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Abstract. 

Ataxia telangiectasia and Rad3-related (ATR), a kinase that regulates a DNA damage 

response pathway, is mutated in ATR-Seckel Syndrome (ATR-SS), a disorder 

characterised by severe microcephaly and growth delay. Impaired ATR-signalling is 

also observed in cell lines from additional disorders characterised by microcephaly 

and growth delay, including non-ATR SS, Nijmegen Breakage Syndrome and 

MCPH1-dependent Primary Microcephaly.  Here, we examined ATR-pathway 

function in cell lines from three haploinsufficient contiguous gene deletion disorders, 

a subset of Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome, Miller-Dieker 

Lissencephaly Syndrome and Williams-Beuren Syndrome, in which the deleted 

region encompasses ATR, RPA1 or RFC2 respectively. These three genes function in 

ATR-signalling. Cell lines from these disorders displayed an impaired ATR-

dependent DNA damage response. Thus, we describe ATR-signalling as a pathway 

unusually sensitive to haploinsufficiency and identify three further human disorders 

displaying a defective ATR-dependent DNA damage response. The striking 

correlation of ATR-pathway dysfunction with the presence of microcephaly and 

growth delay strongly suggests a causal relationship.  
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Introduction. 

Ataxia telangiectasia and Rad3-related (ATR) protein is a central component of a 

DNA damage response signalling pathway 1,2. ATR (MIM601215) is mutated in two 

families displaying Seckel Syndrome (SS) (MIM 210600), a disorder characterised by 

severe microcephaly, proportionate dwarfism and dysmorphic facial features 3-5. SS is 

clinically and genetically heterogeneous 6. Significantly, cell lines derived from 

additional SS patients, although not harbouring mutations in ATR, display ATR-

signalling defects 6. Thus, SS can be attributed to defects in ATR-signalling with a 

sub-set of patients, designated ATR-SS, having mutations in ATR itself. Additionally, 

three other disorders characterised by microcephaly and growth delay, Nijmegen 

Breakage Syndrome (MIM251260), Fanconi anaemia (MIM227650) and MCPH1-

defective Primary Microcephaly (MIM251200), display impaired ATR-signalling 

responses 7,8. Together, these findings suggest that impaired ATR signalling can 

impact upon development conferring microcephaly and growth delay. 

ATR is a phosphoinositol 3-kinase-like kinase (PIKK) that is activated by 

single stranded (ss) regions of DNA generated following replication fork stalling or 

during the repair of bulky lesions 9. ATR interacts with ATRIP (ATR-interacting 

protein) and is recruited to ssDNA regions, in part by ATRIP’s ability to bind to 

Replication Protein A (RPA), a complex of three subunits, Rpa1-3 9-11. The 

Rad17/Rfc2-5 complex, together with a complex involving Rad9, Rad1 and Hus1, 

also functions to enhance ATR-signalling either by impacting upon ATR recruitment 

or activation 12. Thus, these additional proteins are required for the ATR-signalling 

response and therefore represent potential candidate genetic defects for SS 6. Hence, 

defects in these genes may confer ‘Seckel-like’ clinical features.    
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High resolution genetic mapping studies have led to the characterisation of 

contiguous gene deletion disorders caused by heterozygous microdeletions resulting 

in haploinsufficiency for a single or, more usually, several genes 13,14. It is likely that 

the clinical manifestations of these disorders arise from the combined impact of 

haploinsufficiency for multiple genes 15. It is also possible that there are critical genes 

or pathways sensitive to haploinsufficiency either alone or when combined with 

haploinsufficiency for other genes. Whilst investigating disorders exhibiting 

microcephaly and growth delay, we were struck by the observation that the 

microdeletion in three such disorders involved haploinsufficiency for genes involved 

in ATR-pathway function.   

Belpharophimosis-Ptosis-Epicanthus Inversus Syndrome (BPES, 

MIM110100), which is characterised by a small eye sockets (Blepharophimosis), 

drooping eyelids (ptosis) and upward folding inner eyelids (epicanthus inversus), is an 

autosomal dominant disorder caused by mutation of the putative forkhead 

transcription factor FOXL2 (MIM605597) 16,17. Seventeen cases of BPES with 

heterozygous interstitial deletions of various sizes on chromosome 3q leading to loss 

of FOXL2 have been documented (reviewed in de Rue at al 18). Of these, thirteen 

patients were also reported to exhibit microcephaly and growth retardation, clinical 

features not normally associated with BPES. Recently, the microdeletion in one such 

patient was carefully mapped and shown to encompass ATR, which localises to the 

same region18. It was, therefore, proposed that the non-BPES features observed in 

such patients might be due to haploinsufficiency for ATR 18. 

