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Original article

Filaggrin null mutations are associated with increased asthma

exacerbations in children and young adults

Filaggrin is a highly abundant epidermal structural
protein facilitating epidermal differentiation and skin
barrier formation (1). The filaggrin gene (FLG) gene,
located on human chromosome 1q21.3, encodes the giant
(>400 kDa) polyprotein profilaggrin, which consists of
10–12 tandemly repeated filaggrin subunits (2). Profilag-
grin accumulates in dense granuleswithin the keratinocytes
of the stratum granulosum, the last living cell layers of the
epidermis. Upon terminal differentiation of these cells to
form the stratum corneum, the chemically modified, dead
layers of the outermost epidermis, within which the skin
barrier function resides, the inert profilaggrin molecule is
proteolytically processed into multiple copies of active
filaggrin. The liberated filaggrin aggregates the keratin
cytoskeleton leading to cell compaction and squame
formation. Enzymatic cross-linking of the protein and
lipid components of the newly formed squames leads to
formation of a chemically impermeable barrier whose

function is to retain water and resist entry of antigens,
allergens and irritants from the environment (1). Disrup-
tion of barrier formation due to a reduction or complete
absence of epidermal filaggrin expression has been postu-
lated to lead to chronic transcutaneous antigen/allergen/
irritant transfer, which via a Th2-mediated immune
response, leads to atopic eczema and secondary allergic
reactions, importantly including atopic asthma (3, 4).

Two independent mutations in the gene encoding
filaggrin (FLG; R501X and 2282del4), carried by about
9% of people of European origin, result in the loss of
processed functional filaggrin in the epidermis (3, 5).
These genetic mutations, previously proven to impair the
formation of stratum corneum (5), strongly predispose to
childhood eczema in several white European populations,
where these mutations are prevalent (3, 6–11), including
Scottish, English, Irish, Danish and German populations.
Analogous mutations leading to loss of function have
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been recently reported to be significantly associated with
atopic dermatitis and ichthyosis vulgaris in the Japanese
population (12) and may even predict more severe and
persistent form of atopy (6). Thus, this gene may
contribute to atopic disease burden to varying degrees
worldwide. Recently, the genetic architecture of filaggrin-
related atopy has been shown to consist of a combination
of a small number of prevalent null mutations as well as
several rare or family-specific mutations (2), as recently
reviewed (13).
The combined genotype of the two most prevalent

filaggrin variants in Europeans, R501X and 2282del4,
was the focus in our original study (3). However, further
work suggested that the R501X mutation may have
greater penetrance in determining higher serum IgE levels
in patients with atopic eczema in comparison to 2282del4
(11). As similar penetrance differences may occur in
asthma, we compared the relative effects of the null
mutations as well as the combined genotype on the
asthma severity outcomes and symptomatic control
measures of the BREATHE study. The previous data
demonstrated that individuals with FLG null alleles have
a significantly increased disease burden, both in terms of
lung function, the null mutation carriers having greater
airway obstruction, and in the intensity of medication
required for disease control (14). The individual contri-
bution to the overall signal of the 2282del4 allele was
lower than that observed for the R501X mutation (14).
However, the association of these mutations with the risk
of asthma exacerbations has never been assessed.
In children with asthma, school absences (15), use of

short courses of oral steroids (16) and asthma-related
hospital admissions (17) represent well-validated mea-
sures of asthma exacerbations. We have previously
developed a combined score, involving yes/no responses
for any of the above three measures of exacerbations over
a 6-month period of reporting, to explore asthma
exacerbation risk from PPARc genotype variation (18).
Here, we have used this score to compare the relative
effects of the two filaggrin mutations and the combined
genotype on the risk of asthma exacerbations. We also
explored the relative penetrance of the two mutations and
the combined genotype on a larger asthmatic population
for our study.

