ
fluc

= [D̄ν , f
νµ
2 ] + g[aν , f

νµ
1 + f νµ

2 ] , (5.17)

δJµ = [D̄ν , f
νµ
1 ] + g[aν , F̄

νµ] + Jµ
fluc

− 〈Jµ
fluc

〉 (5.18)

are functions of the fluctuation field a. The first term of Eq. (5.15) reads, after inserting

Jfluc from Eq. (5.17),

[D̄µ, J
µ
fluc

] = [D̄ν , [D̄µ, f
µν
2 ]] + g[D̄ν, [aµ, f

µν
1 ]] + g[D̄ν , [aµ, f

µν
2 ]] . (5.19)

Using δJ from Eq. (5.18), it follows for the second term of Eq. (5.15)

g[aµ, δJ
µ] = g2[aν , [aµ, F̄

µν ]] + g[aν, [D̄µ, f
µν
1 ]] + g [aν , J

ν
fluc

] − g [aν , 〈Jν
fluc

〉] . (5.20)

The last term of Eq. (5.20) will be cancelled by the last term in Eq. (5.15). We show now

that the first three terms of Eq. (5.19) and Eq. (5.20) do cancel one by one. The first term

in Eq. (5.19) can be rewritten as

[D̄ν , [D̄µ, f
µν
2 ]] = [[D̄ν , D̄µ], f

µν
2 ] − [D̄ν , [D̄µ, f

µν
2 ]] = 1

2g[F̄νµ, f
µν
2 ] . (5.21)

Similarly, the first term of Eq. (5.20) yields

g2[aν , [aµ, F̄
µν ]] = −g2[F̄ µν , [aν , aµ]] − g2[aν , [aµ, F̄

µν ]] = −1
2g[F̄µν , f

νµ
2 ] . (5.22)

For the second term in Eq. (5.19) we have

g[D̄ν, [aµ, f
µν
1 ]] = g[aµ, [D̄ν, f

µν
1 ]] + g[[D̄ν , aµ], f

µν
1 ] = −g[aµ, [D̄ν , f

νµ
1 ]] , (5.23)

which equals (minus) the second term of Eq. (5.20). Finally, consider the third term of

Eq. (5.20),

g [aν , J
ν
fluc

] = g2[aν , [D̄µ, [a
µ, aν ]]] + g2[aν , [aµ, f

µν ]]

= 1
2g[f

µν
2 , f1,µν ] − g[D̄µ, [f

µν
2 , aν ]] − 1

2g[f
µν
2 , f1,µν ]

= −g[D̄µ, [aν , f
νµ
2 ]] , (5.24)
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which equals (minus) the third term of Eq. (5.19). This establishes Eq. (5.15).

Returning to our main line of reasoning we take the average of Eq. (5.15) which reduces

it to Eq. (5.14) and establishes the self-consistent conservation of the mean current. The

analogous consistency equation for the fluctuation current follows from Eq. (5.10a) after

performing g
∫

dPdQQ, and reads

0 = [D̄µ, δJ
µ] + g[aµ, δJ

µ] + g[aµ, J̄
µ] − g〈[aµ, δJ

µ]〉 . (5.25)

This is Eq. (4.23). Here, in addition to Eq. (5.12), we made use of

2 g
∫

dPdQQ Tr ([Q, ∂Q] aµ) f̄(x, p,Q) = g[aµ, J̄
µ] . (5.26)

The background covariant derivative of Eq. (5.10b) is given as

0 = [D̄µ, δJ
µ] + g

[

aν , [D̄µ, F̄
µν ]
]

− [D̄µ, J
µ
fluc

] + [D̄µ, 〈Jµ
fluc

〉] . (5.27)

Subtracting these equations yields the consistency condition

0 = [D̄µ, J
µ
fluc

] + g[aµ, δJ
µ] − [D̄µ, 〈Jµ

fluc
〉]

− g〈[aµ, δJ
µ]〉 + g[aµ, J̄

µ] − g
[

aν , [D̄µ, F̄
µν ]
]

. (5.28)

Eq. (5.28) is a consistency condition which links different orders of the fluctuations of gauge

fields with those of the current. Using Eqs. (5.7b), (5.14) and (5.15) we confirm Eq. (5.28)

explicitly. This establishes the self-consistent conservation of the fluctuation current.

C. Approximations

We close this section with a comment on the consistency of approximate solutions. The

consistent current conservation can no longer be taken for granted when it comes to finding

approximate solutions of the equations. On the other hand, finding an explicit solution will

require some type of approximations to be performed. The relevant question in this context

is to know which approximations will be consistent with gauge invariance.

Consistency with gauge invariance requires that approximations have to be consistent

with the background gauge symmetry. From the general discussion above we can already

conclude that dropping any of the explicitly written terms in Eqs. (4.5) to (4.7) is consistent

with the background gauge symmetry Eq. (5.5). This holds in particular for the first and

second moment approximations Eq. (4.14) as well as for the polarisation approximation

Eq. (4.16).
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The first moment approximation Eq. (4.13) is automatically consistent with the co-

variant current conservation, simply because the approximate equations are structurally the

same as the microscopic ones.

Consistency of the polarisation approximation Eq. (4.16) with covariant current con-

servation turns out to be more restrictive. Employing Jfluc = 〈Jfluc〉 implies that Eq. (5.14)

is only satisfied if in addition

0 =
[

D̄ν , 〈[aµ, [a
µ, aν ]]〉

]

(5.29)

holds true. This is in accordance with neglecting cubic correlators for the collision integrals.

Similarly, the consistent conservation of the fluctuation current implies the consistency

condition Eq. (5.28), and holds if

0 = [aµ, 〈Jµ
fluc
〉] . (5.30)

It is interesting to note that the consistent current conservation relates the second moment

approximation with the neglection of correlators of gauge field fluctuations. We conclude,

that Eqs. (4.16) with (5.29) and (5.30) form a gauge-consistent set of approximations.

This terminates the general discussion of a semi-classical transport theory built upon

a microscopical point particle picture. The following sections discuss the weakly coupled

plasmas close to thermal equilibrium, and the techniques are put to work.
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VI. PLASMAS CLOSE TO EQUILIBRIUM

In the remaining part of the article, we employ the present formalism to the classi-

cal and the quantum non-Abelian plasma close to equilibrium. Prior to this, we discuss

briefly the relevant physical scales for relativistic classical and quantum plasmas close to

equilibrium. Here, we restore the fundamental constants h̄, c and kB in the formulas.

A. Classical plasmas

To discuss the relevant physical scales in the classical non-Abelian plasma, it is con-

venient to discuss first the simpler Abelian case, which has been considered in detail in

the literature [97,94]. At equilibrium the classical distribution function is given by the

relativistic Maxwell distribution,

f̄ eq(p0) = exp
(

µ− p0

kBT

)

, (6.1)

where µ is the chemical potential. The mean density of particles N̄ is then deduced from

the above distribution function. If we neglect the masses of the particles (m≪ T ), then

N̄ = 8π

(

kBT

2πh̄c

)3

eµ/kBT . (6.2)

The value of the fugacity of the system z = eµ/kBT is then fixed by knowing the mean

density of the plasma ‡. The interparticle distance is then r̄ ∼ N̄−1/3. As we are considering

a classical plasma, we are assuming r̄ ≫ λdB, where λdB is the de Broglie wave length,

λdB ∼ h̄/p, with p some typical momenta associated to the particles, so that p ∼ kBT/c.

The previous inequality is satisfied if z ≪ 1, which is the condition under which quantum

statistical effects can be neglected.

Another typical scale in a plasma close to equilibrium is the Debye length rD. The

Debye length is the distance over which the screening effects of the electric fields in the

plasma are felt. For an electromagnetic plasma, the Debye length squared is given by [94]

r2
D =

kBT

4πN̄e2
. (6.3)

‡Note that the dependence on h̄ of the mean density arises only because our momentum measure

is d3p/(2πh̄)3; it is just a normalisation constant.
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Notice that the electric charge contained in the above formula is a dimensionful parameter:

it is just the electric charge of the point particles of the system.

In the classical case, and in the absence of the fundamental constant h̄, the only

dimensionless quantities that can be constructed from the basic scales of the problem are

dimensionless ratios of the basic scales of the problem. The most important one is the

plasma parameter ǫ. The plasma parameter is defined as the ratio [94]

ǫ =
r̄3

r3
D

. (6.4)

The quantity 1/ǫ gives the number of particles contained in a sphere of radius rD. If ǫ≪ 1

this implies that a large number of particles are in that sphere, and thus a large number of

particles are interacting in this volume, and the collective character of their interactions in

the plasma cannot be neglected. For the kinetic description to make sense, ǫ has to be small

[94]. This does not require, in general, that the interactions have to be weak and treated

perturbatively.

Let us now consider the non-Abelian plasma. The interparticle distance is defined as

in the previous case. The main difference with respect to the Abelian case concerns the

Debye length, defined as the distance over which the screening effects of the non-Abelian

electric fields in the plasma are noticed. It reads

r2
D =

kBT

4πN̄g2C2
, (6.5)

where C2, defined in Eq. (2.25), is a dimensionful quantity, carrying the same dimensions

as the electric charge squared in Eq. (6.3). The coupling constant g is a dimensionless

parameter. In the non-Abelian plasma one can also construct the plasma parameter, defined

as in Eq. (6.4).

It is interesting to note that there are two natural dimensionless parameters in the non-

Abelian plasma: ǫ and g. The condition for the plasma parameter being small translates

into

(

4πC2

kBT

)3/2

N̄1/2g3 ≪ 1 , (6.6)

which is certainly satisfied for small gauge coupling constant g ≪ 1. But it can also be

fulfilled for a rarefied plasma. Thus, one may have a small plasma parameter without having

a small gauge coupling constant. This is an interesting observation, since the inequalities

ǫ≪ 1 and g ≪ 1 have different physical meanings. A small gauge coupling constant allows

us to treat the non-Abelian interaction perturbatively, while ǫ ≪ 1 just means having a

collective field description of the physics occurring in the plasma. In principle, these two
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situations are different. If we knew how to treat the non-Abelian interactions exactly, we

could also have a kinetic description of the classical non-Abelian plasmas without requiring

g ≪ 1.

B. Quantum plasmas

Now we consider the quantum non-Abelian plasma, and consider the quantum coun-

terparts of all the above quantities, as derived from quantum field theory. For a quantum

plasma at equilibrium the one particle distribution function is

f̄ eq
B (p0) =

1

exp
(

p0−µ
kBT

)

− 1
, (6.7a)

f̄ eq
F (p0) =

1

exp
(

p0∓µ
kBT

)

+ 1
, (6.7b)

where the subscripts ‘B’ and ‘F’ refer to the Bose-Einstein and Fermi-Dirac statistics, re-

spectively. In the fermionic distribution function the ∓ sign refers to partices/antiparticles,

respectively.

Note that in the limit of low occupation numbers, one can recover the classical distri-

bution function from the quantum one. This happens for large values of the fugacity. Also

we should point out that a chemical potential associated to a specific species of particles can

only be introduced if there is a conserved charge associated to them. Since it is impossible

to associate a global U(1) symmetry to the gluons, one cannot introduce a gluonic chemical

potential.

In the remaining part of this article, we will mainly study the physics of non-Abelian

plasmas close to thermal equilibrium, and put µ = 0. If we further neglect the masses of the

particles, then the mean density is N̄ ∼ (kBT/h̄c)
3. The interparticle distance r̄ ∼ N̄−1/3

becomes of the same order as the de Broglie wavelength, which is why quantum statistical

effects cannot be neglected in this case.

The value of the Debye mass is obtained from quantum field theory. It depends on

the specific quantum statistics of the particles and their representation of SU(N). From the

quantum Debye mass one can deduce the value of the Debye length, which is of order

r2
D ∼ 1

g2

(

h̄c

kBT

)2

. (6.8)

It is not difficult to check that the plasma parameter, defined as in Eq. (6.4), becomes

proportional to g3. Thus ǫ is small if and only if g ≪ 1. This is so, because in a quantum

field theoretical formulation one does not have the freedom to fix the mean density N̄ in
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an arbitrary way, as in the classical case (i.e., one cannot introduce a fugacity for gluons).

This explains why the kinetic description of a quantum non-Abelian plasma is deeply linked

to the small gauge coupling regime of the theory.
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VII. HTL EFFECTIVE THEORY

In this section we consider the example of the HTL effective theory. In physical terms,

it describes the leading-order chromoelectrical screening effects in a non-Abelian plasmas

close to thermal equilibrium [100]. The HTL-resummed gluon propagator no longer has poles

on the light cone, and the dispersion relation, which is a complicated function of momenta,

yields a screening mass – the Debye mass mD – for the chromo-electric fields. Also, the

HTL polarisation tensor has an imaginary part which is responsible for the absorption and

emission of soft gluons by the particles, known as Landau damping. The corresponding

effective action for QCD is highly non-local, but can be brought into a local form when

written as a transport equation.

Within the conceptual framework laid-out in the previous sections the HTL effective

theory can be obtained in a very simple manner [91,92]. A prerequisite for a kinetic descrip-

tion to be viable is a small plasma parameter ǫ≪ 1. We shall ensure this by assuming that

the temperature is sufficiently high such that the gauge coupling as a function of temperature

obeys

g ≪ 1 . (7.1)

We also assume that all particle masses m are small compared to both the temperature

and the Debye mass which allows considering them as massless. It is then shown that the

HTL effective theory emerges within the simplest non-trivial approximation to the set of

transport equations derived in Section IV, which is the first moment approximation. Hence,

fluctuations will play no part in the effective mean field dynamical equations. Solving the

approximate transport equations within the first moment approximation and to leading

order in the gauge coupling reproduces the HTL effective theory. In the present section we

drop the bar on the mean fields for notational simplicity.

A. Non-Abelian Vlasov equations

We begin with the set of mean field equations (4.5) and neglect the effect of statistical

fluctuations entirely, δf ≡ 0. In that case, Eqs. (4.5) become the non-Abelian Vlasov

equations [69]

pµDµ f = g pµQaF
a
µν ∂

ν
p f , (7.2a)

DµF
µν = Jν , (7.2b)

where the colour current is given by
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Jµ
a (x) = g

∑

helicities

species

∫

dPdQQap
µf(x, p,Q) . (7.2c)

We will omit the species and helicity indices on the distribution functions, and in the sequel,

we will also omit the above sum, in order to keep the notation as simple as possible. Equation

(7.2a) is then solved perturbatively, as it admits a consistent expansion in powers of g. Close

to equilibrium, we expand the distribution function as in Eq. (4.17) up to leading order in

the coupling constant

f(x, p,Q) = f eq(p0) + gf (1)(x, p,Q) . (7.3)

In the strictly classical approach, the relativistic Maxwell distribution Eq. (6.1) at equilib-

rium is used, which is semi-classically replaced by the corresponding quantum distributions

Eqs. (6.7). Here, we consider massless particles with two helicities as internal degrees of

freedom.

It is convenient to rewrite the equations in terms of current densities. The momentum

measure we use is

dP =
d4p

(2π)3
2Θ(p0) δ(p

2) (7.4)

for massless particles. Consider the current densities

Jρ
a1···an

(x, p) = g pρ
∫

dQQa1
· · ·Qan

f(x, p,Q), (7.5a)

J ρ
a1···an

(x,v) =
∫

dP̃ Jρ
a1···an

(x, p) . (7.5b)

Here we introduced the vector vµ = (1,v), where v describes the velocity of the particle with

v2 = 1. The measure dP̃ integrates over the radial components. It is related to Eq. (2.22)

by dP = dP̃dΩ/4π, and reads

dP̃ =
1

2π2
dp0 d|p| |p|2 2Θ(p0) δ(p

2) . (7.6)

The colour current is obtained by performing the remaining angle integration

Jµ
a (x) =

∫

dΩ
4πJ µ

a (x, v). (7.7)

For massless particles, a simple consequence of these definitions is vµJ 0
a (x, v) = J µ

a (x, v), a

relation we will use continously.

