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ABSTRACT 

Double strand breaks (DSB) are severe DNA lesions, and if not properly repaired, may lead to 

cell death or cancer. While there is considerable data on the repair of simple DSB (sDSB) by 

non-homologous end-joining (NHEJ), little is known about the repair of complex DSBs (cDSB), 

namely breaks with a nearby modification, which precludes ligation without prior processing. To 

study the mechanism of cDSB repair we developed a plasmid-based shuttle assay for the repair 

of a defined site-specific cDSB in cultured mammalian cells. Using this assay we found that 

repair efficiency and accuracy of a cDSB with an abasic site in a 5' overhang was reduced 

compared to a sDSB. Translesion DNA synthesis (TLS) across the abasic site located at the 

break prevented loss of DNA sequences, but was highly mutagenic also at the template base next 

to the abasic site. Similar to sDSB repair, cDSB repair was totally dependent on XrccIV, and 

altered in the absence of Ku80. In contrast, Artemis appears to be specifically involved in cDSB 

repair. These results may indicate that mammalian cells have a damage control strategy, whereby 

severe deletions are prevented at the expense of the less deleterious point mutations during 

NHEJ. 
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INTRODUCTION 

Double strand breaks (DSBs) are among the most detrimental types of DNA damage, and if not 

properly repaired, can lead to cell death or cancerous transformation (1). DSB are repaired in 

mammalian cells primarily by non-homologous end joining (NHEJ), in which the two broken 

parts of the chromosomes are ligated (For review see (2-4)). The core components in NHEJ 

include the Ku80/70 heterodimer, which protects DNA ends from degradation, and recruits other 

components of the repair machinery (5-8). The DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs) joins Ku to form the DNA-PK holoenzyme, which connects the two termini of the 

break, and phosphorylates proteins involved in DNA damage response. Ligation is carried-out by 

the DNA ligase IV complex, composed of DNA Ligase IV, XRCC IV and Cernunnos/XLF all of 

which are essential for NHEJ (8-10). In addition to the core components of NHEJ, other enzymes 

participate in DSB repair mainly through DNA end processing prior to ligation. This includes the 

nuclease Artemis, which is activated by DNA-PK and involved in the repair of some DSBs 

(6,11,12), and DNA polymerases ! and !, both implicated in DNA end-processing prior to 

ligation (6,13-16). 

 Most studies on NHEJ addressed simple DSB (sDSB), namely DNA breaks which did 

not include chemical modification of the base, sugar or phosphate moieties near the break point. 

However, some DNA damaging agents, most notably ionizing radiation, cause clusters of DNA 

damage, which often lead to modification in the vicinity of a DSB (17). For example, Winter and 

his colleagues have reported that abasic sites as well as other oxidized nucleotide derivatives 

reside in the vicinity of a DSB that was formed by ionizing radiation (18,19). The presence of 

modified bases in the vicinity of the DSB can interfere with its repair, and may therefore require 

special processing. Indeed, it has been observed that some DSB have slow repair kinetics in vivo 
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and in vitro, suggesting that their chemical structure hampers their repair (11,20). Despite their 

importance little is known on how cells cope with such complex DSB (cDSB), and specifically 

on how they are processed by the DSB repair machinery. Here we present a novel plasmid-based 

assay for the repair of a model cDSB in mammalian cells. We found that: (1) the presence of a 

single synthetic abasic site on a short 5’-overhang on one side of a DSB reduces the efficiency of 

DSB repair; (2) translesion DNA synthesis across the abasic site enables NHEJ with minimal 

loss of DNA bases; (3) remarkably, full-length TLS at the DNA terminus is highly mutagenic at 

the nucleotide following the abasic site, and it violates the A-rule at the abasic site; (4) XrccIV 

and Ku80 are involved in the repair of both sDSB and cDSB, whereas Artemis is involved 

specifically in the repair of cDSB in this assay system.  

 

MATERIALS AND METHODS 

Cell cultures and media 

The human cell lines H1299 and PC3 were derived from a large cell lung carcinoma and a 

prostate carcinoma, respectively. They were cultured in RPMI 1640 supplemented with 10% 

FBS (GIBCO/BRL). 48BR normal, and Artemis-deficient CJ179, telomerase-immortalized 

fibroblasts (11,20) were grown in MEM medium with 10% FBS. Human Artemis deficient 

Guetel cells and their isogenic control Guetel/DA4 are skin fibroblasts transformed with SV40 

and immortalized with telomerase (21). They were grown in RPMI 1640 10% FCS. The SV40-

transformed NBS1 fibroblasts and their complemented controls (22) were grown in DMEM 

media supplemented with 10% fetal bovine serum, 2mM Glutamine, 100 units/ml penicillin and 

100 µg/ml streptomycin. The CHO cell lines K1 (wild-type) and Xrs5 (Ku80-/-) were purchased 

from ATCC, and XR-1 (Xrcc4-/-) from Coriell cell repositories. All CHO cells were grown either 
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in MEM" or HAM medium with 10% FCS. All the cells were incubated at 37°C in a 5% CO2 

atmosphere.  