Methods

We have continued the recruitment of children with physician-
diagnosed asthma for the BREATHE study beyond the publication
of our initial results (3). The current dataset includes information
about demographic, anthropometric and clinical details from 1135
individuals attending primary and secondary clinics in 29 primary
care practices and 2 secondary care asthma clinics in Tayside and
Dumfries, Scotland, from 2004 to 2007 (age 3–22 years).
The study was approved by the Tayside Committee on Medical

Research and Ethics. Informed consent was provided by the patient
and parent/guardian as relevant. Themethods have been described in

detail (3, 19). The patientswere seen in the asthma clinic setting,where
a detailed history was obtained including information on school ab-
sences, usage of oral steroids and hospital admissions over the pre-
vious 6 months. Eczema status was determined using the question,
�Does the child have eczema?� The asthma prescribing level was
determined in accordance with the British Thoracic Society (BTS)
(20) guidelines for physician-led management of asthma, as follows:
step 0 – no use of inhaled albuterol on demandwithin the past month;
step 1: inhaled albuterol on demand; step 2: regular inhaled steroids
plus inhaled albuterol on demand; step 3: regular inhaled salmeterol
plus inhaled steroidswith inhaled albuterol on demand; step 4:regular
inhaled salmeterol plus inhaled steroids plus oral montelukast with
inhaled albuterol on demand. From this data, a global index of
asthma severity was derived through construction of a composite
variable. Pulmonary function was measured by spirometry as per
standard procedure described previously (18).
Genotyping for FLG R501X and 2282del4 was performed as

described in our earlier publication (3). Mutation R501X creates a
new NlaIII restriction enzyme site, and 2282del4 creates a new
DraIII site, which were used to screen short, highly specific poly-
merase chain reaction (PCR) fragments for these variants, as
described previously (5). Genotyping for R501X was also performed
using a TaqMan-based allelic discrimination assay (Applied
Biosystems Europe, Warrington, UK). Standard procedures were
used based on Applied Biosystems reagents and 10 lL reaction
volumes. Allelic discrimination was assessed using an Applied
Biosystems 7700 sequence detection system. Mutation 2282del4 was
also genotyped by sizing a fluorescently labeled PCR fragment on
an Applied Biosystems 3100 or 3730 DNA sequencer. Ten-micro
liter PCR reactions were carried out using primers DEL4.F2 and
DEL4.R1 in AmpliTaq Gold buffer containing 1.5 mM MgCl2
(Applied Biosystems), 10 nmol of each dNTP and 1 unit AmpliTaq
Gold DNA polymerase. Reactions were amplified as follows: 94�C
(12 min), 1 cycle; 94�C (15 s), 58�C (30 s) and 72�C (45 s), 30 cycles;
and 72�C (5 min), 1 cycle. Fragments were diluted 1:60 and sized
against ROX-500 size markers according to the manufacturer�s
recommended protocol (Applied Biosystems). The wild-type allele
was 199 bp, and the 2282del4 allele was 195 bp.
AA refers to the wild-type FLG genotype for R501X and

2282del4 mutations, Aa refers to heterozygous genotype for either
R501X or 2282del4 and aa refers to homozygous R501X or
2282del4 genotype or compound heterozygous genotype. The
homozygous, heterozygous and compound heterozygous genotypes
were considered together as Aa/aa.
All statistical analyses were performed by using SPSS for

Windows version 14 (SPSS Inc., Chicago, IL, USA). To calculate
the odds ratios (ORs) for comparison of risk, measures for asthma
exacerbations were grouped according to severity. Thus, school
absences, intake of oral steroids and admission to the hospital due
to severity of asthma were grouped as present (minimum once over
the previous 6 months) or absent. The total asthma exacerbation
response was calculated as any of these measures during the same
period of time. This was again grouped as present or absent.
Chi-square test was used to compare the effects of the mutations on
total asthma exacerbations as well as its constituent measures.
Significance was assessed at P < 0.05. Both one-tailed and two
tailed P-values are shown due to the predictable nature of the
direction of effect of the variants of the traits under test.