We now insert Eq. (7.3) into Eqs. (7.2) and expand in powers of g. The leading order

term p · Df eq.(p0) vanishes. After multiplying Eq. (7.2a) by gQap
ρ/p0, summing over two

helicities, and integrating over dP̃dQ, we obtain for the mean current density at order g
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vµDµJ ρ(x,v) = m2
Dv

ρvµF0µ(x) , (7.8a)

DµF
µν(x) = Jν(x) , (7.8b)

with the Debye mass

m2
D = −g

2C2

π2

∫ ∞

0
dpp2df

eq(p)

dp
. (7.9)

In the classical case the Debye mass is given by the inverse of the Debye length Eq. (6.5), as

a function of the mean density. In the quark-gluon plasma, with gluons in the adjoint rep-

resentation, C2 = N , and NF quarks and NF antiquarks in the fundamental representation,

C2 = 1/2, and all the particles carrying two helicities, the Debye mass reads

m2
D =

g2T 2

3

(

N +
NF

2

)

. (7.10)

From Eq. (7.8a) we can estimate the typical momentum scale of the mean fields. If

the effects of statistical fluctuations are neglected, the typical momentum scales associated

to the mean current and the mean field strength are of the order of the Debye mass mD.

Here and in the sequel, we will refer to those scales as soft scales. The momentum scales

with momenta ≪ mD will be referred to as ultra-soft from now on.

The Boltzmann equation (7.8a) is consistent with current conservation. This follows

easily from the ρ = 0 component of Eq. (7.8a), which yields

DµJ
µ =

∫

dΩ

4π
DµJ µ(x,v) = m2

DF0µ

∫

dΩ

4π
vµ = 0 . (7.11)

The last equation vanishes because both the angle average of v and the component F 00

vanish.

B. Solution to the transport equation

In a first step we have found the Boltzmann equation to leading order in the Vlasov

approximation. In a second step, we are interested in integrating-out the quasi-particle

degrees of freedom. This amounts to solving the Boltzmann equation and to express the

induced current explicitly as a functional of the soft gauge fields [28]. The solution to

Eq. (7.8a) is constructed with the knowledge of the retarded Green’s function

ivµDµ Gret(x, y;v) = δ(4)(x− y) . (7.12)

It reads
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Gret(x, y;v)ab = −iθ(x0 − y0)δ
(3) (x − y − v(x0 − y0)) Uab(x, y) . (7.13)

Here, we introduced the parallel transporter Uab[A] which is defined via a path-ordered

exponential as

U(x, y) = P exp
(

ig
∫ x

y
dzµ Aµ(z)

)

, (7.14a)

Uab(x, x) = δab , (7.14b)

and obeys

vµDx
µ Uab(x, y)|y=x−vt = 0 . (7.14c)

Using Eq. (7.13), one finds for the current density

J µ
a (x,v) = −m2

D v
µvν

∫ ∞

0
dτ Uab(x, x− vτ)Fν0,b(x− vτ) (7.15)

and for the HTL effective current

Jµ
a (x) = −m2

D

∫ dΩv

4π
vµvν

∫ ∞

0
dτ Uab(x, x− vτ)Fν0,b(x− vτ) . (7.16)

The above colour current agrees with the HTL colour current, if one uses the value of the

Debye mass for the quark-gluon plasma, Eq. (7.10).

Inserting Eq. (7.16) into Eq. (7.8b) yields an effective theory for the soft gauge fields

only. This final step can be seen as integrating-out the particles from the dynamical equa-

tions for the soft non-Abelian fields. The soft current J [A] of Eq. (7.16) is related as

J(x) = −δΓHTL[A]/δA(x) to the generating functional ΓHTL[A] for soft amplitudes. In-

tegrating the HTL current is known to give the HTL effective action ΓHTL[A] explicitly

[43–46,62,141,58,59,92]. A simple and elegant expression for the HTL effective action was

given in [46], and it reads

ΓHTL[A] =
m2

D

2

∫

dΩv

4π

∫

d4x d4yTr

(

Fµν(x)〈x|
vνvρ

−(v ·D)2
|y〉F µ

ρ (y)

)

. (7.17)

The leading-order effective action for soft gauge fields is then given by adding the HTL

effective action to the Yang-Mills one.

C. Soft amplitudes

As a first application, we consider the polarisation tensor for soft gauge fields. The

HTL colour current can be expanded in powers of the gauge fields as
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Ja
µ [A] = Πab

µν A
ν
b +

1

2
Πabc

µνρA
ν
b A

ρ
c + . . . , (7.18)

where the expansion coefficients (or ‘soft amplitudes’) correspond to 1PI-irreducible ampli-

tudes in thermal equilibrium.

We solve the transport equation in momentum space [147,111] in order to find the

explicit expressions of the HTLs. Using the Fourier transform

J µ
a (k, v) =

∫

d4x eik·x J µ
a (x, v) (7.19)

we can write the transport equation in momentum space

v · k J µ
a (k, v) + igfabc

∫

d4q

(2π)4
v · Ab(k − q)J µc(q, v)

= −m2
Dv

µ

[

v · k Aa
0(k) − k0 v · Aa(k) + igfabc

∫

d4q

(2π)4
v · Ab(k − q)Ac

0(q)

]

. (7.20)

Now, after assuming that J µ
a (k, v) can be expressed as an infinite power series in the gauge

field Aa
µ(k), Eq. (7.20) can be solved iteratively for each order in the power series. We

impose retarded boundary conditions by the prescription p0 → p0 + iǫ, with ǫ → 0+. The

first order solution is

J µ (1)
a (k, v) = m2

D v
µ

(

k0
v ·Aa(k)

v · k − A0
a(k)

)

. (7.21)

Inserting Eq. (7.21) in Eq. (7.20) allows solving for the second order term in the series,

which reads

J µ (2)
a (k, v) = −igm2

Dfabc

∫

d4q

(2π)4
vµq0

v ·Ab(k − q) v · Ac(q)

(v · k)(v · q) . (7.22)

The n-th order term (n > 2) can be expressed as a function of the (n− 1)-th one as

J µ (n)
a (k, v) = −igfabc

∫

d4q

(2π)4

v ·Ab(k − q)

v · k J µ (n−1)
c (q, v) . (7.23)

The complete expression of the induced colour current is thus given by

Jµ
a (x) =

∫

d4k

(2π)4
e−ik·x

∞
∑

n=1

Jµ (n)
a (k)

=
∫

dΩv

4π

∫

d4k

(2π)4
e−ik·x

∞
∑

n=1

J µ (n)
a (x, v) . (7.24)
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To obtain the corresponding n-point HTL amplitude, one only needs to perform n − 1

functional derivatives of the current with respect to the vector gauge fields. The leading

order coefficient is given by the HTL polarisation tensor. This is given by

Πµν
ab (k) = δabm

2
D

(

−gµ0gν0 + k0

∫

dΩv

4π

vµvν

k · v

)

. (7.25)

It obeys kµΠ
µν
ab (k) = 0 due to gauge invariance, and agrees with the HTL polarisation tensor

of QCD [100,92], if one uses the quantum Debye mass Eq. (7.10).

The polarisation tensor has an imaginary part, due to

1

k · v + i0+
= P 1

k · v − iπδ(k · v) . (7.26)

The imaginary part corresponds to Landau damping and describes the emission and ab-

sorption of soft gluons by the hard particles. It can be expressed as

Im Πµν
ab (k) = −δabm

2
Dπk0

∫ dΩv

4π
vµvν δ(k · v) . (7.27)

Notice the appearance of the δ-function under the angle average. Because of v2 = 1 it

implies that Eq. (7.27) is only non-vanishing for space-like momenta with |k| ≥ k0. It is

closely related to fluctuations within the plasma due to the fluctuation-dissipation theorem.

We shall come back to this point in Section VIIIC.

The polarisation tensor can be projected into their longitudinal (L) and transverse

(T ) components as

Π00
ab(k0,k) = δab ΠL(k0,k) , (7.28a)

Π0i
ab(k0,k) = δab k0

ki

|k|2 ΠL(k0,k) , (7.28b)

Πij
ab(k0,k) = δab

[(

δij − kikj

|k|2
)

ΠT (k0,k) +
kikj

|k|2
k2

0

|k|2 ΠL(k0,k)

]

, (7.28c)

where

ΠL(k0,k) = m2
D

(

k0

2|k|

(

ln

∣

∣

∣

∣

∣

k0 + |k|
k0 − |k|

∣

∣

∣

∣

∣

− iπΘ(|k|2 − k2
0)

)

− 1

)

, (7.29a)

ΠT (k0,k) = −m2
D

k2
0

2|k|2
[

1 +
1

2

(

|k|
k0

− k0

|k|

) (

ln

∣

∣

∣

∣

∣

k0 + |k|
k0 − |k|

∣

∣

∣

∣

∣

− iπΘ(|k|2 − k2
0)

)]

. (7.29b)

Similarly, all HTLs, such as Πabc
µνρ, are obtained.

The poles of the longitudinal and transverse parts of the gluon propagator give the

dispersion laws for the collective excitations in the non-Abelian plasma
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|k|2 − Re ΠL(k0,k)|k0=ωL(k) = 0 , (7.30a)

k2
0 − |k|2 + Re ΠT (k0,k)|k0=ωT (k) = 0 . (7.30b)

The plasma frequency ωpl follows from Eq. (7.30) as

ω2
pl =

1

3
m2

D . (7.31)

For generic external momenta the dispersion relations can only be solved numerically. In

turn, if the spatial momenta are much smaller than the plasma frequency |k| ≪ ωpl, solutions

to Eq. (7.30) can be expanded in powers of |k|2/ω2
pl as

ω2
L(k) = ω2

pl

[

1 +
3

5

|k|2
ω2

pl

+ O(
|k|4
ω4

pl

)

]

, (7.32a)

ω2
T (k) = ω2

pl

[

1 +
(

1 +
1

5

) |k|2
ω2

pl

+ O(
|k|4
ω4

pl

)

]

. (7.32b)

D. Energy-momentum tensor

For a second application, we come back to the conservation laws for the energy mo-

mentum tensor in the Vlasov approximation. They have been given in Eq. (4.20), and

simplify in the present approximation to

∂νΘ
µν(x) = −F µν

a (x)Jνa(x) , (7.33a)

∂νt
µν(x) = F µν

a (x)Jνa(x) =
∫

dΩ

4π
F µν

a (x) vν J0,a(x,v) . (7.33b)

In the second line we have inserted the current density J (x,v) on the right-hand side.

Following an observation due to Blaizot and Iancu [30], it is possible to derive an explicit

expression for the tµ0 components of the particle’s energy-momentum tensor. Indeed, making

use of the Boltzmann equation (7.8a), we can substitute the term F 0ν vν in Eq. (7.33b) to

obtain

∂µt
µ0(x) = m2

D

∫

dΩ

4π
[vµDµW (x,v)]a Wa(x,v) . (7.34)

Here, we found it convenient to introduce Wa(x,v) ≡ m−2
D J0,a(x,v). Using the identity

∂µ(AaBa) = (DµA)aBa + Aa(DµB)a, we can trivially integrate this equation to find, apart

from an integration constant

tµ0(x) =
1

2
m2

D

∫

dΩ

4π
vµWa(x,v)Wa(x,v) . (7.35)
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Combining it with the energy-momentum tensor of the mean fields T µν = Θµν + tµν , we

obtain for the total energy

T 00(x) =
1

2

[

Ea(x) · Ea(x) + Ba(x) · Ba(x) +m2
D

∫

dΩ

4π
Wa(x,v)Wa(x,v)

]

(7.36)

where we have introduced the colour electric field Ei ≡ F i0 and the colour magnetic field

Bi ≡ 1
2ǫ

ijkF jk. For the energy flux (or Poynting vector), the result reads

T i0(x) = [Ea(x) × Ba(x)]
i +

1

2
m2

D

∫

dΩ

4π
viWa(x,v)Wa(x,v) . (7.37)

The local expression Eq. (7.36) for the energy has proven quite useful for the integrating-out

of modes at the Debye scale [34], and for certain lattice implementations [41].
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VIII. BEYOND THE VLASOV APPROXIMATION

In this section, the physics related to colour relaxation in a non-Abelian plasma is

studied. The HTL transport equation was found to be collisionless, which implies that

colour relaxation effects cannot be described in this approximation. The effects of collisions

have to be taken into account. The corresponding effective transport theory was first derived

in [34–36] (see also the discussion in Section IC).

Within the present approach the physics at length scales larger than the inverse Debye

mass can be probed once the gauge field modes with momenta about mD have been inte-

grated out, that is, incorporated within the quasi-particle distribution function [105,106,108].

The simplest approximation which includes the genuine effects due to source fluctuations

of the quasi-particle distribution function is the polarisation approximation as discussed in

Section IVD. The polarisation approximation requires that the two-particle correlation

functions remain small within a Debye volume. This is the case if the plasma parameter is

sufficiently small, which is assumed anyhow.

Here, a detailed derivation is given for both the mean field equations at leading order

beyond the HTL effective theory and an effective theory for the ultra-soft gauge fields to

leading logarithmic order. We proceed in two steps. The first step consists in solving the

dynamical equations for the fluctuations as functions of initial fluctuations of the particle

distribution function. From this, a collision term and a noise source for the effective mean

field Boltzmann equation are obtained. Here, it will be necessary to perform a leading

logarithmic approximation, assuming that the gauge coupling is sufficiently small to give

g ≪ 1 and
1

ln 1/g
≪ 1 . (8.1)

In a second step the quasi-particle degrees of freedom are integrated out as well. This implies

that the mean field transport equation has to be solved. This expresses the induced current

explicitly as a functional of the ultra-soft gauge fields only. Ultimately, we shall see that a

simple Langevin-type dynamical equation emerges [34]. Here, we extend the reasoning as

presented in [105,106].

A. Leading order dynamics

We now allow for small statistical fluctuations δf(x, p,Q) around Eq. (7.3), writing

f(x, p,Q) = f̄ eq.(p0) + gf̄ (1)(x, p,Q) + δf(x, p,Q) , (8.2)

and rewrite the approximations to (4.5) and (4.7) in terms of current densities and their

fluctuations. Note that the fluctuations δf(x, p,Q) in the close-to-equilibrium case are
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already of the order of g. This observation is important for the consistent approximation in

powers of the gauge coupling. As a consequence, the term gf̄ (1) in Eq. (8.2) will now account

for the ultra-soft modes for momenta ≪ mD. Integrating-out the fluctuations results in an

effective theory for the latter.

As before, we obtain the dynamical equation for the mean current density at leading

order in g, after multiplying (4.5a) by gQap
ρ/p0, summing over two helicities, and integrating

over dP̃dQ. The result is

vµD̄µJ̄ ρ +m2
Dv

ρvµF̄µ0 = 〈ηρ〉 + 〈ξρ〉 , (8.3a)

D̄µF̄
µν + 〈Jν

fluc
〉 = J̄ν . (8.3b)

In a systematic expansion in g, we have to neglect cubic correlator terms as compared to

quadratic ones, as they are suppressed explicitly by an additional power in g. Therefore, we

find to leading order

ηρ
a = g

∫

dP̃
pρ

p0

(D̄µaν − D̄νaµ)b ∂ν
p δJ

µ
ab(x, p) , (8.4a)

ξρ
a = −gfabcv

µ ab
µ δJ c,ρ , (8.4b)

Jρ,a
fluc

= gfdbc
(

D̄ad
µ a

µ
b a

ρ
c + δadab

µ

(

D̄µaρ − D̄ρaµ
)c)

. (8.4c)

The same philosophy is applied to the dynamical equations for the fluctuations. To leading

order in g, the result reads

(

vµD̄µ δJ ρ
)

a
= −m2

Dv
ρvµ

(

D̄µa0 − D̄0aµ

)

a
− gfabcv

µab
µJ̄ c,ρ , (8.5a)

vµ
(

∂µδacδbd + gĀm
µ (famc δbd + fbmdδac)

)

δJ ρ
cd = gvµam

µ (fmac δbd + fmbdδac) J̄ ρ
cd , (8.5b)

(

D̄2aµ − D̄µ(D̄a)
)

a
+ 2gfabcF̄

µν
b ac,ν = δJµ

a . (8.5c)

Notice that the dynamical equations (8.5a) and (8.5c) can also be obtained from the HTL ef-

fective equations Eqs. (7.8) within the present approximation. It suffices to expand Eqs. (7.8)

to linear order in Āµ → Āµ + aµ and J̄ → J̄ + δJ , which gives Eq. (8.5a) for the dynamics

of δJ and Eq. (8.5c) for the dynamics of aµ.