 

DNA substrates  

Construction of the linear plasmids with complex and simple DSB - The modified-linear plasmid 

LP41 was constructed by ligating a short duplex oligonucleotide carrying a site-specific synthetic 

abasic site to a restriction nuclease-cleaved plasmid (Fig. 1s). The short duplex oligonucleotide 

was prepared by annealing oligonucleotides 5’- AXCAGACCTGCGTGTACCG-3’ (X is the 

abasic site) and 5’-ACACGCAGGTCTG-3’ (200 pmol each) in 20 µl of a solution containing 10 

mM Tris-HCl (pH 7.5), 1 mM EDTA, and 150 mM NaCl by heating to 70° C for 10 min, and 

then cooling to room temperature over a period of 2-3 h. The control non-modified linear 

plasmid LP40 was prepared in a similar way, except that the ligation was to a control short 

duplex oligonucleotide prepared by annealing onligonucleotides 5’-

AACAGACCTGCGTGTACCG-3’ and 5’-ACACGCAGGTCTG-3’. The vector was the 3000 

bp BstXI-BglI fragment of plasmid pSKSL (23), to which EcoRV site was introduced (pSKSL-

EcoRV-Bgl1) (Fig. 1s). The vector was obtained by cleavage of the plasmid with BstXI and BglI 

(see Fig. 1s A), followed by fractionation on a 0.8% agarose gel, and purification by 

electroelution using the BIOTRAP* device (Schleicher & Schuell). 

Preparative ligation of the insert to the vector was carried out in a 7.5:1 molar ratio, with 

350 ng/µl vector DNA, and 1.5 unit/µl T4 ligase (New England Biolabs) at 16° C over night. 

Next, the ligase was heat inactivated at 65° C for 10 min, and the efficiency of ligation was 

examined. This was done by digesting 1 µg of the linear plasmid with restriction nuclease Afe 1 

for 3hr, followed by dephosphorelation, and then 5’ end labeling with 32P using polynucleotide 
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kinase and [#-32P] ATP. The fragments were then separated on 6% PAGE. The ligated DNA 

fragment migrates slower than the non-ligated one. Ligation efficiency was at least 90% as 

determined by phosphorimaging (Fig. 2s). After confirming the ligation efficiency the linear 

plasmid was digested with EcoRV, which removed 10 nucleotides from one terminus, leaving a 

blunt end (Figs. 1B and 1s C). Finally, the DNA was again gel purified. Plasmid pSA26 

(3,356 bp long; cmR) was previously described (23). 

 

NHEJ assay for cDSB in cultured cells 

The assay for the repair of cDSB included the following steps (Fig. 1): (i) Transfection of the 

mammalian cells with a plasmid mixture containing the modified linear plasmid (LP41; kanR), 

the internal control plasmid pSA26 (cmR), and the carrier plasmid pUC18. As a control, a parallel 

transfection was performed with the non-modified linear plasmid, LP40, pSA26 and pUC18. (ii) 

Extraction of the plasmids from the mammalian cells. (iii) Transformation of an E. coli indicator 

strain with the plasmid mixture. (iv) Deduction of the extent of cDSB repair from the number of 

transformants. More specifically, mammalian cells were co-transfected with a DNA mixture 

containing 150-350 ng of linear plasmid, 3-24 ng of the internal control plasmid pSA26, and 

10 µg of the carrier plasmid pUC18. Transfection of H1299 cells was done using the JetPEI 

(Polyplus transfection), whereas other cells were transfected by electroporation using the 

Nucleofector system (Amaxa; Koln, Germany) with Nucleofector kits T (for CHO cells) and V 

and R (for other human cells). The cells were incubated in their appropriate medium for 16-24 hr 

at 37°C in a 5% CO2 atmosphere. At the end of the incubation the cells were collected, washed 3 

times with PBS and their plasmid content was extracted by using a plasmid purification kit based 

on alkaline lysis (Wizard miniprep, Promega). The recovered plasmids were electroporated into 
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150 µl of competent E. coli JM109recA cells, followed by incubation in 1 ml SOC medium at 

37°C for 1 h, and then plating in parallel on LB-agar plates containing kanamycin (50 µg/ml) or 

chloramphenicol (30 µg/ml). Relative repair of the cDSB was calculated based on the number of 

colonies, as described below. When desired, plasmids were extracted from kanR colonies 

originating from several independent transfection experiments, and subjected to DNA sequence 

analysis at the vicinity of the break point. 