Results

The population characteristics are fairly typical of young
individuals with well-controlled asthma derived from
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both primary and secondary care (Table 1) (21). Fig-
ure 1A shows the proportion of population on various
stages of management as per BTS guidelines with asthma
exacerbations over the previous 6 months. Figure 1B
demonstrates frequencies of individuals with FLG null
mutations with and without asthma exacerbations over
the previous 6 months. The allele frequencies of the FLG
mutations R501X and 2282del4 in children with asthma
were increased relative to the Tayside population and it
was limited to asthmatic children with a self-reported
history of eczema.
Asthma exacerbations were found to be significantly

increased in children with FLG mutation R501X and the
combined genotype. The contingency analysis (Table 2)

shows that the heterozygous and homozygous genotypes
for the R501X mutation and the combined genotype,
were associated with higher risk for exacerbations of
asthma. This is significant for the R501X mutation
(P = 0.009) and the combined genotype (P = 0.021;
Table 2). Thus, while 35% (301/859) of FLG wild-type
participants were prone to exacerbations, a significantly

Figure 1. (A) Proportion of children suffering from asthma
exacerbations across the stages of management as per British
Thoracic Society (BTS) treatment guidelines. (B) Proportion of
children with filaggrin allele mutations experiencing asthma
exacerbations in comparison to those who did not experience
asthma exacerbations over previous 6 months. (C) Proportion
of subjects with asthma exacerbations over previous 6 months
classified according to genotype and stages of treatment of
asthma as per BTS guidelines. *P = 0.045.

Table 1. Characteristics of BREATHE study participants with asthma (n = 1135)

With eczema : without eczema (n = 1125) 580 : 544
Age Range: 3–22

(mean, 10.3; SD, 5.1)
Sex (males : females) 671 (59.1%) : 464 (40.9%)
R501X AA : Aa/aa (%) 895 (92.6%) : 72 (7.4%)
2282del4 AA : Aa/aa (%) 856 (94.3%) : 52 (5.7%)
Combined genotype AA : Aa/aa (%) 774 (86.7%) : 119 (13.3%)
School absences (yes/no) over previous

6 months
339/753 (31%)

Courses of oral steroids (yes/no) over
previous 6 months

228/895 (20.3%)

Hospital admissions (yes/no) over previous
6 months due to exacerbations

125/998 (11.1%)

Overall asthma exacerbations* (yes/no)
over previous 6 months

394/694 (36.2%)

Family history of asthma and eczema
Paternal asthma (yes/no) 219/901 (19.6%)
Paternal eczema (yes/no) 82/1037 (7.3%)
Maternal asthma (yes/no) 269/850 (24.0%)
Maternal eczema (yes/no) 162/958 (14.5%)
Mean percent predicted FEV1 (SD)

(n = 863)
95.8 (15.6)

Mean percent predicted FVC (SD)
(n = 862)

92.2 (14.5)

Mean FEV1/FVC (SD) (n = 880) 89.3 (14.8)

BTS asthma treatment steps� (n = 1116)
Step 0 69
Step 1 189
Step 2 610
Step 3 149
Step 4 99

Inhaled bronchodilator use� (n = 1111)
0 144
1 763
2 178
3 26

*Defined as any one of the following in previous 6 months: school absences,
courses of oral steroids or hospital admissions.
�Step 0 = no use of inhaled albuterol within the past month; step 1 = inhaled
b2 agonists alone; step 2 = step 1 + inhaled steroids; step 3 = step 2 + inhaled
long-acting b2 agonists; step 4 = step 3 + montelukast.
�Inhaled bronchodilator use: 0 = none, 1 = occasional, 2 = daily and 3 = excessive
use.
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greater proportion 51% (35/68) of FLG null allele carriers
with asthma suffered from exacerbation of their asthma.
Hence, there was a 1.97-fold greater risk (95% CI, 1.19–
3.22) of suffering from exacerbation of asthma in FLG
null allele carriers in comparison to FLG wild-type
participants with asthma.
Individual measures of asthma exacerbations were also