The typical momentum scale associated to the fluctuations can be estimated from

Eq. (8.5). We find that it is of the order of the Debye mass ∼ mD, that is, of the same order

as the mean fields in Eqs. (7.8). This confirms explicitly the discussion made above. The

typical momentum scales associated to the mean fields in Eq. (8.3) are therefore ≪ mD.
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B. Integrating-out the fluctuations

We solve the equations for the fluctuations Eqs. (8.5) with an initial boundary condi-

tion for δf , and aµ(t = 0) = 0. Exact solutions to Eqs. (8.5a) and (8.5b) can be obtained.

It is convenient to proceed as follows [94]. We separate the colour current fluctuations into

a source part and an induced part,

δJ µ = δJ µ
source

+ δJ µ
induced

. (8.6)

The induced piece δJ µ
induced is the part of the current which contains the dependence on aµ,

and thus takes the polarisation effects of the plasma into account. The source piece δJ µ
source

is the part of the current which depends only on the initial condition, given by the solution

of the homogeneous equation Eq. (8.7). This splitting will be useful later on since ultimately

all the relevant correlators can be expressed in terms of correlators of δJ µ
source

.

We start by solving the homogeneous differential equation

vµD̄µ δJ ρ(x,v) = 0 , (8.7)

with the initial condition δJ µ
a (t = 0,x,v). It is not difficult to check, by direct inspection,

that the solution to the homogeneous problem is

δJ ρ
a,source

(x,v) = Ūab(x, x− vt) δJ ρ
b (t = 0,x− vt,v) . (8.8a)

The full solution of Eq. (8.5a) is now constructed using the retarded Green’s function

Eq. (7.13). For x0 ≡ t ≥ 0 the induced piece can be expressed as

δJ ρ
a,induced

(x,v) = −
∫ ∞

0
dτ Ūab(x, xτ )

[

m2
Dv

ρvµ
(

D̄µa0 − D̄0aµ

)b
(xτ )

+gfbdcv
µad

µ(xτ )J̄ ρ
c (xτ , v)

]

. (8.8b)

We have introduced

xτ ≡ x− vτ , thus xt = (0,x− vt) . (8.9)

Since aµ(t = 0) = 0, one can check that the above current obeys the correct initial condition.

Let us remark that the induced solution Eq. (8.8b) can be obtained directly from the

explicit solution of the HTL current density Eq. (7.15) by expanding it to linear order in

small deviations about the mean gauge fields. The right-hand side of Eq. (7.15) depends

only on the gauge fields Ā(xτ ). Linearising Eq. (7.15) to leading order about the mean

gauge field Ā(xτ ) + δA(xτ ) yields
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δJ µ
a,induced

(x,v) = −m2
D v

µvν
∫ ∞

0
dτ

[

Ūab(x, xτ ) δF̄ν0,b(xτ )

+δŪab(x, xτ ) F̄ν0,b(xτ ) .
]

(8.10)

In order to evaluate Eq. (8.10) explicitly, we need to know that

δF b
µν(xτ ) =

(

D̄µ δAν − D̄ν δAµ

)b
(xτ ) +O[(δA)2] . (8.11)

For the second term in Eq. (8.10), we make use of an identity for the variation of the parallel

transporter Eq. (7.14a) with respect to the gauge fields δŪ(x, xτ )/δA(xσ), namely

δŪab(x, xτ ) =
∫ ∞

0
dσŪac(x, xσ) [g fcde v

µ δAµ(xσ)] Ūeb(xσ, xτ ) . (8.12)

Using Eq. (8.12) and the explicit expression Eq. (7.15), we confirm that Eq. (8.10) coincides

with the explicit result for the induced current Eq. (8.8b), if we replace δA by a.

The equation (8.5b) can be solved in a similar way. The solution is

δJ ρ
ab(x, v) = Ūam(x, xt)Ūbn(x, xt) δJ ρ

mn(xt, v)

−g
∫ ∞

0
dτ Ūam(x, xτ )Ūbn(x, xτ ) (fmpcδnd + fnpdδmc) v

µap
µ(xτ )J̄ ρ

cd(xτ , v) . (8.13)

Now we seek solutions to Eq. (8.5c) with the colour current of the fluctuation as found

above. However, notice that this equation is non-local in aµ, which makes it difficult to find

exact solutions. Nevertheless, one can solve the equation in an iterative way, by making

a double expansion in both gĀ and gJ̄ . This is possible since the parallel transporter Ū

admits an expansion in gĀ, so that the current δJ ρ can be expressed as a power series in

gĀ

δJ ρ = δJ ρ(0) + δJ ρ(1) + δJ ρ(2) + · · · , (8.14)

and thus Eq. (8.5c) can be solved for every order in gĀ. To lowest order in gĀ, using

Ūab = δab + O(gĀ), Eq. (8.5c) becomes

∂µ
[

∂µa
(0)
ν,a − ∂νa

(0)
µ,a

]

= δJ (0)
ν,a . (8.15)

Using the one-sided Fourier transform § [94], and Eq. (8.8), we find

§The one-sided Fourier transform with respect to the time variable is defined as F (ω) =
∫∞
0 dt eiωtF (t)
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δJ
µ (0)
a + (k) = Πµν

ab (k)a
(0)
ν,b(k)

−gfabc

∫

dΩv

4π

1

−i k · v
∫

d4q

(2π)4
vρab(0)

ρ (q) J̄ µ,c(k − q, v)

+
∫ dΩv

4π

δJ µ
a (t = 0,k, v)

−i k · v , (8.16)

where Πµν
ab (k) is the polarisation tensor Eq. (7.25). Retarded boundary conditions are as-

sumed above, with the prescription k0 → k0 + i0+.

We solve Eq. (8.15) iteratively in momentum space for aµ as an infinite power series

in gJ̄ ,

a(0)
µ = a(0,0)

µ + a(0,1)
µ + a(0,2)

µ + . . . (8.17)

where the second index counts the powers of the background current gJ̄ .

Notice that in this type of Abelianised approximation, the equation (8.15) has a (per-

turbative) Abelian gauge symmetry associated to the fluctuation aµ. This symmetry is only

broken by the term proportional to J̄ in the current. It is an exact symmetry for the term

a(0,0)
µ in the above expansion. We will use this perturbative gauge symmetry in order to

simplify the computations, and finally check that the results of the approximate collision

integrals do not depend on the choice of the fluctuation gauge.

Using the one-sided Fourier transform, we find the following results for the longitudinal

fields, in the gauge k · a(0,0) = 0,

a
(0,0)
0,a +(k) =

1

k2 − ΠL

∫

dΩv

4π

δJ0,a(t = 0,k, v)

−i k · v , (8.18a)

a
(0,1)
0,a +(k) =

−gfabc

k2 − ΠL

∫

dΩv

4π

1

−i k · v
∫

d4q

(2π)4
vµab(0,0)

µ (q) J̄ c
0 (k − q, v) , (8.18b)

while we find

a
T (0,0)
i,a + (k) =

1

−k2 + ΠT

∫

dΩv

4π

δJ T
i,a(t = 0,k, v)

−i k · v , (8.19a)

a
T (0,1)
i,a + (k) =

−gfabc

−k2 + ΠT

P T
ij (k)

∫

dΩv

4π

1

−i k · v
∫

d4q

(2π)4
vµab(0,0)

µ (q) J̄ c
j (k − q, v) , (8.19b)

for the transverse fields. The functions ΠL/T (k) are the longitudinal/transverse polarisation

tensors of the plasma, P T
ij (k) = δij − kikj/k

2 the transverse projector, and aT
i ≡ P T

ij aj .

In the approximation g ≪ 1, it will be enough to consider the solution of leading

(zeroth) order in gĀ, and the zeroth and first order in gJ̄ . The remaining terms are

subleading in the leading logarithmic approximation. However, in principle all tools are

available to compute the complete perturbative series. If we could solve Eq. (8.5c) exactly,

it would not be necessary to use this perturbative expansion.
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C. Correlators and Landau damping

With the explicit expressions obtained in Eqs. (8.16), (8.18) and (8.19), we can express

all fluctuations in terms of initial conditions δJ µ
a (t = 0,x, v) and the mean fields. From

Eq. (3.12) one deduces the statistical average over colour current densities δJ . We expand

the momentum δ-function in polar coordinates

δ(3)(p− p′) =
1

p2
δ(p− p′) δ(2)(Ωv − Ωv′) , (8.20)

where Ωv represents the angular variables associated to the vector v = p/|p|. After some

simple integrations we arrive at

〈

δJ a
µ (t = 0,x, v) δJ b

ν (t = 0,x′, v′)
〉

= 2g2BC C2 δ
ab vµv

′
ν δ

(3)(x − x′) δ(2)(Ωv − Ωv′)

+ g̃ab
2,µν(x, v;x

′, v′) , (8.21)

where vµ = (1,v), and

BC =
2

π

∫ ∞

0
dp p2 f̄ eq(p) , (8.22)

for classical statistics. For a quantum plasma, the value of the constant BC is obtained from

the quantum correlators Eq. (3.14) and Eq. (3.15). For bosonic statistics it reads

BC =
2

π

∫ ∞

0
dp p2 f̄ eq

B (p)
(

1 + f̄ eq
B (p)

)

, (8.23)

while for fermionic statistics it is

BC =
2

π

∫ ∞

0
dp p2 f̄ eq

F (p)
(

1 − f̄ eq
F (p)

)

. (8.24)

The function g̃ab
2,µν is obtained from the two-particle correlation function g̃2. Notice that we

have neglected the piece gf̄ (1) above, as this is subleading in an expansion in g. Since we

know the dynamical evolution of all fluctuations we can also deduce the dynamical evolution

of the correlators of fluctuations, with the initial condition Eq. (3.12). This corresponds to

solving Eq. (4.8) in the present approximation.

From the explicit solution Eq. (8.8) and the average Eq. (8.21) we then find, at leading

order in g and neglecting the non-local term in Eq. (8.21),

〈

δJ a,µ
source

(x, v) δJ b,ν
source

(x′, v′)
〉

= 2g2BC C2 δ
(3)[x − x′ − v(t− t′)] δ(2)(Ωv − Ωv′)

× vµv′ν Ūac(x, x− vt) Ū bc(x′, x′ − v′t′) . (8.25)
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Expanding the parallel transporter Ū , and switching to momentum space we find the spectral

density to zeroth order in gĀ

〈

δJ a
µ δJ b

ν

〉

source (0)

k,v,v′
= 2g2BC C2 δ

ab vµv
′
ν δ

(2)(Ωv − Ωv′) (2π) δ(k · v) . (8.26)

This is the basic correlator reflecting the microscopic fluctuations of the quasi-particle dis-

tribution function within the plasma, and it is all that is required to derive the collision

integral relevant for colour conductivity.

As a simple and illustrative example let us reconsider the case of Landau damping. As

discussed in Section VIIC, the HTL polarisation tensor Eq. (7.25) has an imaginary part

which describes the absorption of soft gluonic fields by the hard particles. This imaginary

part is closely linked to fluctuations in the gauge fields, which can be seen as follows. We

compute the correlator of two transverse fields a, and in particular consider only the part

which corresponds to the source fluctuations of the particle distribution function. They

yield the field-independent part of the correlator. Hence, we compute the self-correlator of

Eq. (8.19a), using Eq. (8.26), and arrive at
〈

a
T (0,0)
i,a (k) a

T (0,0)
j,b (q)

〉

= g2BC C2δab(2π)4δ(4)(k + q)

× P T
ik(k)P T

jl (k)

| − k2 + ΠT |2
∫

dΩv

4π
vkvl δ(k · v) . (8.27)

Comparing Eq. (8.27) with Eq. (7.27), the above correlator can be written as

〈

a
T (0,0)
i,a (k) a

T (0,0)
j,b (q)

〉

=
4πT

k0

Im Πab
ij,T (k)

| − k2 + ΠT |2
(2π)3δ(4)(k + q) . (8.28)

Here, we have used the relation

2g2C2BC = 4πTm2
D . (8.29)

For a quark-gluon plasma, with gluons in the adjoint representation, C2 = N , and NF

quarks and antiquarks in the fundamental representation, C2 = 1/2, a similar relation can

be written, after summing over species of particles. Thus

∑

species

C2BC =
2N

π

∫ ∞

0
dpp2f̄ eq

B (1 + f̄ eq
B ) +

2NF

π

∫ ∞

0
dpp2f̄ eq

F (1 − f̄ eq
F ) . (8.30)

And the relation Eq. (8.29) now reads

2g2
∑

species

C2BC = 4πTm2
D (8.31)

Equation (8.28) is a form of the fluctuation-dissipation theorem, which links the dissipative

process, Landau damping, with (induced) statistical fluctuations of the gauge fields.
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D. Domain of validity

The present considerations are based on the polarisation approximation, introduced

in Section IV. It amounts to a truncation of the hierarchy of dynamical equations for

correlation functions, neglecting two-particle correlations g2. This has lead to a closed set

equations for the mean fields and their fluctuations. It remains to be shown that two-particle

correlations g2 indeed remain small (see Eq. (3.10) and Eq. (3.11)).

Here, we compute two-particle correlators in the static limit, based on the solution for

the fluctuation dynamics as found in Section VIIIB. We shall find that these correlations

are only negligible when the distance between particles is sufficiently large. This correlation

length defines the domain of validity of our equations.

For convenience, we consider the colour current density fluctuations δJ . An analogous

reasoning applies for the one-particle distribution function. We split the colour current

density fluctuations as in Eq. (8.6) into a source (or free) part, and an induced part. The

statistical correlator of the source densities has already been displayed in Eq. (8.25) and

Eq. (8.26). We just note that the equal time correlator Eq. (8.26) was deduced from the

local term of the initial time correlator of Eq. (3.12) which is the free term. To obtain

Eq. (8.26), one has to multiply the local term in Eq. (3.12) by colour charges, and integrate

over the charges and the modulus of the momentum. The time evolution of δJsou is given

by the free dynamical equations. The effect of interactions in the plasma are responsible for

two-particle correlations g̃2 in Eq. (3.12). In our approach, this corresponds to the part of

the correlators which can be computed from δJ ind. More specifically, we have

〈

δJ a
0 δJ b

0

〉

=
〈

δJ a
0 δJ b

0

〉

sou

+
〈

δJ a,ind

0 δJ b,sou
0

〉

+
〈

δJ a,sou
0 δJ b,ind

0

〉

+
〈

δJ a,ind

0 δJ b,,ind

0

〉

.

(8.32)

We identify the two-particle correlation function with the correlators arising from δJ ind.

This part of the current takes into account the interactions. Since, ultimately, δJ ind is

expressed in terms of δJsou and the mean fields, we have a general recipe to compute these

correlation functions. Here, we compute the above correlators using the results given in

Section VIIIB. From Eq. (8.26), we have

〈

δJa
0 δJ

b
0

〉

sou,(0,0)

k
=
∫

dΩv

4π

∫

dΩ′
v

4π

〈

δJ a
0 δJ b

0

〉

source (0,0)

k,v,v′

= g2BC C2 δ
ab
∫

dΩv

4π
δ(k · v) . (8.33)

To lowest order, we find

〈

δJa,sou
0 δJ b,ind

0

〉(0,0)

k
= 2πTm2

D δ
ab ΠL(k)

k2 − ΠL(k)

∫

dΩv

4π
δ(k · v) , (8.34a)
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〈

δJa,ind

0 δJ b,ind

0

〉(0,0)

k
= 2πTm2

D δ
ab

(

ΠL(k)

k2 − ΠL(k)

)2
∫

dΩv

4π
δ(k · v) . (8.34b)

Here, we have used Eq. (8.29). Collecting terms and taking the static limit k0 = 0, we

obtain

〈

δJa
0 δJ

b
0

〉(0,0)

k
= 2πTm2

D δ
ab

(

1 − 2
m2

D

k2 +m2
D

+
m4

D

(k2 +m2
D)

2

)

. (8.35)

The non-local pieces represent the effect of correlations in the system. Taking the inverse

Fourier transform, we find

〈

δJa
0 δJ

b
0

〉(0,0)

r
= 2πTm2

D δ
ab

(

δ(3)(r) − m2
D

2πr
e−rmD +

m3
D

8π
e−rmD

)

. (8.36)

In the static limit, the two-particle correlations are exponentially suppressed at distances

r ≫ 1/mD. This is the domain of validity of the polarisation approximation. Using the

expansion introduced to compute the correlators, one could equally compute the terms

〈δJa
0 δJ

b
0〉(n,m). However, those terms are suppressed in the weak coupling expansion. Notice

also that infrared (IR) problems in the computation of the correlation functions do show

up, due to the unscreened magnetic modes (see below). These IR problems provide an

additional limitation for the domain of validity of the transport equations. The IR problems

are, supposedly, cured by the non-perturbative appearance of a magnetic mass at order gmD.

