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Abstract 
Many DNA lesions cause pausing of replication forks at lesion sites thus generating gaps in the 

daughter-strands that are filled-in by post replication repair (PRR) pathways. In S. cerevisiae, PRR 

involves Translesion Synthesis (TLS) mediated by Polη or Polζ, or Rad5-dependent gap-filling via a 

poorly characterized error-free mechanism. We have developed an assay to monitor error-free and 

mutagenic TLS across single DNA lesions in S. pombe. For both main UV- photolesions, we have 

delineated a major error-free pathway mediated by a distinct combination of TLS polymerases. 

Surprisingly, these TLS pathways require enzymes needed for poly-ubiquitination of PCNA as well as 

those required for mono-ubiquitination. For pathways that require several TLS polymerases the 

polyubiquitin chains of PCNA may facilitate their recruitment via specific interactions with their multiple 

ubiquitin binding motifs. These error-free TLS pathways may at least partially account for the previously 

described poly-ubiquitination dependent error-free branch of PRR. This work highlights major 

differences in the control of lesion tolerance pathways between S. pombe and S. cerevisiae despite the 

homologous sets of PRR genes these organisms share.  
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Introduction  
 The DNA damage tolerance pathways, also called Post Replication Repair (PRR), deal with 

blocks to replication fork progression caused by DNA lesions. These pathways suppress prolonged 

stalling of DNA replication, allowing lesions to be bypassed and replication to continue. There are two 

classes of PRR pathways, Translesion Synthesis (TLS) and DNA Damage Avoidance (DA). Although 

the mechanisms of DA, also referred to as template switching, are largely unknown, they involve the 

transfer of genetic information between chromatids. This process is thought to take advantage of the 

replicated undamaged sister chromatid via a template-switching mechanism and is thus deemed to be 

accurate. In contrast, TLS pathways involve the transient recruitment of specialized DNA polymerases 

capable of reading through damaged bases, an intrinsically error-prone process that causes mutations 

in vivo. In eukaryotes, five specialized polymerases have been identified that perform TLS (Prakash et 

al., 2005). Four of them, Polη, Polι, Polκ and REV1 belong to the Y family of DNA polymerases 

(Ohmori et al., 2001). The fifth, Polζ, consists of the catalytic subunit REV3 and the accessory factor 

REV7 and belongs to the B-family (Nelson et al., 1996). In contrast to the overall mutagenic effect of 

TLS, Polη is the only known polymerase to act as a tumor suppressor in humans due to its capacity to 

accurately replicate through CPDs (cyclobutane pyrimidine dimer), the major UV-induced lesions 

(Masutani et al., 2000). Mutations in the Pol  gene cause the variant form of Xeroderma Pigmentosum 

(XP-V), which has a very high risk of sunlight-induced skin cancer (Johnson et al., 1999; Lehmann et 

al., 1975; Masutani et al., 1999).  

 In S.cerevisiae, epistasis analysis suggests that the PRR pathway is controlled by two master 

genes RAD6 and RAD18 and further subdivided into three sub-pathways, two TLS pathways defined 

by Polη and Polζ and an error-free template-switching pathway. The two crucial proteins, RAD6 and 

RAD18 have E2-ubiquitin conjugating and E3-ubiquitin ligase activities respectively. The target in PRR 

of these ubiquitinating enzymes is Proliferating Cell Nuclear Antigen (PCNA), which serves as the 

processivity factor for the replicative and specialized DNA polymerases. In response to DNA damage in 

mammals and in yeast, PCNA is monoubiquitinated at lysine (K) 164 by RAD6 and RAD18 

(RAD6/RAD18 complex) (Hoege et al., 2002; Kannouche et al., 2004; Watanabe et al., 2004). In S. 
cerevisiae, it has been shown that the mono-ubiquitinated form of PCNA promotes UV and MMS-

induced mutagenesis (Stelter and Ulrich, 2003). In higher eukaryotes the importance of PCNA mono-

ubiquitination for the TLS pathway has been shown by the fact that specialized TLS polymerases have 

a stronger affinity for the mono-ubiquitinated form of PCNA (Kannouche et al., 2004; Watanabe et al., 

2004) by virtue of ubiquitin-binding motifs found in all four of the Y-family polymerases (Bienko et al., 

2005; Guo et al., 2006; Plosky et al., 2006). In vitro studies using yeast enzymes have shown the ability 

of Polη or Rev1 to carry out TLS stimulated by ubiquitinated PCNA (Garg and Burgers, 2005; Zhuang 

et al., 2008). Monoubiquitinated PCNA can subsequently be polyubiquitinated via a K63 linkage by the 

E2 Ub conjugating enzyme UBC13/MMS2 and the E3 Ub ligase RAD5 (Parker and Ulrich, 2009). 
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According to current models, the poly-ubiquinated form of PCNA favors the error-free bypass of DNA 

lesions by means of DA strategies (Hoege et al., 2002; Moldovan et al., 2007). 

