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Abstract 

This paper describes a new high-resolution multi-platform multi-sensor satellite 

rainfall product for Southern Africa covering the period 1993-2002.  The Microwave 

Infra-Red Algorithm (MIRA) employed to generate the rainfall estimates combines high 

spatial and temporal resolution Meteosat infrared data with infrequent Special Sensor 

Microwave Imager (SSM/I) overpasses.  A transfer function relating Meteosat thermal 

infrared cloud brightness temperatures to SSM/I rainfall estimates is derived using co-

located data from the two instruments and then applied to the full coverage of the 

Meteosat data.  An extensive continental scale validation against synoptic station data of 

both the daily MIRA precipitation product and a normalized geostationary IR-only GOES 

Precipitation Index (GPI) demonstrates a consistent advantage using the former over the 

latter, for rain delineation.  Potential uses for the resulting high-resolution daily rainfall 

dataset are discussed. 
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1. Introduction 

The availability of water in southern Africa is spatially highly variable (Houghton 

et al., 2001).  Controlled primarily by rainfall, water resources vary from abundant in the 

tropical zones in central Africa to scarce in the south west of the sub-continent.  Even in 

countries where water resources are generally relatively abundant, inter-annual variability 

of rainfall can be considerable. For instance, Mozambique experienced drought 

conditions in 1998 and severe flooding in 2000 and 2001.  While the importance of 

information on  precipitation is not in doubt, much of region suffers from inadequate 

measurements. In Figure 1 the spatial distribution of daily reports of rainfall from the 

GTS network for the period 1990 to 2000 are shown.  The figure shows large areas over 

much of southern Africa where there are little or no measurements of daily rainfall, most 

notably over Angola and the Democratic Republic of Congo.  It is within this data void 

that satellites can provide vital information on precipitation.  The following work is 

applied to the area of southern Africa indicated on Figure 1 bounded by longitudes 10° 

and 50° East and latitudes 0° and 35° South. 

The science of satellite precipitation retrievals was first established over a quarter 

of a century ago using data from the infra-red (IR) (10.6-12.6µm) and visible (VIS) (0.4-

0.7µm) portions of the electromagnetic spectrum.  Techniques using these data are based 

on the assumption that clouds with high tops (discernable from low IR temperature 

brightness), and substantial vertical depth  (bright in the visible wavebands) are most 

likely to precipitate.  This assumption is most effective for convective conditions, where 

the majority of the rainfall comes from tall, strongly precipitating cumulonimbus.  

However, even in strongly convective regimes complications remain due to the presence 
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of high, non-precipitating cirrus.   Methods based on thermal IR imagery alone rely on 

empirical relationships derived between cloud characteristics (e.g. cloud top temperature) 

and surface rainfall (for a review see Kidd, 2001). The GOES Precipitation Index (GPI) 

(Arkin and Meisner, 1983) is perhaps the most widely used example of such ‘cloud-

indexing’ methods. The launch of the Special Sensor Microwave Imager (SSM/I) in 

1987, on board the Defense Meteorological Satellite Programs (DMSP) 5D-2 spacecraft 

F-8 increased interest in satellite based precipitation retrievals.  Unlike techniques based 

on VIS/IR measurements, passive microwave (PM) data from SSM/I allowed a 

physically more direct means of monitoring rainfall due to the attenuation of upwelling 

radiation by hydrometeors themselves and precipitation related ice particles.  The 

physically more direct nature of the relationship between satellite PM measurements and 

rainfall was extended further with the launch of the Tropical Rainfall Measuring Mission 

(TRMM), in 1997, with a precipitation radar (PR) instrument on board.  A number of 

international intercomparison projects have attempted to assess the degree of accuracy 

possible with satellite data based precipitation algorithms (Barrett et al., 1994; Ebert et 

al., 1996; Smith et al., 1998; Adler et al., 2001).  These projects have shown that PM 

estimates produced the best instantaneous results. 