Hemizygous deletions on chromosome 17p also confer microcephaly and 

growth delay 19.  PAHFAH1B1/Lis1 (MIM601545) encodes a protein, Lissencephaly 

1 (Lis1) that functions in neuronal migration 20. Mutations in or heterozygous 
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deletions of PAHFAH1B1/Lis1 alone causes Isolated Lissencephly Sequence (ILS), a 

disorder typified by reduced cerebellar invagination resulting in a “smooth brain”  

(lissencephaly) 21. Larger deletions identified in some ILS patients confer a more 

severe grade of lissencephaly associated with craniofacial abnormalities (ILS+). Even 

larger deletions extending from the PAHFAH1B1/Lis1 gene to the telomere are 

observed in Miller-Dieker Lissencephaly Syndrome (MDLS, MIM247200), a disorder 

characterised by the most severe grade of lissencephaly, craniofacial abnormalities, 

microcephaly and growth retardation. RPA1 (MIM179835), the largest subunit of 

RPA, is heterozygously deleted in MDLS and ILS+ but not in ILS 19.  

Finally, Williams-Beuren Syndrome (WBS, MIM194050) is caused by 

hemizygous deletion of chromosome 7q11.23 resulting in haploinsufficiency of 

multiple genes 22. WBS is characterised by facial dysmorphia, microcephaly, growth 

retardation and supravalvular aortic stenosis (SVAS). Hemizygous deletion or 

mutations in ELN (MIM130160) alone, the gene encoding elastin, a structural 

component of arteries, causes SVAS (MIM185500) 23. WBS patients, in contrast, 

have larger deletions encompassing Replication factor C2 (RFC2; MIM600404), a 

subunit of Replication factor C (RF-C)24. RF-C loads proliferating cell nuclear antigen 

(PCNA) onto chromatin during DNA replication and four of its five subunits, Rfc2-5, 

form a complex with Rad17 that functions in ATR-signalling 11,25-27. 

 The association of severe microcephaly and growth retardation with 

heterozygous loss of genes encoding proteins involved in the ATR-signalling 

pathway, prompted us to examine whether haploinsufficiency for these genes might 

impact upon the ATR-signalling response. We, therefore, examined cell lines 

obtained from these contiguous gene disorders for their ability to effect the ATR-

dependent DNA damage response. We employed sensitive assays capable of detecting 
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defective ATR-pathway function that we had previously established to examine SS 

cell lines. Strikingly, we observed defects in ATR-signalling in all three disorders 

demonstrating that ATR-signalling is sensitive to haploinsufficiency. 
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Materials and methods 

Cell lines.  

Lymphoblastoid cell lines (LBLs) were cultured in RPMI 1640 with 15% foetal calf 

serum. GM02188 (wild type, WT) and DK0064 (ATR-SS) have been described 

previously 6. VD9396 (BPES-ATR+/-) LBLs were obtained from J.M. van Hagen 18. 

ILS, ILS+ and MDLS LBLs (DR00-063a1 (Con-MR), LP99-017 (ILS A), LP94-013 

(ILS B), LP90-017 (ILS+ A), LP99-086 (ILS+ B), LP91-026 (ILS+ C), L95-059 

(MDLS-A), LP92-005 (MDLS-B), LP90-006 (MDLS-C), LP88-002 (MDLS-D) have 

been described previously and were obtained from W.B. Dobyns 19. WBS and 

respective parental LBLs (GM14183 (WT-I), GM14182 (WBS-I), GM14295 (WT-II), 

GM14297 (WBS-II) were obtained from Corriel Cell Repository (NJ, USA). 

Antibodies. 

Antibodies were obtained as follows, α−ATR (N19), α−Lis1 (H-300) and α−β-

tubulin (Η235), Autogen Bioclear (Whiltshire, UK); α−RPA1 (Ab-1), α-H2AX (DR-

1016) and α−NBS1 (Ab-1), Merck (Nottingham, UK); α−�H2AX, α-pS10 Histone 

H3 and α−ATRIP, Upstate Technology (Hampshire, UK) and α-pSer317-Chk1, New 

England Biolabs (Herts, UK). 

Western blotting and Chromatin extraction. 