E. Collision integrals

We are now ready to compute at leading order in g the collision integrals appearing

on the right-hand side of Eq. (8.3a). We shall combine the expansions introduced earlier to

expand the collision integrals in powers of J̄ , while retaining only the zeroth order in gĀ,

〈ξ〉 = 〈ξ(0)〉 + 〈ξ(1)〉 + 〈ξ(2)〉 + . . . , (8.37)

and similarly for 〈η〉 and 〈Jfluc〉. We find that the induced current 〈J (0)
fluc〉 vanishes, as do

the fluctuation integrals 〈η(0)〉 and 〈ξ(0)〉. The vanishing of 〈J (0)
fluc〉 is deduced trivially from

the fact that 〈a(0,0)
a a

(0,0)
b 〉 ∼ δab, while this correlator always appears contracted with the

antisymmetric constants fabc in Jfluc. To check that 〈η(0)〉 = 0, one needs the statistical

correlator 〈δJµ
a δJ

ρ
ab〉, which is proportional to

∑

a daab = 0 for SU(N). The vanishing of

〈η(0)〉 is consistent with the fact that in the Abelian limit the counterpart of 〈η〉 vanishes at

equilibrium [94]. Finally, 〈ξ(0)〉 = 0 due to a contraction of fabc with a correlator symmetric

in the colour indices.
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In the same spirit we evaluate the terms in the collision integrals containing one J̄
field and no background gauge Ā fields. Consider

〈

ξ(1)
ρ,a(x,v)

〉

≡ 〈ξρ,a(x,v)〉|Ā=0, linear in J̄

= gfabcv
µ
{

−
〈

a
(0,1)
µ,b (x) δJ (0)

ρ,c (x,v)
〉

+ gfcdev
ν
∫ ∞

0
dτ J̄ρ,e(xτ ,v)

〈

a
(0,0)
µ,b (x) a

(0,0)
ν,d (xτ )

〉

}

. (8.38)

Using the values for aµ and δJ (0) as found earlier, we obtain in momentum space∗∗ (see

Appendix B for a detailed computation of the correlators)

〈

ξ(1)
ρ,a(k,v)

〉∣

∣

∣

LLO
= −g

4C2NBC

4π
vρ

∫

dΩv′

4π
CLLO(v,v′)

[

J̄ 0
a (k,v) − J̄ 0

a (k,v′)
]

, (8.39)

where

C(v,v′) =
∫

d4q

(2π)4

∣

∣

∣

∣

∣

viP
T
ij (q)v

′
j

−q2 + ΠT

∣

∣

∣

∣

∣

2

(2π)δ(q · v)(2π)δ(q · v′) (8.40)

still has to be evaluated within LLO.

To arrive at the above expression we have used the SU(N) relation fabcfabd = Nδcd.

Within the momentum integral, we have neglected in the momenta of the mean fields, k, in

front of the momenta of the fluctuations, q. As we discussed above, the momenta associated

to the background fields are much smaller than those associated to the fluctuations which

justifies this approximation to leading order. This is precisely what makes the collision

integral, which in principle contains a convolution over momenta, local in k-space (resp.

x-space). The only remaining non-locality stems from the angle convolution of Eq. (8.40).

Notice that we have only given the part arising from the transverse fields a, as the one

associated to the longitudinal modes is subleading. This is easy to see once one realises that

the above integral is logarithmically divergent in the infrared region, while the longitudinal

contribution is finite. At this point, we can also note that the collision integral computed

this way is independent of the perturbative Abelian gauge used to solve equation (8.15).

This is so because the collision integral computed this way can always be expressed in terms

of the imaginary parts of the polarisation tensors (7.27) in the plasma, which are known to

be gauge-independent.

In any case, the transverse polarisation tensor ΠT vanishes at q0 = 0, and the dynam-

ical screening is not enough to make Eq. (8.40) finite. An IR cutoff must be introduced by

∗∗Note the typo in Eq. (7.39) of [106] where a factor 1/4π is missing.
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hand in order to evaluate the integral. With a cutoff of order Λ ≈ gmD we thus find at

logarithmic accuracy

CLLO(v,v′) =
2

π2m2
D

ln (1/g)
(v · v′)2

√

1 − (v · v′)2
. (8.41)

The logarithmic dependence on the gauge coupling comes from the integral

∫ mD

Λ

dq

q
= ln

mD

Λ
. (8.42)

The natural cut-off, as we shall see below, is rather given by the hard gluon damping rate.

At logarithmic accuracy, their difference has no effect.

Using also the relation Eq. (8.29) we finally arrive at the collision integral to leading

logarithmic accuracy,

〈

ξ(1)
ρ,a(x, v)

〉
∣

∣

∣

LLO
= − g2

4π
NT ln (1/g) vρ

∫

dΩv′

4π
I(v,v′)J̄ 0

a (x,v′), (8.43a)

I(v,v′) = δ(2)(v − v′) −K(v,v′) (8.43b)

K(v,v′) =
4

π

(v · v′)2

√

1 − (v · v′)2
, (8.43c)

where we have introduced δ(2)(v−v′) ≡ 4πδ(2)(Ωv−Ω′
v),

∫ dΩv

4π
δ(2)(v−v′) = 1. The collision

integral has first been obtained in [34], and subsequently in [9,105,106,143,31].

We can verify explicitly that the collision integral to leading logarithmic accuracy

is consistent with gauge invariance. This should be so, as the approximations employed

have been shown in Section VC on general grounds to be consistent with gauge invariance.

Evaluating the correlator in Eq. (4.22) to leading logarithmic accuracy yields

gfabc

〈

ab
µ(x)δJµ

c (x)
〉
∣

∣

∣

LLO
= − g2

4π
NT ln (1/g)

∫

dΩv

4π

dΩv′

4π
I(v,v′)J̄ 0

a (x,v′) , (8.44)

which vanishes, because

∫

dΩv

4π
I(v,v′) = 0 . (8.45)

We thus establish that D̄µJ̄
µ = 0, in accordance with Eq. (8.3b) in the present approxima-

tion.

72



F. Stochastic noise

The collision integral obtained above describes a dissipative process in the plasma.

In principle it could trigger the system to abandon equilibrium [95]. Whenever dissipative

processes are encountered, it is important to also identify the stochastic source related to

it. This is the essence of the fluctuation-dissipation theorem [97,95]. Phenomenologically,

this is well known, and sometimes used the other way around: imposing the fluctuation-

dissipation theorem allows one to identify a source for stochastic noise with the strength of

its self-correlator fixed by the dissipative processes.

In the present formalism, it is possible to identify directly the source for stochastic

noise which prevents the system from abandoning equilibrium as discussed in section IVC.

The relevant noise term is given by the field-independent, that is, the source fluctuations in

ξ(0),

ξρ(0)
a (x,v) ≡ −gfabc v

µab
µ(x)δJ ρ,c(x,v)

∣

∣

∣

Ā=0, J̄=0
. (8.46)

While its average vanishes, 〈ξ(0)(x,v)〉 = 0, its correlator

〈

ξρ(0)
a (x,v) ξ

σ(0)
b (y,v′)

〉

= g2fapcfbdev
µv′ν

〈

ap
µ(x) δJ ρ,c

source
(x,v) ad

ν(y) δJ σ,e
source

(y,v′)
〉(0)

(8.47)

does not. In order to evaluate this correlator we switch to Fourier space. Within the second

moment approximation we expand the correlator 〈δfδfδfδf〉 into products of second order

correlators 〈δfδf〉〈δfδf〉 and find

〈

ξρ(0)
a (k,v) ξ

σ(0)
b (p,v′)

〉

= g2fapcfbdev
µv′ν

∫

d4q

(2π)4

∫

d4r

(2π)4

×
{ 〈

a(0,0)
µp (q) a

(0,0)
νd (r)

〉 〈

δJ (0)ρ,c
source

(k − q,v) δJ (0)σ,e
source

(p− r,v′)
〉

+
〈

a(0,0)
µp (q) δJ (0)σ,e

source
(p− r,v′)

〉 〈

δJ (0)ρ,c
source

(k − q,v) a
(0,0)
νd (r)

〉}

(8.48)

In the leading logarithmic approximation we retain only the contributions from the trans-

verse modes. Evaluating the correlators leads to

〈

ξµ,a
(0) (x,v) ξν,b

(0)(y,v
′)
〉

=
g6NC2

2B
2
C

(2π)3m2
D

ln (1/g) vµv′ν I(v,v′) δab δ(4)(x− y) . (8.49)

After averaging over the angles of v and v′, and using the relation Eq. (8.29), the correlator

becomes

〈

ξi,a
(0)(x) ξ

j,b
(0)(y)

〉

= 2T
m2

D

3

g2

4π
NT ln (1/g) δab δij δ(4)(x− y) . (8.50)
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In particular, all correlators 〈ξ0
(0)(x)ξ

µ
(0)(y)〉 vanish. Eq. (8.50) identifies ξi

(0)(x) as a source

of white noise. The noise term has been derived in [34], and subsequently in [9,105,106].

The presence of this noise term does not interfere with the covariant current conser-

vation confirmed at the end of the previous section. This can be seen as follows. The noise

term enters Eq. (8.44) as the angle average over the 0-component of ξµ
(0)(x,v). As we have

established above, the logarithmically enhanced contribution from the noise source stems

from its correlator Eq. (8.49). Averaging the temporal component of Eq. (8.49) over the

angles of v, and using Eq. (8.45), it follows that

〈

ξ0,a
(0) (x,v

′)
∫

dΩv

4π
ξ0,b
(0)(y,v)

〉

= 0 . (8.51)

We thus conclude, that the temporal component of the noise, ξ0
(0)(x,v), has no preferred

v-direction, which implies that
∫ dΩ

4π
ξ0
(0)(x,v) = 0 in the leading logarithmic approximation.

Thus, the mean current conservation is not affected by the noise term.

G. Ultrasoft amplitudes

After integrating-out the statistical fluctuations to leading logarithmic order, we end

up with the following set of mean field equations [34] (from now on, we drop the bar to

denote the mean fields),

vµDµJ ρ(x,v) = −m2
Dv

ρvµFµ0(x) − γ vρ
∫

dΩv′

4π
I(v,v′)J 0(x,v′) + ζρ(x,v) , (8.52a)

DµF
µν = Jν ≡

∫ dΩv

4π
J ν(x,v) . (8.52b)

Here, we denote by ζρ(x,v) the stochastic noise term identified in the preceding section, its

correlator given by Eq. (8.49). We also introduced

γ =
g2

4π
NT ln

(

1

g

)

, (8.53)

which is identified as (twice) the damping rate for the ultra-soft currents [123]. We refer to

Eq. (8.52a) as a Boltzmann-Langevin equation as it accounts for quasi-particle interactions

via a collision integral as well as for the stochastic character of the underlying fluctuations

in the distribution function.

In Eq. (8.52), both the quasi-particle degrees of freedom and the ultra-soft gauge modes

are present. In order to integrate-out the quasi-particle degrees of freedom it is necessary

to solve Eq. (8.52a) explicitly to obtain the current as a functional of the ultra-soft gauge
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fields J [A], from which a generating functional J(x) = −δΓ[A]/δA(x) could in principle be

deduced in full analogy to the HTL case. The ultra-soft amplitudes of the plasma can be

deduced from J [A] itself [35,32], as done in Eq. (7.18) for the soft amplitudes,

Ja
µ [A] = Πab

µν A
ν
b +

1

2
Πabc

µνρ A
ν
b A

ρ
c + . . . (8.54)

With this in mind, we consider again the Boltzmann-Langevin equation (8.52a) for the

quasi-particle distribution function. It has three distinct scale parameters: the temperature

T , the Debye mass mD, and the damping term γ. In the leading logarithmic approximation,

these scales are well separated,

g2T ≪ γ ≪ mD ≪ T , (8.55)

and at least logarithmically larger than the non-perturbative scale of the magnetic mass.

This is why Eq. (8.52a) is dominated by different terms, depending on the momentum range

considered. For hard momenta, Eq. (8.52a) is only dominated by the left-hand side, reducing

it to the (trivial) current of hard particles moving on world lines. For momenta about the

Debye mass, the term proportional to m2
D becomes equally important, while the noise term

and the collision integral remain suppressed by γ/mD. The resulting current is then given

by Eq. (7.16), the HTL current. Momentum modes below the Debye mass are affected by

the damping term of the collision integral. Close to the scale of the Debye mass, the higher

order corrections to Eq. (7.16) are obtained as an expansion in γ/v ·D. We write

J µ(x,v) =
∞
∑

n=0

J µ
(n)(x,v) , (8.56)

where the current densities J µ
(n)(x,v) obey the differential equations

vµDµJ ν
(0)(x,v) = −m2

Dv
νvµFµ0(x) + ζν(x,v) , (8.57a)

vµDµJ ν
(n)(x,v) = −γvν

∫

dΩv′

4π
I(v,v′)J 0

(n−1)(x,v
′) . (8.57b)

Apart from the noise term, the leading order term in this expansion, J ν
(0)(x,v), coincides

with the HTL current Eq. (7.16). All higher order terms J µ
(n)(x,v) are smaller by powers

of ∼ (γ/v ·D)n, and recursively given by

J ν
(0)(x,v) =

∫ ∞

0
dτU(x, x − vτ)

{

−m2
D v

νvµ Fµ0(x− vτ) + ζν(x− vτ,v)
}

, (8.58a)

J ν
(n)(x,v) = −γ

∫ ∞

0
dτU(x, x − vτ)vν

∫

dΩv′

4π
I(v,v′)J 0

(n−1)(x,v
′) . (8.58b)

This recursive expansion is consistent with covariant current conservation. For every partial

sum up to order n, we have
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Dµ

(

Jµ
(0) + Jµ

(1) + . . .+ Jµ
(n)

)

= 0 . (8.59)

This expansion has been considered in [106]. It describes correctly how the presence of the

collision integral modifies the ultra-soft current. From Eq. (8.58), all ultrasoft amplitudes of

the gauge fields at equilibrium can be deduced. The noise source does not contribute when

amplitudes like the coefficients in the expansion Eq. (8.54) are evaluated at equilibrium.

Some explicit results for this case have been given recently [35,32].

The expansion Eq. (8.58) has a limited domain of validity because the effective expan-

sion parameter grows large for both small frequencies k0 and small momenta k. This implies

that the overdamped regime where v · D ≪ γ cannot be reached. Alternatively, one can

separate the local from the non-local part of the collision integral to perform an expansion

in the latter only. The effective expansion parameter is then γ/(v · D + γ), which has a

better infrared behaviour. It is expected that the expansion is much better for the spatial

than for the temporal component of J ρ(x,v). This is so, because the term proportional to

the non-local part K(v,v′) of the collision integral in Eq. (8.52a) gives no contribution to

the dynamical equations of the spatial component J i after angle averaging Eq. (8.52a) over

the directions of v. However, for the dynamical equation of the temporal component, this

term precisely cancels the local damping term, which is of course a direct consequence of

current conservation.