Unfortunately, although PM sensors are able to provide accurate estimation of 

instantaneous rain rates, they are mounted on low earth orbiting satellites, which provide 

poor temporal sampling.  This means that PM data-based techniques are most suitable for 

estimation of accumulated rainfall over longer periods of perhaps a month or more.  By 

contrast, IR imagery from geostationary satellite systems has a higher temporal 

resolution, resulting in a reduction of the sampling errors at all temporal scales (New et 
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al., 2000).  To account for the limitations inherent in both the PM and IR precipitation 

estimates combined IR-PM techniques have been developed (Adler et al., 1993; Huffman 

et al., 1997; Xu et al., 1999; Bellerby et al., 2000; Sorooshian et al., 2000; Millar et al., 

2001; Todd et al., 2001; Joyce et al., 2004).  International intercomparison studies have 

illustrated that combined IR-PM techniques are capable of providing high spatial 

resolution rainfall estimates at daily timescales with greater accuracy than the IR only 

methods (Ebert et al., 1996; Adler et al., 2001).  In this paper we introduce a 10-year 

daily rainfall dataset for southern Africa on a 0.1 degree grid, produced using one of 

these combined algorithms, the Microwave-Infrared Rainfall Algorithm (MIRA) (Todd et 

al., 2001). Although Todd et al., (2001) provide results of an extensive validation of 

MIRA over a range of space/time scales, the validation at daily timescales was restricted 

to a rather limited region covered by the EPSAT gauge network (Lebel and Amani, 

1999). Here, we analyze the performance of the MIRA over the entire subcontinent of 

southern Africa, and we are able to describe some of the characteristics of daily rainfall 

variability on a fine grid over the region.  

 

2. Methodology 

a) Satellite data for the MIRA product   

 Infrared data from Meteosat and passive microwave derived rainfall data from SSM/I 

were used in the construction of the daily rainfall rates over southern Africa between 

longitudes 10° and 50° East and latitudes 0° and 35° South for the years 1993-2002 at a 

resolution of 0.1°.  The Meteosat high resolution (5km) IR data used were at 2 hourly 

intervals and were obtained from the EUMETSAT Archive Retrieval Facility for the 
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years 1993-1995.  The data were converted from raw counts to brightness temperatures 

(Tb) and projected onto a latitude/longitude grid at 0.05 degrees. The re-gridding scheme 

consisted of converting the Meteosat coordinates of each pixel into latitudes and 

longitudes and calculating the mean Tb of those pixel values falling within the grid box of 

a particular latitude and longitude. Some corrupt data was identified and removed.  

Additionally, Meteosat high resolution (5km) IR data at 2 hourly intervals were obtained 

from the TAMSAT group at the University of Reading for the years 1996-2002.  This 

data had already been converted to Tb on a latitude/longitude grid and quality controlled. 

 Instantaneous rainfall estimates were obtained from SSM/I data using the Goddard 

Profiling Algorithm (GPROF) (Kummerow and Giglio, 1994; Kummerow et al., 1996, 

Kummerow et al., 2001).  The GPROF algorithm is an inversion type algorithm 

providing estimates of instantaneous rainfall rates, the vertical structure of precipitation 

and the associated latent heating. It achieves this by first constructing large databases of 

cloud model derived profiles, then producing radiative transfer calculations at cloud 

model resolution.  Sensor resolution average quantities are determined by convolving the 

high resolution Tb field to the observed resolution using antenna gain functions.  Using a 

Bayesian inversion method the algorithm produces a weighted sum of profiles whose Tb 

signatures are similar to those observed (Adler et al., 2003).  The time period of interest 