Western blotting was carried out as described previously 8. For γ-H2AX analysis, a 

chromatin extraction step was included. Briefly, 1x107 cells were washed once in PBS 

and re-suspended in 100 µl hypotonic buffer (10mM HEPES pH 7.5, 5mM KCl, 

1.5mM MgCl2, 1mM DTT, 10mM NaF, 1mM Na2VO3, 10mM β-glycerolphosphate, 

0.5% IPEGAL and Protease Inhibitor Cocktail from Sigma, Poole, UK). Lysates were 

incubated on ice for 15 mins, pelleted and washed twice (200 �l each) in hypotonic 

buffer. The pellet was treated with hypertonic buffer (hypotonic buffer with 0.5M 
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NaCl) and incubated on ice for 15mins. Following washing in hypertonic buffer, the 

chromatin pellets were re-suspended in 100 µl of SDS-PAGE loading buffer (with 5% 

SDS, 10% β-mercaptoethanol) and sonicated. 10 µl of the chromatin fraction was 

separated on 17% SDS-PAGE.  

G2/M checkpoint arrest.  

Cells were irradiated with 5 J/m2 UV-C and immediately seeded into complete 

medium with 1.5 �M nocodazole and incubated for 24 hrs before being cytospun onto 

poly-D-lysine coated slides and processed for immunofluorescence with α-pS10-

Histone H3 and counterstaining with DAPI. 

Nuclear fragmentation. 

Cells were treated with 5 mM HU in the presence of 1.5 �M nocodazole for 24 hrs 

and processed as described previously 6.   

Transfection. 

3 x 105 cells/ml in 3 mls were transiently transfected with 2 �g of pcDNA3-ATR, 

pcDNA3.1-RPA1 or pcDNA3.1-RFC2 using Genejuice (Novagen), according to the 

manufacturers instructions, and incubated for 24 hrs prior to nuclear fragmentation 

processing. For complementation of the G2/M checkpoint, cells were incubated for 24 

hrs and re-transfected for a further 24 hrs before processing.   

RNAi transfection.  

The control wild type LBL GM02188 was used for siRNA experiments. Cells were 

transfected once with 10 nM of respective siRNA duplex using SiPortTM NeoFXTM 

transfection reagent according to the manufacturers instructions (Ambion, 

Huntington, UK). Oligonucleotides (sense) used were ATR 5’-AAC CUC CGU GAU 

GUU GCU UGA -3’, RPA1 5’-AAA CCA UCC ACG AAG CUU AUA GGC C -3’, 
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Lis1 5’-UUG AUU UGG CCG UAC CAU ACG UAC C-3’ and a control oligo 

directed to GFP 5’-AAC ACU UGU CAC UAC UUU CTC. 
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Results. 

ATR-signalling is impaired in a BPES cell line haploinsufficient for ATR. 

A previous study reported heterozygosity for ATR due to an interstitial deletion on 3q 

in a boy with BPES who displayed non-BPES clinical features that included mental 

retardation, microcephaly and growth delay 18. A representation of the deletion is 

shown in Fig 1A. We obtained a lymphoblastoid cell line (LBL) derived from this 

patient and by immunoblotting observed approximately two fold reduced ATR protein 

levels compared to a control LBL (ATR-BPES+/- Fig 1B). The level of ATRIP was 

also reduced approximately two fold, consistent with reports that ATR and ATRIP are 

co-regulated 10. Nbs1 served as a loading control and was expressed at similar levels 

in both lines (Fig 1B). An early step in the DNA damage response regulated by ATR 

is phosphorylation of the histone H2A variant, H2AX on serine 139 (termed γH2AX), 

which can be detected by immunoblotting of chromatin bound proteins using α-

γH2AX antibodies 28. Following exposure to hydroxyurea (HU), an agent that causes 

replication fork stalling, a strong γH2AX signal was observed in control LBLs 

indicating activation of ATR-dependent damage response signalling. However, in 

marked contrast, detectable γH2AX was not observed in the ATR-SS LBLs, nor in 

LBLs derived from the BPES-ATR+/- patient (Fig 1C). Chk1 represents an important 

phosphorylation target of ATR that is required for the stability of arrested replication 

forks and cell cycle arrest 29-33.  HU-induced phosphorylation of Chk1 on serine 317, a 

known ATR target site, was also significantly diminished in LBLs from the BPES-

ATR+/- patient, similar to ATR-SS LBLs (Fig 1D)6. An important end point of ATR 

activation regulated by Chk1 is onset of G2/M checkpoint arrest, which serves to 

prevent cells harbouring DNA damage from entering mitosis 6. To monitor G2/M 

checkpoint arrest, the percentage of mitotic cells was examined in untreated cells or 
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24 h post irradiation with UV (5 Jm-2). Control LBLs showed a marked reduction in 

mitotic cells due to arrest at the G2/M checkpoint whilst ATR-SS and BPES-ATR+/- 

cells showed a similar mitotic index to that observed in the absence of UV treatment 