 In S. pombe, Rhp6 and Rhp18, the homologs of the S. cerevisiae RAD6 and RAD18, and Rad8 

(the RAD5 homolog) associated with Mms2-Ubc13 are responsible for the mono- and poly-

ubiquitination of PCNA on lysine 164, respectively (Frampton et al., 2006). Although absent in S. 

cerevisiae, Polκ (dinB) is one of the TLS polymerases in the fission yeast together with Polη (eso1), 

Polζ (rev3 and rev7) and Rev1 (rev1). In order to gain insight into the mechanisms of TLS pathways 

and their control, we designed a molecular tool that allows TLS to be monitored in fission yeast. In the 

present study, we analyze the genetics of TLS across the two most common UV-induced lesions, 

namely the TT-CPD and TT(6-4) photoproducts. For both lesions, we find that the major TLS pathway 

is error-free. For TT-CPD, the major TLS pathway depends upon Polη and to a lesser extent Polκ, 

while TLS across TT(6-4) requires Polη, Polζ and Rev1. Surprisingly TLS past either lesion is largely 

dependent on the ubiquitin ligase complex (Rad8Rad5/Ubc13-Mms2) that is responsible for poly-

ubiquitination of PCNA at residue K164 
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Results: 
 
Development of a TLS assay in S. pombe:  
 Principle of the assay: The plasmids used in the present work contains a defined replication 

origin and a single lesion located within a short sequence heterology that allows the replication pattern 

of the two strands to be analyzed independently (Fig1A). In E. coli, when a plasmid containing a single 

replication-blocking lesion in one strand is replicated, functional uncoupling of the replication machinery 

occurs at the lesion site (Pages and Fuchs, 2003). Evidence for replicative uncoupling has also been 

obtained in chromosomes of S. cerevisiae following UV-irradiation (Lopes et al., 2006). Indeed, the 

polymerase that replicates the lesion-containing strand is transiently stalled at the lesion site while 

replication of the undamaged strand proceeds unperturbed as shown both in vivo (Pages and Fuchs, 

2003) and in vitro (Higuchi et al., 2003; McInerney and O'Donnell, 2004). The undamaged strand 

replicates with the same kinetics as either of the strands in an undamaged plasmid (Pages and Fuchs, 

2003). Such plasmids are ideal tools to monitor TLS in vivo as they deliver the lesion in the context of a 

genuine replication fork. The present plasmid assay accurately measures the efficiency of replication 

across a single lesion compared to the efficiency of replication of the non-damaged strand that acts as 

an internal standard. Indeed, in the first replication cycle, the damage-containing strand will suffer from 

a delay that reflects the intrinsic difficulty to bypass the lesion under investigation, while the 

undamaged strand replicates with unmodified kinetics. In the following cycles, the daughter strand that 

results from the TLS event will now undergo cycles of amplification with the same kinetics as the 

undamaged strand. After many cycles of replication in S. pombe, the replicated plasmid mixture is 

extracted, digested with DpnI to eliminate non-replicated DNA and transformed into E. coli for 

determination of the relative TLS efficiency (see below). 

Specificity of the vector used in S. pombe assay: 
 To develop such an assay, the choice of a proper replication origin that is able to stably 

maintain a plasmid in S. pombe was critical. We chose the sequence ARSdblet, a bi-directional 

autonomous replication sequence, known to maintain plasmids as monomers during many generations 

in S. pombe (Brun et al., 1995). Avoiding multimerisation improves the transmission of the plasmid 

through mitosis and increases the efficiency of subsequent plasmid analysis in E. coli. The plasmid 

construct (pSP) also carries the URA4 marker for selection in fission yeast and the ColE1 origin and the 

ampR cassette for propagation and selection in E. coli.   
 A single TT lesion, either a CPD or 6-4 photoproduct, is located at the beginning of the lacZ’ 
reporter gene opposite a short sequence heterology that serves as a genetic strand marker (Fig 1A). 