(1993-2002) was covered by the F10 and F14 satellites which were subsequently inter-

calibrated by the comparison of simultaneous readings from the F10 and F14 and the 

coincident overlap of the F11, F13 and F15 satellites.  The data were obtained at a 

resolution of 0.5°. In addition to instantaneous passive microwave based rainfall data, a 

monthly diurnally corrected SSM/I rainfall product was used to normalise the daily 
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rainfall data (Andersson et al., 2003).  The diurnally corrected dataset was derived with 

the aid of data from the Tropical Rainfall Monitoring Mission. Unfortunately TRMM 

data are only available from 1997.  There are two sensors on board TRMM that provide 

information on rainfall; a passive microwave radiometer of the same type as the SSM/I, 

known as the TRMM Microwave Imager (TMI), and an active microwave sensor, the 

precipitation radar. For each of these instruments there are operational algorithms, which 

provide estimates of rainfall. The TMI rainfall is estimated using the Goddard Profiling 

Algorithm (Kummerow et al., 2001). In addition, a rainfall product based on a 

combination of PR and TMI is available, where the PR algorithm is optimized for the 

distribution of rainfall particle sizes given by TMI (Haddad et al., 1997). However, the 

PR has a rather narrow swath (220km) such that the sampling in time is very limited. The 

TRMM satellite is low-earth orbiting, with a non sun-synchronous orbit such that every 

part of the diurnal cycle is sampled for each location on the Earth’s tropical surface over 

the course of 23 days at the equator and 46 days at the highest latitudes (38°N and 38°S).  

Rainfall estimates from TRMM if averaged over sufficient time are therefore free from 

systematic sampling error associated with the diurnal cycle of rainfall.  Removal of 

diurnal bias associated with the SSM/I based estimates in the monthly dataset was 

achieved by calculating the ratio of the average rainfall for the region from the SSM/I 

estimates (derived only at SSM/I overpass times) to the average daily rainfall calculate 

from TMI for each month and removing this from the SSM/I based estimates.  

 In addition to ensure the diurnally corrected SSM/I monthly rainfall estimates have 

zero bias with reference to a benchmark, co-temporal and collocated estimates of rainfall 

from TRMM PR and SSM/I were compared. The mean bias was derived and removed. 
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b) The MIRA algorithm 

The following describes the step by step process used to construct the MIRA daily 

rainfall dataset. 

1) For every 0.5° by 0.5° grid cell over the study region , for each month from 1993 

- 2002, the cloud top  Tb from Meteosat and the PM instantaneous rain rates from 

SSM/I were binned for samples where the Meteosat Tb and PM rain rate data were 

observed within 30 minutes of each other.  This gives a large sample of Tbs and 

associated rain rates within each grid cell from which to derive a Tb to rain rate 

transfer function, although a significant amount of lower resolution PM data is not 

used due to the 30 minute threshold for acceptance.  The PM rain rate to Tb 

transfer function is calculated using a method known as histogram matching and 

described below. 

 

2) For each grid cell the histogram of both Tb and rain rate for an area of 2.5° by 2.5° 

centred on that grid box was derived.  In some cases, the number of points in the 

rain rate histogram was insufficient to build a representative histogram (<200), in 

which case the 2.5° grid box was allowed to expand symmetrically in steps of 

0.5° in each direction until sufficient points were obtained.  This was rare except 

in very dry areas in the drier seasons where the area would expand until it 

encountered an area of higher rainfall.  While the choice of the exact number of 

points used to construct the histogram is arbitrary we found too few values gave a 



 10

stepped function, too many and the box had to expand to find the required amount 

of values, meaning that the relationship is gathered over a larger area 

 

3) The histograms of Tb and rain rate were converted to cumulative histograms by 

integration.  Specifically, the histogram of Tb (number of observations  of each Tb 

plotted against Tb) was converted to the proportion of data points which exist 

below a certain Tb plotted against Tb.  Similarly the histogram of rain rate 

(number of observations  of  each rain rate plotted against rain rate) was converted 

to the proportion of data points, which exist above a certain rain rate plotted 

against rain rate.  It should be noted that in coastal locations Tbs over land and Tbs 

over ocean are included in the same histogram with the assumption that the 

relationship between rain rate and Tb is the same for both surface types. 