found to be significantly increased in children with FLG
mutation R501X and the combined type. On similar
contingency table analysis (Table 3), we found that the
heterozygous and homozygous genotypes for the R501X
mutation and the combined genotype, were significantly
associated with increased intake of oral steroids due to
exacerbation of asthma. For the co-dominant model, this
is significant for the R501X mutations (P = 0.021) and
the combined genotype (P = 0.025). Significantly,
increased absence from school was also noted in the
children carrying R501X mutation (P = 0.041). Thus,
30.0% (261/862) and 19.5% (173/ 887) of FLG wild-type
participants were absent from school or required oral
steroids due to worsening of their asthma. This compares
with 42.6% (29/68) and 31.4% (22/70) of FLG null allele
carriers experiencing school absences or requiring a
course of oral steroids over the previous 6 months. There
was a 1.71-fold risk (95% CI, 1.04–2.83) of school
absences due to asthma and a 1.89-fold risk (95% CI,
1.11–3.21) of requiring oral steroids to treat exacerba-
tions in this population.
On further analysis, exacerbations of asthma were

found to be significantly increased (OR 1.83, 95% CI,
1.013–3.29; P = 0.045) in individuals with the FLG null
alleles compared to FLG wild-type only for BTS treat-
ment step 2 (regular inhaled steroids plus inhaled short-
acting beta agonists according to need) although a similar
trend with greater risk with FLG null alleles compared to
FLG wild-type was observed for BTS steps 3 and 4
(participants on regular inhaled long-acting beta agonists Ta
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Table 2. Contingency table for filaggrin genotype (co-dominant and mutant variants)
vs exacerbation of asthma. Exacerbation was measured as school absence and/or
asthma related hospital admission and/or use of short courses of oral steroids

Exacerbation Yes No Total
P-value

(one tailed)
P-value

(two tailed) OR

R501X AA 301 558 859 0.006 0.009 1.966
(1.198–3.228)Aa/aa 35 33 68

Total 336 591 927

2282del4 AA 295 526 821 0.438 0.764 1.093
(0.607–1.969)Aa/aa 19 31 50

Total 314 557 871

Combined AA 257 486 743 0.013 0.021 1.612
(1.081–2.404)Aa/aa 52 61 113

Total 309 547 856

aa, homozygous R501X or 2282del4 genotype or compound heterozygous genotype;
Aa, heterozygous genotype for either R501X or 2282del4; AA, wild-type/wild-type
FLG genotype for R501X and 2282del4 mutation; OR, odds ratio.
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with or without montelukast, in addition to regular
inhaled steroids and inhaled short-acting beta agonists
according to need) (Fig. 1C).

Discussion

Since the completion of our data collection for our initial
study (3), we have continued recruiting patients with
asthma for the Scottish cohort primarily ascertained with
asthma to generate statistical power to investigate further
the possible roles of filaggrin gene defects on asthma
medication use (14) and, subsequently, risk of asthma
exacerbations. Our data demonstrate that individuals
with FLG null alleles have a significantly increased risk of
exacerbations requiring hospital admissions, courses of
oral steroids, or experiencing school absences.
On sub-group analysis, the effect of FLG mutations on

asthma exacerbations is significant only for participants
with relatively mild asthma controlled on inhaled
steroids, with inhaled albuterol according to need. There
is, however, a trend in the direction of greater morbidity
in the presence of FLG mutations in participants on
higher steps of asthma treatment (i.e. additional inhaled
long-acting beta agonists with or without oral monteluk-
ast; Fig. 1C). This occurs against a background of an
overall increasing prevalence of asthma exacerbations
with greater asthma medication use (Fig. 1A). The
overall prevalence of the FLG null alleles was higher in
participants reporting asthma exacerbations in the previ-
ous 6 months in comparison to those that did not (46.0%
vs 34.5%), and this overall difference was significant
(P = 0.01; Fig. 1B).
The individual contribution to the overall signal