 

RESULTS 

Outline of the assay for cDSB repair in cultured cells 

The cDSB repair assay measures the ability of cells in culture to circularize a transfected 

linearized plasmid that carries on one end a two-nucleotides 5’ overhang with a site-specific 

abasic site next to the terminal nucleotide, whereas the other end is blunt (LP41, kanR; Fig. 1). In 

order to enable quantification, the mammalian cells were co-transfected with a plasmid mixture 

containing the modified linearized plasmid (LP41, kanR), an intact plasmid as an internal 

normalizing reference (pSA26; cmR), and a carrier plasmid (pUC18). As a control, cells were 

transfected in parallel with a similar mixture, wherein the modified linearized plasmid was 

replaced with a non-modified linearized control plasmid (LP40 kanR). The measurement of the 

linear plasmid repair was done in a subsequent step, in which the plasmid mixture was isolated 

from the mammalian cells, and used to transform an indicator E. coli strain. The transformants 

were plated in parallel on LB plates containing kanamycin, to select for cells harboring repaired 

plasmids that had originally carried a DSB, or chloramphnicol, to select for cells carrying the 

normalizing intact plasmid (Fig. 1A). Linear plasmids poorly transform E. coli, and therefore the 

E. coli colonies observed had been formed by a circular (repaired) plasmid molecule. To further 
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decrease the background transformation of linear plasmids, isolation of the plasmid content of 

the mammalian cells was done under mild alkaline conditions followed by neutralization, which 

cause denaturation of linear, but not covalently closed circular plasmids.  

The efficiency of DSB repair in mammalian cells was calculated based on the number of 

E. coli transformants. First, the number of LP41 kanR transformants was divided by the number 

of pSA26 cmR transformants, to yield a normalized DSB repair efficiency for the cDSB. The 

same was done for the pair of LP40 and pSA26 transformants, to obtain the normalized DSB 

repair efficiency for the sDSB. We then divided the two to get the relative repair efficiency of the 

cDSB compared to sDSB. Importantly, none of the plasmids can be replicated within the 

mammalian cells, hence number of E. coli transformants correlates to the extent of repair within 

the mammalian cells. 

 

A single abasic site near a DSB reduces both the efficiency and accuracy of DSB repair 

To examine whether linearized plasmids with a cDSB are repaired in human cells, we performed 

a series of experiments with the human lung cancer cell line H1299. As can be seen in Table 1, 

which presents the results of 7 independent experiments, the number of kanR and cmR E. coli 

tranformants obtained after extraction of the plasmids mixture from the human cells varied 

considerably among experiments. However, the relative repair of cDSB (relative to the sDSB) 

was remarkably reproducible, yielding a value of 20%±2%. Thus, the assay yields quantitative 

and reproducible measurements of the repair of the cDSB relative to the sDSB. The value 

obtained indicates that the presence of a single modification near the break points significantly 

decreased its repair by 5-fold relative to a sDSB.  
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 To analyze the accuracy of DSB repair we performed DNA sequence analysis of repaired 

descendents of the two types of linearized plasmids. As can be seen in Fig. 2, 90% (45/50 events) 

of the sDSB (substrate LP40) were accurately repaired in H1299 cells, with restoration of the 

original DNA sequence. Largely accurate repair of sDSB was observed also in human 48BR 

cells (80%), and to lesser extent in the CHO K1 cells (57%; Fig. 2). The picture dramatically 

changed for cDSB (substrate LP41). In H1299 cells only 16% (19/123 events) of the repair 

events preserved the correct length of the plasmid, whereas 84% contained either deletions or 

insertions. Similarly, in human 48BR and CHO K1 cells the original DNA length was rarely 

preserved, and the vast majority of events included deletions and insertions (>96% and 95%, 

respectively; Fig 2).  

 

Spectrum of repair events of cDSB in human cells 

DNA sequence analysis of 123 plasmid isolates that have resulted from the repair of cDSB in 

human H1299 cells revealed a wide variety of mutations types (Fig. 3). The most frequent class 

of events comprised very small deletions of up to 5 bp, and accounted for 43% of all repair 

events. Of these, 8 contained minus 2 deletions, indicating precise elimination of the 5' overhang 

in plasmid LP41 (line 4 in Fig. 3B). Minus 1 deletions and full length restoration comprised 39 

and 19 events, respectively (Fig. 3B). These events are the signature of the activity of a DNA 

polymerase(s) that skipped over the lesion and replicated the next template nucleotide, or 

performed full-length TLS, respectively (see below). Another mechanism that contributed to 

formation of deletions is microhomology-directed end joining (MHEJ). According to this 

mechanism the ligation of the two ends is mediated by short homologies of 1-4 bases, and 

therefore the DNA is chewed until the microhomology is found (line 5 in Fig. 3B). Ten out of 13 

of larger deletion events are consistent with such a mechanism. Insertions constituted 29% of all 
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the repair events (36/123) and could be divided into two subclasses: 1) Insertion of 50-200 bp 

DNA fragments originating most likely from bovine genomic DNA that is present in the serum 

of the cells growth medium (24 out of 36 insertion events). 2) Hybrids with pUC18 that had 

served as carrier DNA in the assay.  

To examine whether treatment of the cells by DNA damaging agents might affect the 

repair of cDSB, we repeated the experiments with #-irradiated human H1299 cells. We observed 

no effect of the radiation on the relative efficiency, nor the accuracy of cDSB repair (data not 

shown). This is consistent with the lack of effect of pre-irradiating cells on another plasmid-

based repair assay used in our laboratory, which measures translesion DNA synthesis (24). It 

may indicate that pre-induction of the DNA damage response does not affect NHEJ of cDSB, or 

else that the transfection process itself, being stressful to the cells, induces the relevant genes 

(25). 