(Fig 1E). A further hallmark of impaired ATR-signalling is the presence of cells with 

nuclear fragmentation (NF) following treatment with HU 6. ATR-SS and BPES-

ATR+/- LBLs showed markedly elevated levels of cells displaying NF following HU 

treatment in contrast to control LBLs (Fig 1F). To verify that the failure to effect 

G2/M checkpoint arrest and the damage induced NF phenotype of BPES-ATR+/- 

cells were directly attributable to an impaired ATR response, the cells were 

transfected with ATR cDNA and re-examined for these phenotypes. Significant UV-

induced G2/M arrest (Fig 1G) and reduced NF (Fig 1H) was observed following 

transfection with ATR cDNA. 

Collectively, these results provide strong evidence that haploinsufficiency for 

ATR in the BPES-ATR+/- cell line confers an impaired response to DNA damage that 

is similar in magnitude to that observed in an ATR-SS cell line. 

 

Cells haploinsufficient for RPA1 show deficient ATR-dependent DNA damage 

response signalling. 

A representation of the deletion on chromosome 17p observed in MDLS is shown in 

Fig 2A. The size of the heterozygous deletions on chromosome 17p in a panel of 

LBLs derived from patients with ILS, ILS+, MDLS and a control patient (Con-MR) 

are shown in Fig 2B. ILS A and ILS B were derived from patients with mild isolated 

lissencephaly sequence (ILS) due to microdeletions involving Lis1only. ILS+ A, ILS+ 

B and ILS+ C were obtained from patients with more severe ILS and craniofacial 

abnormalities. MDLS-A, MDLS-B, MDLS-C and MDLS-D, which have deletions 
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extending from Lis1 to the telomere, were derived from MDLS patients with the 

severest grade of lissencephaly together with microcephaly and growth retardation. 

Con-MR, which has a heterozygous telomeric deletion that does not involve either 

RPA1 or Lis1, was derived from a mildly mentally retarded patient  (Fig 2B). This 

patient does not exhibit MDLS, lissencephaly, microcephaly or growth delay. The 

location of RPA1 is shown in Fig 2B, demonstrating that this gene is deleted in some 

but not all the LBLs in the panel. To examine whether haploinsufficiency for RPA1 

correlated with impaired ATR-dependent damage response signalling, we examined 

the response to DNA damage in this panel of LBLs. Firstly, we examined Rpa1 

expression in whole cell extracts derived from Con-MR, ILS A, ILS B, compared to 

MDLS-A, -B and -C. All three MDLS LBLs displayed reduced levels of Rpa1 

compared to the Con-MR, ILS A and ILS B LBLs consistent with the deletion 

mapping (Fig 2B). Next we examined HU-induced γH2AX formation in 

representative LBLs either haploinsufficient for RPA1 or with both copies of the gene. 

Impaired HU-induced γH2AX was observed in the ATR-SS, ILS+ A and MDLS A 

LBLs, the latter two of which exhibit haploinsufficiency for RPA1 (Fig 2B & Fig 2D). 

Normal HU-induced γH2AX was observed in wild type control LBLs (WT) and in 

those cell lines where the deletion that did not encompass RPA1 (Con-MR, ILS A, ILS 

B) (Fig 2B & Fig 2D). Similarly, MDLS A LBLs also exhibited impaired HU-induced 

Chk1-pSer317 formation, unlike Con-MR and ILS A LBLs (Fig 2E). We also 

examined the ability to activate UV-induced G2/M checkpoint arrest and observed 

impaired arrest specifically in the seven LBLs with haploinsufficiency for RPA1 (Fig 

3A & Fig 2B).  Furthermore, we examined HU-induced NF and observed elevated 

levels specifically in those LBLs from patient’s haploinsufficient for RPA1 (Fig 3B & 

Fig 2B). 
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 To verify that the G2/M checkpoint and NF phenotypes were a consequence of 

haploinsufficiency for RPA1, these damage response phenotypes were examined 

following transfection of two MDLS LBLs (MDLS A and MDLS C) with RPA1 

cDNA. Expression of RPA1 cDNA resulted in recovery of G2/M checkpoint arrest 

and a diminished number of cells displaying HU-induced NF in both LBLs (Fig 3C & 

D). 