In this light, we decompose the current as in Eq. (8.56), but expanding effectively in

γ/(v ·D + γ). We find the differential equations

(vµDµ + γ)J ρ
(0)(x,v) = −m2

Dv
ρvµFµ0(x) + ζρ(x,v) , (8.60a)

(vµDµ + γ)J ρ
(n)(x,v) = γ vρ

∫

dΩv′

4π
K(v,v′)J 0

(n−1)(x,v
′). (8.60b)

The retarded Green’s function Gret obeys

i (vµDµ + γ) Gret(x, y;v) = δ(4)(x− y) , (8.61)

and reads, for t = x0 − y0,

Gret(x, y;v)ab = −iθ(t)δ(3) (x − y − vt) exp(−γt)Uab(x, y) . (8.62)

The iterative solution to the Boltzmann-Langevin equation is

J ρ
(0)(x,v) =

∫ ∞

0
dτ exp(−γτ)U(x, xτ )

{

−m2
D v

ρvj Fj0(xτ ) + ζρ(xτ ,v)
}

, (8.63a)

J ρ
(n)(x,v) = γ

∫ ∞

0
dτ exp(−γτ)U(x, xτ ) v

ρ
∫

dΩv′

4π
K(v,v′)J 0

(n−1)(xτ ,v
′) . (8.63b)
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This expansion in consistent with current conservation, if the angle average of J 0
(n) vanishes

for some n. This follows from taking the temporal component of Eqs. (8.60) and averaging

the equation over v, to find

D0J
0
(0) +DiJ

i
(0) = −γJ0

(0) , (8.64a)

D0J
0
(n) +DiJ

i
(n) = γJ0

(n−1) − γJ0
(n) (8.64b)

for the individual contributions, and

Dµ

(

Jµ
(0) + Jµ

(1) + . . .+ Jµ
(n)

)

+ γJ0
(n) = 0 (8.64c)

for their sum, which is consistent if γJ0
(n) is vanishing for some n.

To leading order, the ultra-soft colour current J i
(0)(x,v) in Eq. (8.63a) has the same

functional dependence on the field strength and on the parallel transporter as the soft

colour current Eq. (7.16). There is, however, an additional damping factor exp(−γτ) in the

integrand.

H. Langevin dynamics

Finally, we consider the overdamped regime (or quasi-local limit) of the above equa-

tions. This is the regime where k0 ≪ |k| ≪ γ. Consider the mean field currents Eq. (8.63).

The terms contributing to these currents are exponentially suppressed for times τ much

larger than the characteristic time scale 1/γ. On the other hand, the fields occurring in the

integrand typically vary very slowly, that is on time scales ≪ 1/mD. Thus, in the quasi-local

limit we can perform the approximations

Uab(x, x− vτ) ≈ Uab(x, x) = δab , (8.65a)

Fj0(x− vτ) ≈ Fj0(x) . (8.65b)

In this case the remaining integration can be performed. The solution for the spatial current

J i(x) stems entirely from the leading order term Eq. (8.63a). All higher order corrections

vanish, because they are proportional to

∫ dΩv

4π
vK(v,v′) (8.66)

which vanishes. For the complete set of gauge field equations in the quasi-local limit we

also need to know J0(x). The iterative solution Eq. (8.63) gives J0
(n)(x) = 0 to any finite

order. Therefore, we use instead the unapproximated dynamical equation for J 0(x,v),

which yields, averaged over the directions of v, current conservation. In combination with
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the solution Eq. (8.68a) for the spatial current, the Boltzmann-Langevin equation (8.52)

becomes

DµF
µi = σEi + νi , (8.67a)

DiE
i = J0 , (8.67b)

D0J
0 = −σJ0 −Diν

i . (8.67c)

In the limit, where the temporal derivative term D0F
0i can be neglected, one finally obtains

for the spatial current from Eq. (8.63)

J i
a = σEi

a + νi
a , (8.68a)

σ =
4πm2

D

3Ng2T ln (1/g)
, (8.68b)

where σ denotes the colour conductivity of the plasma. The noise term reads

ν(x) =
1

γ

∫

dΩv

4π
ζ(x, v) , (8.68c)

〈

νi
a(x) ν

j
b (y)

〉

= 2T σ δij δab δ
(4)(x− y) . (8.68d)

The noise term appearing in the Yang-Mills equation becomes white noise within this last

approximation. The fluctuation-dissipation theorem is fulfilled because the strength of the

noise-noise correlator Eq. (8.68c) is precisely given by the dissipative term of Eq. (8.68a).

This is the simplest form of the FDT. The colour conductivity in the quasi-local limit has

been obtained originally by Bödeker [34].

It is worth pointing out that already in the leading logarithmic approximation the

noise term appearing in the Yang Mills equation is not white, except in the local limit

Eq. (8.68c). The noise in the Boltzmann-Langevin equation, on the other hand, is white

(see Eq. (8.50)), when averaged over the directions of v.
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IX. LANGEVIN APPROACH

A. Coarse-graining

In this section, we consider a more phenomenologically inspired Langevin-type ap-

proach to fluctuations in non-Abelian plasmas [107]. Let us step back to the original mi-

croscopic transport equation (2.40). The microscopic distribution function is a strongly

fluctuating quantity at scales associated to mean particle distances, namely ∼ 1/T for a

plasma close to thermal equilibrium. In order to obtain an effective transport theory at

length scales much larger than the typical inter-particles distances, one may wish to coarse-

grain the distribution function and the non-Abelian fields over scales characteristic for the

problem under investigation. With coarse-graining, we have in mind a volume average over

a characteristic (physical) volume and/or over characteristic time scales. Such a coarse-

graining results in a coarse-grained distribution function which is considerably smoother

than the microscopic one.

The appropriate physical volume depends on the particular physical problem under

investigation. As a guideline, one would like to have a scale separation such that the coarse-

graining scale is large as compared to typical length scale at which two-particle correlations

grow large. This way, it is ensured that two- and higher-particle correlators remain small

within a coarse-graining volume. In addition, the coarse-graining volume should be suf-

ficiently large, such that the remaining particle number fluctuations of the one-particle

distribution function within the coarse-graining volume remain parametrically small. Fi-

nally, the coarse-graining scale should be smaller than typical relaxation or damping scales

of the problem under investigation. It cannot be guaranteed on general grounds that these

requirements can be met. For a hot plasma close to equilibrium, however, the appropriate

coarse-graining scale is given by the Debye radius.

Performing such a procedure with the microscopic transport equation (2.40a), we

expect to obtain a Boltzmann-Langevin-type of equation for the coarse-grained one-particle

distribution function f(x, p,Q), namely

pµ

(

∂

∂xµ
− gfabcAb

µQ
c ∂

∂Qa
− gQaF

a
µν

∂

∂pν

)

f(x, p,Q) = C[f ](x, p,Q) + ζ(x, p,Q) . (9.1)

Here, the transport equation contains an effective – but not yet specified – collision term

C[f ], and an associated source for stochastic noise ζ . In the collisionless limit C = ζ = 0,

the above set of transport equation reduces to those introduced by Heinz [69]. In the

general case, however, the right-hand side of Eq. (9.1) does not vanish due to effective

interactions (collisions) in the plasma, resulting in the term C[f ]. In writing Eq. (9.1),

we have already made the assumption that the one-particle distribution function f is a

fluctuating quantity. This is quite natural having in mind that f describes a coarse-grained
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microscopic distribution function for coloured point particles, and justifies the presence of

the stochastic source ζ in the transport equation.

For non-charged particles, a similar (phenomenological) kinetic equation has been con-

sidered by Bixon and Zwanzig [26]. This philosophy and its extension for out-of-equilibrium

situations have also been applied to nuclear dynamics [127,14,54]. For a recent review of

different approaches, we refer to [2]. Some recent approaches which include stochastic noise

sources within a Schwinger-Dyson approach have been reported as well [51]. For a stochastic

interpretation of the Kadanoff-Baym equations, see [64].

The coarse-grained transport equation is accompanied by a corresponding Yang-Mills

equation,

(DµF
µν)a = Jν

a (x) ≡ g
∑

helicities

species

∫

dP dQQa p
ν f(x, p,Q) , (9.2)

which contains, to leading order, the current due to the quasi-particles, but no fluctuation-

induced current.

Given the stochastic dynamical equation Eq. (9.1), the question arises as to what can

be said on general grounds about the spectral functions of f(x, p,Q) and ζ(x, p,Q). For

simplicity, we shall assume that the dissipative processes are known close to equilibrium,

but no further information is given regarding the underlying fluctuations. This way of

proceeding is complementary to the procedure of [105,106] as worked out in Sections III

and IV, where the right-hand side of Eq. (9.1) has been obtained from correlators of the

microscopic statistical fluctuations.

Here, we show that the spectral function of the fluctuations close to equilibrium can

be obtained from the knowledge of the kinetic entropy of the plasma. The spectral function

of the noise source is shown to be linked to the dissipative term in the effective transport

equation. This gives a well-defined prescription as to how the correct source for noise

can be identified without the detailed knowledge of the underlying microscopic dynamics

responsible for the dissipation. The basic idea behind this approach relies on the essence

of the fluctuation-dissipation theorem. While this theorem is more general, here we will

only discuss the close to equilibrium situation. According to the fluctuation-dissipation

theorem, if a fluctuating system remains close to equilibrium, then the dissipative process

occurring in it are known. Vice versa, if one knows the dissipative process in the system,

one can describe the fluctuations without an explicit knowledge of the microscopic structure

or processes in the system. The cornerstone of our approach is the kinetic entropy of the

fluctuating system, which serves to identify the associated thermodynamical forces. This

leads to the spectral function for the deviations from the non-interacting equilibrium.
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B. Classical dissipative systems

Before entering into the discussion of plasmas, we will illustrate this way of proceeding

by reviewing the simplest setting of classical linear dissipative systems [97]. A generalisation

to the more complex case of non-Abelian plasmas will then become a natural step to perform.

We consider a classical homogeneous system described by a set of variables xi, where i is

a discrete index running from 1 to n. These variables are normalised in such a way that

their mean values at equilibrium vanish. The entropy of the system is a function of the

quantities xi, S(xi). If the system is at equilibrium, the entropy reaches its maximum, and

thus (∂S/∂xi)eq = 0, ∀i. If the system is taken slightly away from equilibrium, then one can

expand the difference ∆S = S − Seq, where Seq is the entropy at equilibrium, in powers of

xi. If we expand up to quadratic order, then

∆S =
1

2

(

∂2S

∂xi∂xj

)

eq

xixj ≡ −1

2
βijx

ixj . (9.3)

The matrix βij is symmetric and positive-definite, since the entropy reaches a maximum at

equilibrium. The thermodynamic forces Fi are defined as the gradients of ∆S

Fi = −∂∆S
∂xi

. (9.4)

For a system close to equilibrium the thermodynamic forces are linear functions of xi,

Fi = βijx
j . If the system is at equilibrium, the thermodynamic forces vanish. In more

general situations the variables xi will evolve in time. The time evolution of these variables

is given as functions of the thermodynamical forces. In a close to equilibrium case one can

expect that the evolution is linear in the forces

dxi

dt
= −γijFj , (9.5)

which, in turn, can be expressed as

dxi

dt
= −λijxj . (9.6)

Within a phenomenological Langevin approach a white noise source is added to account for

the underlying fluctuations. Otherwise, the system would abandon equilibrium. Hence, we

write instead

dxi

dt
= −λijxj + ζ i . (9.7)

The first term on the right-hand side describes the mean regression of the system towards

equilibrium, while the second term is the source for stochastic noise. The quantities γij are
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known as the kinetic coefficients, and it is not difficult to check that γij = λikβ
−1
kj . From the

value of the coefficients βij one can deduce the equal time correlator

〈xi(t)xj(t)〉 = β−1
ij , (9.8)

which is used to obtain Einstein’s law

〈

xi(t)Fj(t)
〉

= δi
j . (9.9)

After taking the time derivative of Eq. (9.9), assuming that the noise is white and Gaussian

〈

ζ i(t)ζj(t′)
〉

= νijδ(t− t′) , (9.10)

we find that the strength of the noise self-correlator ν is determined by the dissipative

process

νij = γij + γji , (9.11)

which is the fluctuation-dissipation relation we have been aiming at.

C. Non-Abelian plasmas as a classical dissipative system

We now come back to the case of a non-Abelian plasma and generalise the above

discussion to the case of our concern. We will consider the non-Abelian plasma as a clas-

sical linear dissipative system, assuming that we know the collision term in the transport

equation. In order to adopt the previous reasoning, we have to identify the dissipative term

in the transport equation, and to express it as a function of the thermodynamical force

obtained from the entropy. The deviation from the equilibrium distribution is given here by

∆f(x, p,Q) = f(x, p,Q) − feq(p0) , (9.12)

and replaces the variables xi discussed above.

1. Classical plasmas

The entropy flux density for classical plasmas has been given in Eq. (4.24) with

Eq. (4.26) for the classical plasma. It reads explicitly

Sµ(x) = −
∫

dPdQpµ f(x, p,Q) (ln (f(x, p,Q)) − 1) . (9.13)
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The µ = 0 component of Eq. (9.13) gives the entropy density of the system. The entropy

itself is then obtained as S =
∫

d3xS0(x).

We shall now assume that the deviation of the mean particle number from the equi-

librium one is small within a coarse-graining volume. This can always be arranged for at

sufficiently small gauge coupling g ≪ 1, which ensures that fluctuations are parametrically

suppressed by the plasma parameter. We then obtain ∆S just by expanding the expression

of the entropy density in powers of ∆f up to quadratic order. It is important to take into

account that we will consider situations where the small deviations from equilibrium are

such that both the particle number and the energy flux remain constant, thus

∫

dPdQp0 ∆f(x, p,Q) = 0 , (9.14a)

∫

dPdQp0pµ ∆f(x, p,Q) = 0 . (9.14b)

With these assumptions, one reaches

∆S0(x) = −
∫

dPdQp0
(∆f(x, p,Q))2

2feq(p0)

= −
∫

d3p

(2π)3
dQ

(∆f(x,p, Q))2

2feq(ωp)
, (9.15)

where we have taken into account the mass-shell condition the second line, with p0 = ωp =√
p2 +m2. Without loss of generality, we will consider from now on the case of massless

particles, such that ωp = p = |p|.
The thermodynamic force associated to ∆f is defined from the entropy as

F (x,p, Q) = − δ∆S

δ∆f(x,p, Q)
=

1

(2π)3

∆f(x,p, Q)

feq(p)
. (9.16)

We linearise the transport equation (9.1) and express the collision integral close to equilib-

rium in terms of the thermodynamical force. Dividing Eq. (9.1) by p0 and imposing the

mass-shell constraint, we find

vµDµ∆f − gvµQaF
a
µ0

dfeq

dp
= C[∆f ](x,p, Q) + ζ(x,p, Q) , (9.17)

where vµ = pµ/p0 = (1,v), with v2 = 1. We also introduced the shorthand Dµ∆f ≡
(∂µ − gfabcAµ,bQc∂

Q
a )∆f as in Eq. (2.44). It is understood that the collision integral has

been linearised, and we write it as

Clin[∆f ](t,x,p, Q) =
∫

d3x′d3p′ dQ′K(x,p, Q;x′,p′, Q′)∆f(t,x′,p′, Q′) , (9.18)

83



with t ≡ x0. For simplicity, we take the collision integral local in time, but unrestricted

otherwise.†† The thermodynamical force is linear in ∆f . The linearised collision integral

can easily be expressed in terms of F as

Clin[F ](t,x,p, Q) =
∫

d3x′d3p′ dQ′K(x,p, Q;x′,p′, Q′) (2π)3 feq(p0)F (t,x′,p′, Q′) . (9.19)

According to the fluctuation-dissipation relation, the source of stochastic noise has to obey

〈ζ(x,p, Q)ζ(x′,p′, Q′)〉 = −
(

δC[F ](x,p, Q)

δF (x′,p′, Q′)
+
δC[F ](x′,p′, Q′)

δF (x,p, Q)

)

(9.20)

in full analogy to Eq. (9.11). With the knowledge of the thermodynamical force Eq. (9.16)

and Eq. (9.18), or simply using the explicit expression Eq. (9.19) for the linearised collision

term, we arrive at

〈ζ(x,p, Q)ζ(x′,p′, Q′)〉 = −(2π)3 (feq(p)K(x,p, Q;x′,p′, Q′) + sym.) δ(t− t′) . (9.21)

Here, symmetrisation in (x,p, Q) ↔ (x′,p′, Q′) is understood.