 

Full-length TLS across an abasic sites near a DSB lacks template sequence instruction  

Those cDSB whose repair resulted restoration of full DNA length or a -1 deletion opposite the 

abasic site, must have occurred via a mechanism in which the abasic site was tolerated rather 

than removed. Since the substrate contained a 2-nucleotides 5’ overhang on one side, and a blunt 

end on the other side, the simplest mechanism would have been TLS by a DNA polymerase, to 

generate a blunt end that is sealable. A total of 102 out of 232 repair events (44%) in H1299 

cells, which involved loss of one (64 events) or no (38 events) nucleotides, are likely to have 

occurred by such a mechanism. The DNA sequences of the 38 full-length TLS products are 

shown in Fig. 3 C, D. Each of the four possible nucleotides was found at the position 

corresponding to the abasic site, suggesting that bypass synthesis across this site occurred 
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without any particular specificity (Fig. 3 C, D). This is different from the preferential insertion of 

a dAMP opposite an abasic site observed by most DNA polymerases (the so-called A-rule; see 

Discussion). Surprisingly, the nucleotide next to the abasic site was highly mutated too. Only in 

13 out of 38 cases (34%) was the correct nucleotide T inserted opposite the template A (Fig. 3 C, 

D). The majority of the insertion events at this site were mutagenic, with no strong bias for a 

specific nucleotide. This suggests that the polymerase(s) that perform the bypass synthesis acts in 

a manner that is template independent. However, the precise length synthesized (2 nt) suggests 

that if such a mechanism had operated, it is template length-dependent. 

 

TLS prevents sequence losses during repair of a cDSB in various cell lines 

To examine whether the TLS observed at the cDSB in H1299 cells is a general phenomenon, we 

analyzed DNA sequence changes caused during the repair of cDSB in several other cell lines. 

Table 3 presents the results of such experiments performed with the human prostate carcinoma 

cell line PC3, an SV40-transformed fibroblast cell line from an NBS1 patient, and the latter 

stably complemented with the NBS1 gene. In each cell line a significant fraction of repaired 

plasmids included the signature of TLS, primarily of full-length products and -1 deletions. One 

case of a single nucleotide insertion, which led to a net one-nucleotide increase in sequence 

length was observed too (Table 3), and is likely to result from TLS activity. The fraction of TLS 

events varied from 17% (NBS1
+
 cells) to 53% (PC3 cells), averaging at 34% for the 4 cell lines, 

of which about a 1/3 were full length TLS events and the rest primarily -1 deletions, consistent 

with skipping across the abasic site. 
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The repair of linear plasmids is dependent on XrccIV and altered in the absence of Ku80 

In order to examine whether the repair of linear plasmids in our system depends on the known 

component of the NHEJ machinery, we performed the in vivo assay in XrccIV-deficient CHO 

XR1 cells, which are impaired in NHEJ, and sensitive to ionizing radiation (26,27). As a control 

we used the parent CHO K1 cells. As can be seen in Table 2, in K1 cells the numbers of kanR 

colonies, originating from repaired linearized substrates, was similar to that obtained in other cell 

types, yielding a relative repair of 56% for the cDSB relative to the sDSB. In the XR1 XrccIV -

deficient cells the results were totally different. The number of cmR colonies was normal 

(hundreds/plate), however very few kanR colonies were observed (typically 0-6) for both the 

sDSB or cDSB substrates, indicating that these cells were severely deficient in the repair of both 

sDSB and cDSB (Table 2).  

We examined the repair of sDSB and cDSB also in Ku80-deficient CHO XRS5 cells. 

Unlike in the XrccIV-deficient cells, DSB repair did occur in the Ku80-deficient cells, and the 

relative repair of the cDSB was similar to that observed in the Ku80-proficient K1 cells (Table 

2). DNA sequence analysis of plasmids that underwent DSB repair showed that in Ku80-

proficient cells, most repair events at sDSB did not cause any nucleotides loss at either the 

protruding or the blunt ends of the break (Fig. 4A and Fig. 3s). The pattern of repair of cDSB 

was different: While about half of the blunt ends (53%) were preserved, most protruding ends 

were degraded (95% P=0.001; Fig. 4A and Fig. 3s), indicating that the blunt end was selectively 

protected compared to the complex protruding end. This selective protection was lost in the 

Ku80-/- cells, where sequences were lost from both sides of the cDSB, as well as the sDSB (Fig. 

4B and Fig. 3s). Analysis of the number of deletions larger than 10 bp showed a significant 

increase in Ku80-/- cells compared to Ku80+/+ cells for both sDSB (from 18% to 73% P=0.0008) 
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and cDSB (from 26% to 79% P=0.003) (Fig. 4 and Fig. 3s). Thus, although Ku80 does not affect 

the relative efficiency of repair of the cDSB, it does protect its ends from nucleolytic 

degradation.  