 

Mildly decreased expression of RPA1 and ATR but not Lis1 using siRNA affects 

ATR-pathway function following DNA damage. 

As an alternative way to determine whether the ATR-dependent DNA damage 

response might be sensitive to small perturbations in ATR or Rpa1 expression, we 

utilised a single round of transfection with a low concentration (10nM) of siRNA 

oligonucleotides to mildly reduce the expression of Lis1, Rpa1 and ATR in the 

control LBLs. We obtained an approximately two-fold reduction in Lis1, Rpa1 and 

ATR expression in control LBLs (Fig 4A). This reduction in Rpa1 and ATR protein 

levels conferred a failure to activate G2/M checkpoint arrest following UV-irradiation 

(Fig 4B). In contrast, the clearly observable reduction in Lis1 expression following 

siRNA did not impact upon UV-induced G2/M checkpoint arrest (Fig 4B). Similarly, 

mild siRNA mediated reduction in the expression of ATR and Rpa1 caused elevated 

levels of NF after HU treatment, which was not observed following siRNA using 

oligonucleotides directed against Lis1 or GFP (Fig 4C). 

 These results provide strong evidence suggesting that even a mild decrease in 

protein levels of either ATR or Rpa1 impacts upon the ability of cells to mount a 

normal ATR-signalling response following exposure to DNA damage. 
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Impaired ATR-dependent DNA damage response signalling in Williams-Beuren 

Syndrome: correlation with haploinsufficiency for RFC2. 

The heterozygous interstitial deletion on chromosome 7q11.23 seen in WBS is shown 

in Fig 5A. The deletion encompasses multiple genes including RFC2, a subunit of the 

Rad17/Rfc2-5 complex that plays a role in the ATR-dependent pathway (Fig 5B). Fig 

5B also shows the microdeletion observed in a typical SVAS patient that does not 

encompass RFC2 but includes ELN. Whilst a hypomorphic mutation in 

Saccharomyces cereviaiae RFC2 (rfc2-1) has been shown to impair normal cell cycle 

checkpoint activation, a direct demonstration of a similar response in humans cells 

has not been described 34. To examine whether haploinsufficiency for RFC2 might 

cause impaired ATR-dependent damage response, we examined two WBS LBLs 

(WBS-I & WBS-II) and LBLs derived from one respective clinically normal parent 

(WT-I & WT-II). Significantly, defective HU-induced Chk1-pSer317 formation was 

also seen in WBS LBLs (WBS-I and WBS-II), compared to their respective clinically 

normal parental LBLs (WT-I and WT-II) (Fig 5C). Correspondingly, both WBS LBLs 

failed to induce any significant G2/M checkpoint arrest following exposure to UV in 

contrast to the efficient checkpoint arrest observed in both parent lines (Fig 5D). 

Additionally, both WBS LBLs but neither parental line showed induction of NF after 

exposure to HU (Fig 5E). Elevated levels of G2/M checkpoint arrest (Fig 5F) and 

reduced HU-induced NF (Fig 5G) were observed in both WBS LBLs following 

transfection with RFC2 cDNA. Together, these data provide strong evidence that 

haploinsufficiency for RFC2 also confers an impaired ATR-dependent signalling 

response. 
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Discussion 

Here, we examined cell lines derived from patients with BPES-ATR+/-, MDLS and 

WBS, three distinct contiguous gene deletion disorders exhibiting microcephaly and 

growth delay. In all cases, the heterozygous genomic deletions encompass a gene that 

is critical for the ATR-signalling response, namely ATR itself (BPES-ATR+/-), RPA1 

(MDLS) or RFC2 (WBS). Patient-derived cell lines haploinsufficient for any of these 

genes displayed an impaired response to DNA damage using assays that have been 

selected to identify defective ATR-signalling. Indeed, the defect was similar to that 

displayed by an SS cell line with a homozgyous, hypomorphic mutation in ATR 

(ATR-SS) 3,6. Our findings, therefore, provide strong evidence that haploinsufficiency 

for ATR as well as additional components of the ATR-dependent signalling pathway, 

confers an impaired ability to respond to DNA damage or replication fork stalling. 

Our assays were established to identify ATR-signalling defects in SS and employ 

relatively modest DNA damaging treatments to allow the detection of potentially 

hypomorphic mutations 3,6. Indeed, we have observed that following more dramatic 

treatments (eg. high UV doses), the defect in ATR-SS cells is overridden, presumably 

due to the induction of a sufficient damage response signal by the residual protein 3. 