Notice that we can derive the equal-time correlator for the deviations from the equi-

librium distribution simply from the knowledge of the entropy and the thermodynamical

force, exploiting Einstein’s law in full analogy to the corresponding relation Eq. (9.8). Using

Eq. (9.16) we find

〈∆f(x,p, Q)∆f(x′,p′, Q′)〉t=t′ = (2π)3feq(p)δ
(3)(x − x′)δ(3)(p− p′)δ(Q−Q′) . (9.22)

If the fluctuations ∆f have vanishing mean value, then Eq. (9.22) reproduces the well-

known result that the correlator of fluctuations at equilibrium is given by the equilibrium

distribution function. In order to make contact with the results of [105,106] as discussed in

Section III, we go a step further and consider the case where ∆f has a non-vanishing mean

value to leading order in the gauge coupling. Splitting

∆f = gf̄ (1) + δf (9.23)

into a deviation of the mean part 〈∆f〉 = gf̄ (1) and a fluctuating part 〈δf〉 = 0, and using

Eq. (9.22), we obtain the equal time correlator for the fluctuations δf as

〈δf(x,p, Q)δf(x′,p′, Q′)〉t=t′ = (2π)3feq(p)δ
(3)(x − x′)δ(3)(p − p′)δ(Q−Q′)

− g2f̄ (1)(x,p, Q)f̄ (1)(x′,p′, Q′)
∣

∣

∣

t=t′
. (9.24)

This result agrees with the correlator obtained in Eq. (3.12) from the Gibbs ensemble average

as defined in phase space in the limit where two-particle correlations are small and given by

products of one-particle correlators.

††Of course, gauge invariance imposes further conditions on both the collision term and the noise.

However, these constraints are of no relevance for the present discussion.
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2. Quantum plasmas

Up to now we have dealt with purely classical plasmas. On the same footing, we can

consider the soft and ultra-soft modes in a hot quantum plasma. These can be treated

classically as their occupation numbers are large. The sole effect from their quantum nature

reduces to the different statistics, Bose-Einstein or Fermi-Dirac as opposed to Maxwell-

Boltzmann. The corresponding quantum fluctuation-dissipation theorem reduces to an ef-

fective classical one [97,94].

A few changes are necessary to study hot quantum plasmas. As in Section III, we

change the normalisation of f by a factor of (2πh̄)3 to obtain the standard normalisation for

the (dimensionless) quantum distribution function. Thus, the momentum measure is also

modified by the same factor, dP = d4p2Θ(p0)δ(p
2)/(2πh̄)3 for massless particles, and h̄ = 1.

To check the fluctuation-dissipation relation in this case one needs to start with the correct

expression for the entropy for a quantum plasma. The entropy flux density, as a function of

f(x, p,Q), is given by Eq. (4.24) and Eq. (4.27), to wit

Sµ(x) = −
∫

dPdQpµ

(

f ln f ∓ (1 ± f) ln (1 ± f)
)

, (9.25)

where the upper or lower sign applies for bosons or fermions. From the above expression of

the entropy one can compute ∆S, and proceed exactly as in the classical case, expanding

the entropy up to quadratic order in the deviations from equilibrium. Thus, we obtain the

noise correlator

〈ζ(x,p, Q)ζ(x′,p′, Q′)〉 = −(2π)3δ(t− t′)

× (feq(p)[1 ± feq(p)]K(x,p, Q;x′,p′, Q′) + sym.) . (9.26)

Again, the spectral functions of the deviations from equilibrium are directly deduced from

the entropy. As a result, we find

〈∆f(x,p, Q)∆f(x′,p′, Q′)〉t=t′ = (2π)3feq(p)[1 ± feq(p)]

×δ(3)(x − x′)δ(3)(p− p′)δ(Q−Q′) . (9.27)

Expanding ∆f = gf̄ (1) + δf as above, we obtain the equal time correlator for δf , which

agrees with the findings of Eqs. (3.14) and (3.15) in the case where two-particle distribution

functions can be expressed as products of one-particle distributions.

With the knowledge of the above spectral functions for the fluctuations in a classical or

quantum plasma one can derive further spectral distributions for different physical quanti-

ties. In particular, we can find the correlations of the self-consistent gauge field fluctuations

once the basic correlators as given above are known. This is how those spectral functions

were deduced in [105].
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D. Application

As a particular example of the above we consider Bödeker’s effective kinetic equations

which couple to the ultra-soft gauge field modes. The linearised collision integral has been

obtained to leading logarithmic accuracy in Section VIII E. We will first consider the clas-

sical plasma for particles carrying two helicities. It is most efficient to write the transport

equation not in terms of the full one-particle distribution function, but in terms of the

current density

J ρ
a (x,v) =

g

π2
vρ
∫

dp dQp2Qa ∆f(x,p, Q) . (9.28)

(Notice that feq gives no contribution to the current.) The current of Eq. (9.2) follows after

integrating over the angles of v, Jµ
a (x) =

∫ dΩ
4π
J µ

a (x,v). Expressed in terms of Eq. (9.28),

the linearised Boltzmann-Langevin equation Eq. (9.17) becomes

[vµDµ,J ρ](x,v) = −m2
Dv

ρvµF
µ0(x) + vρC[J 0](x,v) + ζρ(x,v) , (9.29)

where mD is the Debye mass

m2
D = −g

2C2

π2

∫

dp p2 dfeq

dp
, (9.30)

and the quadratic Casimir C2 has been defined in Eq. (2.25). The linearised collision integral

is related to Eq. (9.18) by

C[J 0
a ](x,v) =

g2

π2

∫

d3x′ dΩv′ dp dp′ dQdQ′

×p2p′2QaK(x,p, Q;x′,p′, Q′) ∆f(t,x′,p′, Q′) (9.31)

and corresponds precisely to the correlator Eq. (8.43a), to wit

C[J 0
a ](x,v) = −γ

∫ dΩv′

4π
I(v,v′)J 0

a (x,v′) , (9.32)

where the kernel has been given in Eq. (8.43b),

I(v,v′) = δ(2)(v − v′) − 4

π

(v · v′)2

√

1 − (v · v′)2
(9.33)

and γ = g2NT ln (1/g)/4π. Comparing Eq. (9.31) with Eq. (9.32) we learn that only the

part of the kernel K which is symmetric under (x,p, Q) ↔ (x′,p′, Q′) contributes in the

present case. This part can be expressed as
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K(x,p, Q;x′,p′, Q′) = −γ I(v,v
′)

4πp2
δ(p− p′)δ(Q−Q′)δ(3)(x − x′) . (9.34)

According to our findings above, the self-correlator of the stochastic source for the classical

plasma obeys

〈ζµ
a (x,v) ζν

b (y,v′)〉 =
1

(2π2)2
g2
∫

dp dp′ dQdQ′ p2p′2QaQ
′
b v

µv′ν 〈ζ(x,p, Q) ζ(y,p′, Q′)〉

= 2 γ T m2
D v

µv′ν I(v,v′) δab δ
(4)(x− y) . (9.35)

The helicities of the particles have been taken into account as well. In order to obtain

Eq. (9.35), we have made use of Eqs. (9.21), (9.30) to (9.32), and of the relation feq =

−T dfeq/dp for the Maxwell-Boltzmann distribution.

The quantum plasma can be treated in exactly the same way. To confirm Eq. (9.35),

we only need to take into account the change of normalisation as commented above, and

the relation feq(1 ± feq) = −T dfeq/dp for the Bose-Einstein and Fermi-Dirac distributions,

respectively.

Using the explicit expression for the collision integral and the stochastic noise it is

possible to confirm the covariant conservation of the current, DJ = 0.

E. Discussion

We thus found that the correlator Eq. (9.35) is in full agreement with the result of

Section VIII F for both the classical or the quantum plasma. While this correlator has

been obtained in Section VIII F from the corresponding microscopic theory, here, it follows

solely from the fluctuation-dissipation theorem. This way, it is established that the effective

Boltzmann-Langevin equation found in [34] is indeed fully consistent with the fluctuation-

dissipation theorem. More generally, the important observation is that the spectral functions

as derived here from the entropy and the fluctuation-dissipation relation do agree with

those obtained in Section III from a microscopic phase space average. This guarantees, on

the other hand, that the formalism developed in Sections III – V is consistent with the

fluctuation-dissipation theorem.

In the above discussion we have considered the stochastic noise as Gaussian and Marko-

vian. This is due to the fact that the small-scale fluctuations (those within a coarse-graining

volume) are to leading order well separated from the typical relaxation scales in the plasma.

Within the microscpoic approach, these characteristics can be understood ultimately as

a consequence of an expansion in a small plasma parameter (or a small gauge coupling).

More precisely, the noise follows to be Gaussian due to the polarisation approximation,

where higher order correlators beyond quadratic ones can be neglected. The Markovian
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character of the noise follows because the ultra-soft modes are well separated from the soft

ones, and suppressed in the collision integral to leading order. This way, the collision term

and the correlator of stochastic noise are both local in x-space. Going beyond the loga-

rithmic approximation, we expect from the explicit computation in Section VIII E that the

coupling of the soft and the ultra-soft modes makes the collision term non-local in coordi-

nate space. This non-trivial memory kernel should also result in a non-Markovian, but still

Gaussian, source for stochastic noise.

The present line of reasoning can in principle be extended to other approaches. Using

the phenomenological derivation of Eq. (9.32) from [9,10], the same arguments as above jus-

tify the presence of a noise source with Eq. (9.35) in the corresponding Boltzmann equation

[9,10,31,143]. It might also be fruitful to follow a similar line based on the entropy within a

quantum field theoretical language. An interesting proposal to self-consistently include the

noise within a Schwinger-Dyson approach has been made recently in [51]. Along these lines,

it might be feasible to derive the source for stochastic noise directly from the quantum field

theory [31].

While we have concentrated the discussion on plasmas close to thermal equilibrium, it

is known that a fluctuation-dissipation theorem can be formulated as well for stationary and

stable systems out of equilibrium [94]. More generally, we have exploited the fact that the

entropy production vanishes. All the information which links the dissipative characteristics

with correlators of fluctuations can be deduced from Eq. (4.32) in the case where the entropy

production vanishes.

This approach can also be extended to take non-linear effects into account [137]. Both

the out-of-equilibrium situations and the non-linear effects can be treated, in principle, with

the general formalism as discussed in Sections III – IV.
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X. DENSE QUARK MATTER

Until now, the applications of the formalism have been focussed on different aspects of

hot non-Abelian plasmas close to thermal equilibrium. In this section we consider the regime

of high baryonic density and low temperature. In this part of the QCD phase diagram,

quarks form Cooper pairs due to the existence of attractive interactions among them. A

colour superconducting phase then arises, typically characterised by the Anderson-Higgs

mechanism and the existence of an energy gap associated to the fermionic quasiparticles.

For gluon momenta much larger than the fermionic gap, the effects of diquark con-

densation are negligible. For scales larger than the gap, but still smaller than the chemical

potential, one finds to leading order an effective theory for the gauge fields totally analogous

to the HTL theory, the so called hard dense loop (HDL) theory. This effective theory can

be derived from classical transport theory [111].

For gluon momenta of the order of, or smaller than, the fermionic gap, the effects

of Cooper pairing cannot be neglected. The kinetic equations have to take into account

the modification of the quasiparticle dispersion relations, which ultimately reflect the fact

that the ground state of QCD in the superconducting phase is not the same as in a normal

phase. We present a kinetic equation for the gapped quasiparticles in a two flavour colour

superconductor [109].

A. Normal phase

We consider first the regime where the effects of Cooper pairing of quarks can be

neglected, and discuss the kinetic equations associated to the normal phase of dense quark

matter. At very high baryonic density, the non-Abelian plasma is ultradegenerate. The

fermionic equilibrium distribution function, neglecting the effects of Cooper pairing, is given

by

f eq(p0) = Θ(µ− p0) , (10.1)

where Θ is the step function, and µ is the quark chemical potential. This distribution

function describes a system where all the fermionic energy levels are occupied, according to

Pauli’s principle, up to the value of the Fermi energy p0 = µ. At zero temperature there are

no real gluons in the system.

The Vlasov approximation presented in Section VII can be applied to this non-thermal

situation. The main input is the above equilibrium distribution function, which affects both

the value of the Debye mass and the relevant scales of the system. The Debye mass reads

m2
D = NF

g2µ2

2π2
, (10.2)
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for NF different quark flavours. This is to be compared with m2
D ∼ g2T 2 as found for a

quantum plasma at high temperature.

Formally, the Vlasov approximation to a non-Abelian plasma at either high tempera-

ture, or high baryonic density but vanishing temperature in the normal phase, look almost

identical. The colour currents obtained in the two cases are the same, only the explicit value

of the Debye mass differs. Roughly speaking, one could say that the role played by T in

the HTL effective theory is now played by µ. Now µ is the hard scale, while gµ is the soft

one. As in the thermal case, in the ultradegenerate limit δ(n)J/δA1 . . . δAn|A=0 generates a

n+ 1-point amplitude, which looks formally the same as the n+ 1-point HTL. Due to this

similarity, these amplitudes were called hard dense loops (HDL) in [111] (see also [144]).

The above considerations neglect the fact that quarks form Cooper pairs, which mod-

ify both the shape of the quasiparticle distribution function and also the underlying kinetic

equations. However, the Vlasov approximation remains a valid description for specific mo-

mentum scales of the plasma. The HDL effective theory can be derived as well from quantum

field theory. An explicit computation of the gluon self-energy in the superconducting phase

of QCD, for NF = 2 and NF = 3 [129,130], shows that to leading order it reduces to the

HDL value in the limit when the gluon momentum p obeys µ ≫ p ≫ ∆, where ∆ is the

value of the gap.

B. Superconducting phases

Let us now consider the case when diquark condensates are formed, modifying the

ground state of QCD. The possible phases of QCD depend strongly on the number of quark

flavours participating in the condensation. We will briefly review the two mostly studied

phases. These are the idealizations of considering pairing of either two or three massless

quark flavours. More realistic situations should consider effects due to non-vanishing quark

masses , which may lead to an even richer phase diagram. We also restrict the discussion

to quark condensation in the lowest angular momentum channel, the spin zero condensates,

as this channel is energetically favored.

For two light quark flavours the diquark condensate is such that the SUc(3) group is

broken down to SUc(2) [5,128]. Thus, five gluons get a mass, while there are three gluons

which remain massless, and exhibit confinement. Furthermore, not all the quarks participate

in the condensation. More speficially, if we consider up and down quarks of colours red,

green and blue, one of the colours, say the blue one, does not participate in the condesation

process. Then the blue up and down quarks are gapless. The condensate is such that if

one could neglect the effects of the quantum anomaly, which can be done at asymptotically

large densities, it would also break a global axial UA(1). Thus a (pseudo) Nambu-Goldstone

mode, similar to the η′ meson, is also present. This meson becomes heavy as soon as one
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reduces the density of the system, and its mass can be computed using instanton techniques.

For three light quark flavours the pattern of symmetry breaking induced by the conden-

sates is much more involved, as the condensates lock the colour and flavour symmetry trans-

formations (colour-flavour locking or CFL phase) [6]. They break spontaneously both colour,

chiral and baryon number symmetry SUc(3)×SUL(3)×SUR(3)×UB(1) → SUc+L+R(3)×Z2.

As a result, all the gluons become massive, while there are nine Nambu-Goldstone bosons,

eight associated to the breaking of chiral symmetry, and one associated to the breaking

of baryon number symmetry. At asymptotically large densities, when the effects of the

quantum anomaly can be neglected, there is an extra (pseudo) Nambu-Goldstone boson

associated to the breaking of U(1)A. In the CFL phase all the quarks of all flavours and

colours participate in the condensation. The light modes are then the Nambu-Goldstone

bosons, which dominate the long distance physics of the superconductor.

If electromagnetic interactions are taken into account, then both the 2SC and CFL

diquark condensates break spontaneously the standard electromagnetic symmetry. However,

a linear combination of the original photon and a gluon remains massless in both cases. This

new field plays the role of the “in-medium” photon in the supercondutor.

Using standard techniques in BCS theory, it is possible to compute, in the weak

coupling limit g ≪ 1, the microscopic properties of the 2SC and CFL superconductors.