 

4) The histogram matching method was applied, whereby, the Tb associated with 

each rain rate is the Tb at which the cumulative histogram of Tb is equal to the 

cumulative histogram of the rain rate.  For example, where the value of each 

histogram is 0.5, the Tb and the rain rate can be read off and associated with each 

other.  Over all values, this gives the transfer function f, where rain rate = f(Tb) 

for each 0.5° grid box for each month.  Figure 2 shows an example of a Tb - rain 

rate relationship. 

 

5) The spatially (0.5°) and temporally (monthly) variable function f was then applied 

to the Meteosat IR Tb data at full resolution (2 hourly and 5 km) for the full region 
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(10º to 50º E and 0º to 35º S and 1993-2002).  The final rain rates were averaged 

over each day, binned to 0.1º by simply averaging of 0.05° grid box values and 

normalized such that the mean monthly rainfall estimates over the entire study 

area were equal to the mean monthly rainfall estimates from the diurnally 

corrected SSM/I dataset described above.  The resulting dataset is referred to as 

the MIRA rainfall estimate dataset. 

 

6) An additional dataset of precipitation estimates using the GPI was created for 

comparison.  The dataset was constructed by applying the simple rainfall 

algorithm to the Meteosat IR Tb data at full resolution [if Tb > 235 K then rain rate 

= 0 and if Tb <= 235 K then rain rate = 3mmhr-1].  Again, the final rain rates were 

averaged over each day, binned to 0.1º and normalized such that the mean 

monthly rainfall estimates over the entire study area were equal to the mean 

monthly rainfall estimates from the diurnally corrected SSM/I dataset.  The 

resulting dataset is referred to hereafter as the normalised GPI. 

 

The sampling resolution for the MIRA product (10km) is finer than its effective cell size 

(0.50 degrees). The product was generated at a high spatial resolution in order to provide 

the user with maximum flexibility. For example, rainfall estimates may be aggregated to 

yield mean areal precipitation within a set of river basins or sub-basins. Of course, such 

an aggregation process will reduce the variability of the resulting precipitation product to 

some extent. However, this effect will be offset by the spatial correlations present 



 12

between neighboring 10km estimates. Validation statistics presented in this paper are for 

a 0.5-degree spatial resolution aggregated product. 

 

 c) Validation data and methods 

Validation of MIRA estimates at sub-continental scales requires a spatially 

extensive set of independent data at daily timescales. The most appropriate source of such 

data is the Global Telecommunication System (GTS) rain gauge dataset.  This dataset 

contains daily rainfalls interpolated to 0.5º for the African continent.  Each 0.5º by 0.5º 

grid box contains the interpolated daily rainfall total and the number of gauges contained 

within that grid box.  The gauge density is greatest in South Africa and variable 

elsewhere, with some large areas exhibiting very limited gauge coverage, notably, 

Angola, Democratic Republic of Congo and Mozambique. This can introduce serious 

error when interpolating into a significant void using gauges in different climate regimes.  

In this study, therefore, only data grid boxes with non-zero numbers of gauges were used.  

The proportion of grid cells with one or more gauges within the area of interest was 5 %, 

with only 0.5 % having more than 1 gauge.  

For comparison, the MIRA and normalised GPI estimates were smoothed and 

resampled to 0.5º.  For each day, the coincident grid boxes of MIRA, normalised GPI and 

GTS (where non-zero numbers of gauges existed) were collated and comparisons made 

between MIRA/GTS and normalised GPI/GTS.  The number of coincident points for 

analysis per day was of the order 200-300.  Firstly, a contingency table was constructed 

and a statistical analysis performed for each year.  The contingency table compares 

estimated (MIRA, normalised GPI) and observed (GTS) rainfall in the following ways.  
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For some rainfall threshold (0.01 mmhr-1) each point is either estimated to rain or not and 

is either observed to rain or not. This gives four outcomes: estimated rain/ observed rain; 

estimated rain / observed no rain; estimated no rain / observed rain; estimated no rain / 

observed no rain. These are referred to respectively as hits (h), false alarms (f), misses 

(m) and zero zeros (z).  Various scores assessing the skill of the rainfall algorithm to 

identify rain can then be derived from these.  The following measures are popularly used: 

Accuracy; Bias; Probability of Detection (POD); False Alarm Ratio (FAR); Critical 

Success Index (CSI); Equitable Threat Score (ETS); Hansen and Kuipers Discriminant 

(HK); Heidke Skill Score (HSS); Odds Ratio (OdR) (Stanski 1989).  The following are 

the equations used in the analysis. 

