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Abstract 

The results of a study to explore variations in cloud cover, over regions that are 

minimally affected by rainfall and heavy rainfall, and that are coincident with variations 

in the galactic cosmic ray flux, are presented. Using an extensive record of global satellite 

derived cloud and rainfall products from the International Satellite Cloud Climatology 

Project (ISCCP) D1 data series and Xie and Arkin (1996), epoch superposition analysis 

of a sample of events of short term decreases in the galactic cosmic ray flux, is 

conducted. Analysis of data that is largely free from the influence of rainfall and heavy 

rainfall, averaged over 10-degree geomagnetic latitude (ϕ) bands reveals that cloud cover 

is reduced at high latitudes, and at middle and lower (including equatorial) latitudes over 

regions of relatively higher cloud cover, over both land and ocean surfaces, while 

increasing over ocean surfaces at middle and lower latitudes in regions of thinner cloud. 

 

Introduction 

Three possible mechanisms have been proposed to explain the coupling between solar 

activity and terrestrial climate; variations in the total irradiance; variations in the spectral 

irradiance in the ultraviolet portion of the electromagnetic spectrum; and variations in the 

solar wind and the flux of energetic particles [Reid 2000].  Of these the last mechanism 

has proved particularly controversial especially after the studies of Svensmark and Friss-

Christensen (1997) and Marsh and Svensmark (2000) in which variations in galactic 

cosmic rays (GCR) were related to changes in cloudiness and proposed as being 

responsible for a radiative forcing of 1.4 Wm
-2

 over the period 1901-1995. 

 



A number of reassessments of the work of Svensmark and Friss-Christensen (1997), and 

Marsh and Svensmark (2000), by Kernthaler et al. (1999), Farrar (2000), Jorgensen and 

Hansen (2000), Kristijansson and Kristiansen (2000) and Sun and Bradley (2002), have 

been undertaken. These studies have raised doubts about the longer-term stability of the 

cloud-GCR relationship and suggested that the observed variability in cloud cover may 

be related to the internal climate mechanisms of El Nino-Southern Oscillation and 

volcanic activity rather than GCR variability.  Instead of examining changes in cloud 

cover over interannual timescales Todd and Kniveton (2001) choose to focus their 

research into the effect on cloud of short-term Forbush decreases in GCR   The advantage 

of this is that there is no known natural internal modes of climate variability that operate 

with similar temporal characteristics as Forbush decrease events.  Their study found a 

small but significant decline in the global proportion of cloud cover of up to 1.4% 

immediately prior and following Forbush decrease events (Todd and Kniveton, 2001]. 

 

It is notable that the results of Todd and Kniveton (2001) showed very little similarity 

with the cloud cover changes at interannual time scales observed (and ascribed to GCR 

variability) by Svensmark and Friis-Christensen (1997), and Marsh and Svensmark 

(2000).  In those studies, positive correlations between interannual cloud cover and GCR 

were strongest for low-level cloud (on average 2km) and over ocean surfaces of the 

tropics and midlatitudes. By contrast Todd and Kniveton (2001) found no significant 

anomalies in low-level cloudiness associated with short term GCR variability, instead the 

anomalies on the whole being concentrated at high latitudes.  Physical explanations for a 

link between galactic cosmic rays and cloudiness have been based around cosmic ray 



ionisation related direct and indirect impacts on cloud microphysics.  The direct influence 

on cloud includes ion-mediated nucleation, while indirect mechanisms include the impact 

of GCR ionisation on atmospheric electrical conductivity within the Global Electric 

Circuit and the subsequent effect on electro-scavenging (Carslaw et al, 2003).   

 

Cloud cover is not the only atmospheric parameter that has been linked to changes in 

galactic cosmic ray.  A study of precipitation and precipitation efficiency and GCR at 

high geomagnetic latitudes by Kniveton and Todd (2001) revealed a strong correlation at 

interannual timescales.  Clearly precipitation and cloud processes are closely linked with 

each other.  While obviously without cloud there is unlikely to be precipitation, 

precipitation ultimately reduces cloud cover through the removal of cloud water.  This 

latter process may result in some of the cloud cover changes, which are related to 

variability in cosmic rays, being negated by changes in precipitation and a dampening of 

the observable response of the cloud.  It is therefore the aim of this study to explore cloud 

cover changes coincident with changes in GCR, excluding locations where there is 

rainfall and excluding locations where there is heavy rainfall.  In particular the analysis 

will be carried out using geomagnetic latitude bands to reduce the influence of 

meteorological noise. The reason for concentrating on the geomagnetic latitudinal 

response of cloud cover is that there is a geomagnetic latitude variation in GCR. 