To prevent repair of the lesion and of the sequence heterology, the TLS assay was performed in a 

strain deficient for nucleotide excision repair (NER), the UV dimer endonuclease-mediated second 

excision repair process (UVR) in S. pombe and mismatch repair (MMR) (named num parental strain). 
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In this strain, genes swi10, uve1 and mlh1 required for NER, UVR and MMR pathways were knocked-

out, respectively. Replication of the lesion-containing strand by TLS yields a functional lacZ’ gene (blue 

colony in E. coli) whatever nucleotides are inserted opposite the TT lesion, since the TT lesion is part of 

an in-frame valine codon (GTT) in the N-terminal region of the lacZ gene that can tolerate any amino-

acid substitution. In contrast, replication of the non-damaged strand yields plasmids that carry a +1 

frameshift giving rise to a Lac- phenotype (white colony in E. coli). Our assay is not able to detect 

frameshift TLS events but in many different systems and organisms, frameshifts induced by UV-lesions 

are rare events (Lawrence et al., 1993).  
 Damage Avoidance events (DA) are not scored in our assay, as they would generate Lac- 

plasmids as a result of the presence of the local sequence heterology and would thus not be monitored 

as TLS events. This is discussed further below. Note that we do not suggest that this plasmid system 

provides an accurate reflection of all the events that might occur in genomic DNA when a replication 

fork encounters DNA damage. Instead we use it as a system to address a specific question, namely 

what are the genetic requirements of TLS. 

Validation of the TLS assay:  

 1. Kinetics of replication of control plasmid construct. First we monitored the kinetics of 

replication of the pSP plasmid construct in S. pombe. For this purpose control lesion-free pSP plasmid 

was transformed into S. pombe cells by electroporation and incubated in selective liquid medium at 

30°C. At various times, total DNA was extracted from aliquots of the culture and subjected or not to 

DpnI digestion. The kinetics of appearance of plasmid DNA replicated in S. pombe cells was assessed 

by the number of colonies formed in E. coli by the DpnI-resistant plasmid sample extracted from yeast 

cells. As shown in Fig 2A, colonies formed by the DpnI-resistant plasmid sample appeared at 19 h and 

increased exponentially until by 46h they comprised the vast majority of the population. These data 

clearly show that the plasmid construct pSP undergoes efficient replication in S. pombe cells. Based on 

these results we decided to monitor TLS after a period of growth in S. pombe cells of at least 72h at 

30°C.  

2. The two strands of the plasmid are replicated independently in S. pombe. For a given amount 

of plasmid DNA, we observe the same efficiency of colony formation in S. pombe for unmodified control 

plasmid as well as for plasmids containing the single TT-CPD or TT(6-4) lesions (Fig 2B). Our 

hypothesis to explain the observed results is that even if the replication of one strand is blocked by the 

presence of a lesion, the other, undamaged, strand gets fully replicated and amplified and will thus give 

rise to colonies with the same efficiency as the control, lesion-free, construct (Pages and Fuchs, 2003). 

This observation holds in all strains tested and again strongly supports the notion that the present 

plasmid system does not record DA events (see discussion below). 

 3. Determination of the relative TLS efficiency. We next checked the ability of our assay to 

monitor the synthesis of each strand of double-stranded DNA during replication. For this purpose we 

used the lesion-free construct pSP-(CONTROL) and scored Lac+ and Lac- colonies at the 72h time 
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point. In principle, in the absence of a lesion, the semi-conservative nature of DNA replication should 

yield equivalent amounts of progeny derived from each strand. In fact, we observed a  55/45 ratio of 

blue/white colonies, a ratio close to the expected 50/50 value (Fig 2C). Sequencing of individual blue 

and white colonies yielded the lacZ’+ and lacZ’- (+1 frameshift) sequences derived from each strand of 

the heteroduplex plasmid construct respectively. We will define the �“relative TLS efficiency�” (RTE) = 2 x 

(number of blue colonies) / (total number of colonies). The factor 2 is introduced to take into account 

the replication of the undamaged strand. Thus, for an undamaged control construct, the efficiency of 

replication of the Lac+ strand is normalized to  100%. When the pSP contruct containing a single TT-

CPD or TT(6-4) lesion was replicated in S. pombe, the relative TLS efficiency dropped from  100% for 

the lesion-free control to 34% and 1.6% respectively. This observation is in good agreement with the 

notion that while a CPD lesion is a moderate replication block, a (6-4) photoproduct is clearly a severe 

impediment to replication. Interestingly, we did not observe any bias in TLS events whether the lesion 

was located on the leading or the lagging strand (data not shown). This observation also suggests that 

replication of the two strands is uncoupled and can be considered as independent events as previously 

observed in E. coli (Pages and Fuchs, 2003). 
 