 

Accuracy = (h+z)/(h+f+m+z) 

BIASscore = (h+f)/(h+m) 

POD = (h)/(h+m) 

FAR = (f)/(h+f) 

CSI = (h)/(h+f+m) 

ETS = (h-expected_correct)/(h+m+f-expected_correct) 

Where  expected_correct = (f+h)*(m+h)/(z+f+m+h) 

HK = (h)/(h+m)-(f)/(f+z) 

HSS = 2*(h*z-m*f)/((h+m)*(m+z)+(h+f)*(f+z)) 

OdR = (h*z)/(m*f) 

 

3. Results 
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a) IR rain/no-rain threshold values. 

During application of the algorithm, the function rain rate = f(Tb) was obtained.  

Within this function we have information about the threshold Tb i.e. the temperature 

below which we assume rain occurs.  This threshold temperature varies spatially and 

temporally reflecting the variable relationship between cloud top temperature and surface 

rainfall, and is in contrast with the fixed value of 235K used in the GPI.  This threshold 

temperature shows a marked  seasonal cycle, being higher in the local summer.  Over the 

southern African region as a whole the threshold temperature has an annual mean of 

241K and a seasonal range of approximately 20K. Figure 3 shows the mean spatial 

variation in threshold temperature for December-January-February (DJF) over the 10 

year period. There is structure to the pattern of IR thresholds indicating spatially coherent 

variations in the relationship of cloud top temperature and rainfall and therefore the 

cloud/rainfall processes. This structure does not appear to be associated with that of the 

mean rainfall (Figure 5a). There is also considerable interannual variability in the 

magnitude of IR thresholds in the DJF wet season, although the spatial patterns remain 

relatively consistent (not shown). 

 

b) Comparison with ground based GTS rain gauge data 

Rain gauge data presents the only ground based validation source for satellite 

based rainfall estimation over the majority of southern Africa.  Unfortunately rain gauges 

are not without error themselves when measuring precipitation due to interactions of the 

gauge and their micro-environment.  Additionally, as mentioned above, gauge data over 

much of the subcontinent are sparsely distributed.  A number of authors have explored 



 15

the issue of the contribution of sub-sampling by gauges to gauge-satellite differences 

(Ciach et al., 2003; Gebremichael et al., 2003).  In this study we have made no attempt to 

separate gauge and satellite errors and future research should attempt to deconvolve the 

contributions to differences between MIRA and gauge representations of the rain field.  

Part of the error apparent in the MIRA data will arise from the PM data used to define the 

Tb-rain rate relationship.  A large number of PM rainfall algorithms have been developed 

for use with SSM/I and TMI data with different error characteristics.  The GPROF 

algorithm as applied to the TMI has been shown to overestimate rainfall over land, as 

shown by a positive bias of 17% when compared to rainfall measures derived from 6700 

rain gauges globally, produced by the Global Precipitation Climatology Centre of 

Deustcher Wetterdienst (Kummerow et al., 2001). However it should be noted that the 

majority of these rain gauges were located over industrialized countries. 

Table 1 presents the overall statistics of MIRA and normalised GPI vs. the GTS 

dataset, for a typical year 2000. It can be seen from this table that the MIRA method is 

better than the normalised GPI at identifying raining from non-raining grid cells.  It can 

also be seen (from the value of Bias and OdR) that MIRA tends to over-estimate rainfall 

area whereas normalised GPI tends to under-estimate.  This leads to MIRA having a 

greater POD and FAR. The Heidke Skill Score (HSS) shows the fraction of correct 

estimates after eliminating those that would have been correct due purely to random 

chance.  A value of 0 indicates the estimated is random, whereas a value of 1 indicates 

perfect agreement.  Any value greater than 0 therefore indicates the method is ‘skilled’.  