 

Method 

The International Satellite Cloud Climatology Program (ISCCP) produces the currently 

most comprehensive database of global cloud cover.  A range of cloud parameters is 



available from ISCCP, for the period 1986 to 1994, for every 3 hours on a 2.5° latitude-

longitude grid (Rossow et al., 1996).  For this study I have simply concentrated on one 

variable of this dataset; the proportion of all pixels defined as cloudy.  No attempt is 

made to separate the cloud types into liquid and ice cloud due to the observation by Todd 

and Kniveton (2001) that no significant cloud anomalies during Forbush decreases were 

observed where the ISCCP data involved daytime observations, and the need for visible 

wavelength measurements to make the distinction between ice and liquid clouds. The 

methodology used in this study is the ‘epoch superposition’ analysis, as used in previous 

studies of this kind.  The method relies on selecting a sample of key dates and extracting 

ISCCP D1 data for the period 5 days prior to 5 days following each date.  The cloud 

parameters are then averaged over the sample for each time slot (day –5 to day 5) 

separately.  This is akin to compositing routinely used in climate analysis. The difference 

between conditions prior to, during and after FD events (key date) can then be established 

by subtracting the mean values at different time slots. Here, I define a  ‘base period’ 

sample representative of conditions prior to an event as the mean of days –5 to –3. The 

mean cloud values at all days from day –2 to day 5 are then derived and from this the 

anomaly is obtained by subtracting the mean of the base period. The result is tested for 

local statistical significance using a t-test at the 0.05 probability level. Throughout, the 

anomalies are given as absolute values rather than as a percentage of the base period 

value. 

 

In this study I have selected a sample of isolated FD events (separated by more than 11 

days from another event). These dates represent the onset of FD events (defined by a 



decline greater than 3%) at the earth’s surface as recorded by the neutron monitor at 

Mount Washington, USA (44.3N, 288.7E).  Over the relatively short period for which we 

have ISCCP data there are total of 50 FD events. Some of these coincide (within 3-days 

either side) with solar proton (SP) events. It has been hypothesized that during FD events 

associated with SP events an increase in ionization (and any effect on cloud) from solar 

protons is likely to oppose any decrease associated with a decline in GCR. To isolate the 

GCR signal from that of SP I have selected the FD events into separate samples of 23 FD 

events when no SP event occurs (hereafter referred to simply as FD events) (see Todd 

and Kniveton, 2001, for a list of the dates). 

 

Rainfall has a characteristically high spatial and temporal variability.  This makes its 

measurement either by in-situ, e.g. rain gauges, and remote methods, e.g. satellite data, 

difficult.  Presently, satellite based retrievals of global rainfall for extended periods, are 

mainly limited to estimates at monthly timescales.  In this study in order to delineate 

regions of rainfall I use the Climate Prediction Center Merged Analysis of Precipitation 

(CMAP) product. This is derived from a weighted combination of rainfall estimates from 

satellite infrared and passive microwave data, numerical weather prediction model 

analyses and surface based precipitation observations, and provides a record of global 

rainfall estimates, on a 2.5° grid from 1979 to present (Xie and Arkin, 1996).  To develop 

a mask for filtering the cloud data to remove all possible rainfall effects, the months for 

which there were Forbush decrease events were selected and a climatology of average 

monthly rainfall derived.  When using large-scale (and large grid cell) data the distinction 

between rain and no rain can be considered a fuzzy concept with some areas within in a 



grid cell of low rainfall not raining and other areas raining.  Thus when removing areas 

where the grid cell has a rainfall above 0mm/d would exclude a large number of areas 

over which there was no rainfall and considerably reduce the area available for the 

analysis of changes in cloud cover.  Therefore it was decided to choose a rainfall 

threshold minimally larger than 0mm/d to isolate yet observe changes in rain free clouds.  