Translesion synthesis across TT-CPD (Fig. 3).  
 Which DNA polymerases are involved? : In the parental strain, the relative TLS efficiency (RTE) 

for the TT-CPD lesion is  34%, a value that reflects a distinct though moderate replication blocking 

capacity when compared to the replication efficiency of lesion-free plasmid (100%). Upon inactivation 

of Polη the TLS efficiency decreased 3-4 fold reaching a RTE value of 10%. A major role of Polη in 

TT-CPD bypass is in good agreement with results from S. cerevisiae and human cells (Gibbs et al., 

2005; Hendel et al., 2008). More surprisingly, inactivation of Polκ also led to a 2-fold reduction in the 

extent of TLS. Polη and Polκ appear to control the same pathway as no significant decrease in TLS 

was observed in the Polη Polκ double mutant compared to the Polη single mutant strain. Sequencing 

of the progeny plasmids revealed that essentially all TLS events are error-free in the parental 

background. Even in the Polη deficient strain, >90% of the TLS events are error-free. Given the scarcity 

of mutagenic bypass events (<3% of TLS events in the wild type strain), we did not analyze the 

genetics of the mutagenic pathway for TT-CPD. Inactivation of Polζ or Rev1 had essentially no effect 

on TLS past the TT-CPD lesion. However, inactivation of Polζ (rev3∆ strain) in the Polη Polκ double 

mutant significantly reduced the RTE from  10% to 4%, suggesting the existence of a minor Polζ-

mediated pathway that becomes apparent in the absence of the Polη / Polκ pathway. Taken together 

these results suggest that the major TT-CPD bypass pathway is error-free and mediated by Polη 

together with Polκ. We hypothesize that while in vitro Polη is able to perform both the insertion and 

extension steps Polκ frequently contributes to the extension steps in vivo as also found in human cells 

(Ziv et al., 2009).   
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 Role of PCNA ubiquitination: For this purpose we used strains defective in genes involved in the 

mono- and polyubiquitination of PCNA as well as a PCNA mutant (pcn1-K164R) that cannot be 

ubiquitinated, (Frampton et al., 2006). TLS past the TT-CPD lesion is fully abolished both in the ∆rhp18 

and the pcn1-K164R mutant strains thus demonstrating that bypass of the TT-CPD lesion absolutely 

depends upon ubiquitination of PCNA. The residual low level of error-free TLS events (1-2%) that is 

observed in pcn1-K164R strain and upon inactivation of the Polη, Polκ, Polζ  and Rev1 polymerases 

most likely reflects a small contamination of the TT-CPD construct with lesion-free oligonucleotide. 

Strikingly, in all three strains that inactivate poly-ubiquitination of PCNA (∆rad8, ∆ubc13 or ∆mms2) 
while leaving mono-ubiquitination intact (Fig S1) (Frampton et al., 2006), we observe a reduction of 

TLS to a level similar to that observed in the Polη / Polκ deficient strains. This unexpected finding 

suggests that the major Polη / Polκ pathway requires the Rad8Rad5/Ubc13-Mms2 complex most likely 

for its role in PCNA poly-ubiquitination. Although no other targets of Rad8 Rad5/Ubc13-Mms2 are 

presently known, we cannot formally exclude the possibility that this ubiquitin ligase complex also 

targets a protein other than PCNA that is essential for TLS.  

 In the ∆rad8 background where PCNA can be mono-ubiquitinated but not poly-ubiquitinated, the 

residual level of TLS ( 6%) is further reduced to background level ( 2%) when rad30 (Polη) is 

inactivated, suggesting that there is a small fraction of the Polη / Polκ-mediated TLS that can function 

with mono-ubiquitinated PCNA. Moreover, we can deduce that the minor Polζ-dependent pathway that 

becomes clearly apparent in the Polη / Polκ defective background also requires the Rad8 Rad5/Ubc13-

Mms2 poly-ubiquitination complex (Fig 5A). 