In this case, the result from MIRA is better than that for normalised GPI, a condition 

which holds for all years with similar improvement in MIRA compared to normalised 
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GPI.  Figure 4 shows the MIRA-GTS daily POD for 2000.  From this figure it can be 

seen that there is a far better agreement between gauges and satellite estimates in the 

wetter months than in the drier ones.  This is because of the tendency to ‘over-predict’ 

(seen in a higher Bias) when it is very dry, leading to a high FAR in these months.  

Similarly, plots of CSI, ETS, HK and HSS show better agreement in the wet months.  

The results for normalised GPI-GTS are visually very similar.  It should be noted that the 

results of this comparison are not greatly affected by the rain: no rain threshold chosen 

with further processing showing little difference between a threshold of 0.01 mmhr-1 and 

0.1 mmhr-1. 

Table 2 shows the values of the overall HSS for the 8 years of the survey where 

the gauge data existed.  It can be seen from this table that there is a positive correlation 

between the HSS skill of both satellite methods and the mean number of grid boxes used 

in the comparisons (shown in Table 2 and dependent on the number of reporting gauge 

stations). A higher number of gauges leads to a greater agreement between satellite 

methods and GTS gauge observations.  This is likely due to the higher number of gauges 

reducing the problems of spatial sampling in the gauge dataset.  It also indicates that a 

proportion of satellite ‘errors’ in relation to the GTS gauges is associated with poor gauge 

density in the validation GTS dataset. An alternative explanation for the apparent positive 

correlation between gauge population numbers and HSS scores may be that the additional 

grid squares brought into the validation by the increase in gauge population are 

systematically located in “easier” regions. 

Overall, the MIRA algorithm gives a statistically significant (at the 95% 

confidence level) accurate estimate of rain occurrence, as does normalised GPI.  To 
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assess whether MIRA is significantly better at rainfall delineation, than normalised GPI, 

the HK scores for the two algorithms were compared.  By assuming the false alarm and 

miss rates of the algorithms are independent, the standard error in the HK skill score is 

the root of the sum of the squared standard errors in the miss and false alarm rates.  This 

leads to a standard error in HK skill score of <<0.01 due to the large number of 'events' 

over the course of a year. Thus it can be concluded that the skill score suggests that 

MIRA is statistically significantly better than normalised GPI at estimating rain 

occurrence, at above the 95% confidence level. 

The ability of MIRA to capture the spatial variation of rainfall can be seen in 

Figure 5a which shows the mean monthly rainfall over Southern Africa during a 

representative wet season month (January 1999) derived from MIRA compared with that  

estimated by the normalised GPI (Figure 5b) .  It can be seen that MIRA appears to 

identify finer detail in the spatial structure of rainfall.  Qualitative comparison with the 

coincident GTS (Figure 5c) data indicates that the spatial structure of the MIRA estimates 

better represents that of the GTS gauge data than does the normalised GPI. This is 

perhaps most notable over Eastern SA between 30-35°E and 10-25°S and over coastal 

eastern South Africa, where gauge density is relatively high.  Notably, there is weaker 

agreement between both MIRA and normalised GPI with GTS in regions where the 

density of gauges is low (see Figure 1) over Angola and the Democratic Republic of the 

Congo for example.  Figure 6 shows a scatterplot of the MIRA estimates of rainfall for 

the year 2000 verses those from the GTS gauges at 0.5° for grid squares where there is at 

least one rain gauge present.   
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 When comparing MIRA and normalised GPI daily rainfall amounts of rainfall at 

0.5° resolution, MIRA shows less improvement on normalised GPI.  For the year 2000, 