This is distinct to other DNA damage response assays where high doses are often 

utilised to overload the pathway and expose a repair defect 35. Although our assays are 

optimised to detect a subtle deficiency and may not completely reflect the role of 

ATR during development, they represent modest treatments that may not be entirely 

distinct to those occurring during cellular growth and development. Thus, the impact 

of haploinsufficiency appears to represent a unique phenotype of ATR-signalling in 

contrast to other DNA damage response pathways.   
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Impaired ATR-signalling is associated with microcephaly and growth delay in 

humans 3,7,8,36. The correlation of microcephaly, growth delay and impaired ATR-

pathway dysfunction in the haploinsufficiency disorders presented here provides 

further evidence suggestive of a causal relationship. Since ATR-SS is a recessive 

disorder, ATR-haploinsufficiency alone is unlikely to confer a clinical phenotype. 

Rather, the clinical features observed in these haploinsufficiency disorders are 

probably a consequence of combined haploinsufficiency for ATR-signalling genes 

and additional genes that may impact upon neuronal development and cell 

proliferation. Indeed combined heterozygosity of Lis1 and 14-3-3ε has been shown to 

influence the severe clinical features in MDLS 37. Human brain size has increased 

dramatically during evolution requiring enormous and rapid proliferation from a small 

number of precursor stem cells 38. Moreover, developing neurons incur high levels of 

oxidative DNA damage placing a significant load on the damage response pathways. 

Thus, the developing brain may have a high requirement for the ATR-signalling 

pathway necessitating a diploid content of component proteins, particularly if further 

stress is imposed by haploinsufficiency of other genes. Mice, as models for 

haploinsufficiency disorders have been used to investigate neuronal migration but 

may be limited in their application concerning microcephaly due to the relatively 

smaller size of murine brains compared to humans 39,40. 

  Finally, it should be noted that defective ATR-pathway function has 

not previously been described in any of the contiguous gene deletion disorders 

investigated here (BPES-ATR+/-, MDLS and WBS). Since increased life expectancy 

due to improved medical supervision is now a feature of conditions such as MDLS, a 

defective DNA damage response in this context may be relevant to potential tumour 

development 41. Furthermore, a defective DNA damage response can adversely affect 
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treatment of malignancy by standard chemotherapeutic or bone marrow 

transplantation regimens 42,43. It is unclear whether any of the conditions investigated 

here are tumour predisposition conditions, although isolated reports of malignancy in 

MDLS and particularly WBS patients exist 41,44-46. Interestingly, hypomorphic 

mutations in RFC subunits are associated with genetic instability in yeast and a 

heterozygous missence mutation in Rpa1 results in increased levels of lymphoid 

malignancy in mice 34,47,48. Defective ATR function has been described in various 

cancer-types 49-51. Furthermore, it has been suggested that ATR may act as a tumour 

suppressor, when haploinsufficient, under certain circumstances 52.  

A recent study reported that copy number variation of DNA sequences is a 

common genomic trait 53. Understanding the impact of haploinsufficiency is likely to 

be important to assess inter-individual genetic variation as well as the basis 

underlying haploinsufficiency disorders. In conclusion, we identify ATR-signalling as 

a response sensitive to haploinsufficiency at the cellular level with a provocative 

clinical link to microcephaly and growth delay. This provides novel insight into the 

impact of ATR-pathway haploinsufficiency and further strengthens the link between 

defective ATR-pathway function and the development of microcephaly and growth 

retardation in humans.  
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Figure legends  
 

Figure 1. BPES-ATR+/- cells display an impaired ATR-dependent damage 

response. 

a). Chromosome 3 karyotype of the BPES-ATR+/- patient showing the heterozygous 

deletion, del(3)(q23,q25). ATR localises to 3q22-q24. 

b). Whole cell extract (WCE) (100µg) from wild type (WT) and BPES-ATR+/- LBLs 

was analysed by immunoblotting using α−ATR, ATRIP and NBS1 antibodies. 

Reduced expression of ATR and ATRIP is seen in BPES-ATR+/- cells specifically.  

Nbs1 served as a loading control and was expressed at normal levels.  

c). Wild type (WT), ATR-Seckel syndrome (ATR-SS) and BPES-ATR+/- LBLs were 

exposed to 100 or 500 µM hydroxyurea (HU) for 1 hr prior to chromatin 

fractionation. ATR-SS and BPES-ATR+/- cells display reduced γ-H2AX compared to 

WT cells. Blots were re-probed using α-H2AX to confirm loading. 

d). Wild type (WT), ATR-Seckel syndrome (ATR-SS) and BPES-ATR+/- LBLs were 

exposed to 500 µM hydroxyurea (HU) for 1 hr prior to extraction. ATR-SS and 

BPES-ATR+/- cells display reduced Chk1-pSer317 formation compared to WT cells. 