 

Translesion synthesis across  TT(6-4) (Fig. 4)  
 For TT(6-4) the relative TLS efficiency (error-free + mutagenic) in the parental strain ( 1.6%) is 

at least 20-fold lower than for TT-CPD illustrating its much stronger replication blocking capacity (Fig 

2C). Analysis of the molecular nature of the TLS events shows that in the parental strain, about three 

quarters (1.2%) and one quarter (0.4%) of the TLS events are error-free and mutagenic, respectively. 

Most mutations were either 3�’-T to C transitions as in S. cerevisiae (Bresson and Fuchs, 2002) or 

tandem TT to CC changes (Table 2). In most strains tested, these two types of mutation occur at 

roughly equal proportion except for ∆ubc13 and ∆rev3 strains which exhibit a significantly higher 

proportion of TT -> CC changes compared to TT -> TC changes (Table 2). We will analyze separately 

the genetic requirements of error-free and mutagenic TLS pathways across TT(6-4) lesions. 

 Error-free TLS pathway across the TT(6-4) lesion (Fig 4A): Inactivation of either Polη or Polζ or 

Rev1 led to a 4-fold reduction in TLS when compared to the parental strain. No effect is seen upon 

inactivation of Polκ. These data are consistent with previous in vitro and in vivo studies showing that 

the bypass of a TT(6-4) lesion often requires the concerted action of two polymerases. In vitro, it has 

been shown that Polη is able to insert a nucleotide opposite the 3�’T of the TT(6-4) photoproduct but 
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unable to extend the mismatched termini while Polζ is specialized for the extension step (Johnson et 

al., 2001). The precise role of Rev1 is still not known but given its known interactions with Polζ and 

Polη, it has been suggested that Rev1 acts as a cofactor that mediates the switching between the two 

polymerases (Friedberg et al., 2005). The residual low level of error-free TLS events (0.2-0.4%) that is 

observed upon inactivation of the Polη /Polζ /Rev1 pathway and also in the pcn1-K164R strain most 

likely reflects a small contamination of the TT(6-4) construct with lesion-free oligonucleotide. In strains 

that affect only poly- (∆rad8, ∆ubc13 or ∆mms2) or both mono- and poly-ubiquitination (∆rhp18 or pcn1-

K164R) of PCNA, we observe a reduction in TLS similar to that found in the Polη or Polζ deficient 

strains suggesting that the Polη /Polζ pathway requires PCNA ubiquitination and the action of the 

Rad8Rad5/Ubc13-Mms2 complex. In a Polη or Polζ deficient background, inactivation of rad8 or rph18 

did not further reduce the level of TLS. In conclusion, the error-free TLS pathway across TT(6-4) 

involves the combined action of Polη Polζ and Rev1. Similarly to TT-CPD bypass it also requires the 

Rad8Rad5/Ubc13-Mms2 complex most likely for its role in PCNA poly-ubiquitination (Fig 5B).  

 Mutagenic TLS pathway across TT(6-4) (Fig 4B): The mutagenic bypass pathway accounts for 

about one quarter (0.4%) of all TLS events across the TT(6-4) lesion. Inactivation of each of Pol η, or 

Polκ or Polζ or Rev1 did not yield a significant decrease in the efficiency of mutagenic bypass of the 

TT(6-4) photoproduct compared to the parental strain. Moreover, in a pol4∆ (Polµ) strain (Gonzalez-

Barrera et al., 2005) no reduction in mutagenic TLS efficiency was observed (Fig 4B). However, in a 

triple polymerase mutant (Polη  Polκ Polζ ) we see a distinct decrease in the mutagenic bypass 

efficiency (Fig 4B). In contrast, in S. cerevisiae, mutagenic TLS across TT(6-4), i.e. the mis-insertion of 

a G across the 3�’-T, is mediated by Polη followed by Polζ extension (Bresson and Fuchs, 2002).  

 There was no significant reduction in TLS in any of the three strains that abrogate poly-

ubiquitination of PCNA (∆rad8, ∆ubc13 or ∆mms2). However, mutagenic TLS was strongly reduced 

when mono-ubiquitination of PCNA was also suppressed (∆rhp18 or pcn1-K164R), indicating that this 

pathway requires mono-ubiquitinated PCNA but not the Rad8Rad5/Ubc13-Mms2 ubiquitin ligase 

complex. Similarly, in a ∆rad30 (Polη) background, while inactivation of rad8 did not reduce TLS, 

inactivation of rph18 dramatically reduced mutagenic TLS.  