MIRA has a correlation coefficient of 0.38, a mean absolute error of 0.12 and a root mean 

squared error of 0.37 compared with the GTS data, while normalized GPI displays a 

correlation coefficient of 0.23, a mean absolute error of 0.13 and a root mean squared 

error of 0.34. However in the year 1999, normalized GPI performs better, than MIRA, 

when compared to the GTS data with a correlation coefficient of 0.26, a mean absolute 

error of 0.11 and a root mean squared error of 0.27.  MIRA statistics for 1999 are a 

correlation coefficient of 0.22, a mean absolute error of 0.11 and a root mean squared 

error of 0.34.  This suggests that while the MIRA algorithm is better at delineating rain 

from no rain (as indicated by the skill scores) it does not offer any consistent 

improvement over normalized GPI in terms of estimating rain amount. 

 

4. Potential Applications of the Dataset 

The MIRA algorithm was used to generate daily rainfall maps at 0.1º over 

southern Africa for the years 1993-2002.  These maps have higher spatial and temporal 

resolution than the SSM/I monthly 0.5º degree maps often used for rainfall analysis over 

these gauge data sparse areas.  Whilst, the rainfall estimated from the MIRA algorithm is 

by no means perfect, owing to the physically indirect relationship between cloud top 

temperature and rainfall, the technique dynamically accounts for variations in 

cloud/rainfall relationships by using a variable calibration scheme, with useful 

improvements in accuracy relative to the IR-only normalized GPI.  The resulting MIRA 
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rainfall product has a number of potential applications, some of which are discussed 

below.   

It is possible with this dataset to record high rainfall events over time periods 

short enough to be important for studies of localized flooding.  Figure 7 shows the 

average rainfall rate for a high rainfall event captured between 21st and 25th  February 

2000.  This period coincides with hurricane Eline entering Mozambique from the Indian 

Ocean and combined with high rainfall in the preceding weeks, resulted in widespread 

flooding and over a million residents becoming homeless in the region.  The MIRA 

integrated rainfall map clearly shows how Mozambique bore the brunt of the disaster and 

the high spatial resolution allows the integration of rainfall over river catchment sub-

basins. 

It is also possible with a daily dataset to analyze statistical properties of the data 

such as the variability of  the daily rainfall distribution.  Figure 8 shows the coefficient of 

variation (COV) of the daily rainfall over southern Africa for the entire period 1993-

2002.  The COV over the Mozambique channel is higher than surrounding areas, possibly 

associated with the passage of tropical cyclones in this region. 

Additionally, hydrological models of large basins require estimates of rainfall at 

the highest possible spatial/temporal resolution. The MIRA dataset has already been 

tested in a hydrological modeling application for the Okavango river in western southern 

Africa (Anderssen et al., 2003). Moreover, hydrological models can be designed to utilize 

information of the frequency and persistence of rainfall to constrain estimates of 

evapotranspiration.  For example, interception and evapotranspiration losses can be 

suppressed during rainfall of extended duration. We have derived the probabilities of a 
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rain day followed by a rain day and a rain day followed by a dry day for each grid cell. 

Figure 9 shows the difference between the probability of a rain-rain day in an El-Nino 

event minus the same probability in a La-Nina event for the entire period 1993-2002.  A 

definite spatial pattern is evident with a higher probability of a rain day followed by a 

rain day in an El-Nino year in the north of the region and a higher probability of this in 

the south of the region for La-Nina years, reflecting the spatial variation of 

teleconnections with El Nino/La Nina in the region (Camberlin et al., 2001). 

Figure 10 shows the number of dry spells (at least 5 days of rainfall of less than 

0.01mmhr-1) between 1993 and 2002 for each 0.5° grid cell in December, January, 

February (DJF).  DJF is the dominant wet season over the region and therefore the major 

growing period for rainfed agriculture.  Dry periods within the wet season are important 

for plant survival and growth.  Thus the figure shows the areas where the wet season is 

prone to interruption.  It should be noted that with this definition of dry spells, regions 

where there are possibly long dry spells without interruption, such as the Namibian 

Desert show low numbers of dry spells. 