Additionally it was decided to choose a higher rain rate threshold to remove solely 

heavily precipitating clouds. Thus the thresholds of 1mm/d and 5mm/d were selected to 

screen out those grid cells where rainfall in any of the dates was above and equal to these 

thresholds. Lastly the grid cells were averaged along 10º geomagnetic latitude (ϕ) bands 

for analysis of significant changes (as described above).  The decision to average the data 

in 10º bands was taken to reduce the noise from the inevitable day-to-day meteorological 

processes.   

 

Results 

Figure 1 shows the mean proportion of cloud cover during the ‘base period’ day -5 to day 

–3 for the FD events. The structure of cloud cover is in very close agreement both in 

terms of absolute and relative cloud amounts with the long-term average cloud conditions 

determined from the ISCCP D2 dataset (Rossow and Schiffer, 1999). From this I am 

confident that our sample of events is representative of the long-term climatology, 

providing evidence that our sample size is large enough to highlight any systematic 

changes in cloud cover associated with FD events. 

 



In Figure 2a the changes of cloud cover at 10º geomagnetic latitudes are shown for all the 

FD events over land and ocean surfaces, without any masking for raining locations.  

Significant anomalies (at the 0.05 probability level) emerge only in particular locations, 

dominated by large negative anomalies (up to 12.6%) over the polar latitudes of the 

southern hemisphere (poleward of ϕ=70S) throughout the FD epoch, peaking at day 1. 

There are smaller negative anomalies (5.7%) over the polar latitudes of the northern 

hemisphere (poleward of ϕ=80N) significant only on day 0, and small positive anomalies 

(2.1%) from ϕ=20-30N, significant on days 2, 4 and 5.  In Figures 2b and 2c these 

changes are shown but separated according to whether they were for locations over land 

or sea.  Over land in addition to the decreases at the poles there is a small significant 

positive anomaly (3.4%) on day 2 at ϕ=0-10N, but no positive anomaly at ϕ=20-30N.  

Over ocean the negative anomalies are still present at the higher latitudes, however there 

are now additional negative anomalies at ϕ=10-20S and 30-40S of 2.3% and 1.3%.  The 

positive anomaly at ϕ=30-40N in Figure 2a is also present in Figure 2c (2.7%). 

 

When the 1mm/d rain mask is applied the amount of cloud cover used to calculate the 

geomagnetic latitude bands is reduced considerably (Figure 3). The changes of cloud 

cover for all the FD events over land and sea surfaces, where there is less than 1mm/d 

rainfall, are shown in Figure 4a.  The significant negative anomalies over polar latitudes 

are still present as there is little influence of the rain mask at these locations.  However 

we now see a significant negative anomaly peaking the day after the key date at ϕ=0-10S 

of 4.5%, and a significant positive anomaly at ϕ=50-60S again peaking the day after the 

key date with a magnitude 3.4%.  When these anomalies are separated according to 



whether they occur over land or sea (Figures 4b and 4c), over land there is a significant 

negative anomaly two days after the key event at ϕ=0-10N of 8.5% in addition to the 

negative anomalies (peaking at 7.2% and 12.6%) at the northern and southern polar 

latitudes.  While over the sea a significant negative anomaly of 4.8% occurs at ϕ=0-10S 

and a significant positive anomaly at 3.5% at ϕ=50-60S.   

 

The 5mm/d mask allows more locations to be considered in the geomagnetic latitude 

band averages (Figure 5).  Over all surfaces we see significant negative anomalies at 

ϕ=0-10S, 80-90N, 70-80S and 80-90S of 3.3% 5.7%, 4.8% and 12.6% respectively 

(Figure 6a). The breakdown of these results according to surface type (Figures 6b and 6c) 

reveals statistically negative anomalies over the oceans at ϕ=80-90N, 40-50S, and 70-80S 

of 7%, 1.3% and 4.7% on the key date, one day after the key date and peaking two days 

after the key date, respectively.  Significant positive anomalies are found at ϕ=20-30N, 

and 10-20S on the key date and three days after the key date of 2.7% and 2.5% 

respectively.  Over land all the significant anomalies are decreases of cloud cover of 

peaking at 12.6%, 7.1% and 5.1% at ϕ=70-90S, 80-90N and 0-10N on the day after the 

key date, the key date and two days after the key date, respectively. 