 In conclusion, mutagenic TLS across TT(6-4) requires the mono-ubiquitinated form of PCNA 

and is suppressed upon simultaneous inactivation of Polη, Polζ and Polκ (Fig 5B). 
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Discussion:  
  Recently, TLS pathways across specific UV lesions have been investigated in mice and human 

cells using either a gap-filling assay (Shachar et al., 2009) or an SV40-based double-stranded plasmid 

DNA replication assay (Yoon et al., 2009). These papers identify the nature of the specific 

combinations of specialized DNA polymerases involved in these pathways. In the present paper, in 

addition to the determination of the specific DNA polymerases involved in the bypass of these lesions 

in S. pombe, we focus on the control of these TLS pathways by the PRR genes involved in the post-

translational modification of PCNA by ubiquitin in S. pombe.  
 Genetic control of TLS pathways in S. pombe (Fig 5). In the present work we describe the 

genetic control of TLS across two common UV-induced lesions, TT-CPD and TT(6-4), in S. pombe. For 

each lesion, the major TLS pathway is error-free and requires a specific combination of TLS 

polymerases, namely Polη / Polκ and Polη  / Polζ / Rev1 for TT-CPD and TT(6-4), respectively. As 

previously found in S. cerevisiae and in human cells, a point mutation in the replication processivity 

factor PCNA at position K164, that abolishes Rad6/Rad18-mediated ubiquitination, also eliminates TLS 

(Hoege et al., 2002; Kannouche et al., 2004; Stelter and Ulrich, 2003). Surprisingly however, in S. 
pombe, TLS also requires a functional Rad8Rad5/Ubc13-Mms2 ubiquitin ligase complex. This complex is 

known to be responsible for the formation of K63-linked poly-ubiquitin chains added onto the K164-

linked mono-ubiquitin in PCNA (Parker and Ulrich, 2009; Ye and Rape, 2009). While we have not 

formally proven that the observed defect in TLS in ∆rad8, ∆ubc13 or ∆mms2 strains solely reflects a 

deficiency in PCNA poly-ubiquitination, this is very likely since PCNA is the only known 

polyubiquitination target for the Rad8Rad5, and rad8 and mms2 are epistatic with pcn1-K164R for UV 

survival (Frampton et al., 2006). 

Damage avoidance. Any damage avoidance events occurring in our system would not be 

scored, as they would result in white colonies. However we do not think that they contribute 

significantly in our system for the following reasons: (i) DA events, such as template switching or fork 

regression, require the two sister chromatids to be maintained in close proximity, a structure formed 

upon transient replication fork stalling. As discussed above, the plasmid probes used in the present 

work are fully unwound by the replicative helicase, thus not forming the intermediate structures prone 

to undergo DA events. (ii) If DA did indeed contribute significantly in this system and poly-ubiquitination 

of PCNA stimulated this process, we would expect that deletion of the genes involved in this process 

would result in a decrease in the number of white colonies, and therefore a consequent increase in the 

proportion of blue colonies. In fact we observed the opposite, a decrease in the proportion of blue 

colonies. 

 A possible model for the requirement of polyubiquitination of PCNA in TLS. The present results 

suggest that, in S. pombe, polyubiquitination of PCNA is important for TLS pathways involving two 

specialized DNA polymerases, as exemplified here for the error-free bypass pathways of TT-CPD and 
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TT(6-4) (Fig 5). How may polyubiquitination of PCNA facilitate TLS ? Although we have no biochemical 

evidence as yet, it is tempting to speculate that the polyubiquitin chains facilitate TLS by assisting the 

recruitment on PCNA of the various factors involved in lesion bypass. We propose a model referred to 

as the �“hanging tool-belt�” model in which the coordinated action of two polymerases is facilitated by the 

concomitant interaction of their UBM or UBZ motifs with distinct ubiquitin moieties in the poly-ubi chain 

on PCNA. For TT-CPD bypass Polη and Polκ would thus be recruited, while Polη and Polζ would be 

enlisted via Rev1 for TT(6-4) bypass. While S. pombe Rev1 contains three UBM motifs (two in other 

organisms), Polη and Polκ contain one UBZ motif (though Polκ has two in other organisms). 