Blots were re-probed using α-Chk1 to confirm loading. 

e). ATR-SS and BPES-ATR+/- LBLs show defective UV-induced (5 J/m2) G2/M 

checkpoint arrest 24 hrs post irradiation. Arrest in WT LBLs is seen as a decrease in 

the mitotic index (MI) following UV-irradiation. 

f). ATR-SS and BPES-ATR+/- LBLs, unlike WT cells, show increased Nuclear 

Fragmentation (NF) following 24 hrs treatment with HU (5mM). 

g). UV-induced G2/M defect in BPES-ATR+/- LBLs is complemented following 

transfection with ATR cDNA. BPES-ATR+/- cells, either untransfected (UNT) or 
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transfected (ATR) with pc-DNA3-ATR, were UV-irradiated (5 J/m2) and the MI 

determined after 24 hrs.  

h). HU-induced NF in BPES-ATR+/- is complemented following transfection with 

ATR cDNA. BPES-ATR+/- LBLs either untransfected (UNT) or transfected (ATR) 

with pc-DNA3-ATR were untreated (control: Con) or treated with HU (5 mM) 24 hrs 

post-transfection. NF was analysed 24 hrs post-treatment with HU.  

 

Figure 2. MDLS cells display an impaired ATR-dependent DNA damage 

response. 

a). Chromosome 17 karyotype of Miller Dieker Lissencephaly Syndrome highlighting 

the heterozygous deletion at 17p13.3.  

b). Deletion mapping in the panel of LBLs from ILS, ILS+ and MDLS patients. The 

dashed line indicates the deleted region all of which are heterozygous. Con-MR is a 

control (Con) LBL from a mildly mentally retarded (MR) patient that does not exhibit 

lissencephaly, microcephaly, growth retardation or Miller-Dieker Lissencephaly 

syndrome but has a hemizygous telomeric deletion that does not involve either RPA1 

or PAFAH1B1/Lis1. ILS A and ILS B are patients with low grade ILS due to 

microdeletions involving PAFAH1B1/Lis1only. ILS+ A, + B and + C denote patients 

with larger deletions, a more severe ILS and additional craniofacial abnormalities, 

whilst MDLS-A, -B, -C and -D, are patients with the largest deletions who exhibit the 

most severe grade of lissencephaly along with microcephaly and growth retardation. 

The position of PAFAH1B1/Lis1 and RPA1 is highlighted.  

c). Western blot analysis of Rpa1 expression from whole cell extracts (WCEs) from 

Con-MR, ILS A, ILS B and MDLS-A, MDLS-B and MDLS-C showing reduced 

expression of Rpa1 specifically in the three MDLS cell lines. 
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d). Defective HU-induced γ-H2AX formation segregates with RPA1 

haploinsufficiency. Cells were treated as in Fig 1C. Defective γ-H2AX formation is 

seen in ATR-SS, ILS+ A and MDLS-A cells compared to the normal response in wild 

type (WT), Con-MR and ILS A and ILS B cells.  

e). Impaired HU-induced Chk1-pSer317 is seen in MDLS A LBLs compared to those 

of Con-MR and ILS A. Cells were treated with 500 µM hydroxyurea (HU) for 1 hr 

prior to extraction and re-probed using α-Chk1 to confirm loading. 

 

Figure 3. Haploinsufficiency of RPA1 specifically segregates with a defective 

ATR-dependent DNA damage response. 

a). Defective ATR-dependent G2/M checkpoint arrest segregates with RPA1 

haploinsufficiency. Con-MR, ILS A and ILS B cells show a reduction in mitotic index 

(MI; % mitosis) at 24 hrs following UV-irradiation (5 J/m2) indicating G2/M 

checkpoint arrest. ILS+ A, ILS+ B, ILS+ C, MDLS-A, -B, -C and -D cell lines failed 

to show a decrease in MI post UV treatment.  

b). Increased HU-induced NF segregates with RPA1 haploinsufficiency. No increase 

in HU-induced NF is seen in Con-MR, ILS A or ILS B cells.  In contrast, ILS+ A, 

ILS+ B, ILS+ C and MDLS-A, -B, -C and –D cells show elevated HU-induced NF.  

c). The ATR-dependent UV-induced G2/M defect in MDLS cells is complemented 

following transfection with RPA1 cDNA. MDLS-A and MDLS-C cells, either 

untransfected (UNT), or transfected (ATR) with pc-DNA3-ATR were not irradiated 

(control; Con) or UV-irradiated (UV; 5 J/m2) and the MI determined after 24 hrs. 