This concerns in particular the fermionic gap ∆ associated to the quarks, as well as the

gluon Meissner masses mM . In weak coupling there is a hierarchy of scales ∆ ≪ mM ≪ µ.

Furthermore, it is also possible to compute the relevant properties of the (pseudo) Nambu-

Goldstone modes, which acquire masses due to explicit chiral symmetry breaking effects of

QCD. The propagation properties of the “in-medium” photon has been obtained as well

[110]. While all these computations rely on a weak gauge coupling expansion, which might

be unrealistic for the astrophysical settings of interest, they provide both a qualitative and

semi-quantitative insight of the main microscopic porperties of quark matter. These studies

may be complemented with others based on QCD-inspired models, which might be pushed

to the regime of more moderate densities, and thus large couplings. It would be desirable

that the microscopic properties of quark matter could also be computed numerically. At

present, no reliable numerical algorithms are available for such a study.

C. Quasiparticles in the 2SC phase

To be specific, we restrict the remaining considerations to the case of two massless

quark flavours, the 2SC phase. It is shown that coloured quasiparticle excitations of the

2SC condensate can be formulated in terms of a simple transport equation.

The low energy physics of a two-flavour colour superconductor is dominated by its

light degrees of freedom. At vanishing temperature, these are the massless gauge bosons,
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the gapless quarks and a (pseudo-) Goldstone boson, similar to the η′ meson. However, the

gapless quarks and the η′ meson are neutral with respect to the unbroken SU(2) subgroup.

In turn, the condensate, although neutral with respect to the unbroken SU(2), polarises

the medium since their constituents carry SU(2) charges. Hence, the dynamics of the light

SU(2) gauge fields differs from the vacuum theory. This picture has recently been introduced

by Rischke, Son and Stephanov [131]. Their infrared effective theory for momenta k ≪ ∆

is

ST=0
eff =

∫

d4x
(

ǫ

2
Ea · Ea −

1

2λ
Ba · Ba

)

, (10.3)

where Ea
i ≡ F a

0i and Ba
i ≡ 1

2
ǫijkF

a
jk are the SU(2) electric and magnetic fields. The constants

ǫ and λ are the dielectric susceptibility and magnetic permeability of the medium. To leading

order, λ = 1 and ǫ = 1 + g2µ2/(18π2∆2) [131]. As a consequence, the velocity of the SU(2)

gluons is smaller than in vacuum. This theory is confining, but the scale of confinement

is highly reduced with respect to the one in vacuum with Λ′
QCD ∼ ∆ exp (−2

√
2π

11
µ

g∆
) [131].

Due to asymptotic freedom, it is expected that perturbative computations are reliable for

energy scales larger than Λ′
QCD.

At non-vanishing temperature, thermal excitations modify the low energy physics.

The condensate melts at the critical temperature Tc ≈ 0.567∆0 [125] (∆0 is the gap at

vanishing temperature). We restrict the discussion to temperatures within Λ′
QCD ≪ T < Tc,

which provides the basis for the perturbative computations below. In this regime, the main

contribution to the long distance properties of the SU(2) fields stems from the thermal

excitations of the constituents of the diquark condensate. The thermal excitations of the

massless gauge fields contribute only at the order g2T 2 and are subleading for sufficiently

large µ. Those of the gapless quarks and of the η′ meson do not couple to the SU(2) gauge

fields.

The thermal excitations due to the constituents of the diquark condensate display a

quasiparticle structure. This implies that they can be cast into a transport equation. To that

end, and working in natural units kB = h̄ = c = 1, we introduce the on-shell one-particle

phase space density f(x,p, Q), xµ = (t,x), describing the quasiparticles. The distribution

function depends on time, the phase space variables position x, momentum p, and on SU(2)

colour charges Qa, with the colour index a = 1, 2 and 3. The quasiparticles carry SU(2)

colour charges simply because the constituents of the condensate do. The on-shell condition

for massless quarks mq = 0 relates the energy of the quasiparticle excitation to the chemical

potential and the gap as

p0 ≡ ǫp =
√

(p− µ)2 + ∆2(T ) . (10.4)

The gap is both temperature and momentum-dependent. From now on, we can neglect its

momentum dependence which is a subleading effect. The velocity of the quasiparticles is

given by
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vp ≡ ∂ǫp
∂p

=
|p− µ|

√

(p− µ)2 + ∆2(T )
p̂ , (10.5)

and depends on both the chemical potential and the gap. For ∆ = 0, the quasiparticles

would travel at the speed of light. However, in the presence of the gap ∆ 6= 0, their

propagation is suppressed, vp ≡ |vp| ≤ 1.

The one-particle distribution function f(x,p, Q) obeys a very simple transport equa-

tion, given by
[

Dt + vp · D − gQa (Ea + vp × Ba)
∂

∂p

]

f = C[f ] . (10.6)

Here, we have introduced the short-hand notation of Eq. (2.44) for the covariant derivative

acting on f . The first two terms on the left-hand side of Eq. (10.6) combine to a covariant

drift term vµ
pDµ, where vµ

p = (1,vp) and Dµ = (Dt,D). The terms proportional to the

colour electric and magnetic fields provide a force term. The right-hand side of Eq. (10.6)

contains a (yet unspecified) collision term C[f ].

Notice that Eq. (10.6) has the same structure as the (on-shell) transport equation

valid for the unbroken phase of a non-Abelian plasma. All what changes here are the energy

and velocity of the quasiparticles. Once the temperature of the system is increased, and

the diquark condensates melt and the gap vanishes, ∆(T ) → 0, we recover the transport

equation for the unbroken phase.

The thermal quasiparticles carry an SU(2) charge, and hence provide an SU(2) colour

current. It is given by

Jµ
a (x) = g

∑

helicities

species

∫

d3p

(2π)3
dQ vµ

p Qa f(x,p, Q) . (10.7)

Below, we simply omit a species or helicity index on f , as well as the explicit sum over them.

We use the same definition for the colour measure as in Eq. (2.23). The colour current

Eq. (10.7) is covariantly conserved for C[f ] = 0. For C[f ] 6= 0 a covariantly conserved

current implies certain restrictions in the form of the collision term.

D. Vlasov approximation

We will now study the Vlasov approximation, or collisionless dynamics C[f ] = 0 of

the colour superconductor close to thermal equilibrium and to leading order in the gauge

coupling. Consider the distribution function

f(x,p, Q) = f eq(p0) + gf (1)(x,p, Q) . (10.8)
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Here

f eq.(p0) =
1

exp(ǫp/T ) + 1
(10.9)

is the fermionic equilibrium distribution function and gf (1)(x,p, Q) describes a slight devi-

ation from equilibrium. For convenience, we also introduce the colour density

Ja(x,p) = g
∫

dQQaf(x,p, Q) , (10.10)

from which the induced colour current of the medium Eq. (10.7) follows as Jρ
a (x) =

∫ d3p
(2π)3

vρ
pJa(x,p). Expanding the transport equation (10.6) to leading order in g, and tak-

ing the two helicities per quasiparticle into account, we find the transport equation for the

colour density as

[Dt + vp · D]J(x,p) = 2g2 vp · E(x)
df eq

dǫp
. (10.11)

The solution of the transport equation reads

Jµ
a (x) = 2g2

∫

d3p d4y

(2π)3
vµ

p 〈x|
1

(vp ·D)
|y〉ab vp · Eb(y)

df eq

dǫp
. (10.12)

After having solved the transport equation, the relevant information concerning the low

energy effective theory is contained in the functional J [A]. Notice that the above derivation

is analogous to the derivation of the HTL and HDL effective theories from kinetic theory.

Owing to this resemblance, we call the diagrams which are derived from Eq. (10.12) as hard

superconducting loops (HSL). The HSL effective action follows from Eq. (10.12) by solving

J [A] = −δΓHSL[A]/δA for ΓHSL[A], and all HSL diagrams can be derived by performing

functional derivatives to the effective action (or the induced current). We thus reach to the

conclusion that the low energy effective theory for a two-flavour colour superconductor at

finite temperature reads ST
eff = ST=0

eff + ΓHSL to leading order in g. This theory is effective

for modes with k ≪ ∆.

Let us have a closer look into the induced current, which we formally expand as Ja
µ [A] =

Πab
µνA

ν
b + 1

2Γ
abc
µνρA

ν
bA

ρ
c + . . . in powers of the gauge fields. The most relevant information on

the thermal effects is contained in the thermal polarisation tensor Πab
µν . Using Eq. (10.12),

we find

Πµν
ab (k) = 2g2δab

∫

d3p

(2π)3

df eq

dǫp

(

gµ0gν0 − k0

vµ
p v

ν
p

k · vp

)

. (10.13)

It obeys the Ward identity kµΠ
µν
ab (k) = 0. With retarded boundary conditions k0 → k0+i0

+,

the polarisation tensor has an imaginary part,
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Im Πµν
ab (k) = δab 2πg2k0

∫

d3p

(2π)3

df eq

dǫp
vµ

p v
ν
p δ(k · vp) , (10.14)

which corresponds to Landau damping. Performing the angular integration, we obtain for

the longitudinal and transverse projections of the polarisation tensor

ΠL(k0,k) =
g2

π2

∫ ∞

0
dp p2df

eq

dǫp

[

1 − 1

2

k0

|k|vp

(

ln

∣

∣

∣

∣

∣

k0 + |k|vp

k0 − |k|vp

∣

∣

∣

∣

∣

− iπΘ(|k|2v2
p − k2

0)

)]

, (10.15a)

ΠT (k0,k) =
g2

2π2

k2
0

|k|2
∫ ∞

0
dp p2df

eq.

dǫp

[

1 +
1

2

(

|k|vp

k0
− k0

|k|vp

)

×
(

ln

∣

∣

∣

∣

∣

k0 + |k|vp

k0 − |k|vp

∣

∣

∣

∣

∣

− iπΘ(|k|2v2
p − k2

0)

)]

, (10.15b)

where Θ is the step function. We first consider the real part of the polarisation tensor. From

Eq. (10.15), and in the limit k0 → 0, we infer that the longitudinal gauge bosons acquire a

thermal mass, the Debye mass, while the transverse ones remain massless. The (square of

the) Debye mass is given by

m2
D = −g

2

π2

∫ ∞

0
dp p2df

eq.

dǫp
≡ M2 I0

(

∆

T
,
T

µ

)

. (10.16)

For convenience, we have factored-out the Debye mass M of the ultradegenerate plasma in

the normal phase, M2 ≡ g2µ2/π2. The dimensionless functions

In

(

∆

T
,
T

µ

)

= − 1

µ2

∫ ∞

0
dp p2df

eq.

dǫp
vn

p (10.17)

obey In ≥ In+1 > 0 for all n due to vp ≤ 1. Equality holds for vanishing gap. For

the physically relevant range of parameters T < ∆ ≪ µ, the functions In are ≪ 1. In

particular, it is easy to see that In(∞, 0) = 0: there is no Debye screening for the SU(2)

gluons at T = 0 in the superconducting phase. In the limit where ∆/T ≫ 1, and to leading

order in T/µ≪ 1, the Debye mass reduces to

m2
D = M2

√

2π
∆

T
exp(−∆/T ) . (10.18)

The dispersion relations for the longitudinal and transverse gluons follow from the poles of

the corresponding propagators,

ǫ|k|2 − Re ΠL(k0,k)|k0=ωL(k) = 0 , (10.19a)

ǫk2
0 −

1

λ
|k|2 + Re ΠT (k0,k)|k0=ωT (k) = 0 . (10.19b)
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Here, the terms containing ΠL,T are due to the fermionic quasi-particles, while the terms

containing ǫ and λ are the leading order contributions from the effective theory at T = 0,

introduced in Eq. (10.3). At vanishing temperature, ΠT,L = 0, and only the transverse

gluon propagates, but with velocity v = 1/
√
ǫλ ≪ 1. At non-vanishing temperature, a

plasmon or longitudinal mode also propagates. Neglecting higher order corrections in k0 to

the polarisation tensor at T = 0, the plasma frequency ωpl follows from Eq. (10.19) as

ω2
pl =

1

3ǫ
M2 I2

(

∆

T
,
T

µ

)

. (10.20)

For generic external momenta the dispersion relations can only be solved numerically. In

turn, if the spatial momenta are much smaller than the plasma frequency |k| ≪ ωpl, solutions

to Eq. (10.19) can be expanded in powers of |k|2/ω2
pl as

ω2
L(k) = ω2

pl

[

1 +
3

5

I4
I2

|k|2
ω2

pl

+ O(
|k|4
ω4

pl

)

]

, (10.21a)

ω2
T (k) = ω2

pl

[

1 +
(

1

ǫλ
+

1

5

I4
I2

) |k|2
ω2

pl

+ O(
|k|4
ω4

pl

)

]

. (10.21b)

Apart from the fact that the T = 0 transverse mode does not propagate at the speed

of light in vacuum, the ratios of the functions In measure the departure of the dispersion

relations of the gluons in the 2SC phase with respect to the unbroken phase (see Eq. (7.32)).

The quantity v2
∗ = I4/I2 has the intuitive interpretation of a mean velocity squared of

the quasiparticles of the system. An approximate form of the HSL polarisation tensor

Eq. (10.15) could be given in terms of this mean velocity (see [47] for the use of a similar

approximation).

Let us now consider the imaginary part of Eq. (10.15), which describes Landau damp-

ing. Since vp ≤ 1, we conclude that Landau damping only occurs for k2
0 ≤ |k|2. Hence,

plasmon and transverse gluon excitations are stable as long as ωL,T (k) > |k|. Furthermore,

we notice that the imaginary part of Eq. (10.15) is logarithmically divergent: the quasi-

particle velocity vanishes for momenta close to the Fermi surface, which is an immediate

consequence of the presence of a gap, cf. Eq. (10.5). This divergence does not appear in the

real part, because the logarithm acts as a regulator for the 1/vp factor. To leading order in

T/µ, and in the region of small frequencies k2
0 ≪ |k|2, we find at logarithmic accuracy, and

for all values of ∆/T ,

Im ΠL(k0,k) = −2πM2 k0

|k|
∆

T

ln (|k|/k0)

(e∆/T + 1)(e−∆/T + 1)
, (10.22a)

Im ΠT (k0,k) = πM2 k0

|k|

[

1

e∆/T + 1
− 2

k2
0

|k|2
∆

T

ln |k|/k0

(e∆/T + 1)(e−∆/T + 1)

]

. (10.22b)
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For small frequencies, Landau damping is dominated by the logarithmic terms, which are

proportional to the gap. Once the gap vanishes, subleading terms in ∆
T , not displayed in

Eq. (10.22), take over and reduce ImΠ to known expressions for the normal phase.

Finally, we explain how the polarisation tensor, as obtained within the present trans-

port theory, matches the computation of Πµν for external momenta k0, |k| ≪ ∆ to one-loop

order from quantum field theory. The one-loop gluon self-energy for a two-flavour colour

superconductor has been computed by Rischke, and the polarisation tensor for the unbroken

SU(2) subgroup is given in Eq. (99) of [129]. It contains contributions from particle-particle,

particle-antiparticle and antiparticle-antiparticle excitations. The particle-antiparticle con-

tribution to Π00 and Π0i at low external momenta, and the antiparticle-antiparticle exci-

tations are subleading. The particle-particle contributions divide into two types. The first

ones have poles for gluonic frequencies k0 = ± (ǫp + ǫp−k) and an imaginary part once k0

exceeds the Cooper pair binding energy 2∆. These terms are related to the formation or

breaking of a Cooper pair, and suppressed for low external gluon momenta. The second

type of terms, only non-vanishing for T 6= 0, have poles at k0 = ± (ǫp − ǫp−k). For |k| ≪ ∆

we approximate it by k0 ≈ ±∂ǫp

∂p
· k. The prefactor, a difference of thermal distribution

functions, is approximated by f eq(ǫp) − f eq(ǫp−k) ≈ ∂ǫp

∂p
· k dfeq

dǫp
. After simple algebraic ma-

nipulations we finally end up with the result given above. We conclude that this part of the

one-loop polarisation tensor describes the collisionless dynamics of thermal quasiparticles

for a two-flavour colour superconductor. The same type of approximations can be carried

out for Πij to one-loop order. There, apart from the HSL contributions, additional terms

arise due to particle-particle and particle-antiparticle excitations, cf. Eq. (112) of [129]. We

have not evaluated these terms explicitly. However, we expect them to be subleading or

vanishing, as otherwise the Ward identity kµΠ
µν
ab (k) = 0 is violated. For T = 0, this has

been confirmed in [129].