 

Deficiency in the Artemis nuclease modestly reduces the relative repair efficiency of cDSB  

Since most of the cDSB repair events involved a nuclease activity, we examined whether the 

Artemis nuclease was involved. As can be seen in Table 2, the relative repair of cDSB was 

reduced by nearly twofold in Artemis-deficient cells compared to Artemis-complemented cells 

(18±3% and 35±10% respectively; Table 2). DNA sequence analysis of linear plasmids with 

cDSB that underwent repair revealed similar patterns of repair events in Artemis-proficient and -

deficient cells (Fig. 4s). However, the mean size of deletions larger than 2bp was 78% longer in 

Artemis-proficient cells compared to Artemis-deficient cells (52.4bp versus 29.4bp, respectively; 

Fig. 4s). Similar effects were obtained when another normal human cell (48BR) was compared to 

the Artemis-deficient cell line CJ179: The relative repair in the Artemis-deficient cells was 

twofold lower than in the normal cells (Table 2), and the average size of deletions larger than 2 

bp was 58% longer in Artemis-proficient cells (42.2 bp) compared to Artemis-deficient cells 

(26.7 bp) (Fig. 5s).   

 

DISCUSSION 

The presence of chemical modifications near DSB may interfere with mechanisms that function 

to seal the break, such as NHEJ. As a result, both the efficiency and the accuracy of the process 

may diminish. Obviously, nucleolytic processing can in principle eliminate chemically damaged 

DNA regions, and generate simple and ligatable ends, however, this will cause loss of DNA 
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sequences near the break point. Although NHEJ is generally considered to be an error-prone 

repair process, mechanisms that minimize the mutagenic outcome of NHEJ and/or its severity 

may exist in mammalian cells. Indeed, several studies have shown that NHEJ is capable of 

aligning, annealing and patching partially complementary overhangs, thereby minimizing, or 

even avoiding loss of DNA sequences (6,13-16). However, the effect of chemical modifications 

on such processes is just beginning to emerge (28,29). 

 For such a purpose a plasmid assay system offers significant advantages, since it enables 

engineering of the DNA ends, including the incorporation of damaged nucleotides. Being a 

model assay system it is not expected to fully mimic the chromosomal repair of cDSB, but its 

relevance is indicated by its response to proteins known to be involved in chromosomal DSB 

repair, and its power is the ability to report on individual repair events of cDSB at a single 

nucleotide resolution in a large variety of mammalian cells. In the past, several predictions that 

were made by plasmid-based assays were later confirmed by chromosomal-based assays. For 

example the use of microhomology directed repair in NHEJ (15,30,31) and the end protection 

from degradation by the Ku complex (5,32).  

DSB repair in our assay system was totally dependent on the XrccIV protein for both 

cDSB and sDSB. This is consistent with the critical role of the XrccIV-LigIV in NHEJ (26,27). 

As for Ku80, we observed similar extents of repair in Ku80-deficient and proficient cells, 

consistent with previous results with plasmid and chromosomal assays (5,26,32). However, 

degradation of the DNA ends was more extensive in Ku80-deficient cells, and the fraction of 

deletions longer than 10 bp significantly increased, consistent with the loss of the protection 

usually endowed by the Ku proteins. Interestingly, Ku80 suppressed the potentially deleterious 

repair-associated deletions also in cDSB repair, when accurate repair was not possible. Recently, 
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it was reported that a DNA ligase IV- independent alternative end joining (AEJ) pathway is 

robust in mammalian cells (33-35). This pathway depends to great extent on long 

microhomology DNA termini, and therefore relies on the sequence context. It is possible that in 

some sequence contexts AEJ can repair cDSB with high efficiency but with a great risk to 

genomic stability. Interestingly, human cells deficient in the Artemis nuclease were specifically 

defective in the repair of cDSB. This was associated with shorter deletions compared to Artemis-

complemented cells (Fig. 4s and 5s). 

 The DNA substrates that we have used carried DSB that were blunt on one side, and had 

a short two-nucleotides 5’ overhang on the other side. Such a configuration enables DNA 

synthesis to convert the protruding terminus into a blunt end, and subsequent ligation could lead 

to DSB repair with a minimal or no loss of DNA sequences (Fig. 5). In human cells most of the 

repair events of sDSB indeed involved template-directed DNA synthesis, clearly indicating that 

the repair process that preserves the original DNA length was favored over the one that causes 

loss of DNA sequences, consistent with previous results (30). The presence of a single abasic site 

in the overhang caused a significant 5-fold decrease in the efficiency of DSB repair compared to 

the sDSB in H1299 cells. While abasic sites inhibit DNA synthesis in at least some mammalian 

cells, the significant decrease in repair efficiency was surprising, since a simple nucleolytic 

cleavage of the problematic overhang and beyond, might have easily solved the problem, and 

enabled ligation.  The reason for this significant effect of a single abasic site on the relative 

repair of the DSB is not clear, however it might hint on the presence of molecular protection 

against loss of sequences from the end. 