(exacerbations) of the 2282del4 allele was lower than
that observed for the R501X mutation. In our previous
study, we observed a differential penetrance of these two
mutations on the requirements for asthma medication,
and other studies have seen a lower penetrance of the
2282del4 allele in asthma-related phenotypes, but not
eczema-related phenotypes (22). The mechanism of this is
not known, but may be related to an as yet uncharacter-
ized functional difference in individuals with the 2282del4
allele which has the potential to encode filaggrin repeats,
which is definitely not the case for the R501X allele,
which truncates the protein at the beginning of the first
repeat. Interestingly, a milder eczema phenotype has been
reported for mutations that are much further towards the
3¢ end of the gene, even although it has proven difficult to
detect any functional filaggrin in these individuals (2, 13).
Further work is required to delineate possible mechanistic
differences in these alleles that may lead to different
disease susceptibility. A significantly greater proportion
of FLG null allele carriers with asthma were on higher
BTS treatment steps 3 and 4 (14). Together, the two
papers, thus, reinforce the position that epithelial barrier
defects resulting from FLG mutations have a major

influence on day-to-day aspects of asthma management
and control, including overall risk of asthma exacerba-
tions, use of oral steroids, together with �as required�
doses of inhaled bronchodilators (14) and regular asthma
medication needs (14). Thus, FLG gene status appears to
influence the overall burden of disease in asthmatic
children and young adults. An understanding of the
possible relationship between FLG gene defects and
asthma thus might unfold newer hypotheses that focussed
primary prevention strategies for asthma, may be partic-
ularly cost effective and beneficial in specific genotype-
stratified populations (23).

Exacerbations cause the greatest concern to individuals
with asthma and can be life-threatening. They also
account for the largest proportions of health costs of
asthma (24). Exacerbations of asthma symptoms dimin-
ish the quality of life of the patients and their families
(25–27). Asthma exacerbations are triggered by several
environmental factors including allergens, air pollutants
(28) and respiratory viral infections, rhinoviruses being
the most frequent (29–31). The mechanisms of viral-
induced asthma exacerbations are different from those
with allergen exposure, possibly explaining the degree of
refractoriness to inhaled or oral corticosteroids (32, 33).
We have discussed the possible up-regulation of epithelia
TH2-type immunity with preferential activation of the
immunological cascade as a likely mechanism for the role
of epidermal permeability on asthma medication needs
(14). Similar mechanisms could explain the associations
between FLG gene defects and the increased risk of
asthma exacerbations in children and young adults
reported in this paper. However, asthma medication
requirements do not necessarily reflect the risk of asthma
exacerbations (Fig. 1A), while other forms of genetic
variation that affect asthma exacerbation risk do not
influence asthma medication requirements (18). Other
mechanisms could contribute to the overall picture. Thus,
keratinocytes differentiated in the presence of IL-4 and
IL-13 exhibit significantly reduced filaggrin gene expres-
sion, suggesting a regulatory role for the atopic immune
response on the skin barrier defect (34). It is thus possible
that multiple mechanisms, including possible interactions
between IL-13 (35) and filaggrin gene polymorphic
variations, could be involved in mediating the observed
associations between filaggrin gene defects and the overall
burden of asthma [i.e. susceptibility (3), medication
requirements (14) and risk of exacerbations].

Using this and other measurement tools for quantify-
ing risk, other forms of genetic variation, such as in the b2

adrenergic receptor gene, have been shown to influence
the likelihood of asthma exacerbations, possibly through
an interaction with pharmacological treatments (36–38).
We predict that the study of genetic variation in relation
to clinical outcomes in asthma will further explain
underlying mechanisms for this disease, identify at-risk
populations for susceptibility, severity and major life-
events, define drug choice, and contribute overall to
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significantly improved management strategies for asthma
within 5–10 years� time.
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