E. Discussion

We have introduced a transport equation for the gapped quarks of two-flavour colour

superconductors. Its simple structure is based on the quasiparticle behaviour of the thermal

excitations of the condensate, in consistency with the underlying quantum field theory. We

have constructed a low temperature infrared effective theory of the superconductor. To

leading order, we found Landau damping, and Debye screening of the chromo-electric fields.

Beyond leading order, chromo-magnetic fields are damped because they scatter with the

quasiparticles. The damping rate is related to the colour conductivity. It should be possible

to compute the rate from the transport equation (10.6), amended by the relevant collision

term. The latter can be derived, for example, using the methods discussed in the preceeding

sections.
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We have neither discussed the transport equations for gapless quarks nor for the η′

meson, because they do not carry SU(2) charges. However, their excitations are light

compared to the gapped quasiparticles, and dominant for other transport properties such as

thermal and electrical conductivities or shear viscosity. The corresponding set of transport

equations will be discussed elsewhere.

It would be very interesting to study the transport equations in a three-flavour colour

superconductor [6]. For Nf = 3 the quark-quark condensate breaks the SU(3) gauge group

completely, as well as some global flavour symmetries. Transport phenomena should then

be dominated by the Goldstone modes associated to the breaking of the global symmetries.

The corresponding transport equations will be substantially different for the two and three

flavour case.
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XI. SUMMARY AND OUTLOOK

We have reviewed a new approach to the transport theory of non-Abelian plasmas.

The formalism relies on a semi-classical approximation and considers, on the microscopic

level, a system of classical coloured point particles interacting through classical non-Abelian

fields. It is assumed that the typical length scales of the particle-like degrees of freedom are

much smaller than those associated to the classical non-Abelian fields. This scale separation

is at the root of the present formalism. The inclusion of stochastic fluctuations due to the

particles is also of crucial importance, as well as the ensemble average in phase space, which

takes the colour charges as dynamical variables into account. On the macroscopic level, the

formalism results in a set of effective transport equations for the quasi-particle distribution

function, the mean gauge fields, and their fluctuations. The formalism is consistent with

the non-Abelian gauge symmetry.

Approximations have to be employed in order to obtain, or to solve, the effective

transport equations. For the integrating-out of fluctuations, systematic expansions schemes,

consistent with the non-Abelian gauge symmetry, have been worked out. Ultimately, the

procedure corresponds to the derivation of collision integrals, noise sources and fluctuation-

induced currents for effective transport equations. The compatibility of the approach with

the fluctuation-dissipation theorem was established as well. Of course, reliable physical

predictions based on the formalism are only as good as the approximations inherent to

the approach. This concerns most notably the quasiparticle picture and the separation of

scales. However, for a weakly coupled plasma close to equilibrium, these assumptions are

satisfied. Although the Wong particle picture relies on a high dimensional representation

for the colour charges, observables involving the quadratic or cubic Casimir are reproduced

correctly to leading order.

Interesting applications of the formalism concern hot and weakly coupled plasmas

close to thermal equilibrium. We have reviewed how the seminal hard thermal loop effective

theory is deduced, based on the simplest approximation compatible with gauge invariance

and neglecting fluctuations. This step corresponds to the integrating-out of hard modes with

p ∼ T to leading order in the gauge coupling. Further, the simplest approximation which

includes the genuine effects due to fluctuations was shown to reproduce Bödeker’s effective

theory at leading logarithmic order. This corresponds to integrating-out the soft modes

with p ∼ gT to leading logarithmic order. These applications exemplify the efficiency of the

formalism. As an aside, we note that the effective theories for both classical and quantum

plasmas are identical, except for the value of the Debye mass. It is intriguing that a simple

semi-classical transport theory is able to correctly reproduce not only the dynamics of soft

non-Abelian fields with momenta about the Debye mass, but as well the dynamics of the

ultra-soft gluons at leading logarithmic order. These findings imply a link beyond one-loop

between the present formalism and a full quantum field theoretical treatment.
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A number of possible applications of the formalism to weakly coupled thermal plasmas

are worth being mentioned. We have reviewed the computation of the colour conductivity

to leading logarithmic order. In principle, it should be possible to extend the analysis to

higher order by solving the dynamical equations for the fluctuations iteratively. A further

important application concerns colourless excitations of the plasma. These are responsible

for most of the bulk or hydrodynamical properties of the medium, described by transport

coefficients such as viscosities, electrical or thermal conductivities. The main contributions

to these transport coefficients arise from hard and soft degrees of freedom. A computation

of transport coefficients within the present formalism is a feasable task, bearing in mind the

efficiency of the formalism. Despite the fact that transport coefficients have already been

obtained in the literature to leading logarithmic order, it is worthwhile to derive them from

the present formalism, and to even extent the existing results to higher order.

More generally, the formalism leads to an equally good description of other phys-

ical systems, where the relevant thermal excitations can be described by quasiparticles,

and typical length scales associated to the gauge fields are much larger than those of the

quasiparticles. As an example, we have reviewed an application to the physics of dense

quark matter in a colour superconducting phase with two massless quark flavours. Based

on a semi-classical transport equation for fermionic quasiparticle excitations, we obtained

the hard-superconducting loop effective action for the SU(2) gauge fields. It describes the

physics of Debye screening and Landau damping for the unbroken non-Abelian gauge fields

in the presence of a condensate. It will be interesting to use this formalism for the study of

transport coefficients in colour superconducting matter.

All applications of the formalism have been done for weakly coupled systems close

to, or slightly out of, thermal equilibrium. It would be interesting to understand if a

semi-classical description is viable for strongly coupled plasmas, or for plasmas fully out

of equilibrium. A kinetic description of a plasma requires a small plasma parameter. For

quantum plasmas, the gauge coupling and the plasma parameter are deeply linked, since a

small gauge coupling implies a small plasma parameter, and vice versa. For classical plasmas,

the plasma parameter remains an independent parameter and can be made small even for

large gauge couplings. This observation may lead to a kinetic description of strongly coupled

classical plasmas. In principle, the formalism also applies to plasmas out of equilibrium,

simply because the ensemble average does not rely on whether the system is in equlibrium

or not. Hence, the formalism provides an interesting starting point for applications to

out-of-equilibrium plasmas or to the physics of heavy ion collisions.
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A. SAMPLE COMPUTATION FOR CORRELATORS

In this Appendix we explain in more detail how to compute the collision integral

〈ξ〉 which appears in the transport equation Eq. (8.3a). We write the collision integral in

momentum space

〈ξρ
a(k,v)〉 = −g fabc

∫

d4p

(2π)4
〈vµaµ,b(p) δJ ρ

c (k − p,v)〉 . (A1)

One first has to solve the dynamical equations for a and δJ , in order to express them

in terms of the initial conditions. This program has been carried out in Section VIIIB,

where a and δJ have been solved in a series in gĀ and gJ̄. The correlators are computed

analogously.

We begin with the zero order contribution. It is easy to show that the first term in

the series vanishes. This is because 〈a(0,0)
a a

(0,0)
b 〉 ∝ δab, and this correlator is contracted with

the antisymmetric tensor fabc.

For the first correction in gJ̄ , one needs to evaluate the correlators 〈a(0,0)
b δJ ρ,(0,1)

c 〉, and

〈a(0,1)
b δJ ρ,(0,0)

c 〉. We will illustrate how to compute the contribution of the first term. The

second one is computed in a similar way. We need to evaluate

− g fabc

∫

d4p

(2π)4

〈

vµa
(0,0)
µ,b (p) δJ ρ,(0,1)

c (k − p,v)
〉

, (A2)

where

δJ ρ,(0,1)
c (k − p,v) = −gfcde

1

−i(k − p) · v
∫

d4q

(2π)4
vνa

(0,0)
ν,d (q)J̄ ρ

e (k − p− q, v) . (A3)

Therefore, we have to evaluate the correlator
〈

a
(0,0)
µ,b (q) a

(0,0)
ν,d (p)

〉

, which has been computed

in Eq. (8.27) for the transverse components of the gauge fields. These are the ones which

give the leading order contribution to Eq. (A2). Using the values of Eq. (8.27), and the

SU(N) relation fabcfcbe = −Nδac, we find

− g4NBcC2

∫

d4p

(2π)4

∫

dΩv′

4π

∣

∣

∣

∣

∣

viP
T
ik(p)v

′
k

p2 + ΠT

∣

∣

∣

∣

∣

2

δ(p · v′) J̄ ρ
a (k,v)

−i(k − p) · v . (A4)

Using retarded boundary conditions, we split

1

−i(k − p) · v = iP
(

1

−i(k − p) · v

)

+ πδ ((k − p) · v)) . (A5)

The term which goes with the principal value will be neglected, because it gives a contribu-

tion which is damped at asymptotically large times [99]. In the argument of the δ-function,

we neglect ultrasoft momenta in front of the soft ones (k ≪ p). We thus end up with

102



− g4NBcC2

4π
vρ
∫

d4p

(2π)4

∫

dΩv′

4π

∣

∣

∣

∣

∣

viP
T
ik(p)v

′
k

p2 + ΠT

∣

∣

∣

∣

∣

2

(2π) δ(p · v′)(2π) δ(p · v)J̄ 0
a (k,v) . (A6)

This is the first term in Eq. (8.39). The second term is computed in a similar way, after

evaluating the 〈a(0,1)
b δJ ρ,(0,0)

c 〉 correlator. Notice that in order to find a local collision integral,

the separation of scales soft and ultrasoft is a key ingredient.

B. CORRELATORS OF WIGNER FUNCTIONS IN THE CLASSICAL LIMIT

We have restricted our study to the use of classical and semi-classical methods applied

to non-Abelian plasmas. In this Appendix we present a formal justification of the use of

the quantum correlators given in Eqs. (3.14) – (3.15). We follow here the arguments and

reasoning of [142].

To simplify the analysis we will only consider the Abelian case. The central quantity

for a classical transport theory is the one-particle distribution function f . This function is

split into its mean value and the fluctuations around it as

f(x, p) = f̄(x, p) + δf(x, p) . (B1)

We consider the case where the system is homogeneous, thus f̄ does not depend on xµ. We

also neglect the effect of interactions. Then the fluctuations obey the equation

vµ∂µ δf(x, p) = 0 , (B2)

where vµ = (1,v) is the particle four velocity. The correlation function of fluctuations

was deduced in Section III, when in the Abelian case, the phase space variables are just

z = (x,p).

Now we turn to the quantum generalisation of the previous formalism. The second

quantisation representation of f(p) is the particle occupation number averaged over an

statistical ensemble. In a quantum formulation, the occupation number is given by the

operator â†pâp averaged over the vacuum state, where â†p is the creation operator of a particle

with momentum p, and âp is the annihilation operator of a particle with momentum p.

Therefore, we can identify

φp =
∫

d3p′ 〈â†pâp′〉 , 〈â†pâp′〉 = φp δ
(3)(p− p′) . (B3)

It is useful to introduce the operator

ψ̂(0)
p (t) = âp e

−iEpt , (B4)
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where Ep is the particle energy. We thus have

φp =
∫

d3p′〈ψ̂(0)†
p ψ̂

(0)
p′ 〉 . (B5)

The quantum analogue of the classical distribution function is the Wigner operator, defined

as

〈f̂(x, p)〉 =
∫

d4v e−ip·v〈ψ†(x+
1

2
v)ψ(x− 1

2
v)〉 (B6)

We will work with the Fourier transform of the Wigner operator,

f̂
(0)
p,k(t) = ψ̂

(0)†
p−k/2(t)ψ̂

(0)
p+k/2(t) . (B7)

One can define the fluctuation operator

δf̂
(0)
p,k(t) = f̂

(0)
p,k(t) − 〈f̂ (0)

p,k(t)〉 = ψ̂
(0)†
p−k/2(t)ψ̂

(0)
p+k/2(t) − 〈ψ̂(0)†

p−k/2(t)ψ̂
(0)
p+k/2(t)〉 . (B8)

According to the definition (B4), this operator obeys

∂

∂t
δf̂

(0)
p,k(t) + i

(

Ep+k/2 − Ep−k/2

)

δf̂
(0)
p,k(t) = 0 . (B9)

For k ≪ p we have

Ep+k/2 − Ep−k/2 ≃ k · ∂Ep

∂p
= k · v , (B10)

and then Eq. (B9) agrees with Eq. (B2). The solution of Eq. (B9) is

δf̂
(0)
p,k(t) = δf̂

(0)
p,k(0) exp

{

−i
(

Ep+k/2 − Ep−k/2

)

t
}

, (B11)

δf̂
(0)
p,k(0) = â†p−k/2âp′+k/2 − 〈â†p−k/2âp′+k/2〉 , (B12)

δf̂
(0)
p,k,ω = δf̂

(0)
p,k(0)δ

(

ω − Ep+k/2 + Ep−k/2

)

. (B13)

One can now evaluate the correlator of fluctuation operators. One finds

〈δf̂ (0)
p,k,ωδf̂

(0)
p′,k′,ω′〉 = δ

(

ω − Ep+k/2 + Ep−k/2

)

δ
(

ω′ −Ep′+k′/2 + Ep′−k′/2

)

(B14)

×
(

〈â†p−k/2âp+k/2â
†
p′−k′/2âp′+k′/2〉 − 〈â†p−k/2âp+k/2〉〈â†p′−k′/2âp′+k′/2〉

)

.

If one decomposes the average of four operators into products of the possible averaged values

of pairs of operators, and furthermore one uses the commutation/anticommutation relations

of the creation and annihilation operators, one then arrives to
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〈δf̂ (0)
p,k,ωδf̂

(0)
p′,k′,ω′〉 = φp−k/2

(

1 − φp+k/2

)

δ(3)(p− p′)δ(4)(k + k′)δ
(

ω − Ep+k/2 + Ep−k/2

)

, (B15)

〈δf̂ (0)
p,k,ωδf̂

(0)
p′,k′,ω′〉 = φp−k/2

(

1 + φp+k/2

)

δ(3)(p− p′)δ(4)(k + k′)δ
(

ω −Ep+k/2 + Ep−k/2

)

, (B16)

where k = (ω,k), and Eq. (B15) refers to the correlators for particles obeying bosonic

statistics, while Eq. (B16) refers to particles obeying fermionic statistics. Note that in the

limit k ≪ p, the above correlators reduce to

〈δf̂ (0)
p,k,ωδf̂

(0)
p′,k′,ω′〉B/F = φB/F

p

(

1 ∓ φB/F
p

)

δ(3)(p− p′)δ(4)(k + k′)δ (ω − k · v) . (B17)

This expression corresponds to the Fourier transform of 〈δf̂ (0)(x, p)δf̂ (0)(x′, p)〉t=t′ 6=0. It can

be deduced from the initial time correlators given in Eqs. (3.15) and (3.14), in the Abelian

limit, if the dynamical evolution of the fluctuations is given by Eq. (B2). Furthermore, for

low occupation numbers, φp ≪ 1, one recovers the corresponding classical limit. Note that

the factors of (2π) of difference between Eq. (B17) and Eqs. (3.14) and (3.15) can be fixed

by choosing the proper normalisation of the momentum measure.

The considerations given above are only valid for free particles. Modifications are

necessary in order to include the effects of interactions, in which case the time dependence

of the operator ψ̂p(t) will be a more complicated than in Eq. (B5). Furthermore, it should

be kept in mind that to describe the system of relativistic particles in a covariant way,

one should introduce positive and negative energy states. Internal degrees of freedom, such

as spin, are to be introduced as internal indices as well. The above discussion has also

been restricted to the Abelian case. It provides a formal justification of why semi-classical

methods can be used to study the physics of specific momentum scales in the plasma. With

the same tools, we could study the non-Abelian case as well, only by enlarging the phase-

space of the particles. Additional technical difficulties are then encountered.
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