 With the abasic site present in the 5’ overhang, 44% of the DSB repair events in H1299 

cells occurred without loss of DNA sequences or with a minimal -1 deletion at the site 
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corresponding to the lesion. These sequences outcomes are hallmarks of TLS, representing full-

length bypass, or skipping over the lesion bypass, respectively. A similar picture was observed 

also for the prostate cancer cell line PC3, in which 53% of DSB repair events could be attributed 

to TLS-assisted NHEJ, whereas in the SV40-immortalized fibroblasts examined TLS was 

involved in 17-21% of NHEJ repair events (Table 3). Still, in some cell lines we observed only a 

small fraction of TLS. This may reflect a limitation of our plasmid assay, in which the DNA ends 

are likely to be less protected from accidental nucleolytic degradation compared to chromosomal 

cDSB. 

Among the TLS events, skipping over the lesion was generally more abundant than full-

length TLS. This is different from TLS across an abasic site opposite a gap, where the fraction of 

-1 deletions was smaller than full-length bypass (36). This difference might be attributed to the 

substrates difference, since a higher DNA flexibility of a single-stranded overhang compared to a 

short ssDNA segment embedded in a duplex DNA might facilitate misalignment and skipping by 

the polymerase. Alternatively, this may reflect the activity of the DNA polymerase(s) involved. 

In most skipping events, the template A 5' to the abasic site was accurately copied. However, 

there were events in which skipping was accompanied by a mutation in the next nucleotide, 

which is generally consistent with the mutations caused at that site during TLS without skipping. 

Currently there are no effective methods to study the repair of chromosomal cDSB at high 

resolution. However, it is possible that in chromosomes, where flexibility of the DNA is more 

restricted, the dominant TLS event during NHEJ of cDSB will be full-length bypass. In any case, 

the outcome of these events is a point mutation (base substitution or -1 deletion), which is 

considerably less severe than long deletions.  
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An abasic site is an inherently miscoding lesion, and therefore in theory, any of the four 

nucleotides could be inserted opposite it by DNA polymerases. However, it is well documented 

that many prokaryotic and mammalian purified DNA polymerases tend to insert dAMP opposite 

abasic sites (the so-called ‘A-rule’)(37-39). Moreover, it was shown both in our laboratory and 

by others that dAMP is preferentially inserted opposite abasic sites in human cells (36,40), 

including H1299 cells used in this study (23). This implies that when operating near a cDSB, 

TLS in H1299 cells violates the A-rule. Interestingly, nucleotide insertion opposite the terminal 

nucleotide of the overhang appears to have occurred at random, without template instruction. 

Taken together with the events opposite the abasic site, it appears that TLS at the cDSB occurred 

via template-directed but sequence-independent polymerization activity. Several mammalian 

DNA polymerases were shown to be able to bypass an abasic site (38,39,42-45), however we do 

not know yet which DNA polymerase carries out the TLS step during the NHEJ events 

monitored in this study. A potential candidate is DNA polymerase µ, which was implicated to be 

involved in NHEJ, and was shown by us to possess a template-dependent, but sequence-

independent activity during TLS across a synthetic basic site (46). However, an abasic site is a 

strongly blocking lesion, which is bypassed slowly in human cells, and likely to require more 

than one polymerase (39). Specifically, in vivo experiments have shown that pol$ (39) as well as 

an aphidiclin-sensitive polymerase (22) are involved, and in vitro experiments have implicated 

also REV1 (47) and pol% (48). The high mutability of TLS across and near an abasic site may be 

relevant to somatic hypermutation in the immune system, where abasic sites generated by the 

combined action of AID and UDG play a major role (49).  

In summary, using a DNA substrate with a single abasic site on a 5’ overhang had a 

surprisingly big inhibitory effect on NHEJ in human cells, and uncovered a TLS-assisted NHEJ 
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mechanism, that allowed repair of cDSB with diminished loss of DNA sequences, albeit with the 

concomitant formation of point mutations. To our knowledge this is the first demonstration of 

TLS-assisted NHEJ in mammalian cells. Further studies are needed in order to elucidate the 

mechanism and regulation of this process, which might represent a damage control strategy, 

whereby severe deletions are prevented at the expense of less deleterious point mutations.  
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Table 1. Repair of complex DSB (Substrate LP41) relative to simple DSB (Substrate LP40) in 

human H1299 cells 

 

 

Number of colonies Experiment no. 