 

5. Summary 

A high-resolution 0.1º daily rainfall dataset has been created over southern Africa for the 

years 1993-2002.  This dataset may be used in climate and weather studies where high 

spatial resolution is important or where a statistical approach requires the use of daily 

data.  A comparison with ground based rainfall measurements (GTS) indicates that the 

MIRA dataset compares more favourably with GTS measurements than the normalised 

GPI rainfall estimates in its ability to delineate rain from no rain.  However no significant 
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improvement is noted in the ability of the algorithm to distinguish rain rate, compared to 

normalized GPI.  A number of examples of the applicability of the dataset were shown. 

The Southern Africa data set is available on CD-ROM at 

http://ltpwww.gsfc.nasa.gov/s2k/html_pages/groups/precip.html. 
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Tables 

 

Table 1.  Results of contingency table analysis for MIRA and normalised GPI with GTS 

for the year 2000. 

 

Table 2.  HSS results for MIRA and normalised GPI with GTS against number of GTS 

stations used in the comparison. 
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Figures 

 

Figure 1.  Spatial coverage of the GTS gauge dataset (1990-2000).  0.5 degree cells 

containing one or more gauges are marked. 

 

Figure 2.  Tb-rain rate relationship for January 1993 for a grid cell located in South 

Africa. 

 

Figure 3.  Threshold temperature (mean, K) for December-January-February. 

 

Figure 4.  MIRA daily POD (2000) 

 

Figure 5a. Mean rainfall over Southern Africa for January 1999 from MIRA (mm hr-1). 

 

Figure 5b. Mean rainfall over Southern Africa for January 1999 from normalised GPI 

(mm hr-1). 

 

Figure 5c. Mean rainfall over Southern Africa for January 1999 from GTS (mm hr-1). 

 

Figure 6.  Scatterplot of MIRA vs. rain gauge estimates of daily rainfall at 0.5° spatial 

resolution for the year 2000, for grid cells where there is at least one rain gauge present. 
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Figure 7.  MIRA estimated mean rainfall between 21st and 25th February 2000 - a high 

rainfall event (mm hr-1). 

 

Figure 8.  Coefficient of variation of the daily rainfall over southern Africa for the period 

1993-2002. 

 

Figure 9.  Difference between the probability of a rain-rain day in an El-Nino year minus 

the same probability in a La-Nina year for the period 1993-2002. 

 

Figure 10.  The number of dry spells (at least 5 days) between 1993 and 2002 for each 0.5 

degree grid cell in the wet season (December–January-February). 
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Table 1 Results of contingency table analysis for MIRA and normalised GPI with GTS 

for the year 2000 

 MIRA-GTS GPI-GTS  

Accuracy      0.75 0.71 range 0 - 1, perfect score 1 

Bias       1.14 0.85 range 0 - Inf, perfect score 1 

POD      0.71 0.60 range 0 - 1, perfect score 1 

FAR      0.38 0.29 range 0 - 1, perfect score 0 

CSI    0.50 0.48 range 0 - 1, perfect score 1, 0 indicates no skill 

ETS     0.31 0.25 range -1/3 - 1, perfect score 1, 0 indicates no skill 

HK      0.49 0.40 range -1 - 1, perfect score 1, 0 indicates no skill 

HSS      0.47 0.40 range -Inf - 1, perfect score 1, 0 indicates no skill 

OdR       8.46 5.91 range 0 - Inf, perfect score Inf, 1 indicates no skill
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Table 2  HSS results for MIRA and normalised GPI with GTS against number of GTS 

stations used in the comparison 

 

HSS MIRA-GTS HSS GPI-GTS 

Gauges used 

(daily mean) 

1993 0.46 0.34 187 

1994 0.48 0.34 192 

1995 0.34 0.30 153 

1996 0.40 0.30 170 

1997 0.42 0.40 199 

1998 0.47 0.37 252 

1999 0.46 0.35 223 

2000 0.47 0.40 227 
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