 

Discussion and conclusion 

In this study I have explored the changes in clouds that are unlikely to be raining or 

heavily raining coincident with daily decreases (known as Forbush decreases) in the 

galactic cosmic ray flux.  Analysis of the precipitation and heavy precipitation ‘free’ 

cloud cover changes for all surfaces using 10º geomagnetic latitude band averages reveals 



a more varied pattern of change than revealed with an analysis of all cloud.  In particular 

it is observed that statistically significant reductions in cloud cover are observed at both 

high and equatorial latitudes both over land and sea surfaces when cloud areas are limited 

to those likely to be precipitation free.  When limiting the analysis to those regions free of 

heavy precipitation statistically significant reductions in cloud cover are additionally 

observed at middle latitudes.  However statistically positive anomalies also appear at 

ϕ=20-30N, and 10-20S over oceans.  Thus it appears that over regions where there is 

thicker cloud cover, the cloud cover is significantly reduced during Forbush decreases of 

galactic cosmic rays, whereas over ocean regions where there is thinner cloud cover, the 

cloud cover is increased.  These observations may go some way to explain the 

discrepancies between the observed changes by (Marsh and Svensmark 2000; Todd and 

Kniveton 2001) in cloud cover at interannual and daily timescales. 

 

Lastly various caveats needed to be added for consideration of the results presented. 

Firstly, it must be remembered that these conclusions are based on a small sample of 

events.  Secondly it is possible that the satellite instruments that supply the data, and/or 

the algorithms used to extract cloud information, are not sufficiently sensitive or accurate, 

respectively, such that data errors are large relative to any cloud signal.  As such it may 

be considered that the observed anomalies are merely spurious.  However the symmetry 

of the anomalies in both hemispheres suggest otherwise. 
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Figure captions 

Figure 1.  Mean total cloud proportion during the ‘base period’ for all Forbush decrease 

events (days –5 to –3 prior to onset of FD events). 

Figure 2 a, b, c.  Zonal mean (averaged over 10 degree geomagnetic latitude bands) total 

cloud proportion anomalies (relative to base period) for days –1 to 5, for (a) all FD 

events, (b) all FD events over land surfaces, and (c) all FD events over sea surfaces. 

Positive (negative) anomalies have solid (dotted) contours. The contour interval is 1% 

and statistically significant anomalies (at 0.05 probability level) are shaded. 

Figure 3.  Mean total cloud proportion during the ‘base period’ for all Forbush decrease 

events (days –5 to –3 prior to onset of FD events), excluding those grid cells where the 

average monthly rainfall for the sampling period is greater or equal to 1mm/d.  White 

denotes rain mask. 

Figure 4 a, b, c.  Zonal mean (averaged over 10 degree geomagnetic latitude bands) total 

cloud proportion anomalies (relative to base period), for days –1 to 5, for (a) all FD 

events, (b) all FD events over land surfaces, and (c) all FD events over sea surfaces, 

excluding those grid cells where the average monthly rainfall for the sampling period is 

greater or equal to 1mm/d.  Positive (negative) anomalies have solid (dotted) contours. 

The contour interval is 1% and statistically significant anomalies (at 0.05 probability 

level) are shaded.  

Figure 5.  Mean total cloud proportion during the ‘base period’ for all Forbush decrease 

events (days –5 to –3 prior to onset of FD events), excluding those grid cells where the 

average monthly rainfall for the sampling period is greater or equal to 5mm/d. White 

denotes rain mask. 



Figure 6 a, b, c.  Zonal mean (averaged over 10 degree geomagnetic latitude bands) total 

cloud proportion anomalies (relative to base period) for days –1 to 5, for (a) all FD 

events, (b) all FD events over land surfaces, and (c) all FD events over sea surfaces, 

excluding those grid cells where the average monthly rainfall for the sampling period is 

greater or equal to 5mm/d. Positive (negative) anomalies have solid (dotted) contours. 

The contour interval is 1% and statistically significant anomalies (at 0.05 probability 

level) are shaded. 
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