KanR CmR 

KanR/CmR Relative Repair
a
 

(%) 

No passage
b
  LP41 

                      LP40 

0 

0 

3200 

2272 

< 3x10-4 

< 5x10-4 

NA 

1                    LP41 

                      LP40 

182 

1860 

834 

1782 

0.22 

1.04 

21 

2                    LP41 

                      LP40 

94 

147 

1448 

352 

0.065 

0.41 

16 

3                    LP41 

                      LP40 

359 

416 

283 

65 

1.27 

6.4 

20 

4                    LP41 

                      LP40 

62 

285 

100 

88 

0.62 

3.2 

19 

5                    LP41 

                      LP40 

233 

325 

311 

72 

0.75 

4.5 

17 

6                    LP41 

                      LP40 

584 

2784 

896 

962 

0.65 

2.9 

22 

7                    LP41 

                      LP40 

90 

361 

638 

572 

0.14 

0.63 

22 

   Average 

Relative repair: 

 

20±2 

  

Human H1299 cells were transfected with a mixture of linear plasmid LP41 with an abasic site in 

a 5' overhang, the normalizing intact plasmid pSA26, and the carrier plasmid pUC18. A parallel 

transfection was conducted with a mixture of the control linear plasmid LP40, which had no 

abasic site, along with the control and carrier plasmids. After 16 hours the plasmids were 

extracted using an alkaline procedure, and used to transform E. coli recA cells, which were then 

seeded in parallel on LB plates containing kanamycin (to select for repaired LP41 or LP40 

plasmids) or chloramphenicol (to select for the normalizing plasmid pSA26). The repair of cDSB 
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relative to sDSB was calculated by dividing the kanR/cmR colonies ratio obtained for LP41, by 

the ratio obtained for LP40. See text for details. 

a 
Relative repair of cDSB relative to sDSB. 

b
 The plasmid mixture was used to directly transform the E. coli recA cells without prior passage 

through the H1299 human cells. 
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Table 2. Repair of complex DSB (Substrate LP41) relative to simple DSB (Substrate LP40) in 

hamster and human cells defective in NHEJ genes 

Number of colonies 

(DNA amount
 b

) 

Cell type/vector 

KanR CmR 

Relative Repair
 a
 

% 

CHO K1 (wild-type)    

LP41 203 (350) 253 (24) 56.1±7.0 

LP40 393 (350) 260 (24)  

    

CHO XR1 (XrccIV-/-)    

LP41 6 (350) 636 (24) NA 

LP40 2 (350) 364 (24)  

    

CHO XRS5 (Ku80-/-)    

LP41 106 (200) 1228 (24) 51.0±4.9 

LP40 203 (200) 1122 (24)  

    

Human Guetel/DA4 

(Artemis+) 

   

LP41 106 (200) 1072 (12) 35.3±9.6 

LP40 278 (200) 784 (12)  

    

Human Guetel 

(Artemis-) 

   

LP41 54 (200) 1164 (12) 18. 5±3.4 

LP40 242 (200)  1084 (12)  

    

Human 48BR 

(Artemis+) 

   

LP41 28 (300) 666 (24) 15±4.9 

LP40 59 (300) 205 (24)  

    

Human CJ179 

(Artemis-) 

   

LP41 28  (300) 237 (24) 7±2 

LP40 108 (300) 80  (24)  

 

NHEJ assays were performed with the indicated cell lines as described in the legend to Table 1 

and under Materials and Methods. The colonies numbers shown represent a typical experiment, 

whereas the relative repair represents the average obtained from 3-6 experiments.  

a 
Relative repair of cDSB relative to sDSB. 
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b
 The numbers in the parentheses show the amount of DNA (in ng) used to transfect the 

mammalian cells. 
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Table 3. Abundance of TLS-assisted NHEJ events in various cell lines 

 

Cell line TLS event DNA sequence Occurrence 

 

PC3 

 

Full-length 

Skipping 

Skipping 

Skipping 

Skipping 

 
5’CAGGTCTGTT&ATCCGGTATC 

5’CAGGTCTG-T ATCCGGTATC 
5’CAGGTCTG-A ATCCGGTATC 

5’CAGGTCTG-C ATCCGGTATC 
5’CAGGTCTGGGGATCCGGTATC 

 

2 

5 

1 

1 

1 

  Total TLS events: 10/19 (53%) 

 

NBS1+ 

 

Full length 

Full length 

Skipping 

 
5’CAGGTCTGCA&ATCCGGTATC 

5’CAGGTCTGTT ATCCGGTATC 

5’CAGGTCTG-T ATCCGGTATC 

 

2 

1 

2 

  Total TLS events: 5/29 (17%) 

 

NBS1- 

 

Full length 

Full length 

Skipping 

 
5’CAGGTCTGTA&ATCCGGTATC 

5’CAGGTCTGAT ATCCGGTATC 
5’CAGGTCTG-T ATCCGGTATC 

 

2 

1 

2 

  Total TLS events: 5/24 (21%) 

 

H1299* 

 

Full length 

Skipping 

Skipping 

 
5’CAGGTCTGNM&ATCCGGTATC* 

5’CAGGTCTG-T ATCCGGTATC 
5’CAGGTCTG-C ATCCGGTATC 

 

38 

54? 

10? 

  Total TLS events: 102/232 (44%) 

 

NHEJ experiments were conducted with the indicated cell lines, after which descendants of 

plasmids with a cDSB were isolated and subjected to DNA sequence analysis. 