RPA1 cDNA specifically corrected the G2/M checkpoint defect of these cells as seen 

by the reduced UV-induced MI following transfection (RPA1 UV) compared to 

untransfected irradiated cells (UNT UV).  
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d). The increased HU-induced NF seen in MDLS is complemented following 

transfection with RPA1 cDNA. MDLS-A and -C, either untransfected (UNT), or 

transfected (RPA1) with pc-DNA3-RPA1 were untreated (control; Con) or treated 

with HU (HU; 5mM) 24 hrs post-transfection. A reduction in HU-induced NF is 

specifically seen following transfection of MDLS LBLs with RPA1 cDNA (RPA1 

HU) compared to the untransfected (UNT HU) cells. 

 

Figure 4. Inefficient siRNA of ATR or Rpa1 impairs the ATR-dependent DNA 

damage response. 

a). Wild type (WT) LBLs were transfected once with a low concentration (10nM) of 

siRNA oligos for GFP, Lis1, RPA1, or ATR and analysed for expression of Lis1, Rpa1 

and ATR by western blotting, using β-tubulin as a loading control, 24 hrs post-

transfection.  

b). WT LBLs transfected with the indicated siRNA oligos were analysed for UV-

induced G2/M checkpoint arrest by monitoring MI (UNT; untransfected). Tranfection 

with siRNA oligos against ATR or RPA1 impaired G2/M arrest after UV. In contrast, 

following transfection with oligos against GFP and Lis1, an intact G2/M arrest was 

observed. 

c). WT LBLs transfected with the indicated siRNA oligos were analysed for HU-

induced NF (UNT; untransfected). Transfection with siRNA oligos against ATR and 

RPA1 caused HU-induced NF in contrast to the lack of impact of siRNA oligos 

against GFP and Lis1.  
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Figure 5. WBS cells show an impaired ATR-dependent DNA damage response. 

a). Chromosome 7 karyotype from Williams-Beuren syndrome (WBS) showing the 

location of the submicroscopic heterozygous interstitial deletion on chromosome 

7q11.23.  

b). Deletion mapping of a WBS and Supravalvular aortic stenosis (SVAS) patients 

showing the position of Elastin (ELN) and Replication factor C 2 (RFC2). The dashed 

line indicates the size of the heterozygous deletion.  

c). Impaired HU-induced Chk1-pSer317 is seen in WBS LBLs (WBS-I and WBS-II) 

compared to those of the respective clinically normal parent (WT-I and WT-II). Cells 

were treated with 500 µM hydroxyurea (HU) for 1 hr prior to extraction and re-

probed using α-Chk1 to confirm loading. 

d). WBS LBLs exhibit impaired UV-induced G2/M checkpoint arrest. The MI was 

determined 24 hrs post UV-irradiation (5 J/m2). WBS-I and WBS-II LBLs show 

defective UV-induced G2/M arrest unlike wild type LBLs from their respective 

parents (WT-I and WT-II).  

e). Increased HU-induced NF is seen in WBS cell lines. LBLs were treated with HU 

(5 mM) and examined for NF 24 hrs following treatment. Both WBS-I and WBS-II 

LBLs show increased HU-induced NF unlike wild type LBLs from their respective 

parents (WT-I and WT-II).  

f). UV-induced G2/M defect in WBS LBLs is complemented following transfection 

with RFC2 cDNA. WBS-I and WBS-II cells, either untransfected (UNT), or 

transfected (RFC2) with pc-DNA3-RFC2 were UV-irradiated (UV; 5 J/m2) and the 

MI determined after 24 hrs. A reduction in MI following UV-irradiation is observed 

following transfection of WBS LBLs with RFC2 cDNA transfection (RFC2 UV) 

compared to the untransfected irradiated cells (UNT UV). 
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g). The increased HU-induced NF seen in WBS LBLs is complemented following 

transfection with RFC2 cDNA. WBS-I and WBS-II, either untransfected (UNT), or 

transfected (RFC2) with pc-DNA3-RFC2 were treated with HU (5 mM) 24 hrs post-

transfection. A reduction in HU-induced NF is seen following transfection of WBS 

LBLs with RFC2 cDNA (RFC2 HU) compared to the untransfected HU-treated (UNT 

HU) cells. 
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