* The detailed sequence changes in the 38 NHEJ events associated with full length TLS 

(schematically presented as NM) are presented in Fig. 3C, D. 
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Figure Legends 

 

Figure 1. Quantitative assay for the repair of cDSB in cultured mammalian cells. (A) Flow chart 

of the assay. Cells were transfected with a DNA mixture containing a modified linear plasmid 

with an abasic site on a 5'-overhang (LP41, kan
R
), a normalizing intact plasmid (pSA26, cm

R
) 

and a carrier plasmid (pUC18, amp
R
). In parallel, cells were transfected with a control mixture 

containing a non-modified linear plasmid with a 5'-overhang but no abasic site (LP40, kan
R
). 

Cells were incubated to allow repair, after which the plasmids were extracted and elctroporated 

into indicator E. coli cells. Finally, the bacteria cells were seeded in parallel on LB plates 

containing kanamicin or chloramphenicol. The relative repair of the cDSB relative to the sDSB 

was deduced from the colonies count, as described in the text. LP40 and LP41 descendent 

plasmids were recovered from the bacteria colonies, and subjected to DNA sequence analysis at 

the vicinity of the original break point. (B) The break points of of the linear plasmids carrying a 

cDSB (LP41) and a sDSB (LP40).  

 

Figure 2. Repair of sDSB and cDSB without loss of DNA sequences. The proportion of DSB 

repair events with no deletions or insertions was determined for sDSB and cDSB in the indicated 

cell lines. In human H1299 cells full-length repair accounted for 45/50 all sequenced sDSB 

repair isolates and 19/123 cDSB repair isolates; in human 48BR cells the respective fractions 

were 20/25 and 0/25, and the Chinese hamster ovary cells CHO-K1 13/22 and 1/19. The data 

was obtained from experiments performed as described in the legends to Table 1. The sequences 

for each cell line were obtained from at least three different experiments. 
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Figure 3. Spectrum of mutations at repaired sites of cDSB in human H1299 cells. (A) DNA 

sequence analysis was performed for 123 repair events of cDSB, and the results were classified 

according to repair scenario. (B) Examples of DNA sequences at the repaired cDSB. The 

numbers in parenthesis shoe the occurrence of each event out of 123 repair events. (C) DNA 

sequence analysis of plasmids with cDSB that had been repaired without any loss of nucleotides, 

suggestive of a mechanism of TLS-assisted NHEJ. The number of occurrence of each sequence 

is presented in the parentheses. The nucleotides inserted opposite the original 5'-overhang are 

underlined. (D) Summary of the identity and occurrence of the nucleotides inserted opposite and 

3’ to the abasic site during the NHEJ of the linear plasmids with the cDSB. 

 

Figure 4. Accuracy of sDSB and cDSB repair in Ku80
+/+

and Ku80
-/-

 cells. Occurrence of 

accurate and inaccurate repair events in CHO K1 Ku80
+/+

 cells (A) and Xrs5 Ku80
-/-

 cells (B). 

The percentage of each type of repair event was calculated out of the total number of repair 

events including hybrids with pUC18, based on sequences presented in Fig. 3s. 

 

Figure 5. Model for TLS-assisted NHEJ in mammalian cells. TLS across a DNA lesion located 

on a 5' overhang in one side of a cDSB leads to the formation of a blunt end. If the other side of 

the DSB is blunt, this will enable repair of the cDSB without loss of nucleotides. See text for 

details. 
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5’ ATCCGGTATCCAGGTCTGAC

5’ ATCCGGTATCCAGGTCTGCA

5’ ATCCGGTATCCAGGTCTGCC

3’

3’

3’

3’

(4)

(3)

(3)

(3)

5’ ATCCGGTATCCAGGTCTGTC 3’(2)

5’ ATCCGGTATCCAGGTCTGTG 3’(1)

5’CAGGTCTGTTATCCGGTATC

5’ ATCCGGTATCCAGGTCTGGG

5’ ATCCGGTATCCAGGTCTGCT
5’ ATCCGGTATCCAGGTCTGAA

3’

3’

3’

3’

(8)

5’

(5)
(4)

(5)

C

5’GTCTG
  CAGACXA

  7 A

11 C

 5 G

15 T

11 A

 8 ! C

 6 G

13 T

D

[150]

1.  5 ’
2.  5 ’
3.  5 ’
4.  5 ’
5.  5 ’
6.  5 ’
7.  5 ’

CAGGTCTGNT
CAGGTCTGT 
CAGGTCTGC 
CAGGTCTG      
CAGGTC            
CAGGT
CAGGT     

!
ATCCGGTATC Full-length repair (19/123)
ATCCGGTATC  -1 deletion(35/123)
ATCCGGTATC  -1 deletion(5/123)
ATCCGGTATC  -2 deletion(8/123)

TCCGGTATC  -5 deletion(4/123)
ATCCG  +150 insertion(24/123)

[pUC18 ]    pUC18 hybrid(12/123)

B



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

Covo et al, 2009 



Translesion DNA 

synthesis

Protection of 

blunt end

End joining

5’

3’

Complex DSB

Complex DSB repaired without loss 

of DNA sequences

5’

3’

5’

3’

Figure 5

Covo et al, 2009


	Translesion DNA synthesis-assisted non-homologous end-joining of complex double-strand breaks prevents loss of DNA sequences in mammalian cells