Recruitment of proteins via multiple interactions with distinct ubiquitin moeties in K63-linked chains has 

gained recent experimental evidence (Sato et al., 2009; Walters and Chen, 2009). The two ubiquitin 

interacting motifs (UIM1 and UIM2) present in protein Rap80 (Receptor associated protein 80) were 

shown to interact simultaneously with two neighbouring K63-linked ubiquitin moieties, thereby resulting 

in recruitment of the BRCA1-Rap80 to K63-linked poly ubi chains on H2AX in response to double-

strand breaks. The assembly of the proteins that will form a complex competent for TLS may thus arise 

from the sum of various interactions involving direct interaction between the proteins themselves 

(PCNA-Polymerases, Polymerases-Polymerases) and/or between ubiquitin binding sites with 

polyubiquitin chains.  

 Differences between S. pombe and S. cerevisiae in PRR control. The genetic control of TLS 

past an AP site in S. cerevisiae involves the mono-ubiquitinated form of PCNA as well as the Rad5 

protein in a function that does not require its helicase or ubiquitin ligase activities (Pages et al., 2008). 

The involvement of Rad5 in TLS has also been observed for the bypass of TT(6-4) and G-AAF adducts 

(Pages et al., 2008; Zhang and Lawrence, 2005). In S. cerevisiae, TLS was not affected in mms2∆ or 

ubc13∆ strains, suggesting that the role of Rad5 in TLS is distinct from its role as a partner of the E2-

E3 ubiquitin complex (Pages et al., 2008). The role of Rad5 in TLS in S. cerevisiae is thus likely to be a 

�‘structural�’ role, Rad5 mediating the switch between two specialized DNA polymerases (Pages et al., 

2008). In contrast, in S. pombe, error-free TLS across TT-CPD or TT(6-4) is equally affected in all three 

mutants (rad8∆ or ubc13∆ mms2∆) that inactivate the E2-E3 complex (Fig 3 and 4). The notion that 

Rad5 in S. cerevisiae and Rad8Rad5 in S. pombe play distinct roles in the PRR pathways is also 

supported by UV survival data. Whereas in S. cerevisiae, the UV sensitivity of rad5∆ mutants is much 

more pronounced than that of mms2∆ and ubc13∆ strains (Gangavarapu et al., 2006), the UV-

sensitivities of rad8∆, mms2∆ and ubc13∆ strains are similar in S. pombe and the three strains are 

epistatic (Frampton et al., 2006).  

In conclusion, the present work questions the accepted dogma for the role played by poly-

ubiquitination of PCNA in postreplication repair and highlights major differences between S. cerevisiae 

and S. pombe in the control of post-replication repair strategies. These observations warn us against 
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hazardous extrapolation from S. cerevisiae to S. pombe and even more so to human cells even though 

these organisms share sets of homologous PRR genes.  

Materials and Methods 
 
General Techniques 
S. pombe methods and media have been described in Moreno et al (Moreno et al., 1991). 

 

Strains 
The S. pombe strains used in this study are listed in table 1. Each mutant strain was checked by 

PCR to verify that it contained the correct genomic alteration, and its phenotype was examined to 

ensure its consistency with expectation. The polη deficient strain was made by replacement of the 

Rad30 domain of Eso1 protein by the KanMX6 cassette. The essential Ctf7 domain of Eso1 is under 

the control of the nmt promoter. This construct has been checked by southern blot and no phenotypical 

differences were observed between wild-type and ∆rad30 mutant. Rhp6 proved to be unsuitable for 

experimental use because of its propensity to acquire suppressor mutations. To create the strain pcn1-
K164R::KanMX6, a DNA fragment was generated by overlap PCR containing pcn1-K164R (Frampton 

et al., 2006) fused to the KanMX6 cassette flanked with 5�’UTR and 3�’UTR of the pcn-1 locus. This PCR 

fragment has been use to replace the wild-type copy of pcn-1 in the S. pombe genome. We confirmed 

that the strain was UV sensitive and verified that no ubiquitinated form of PCNA was detected by 

Western Blot (data not shown and Fig S1B). 

We performed the colony-based TLS assay in strains that were deficient for the NER, UVR and 

MMR (num). In these strains, essential genes swi10, uve1 and mlh1 of the NER, UVR and MMR 

pathways were knocked-out, respectively (Bahler et al., 1998; Sato et al., 2005). We confirmed the 

extreme sensitivity to low doses of UV of the num strain (Figure S1A) and we verified that the PCNA 

ubiquitination profile of PRR mutants was not affected in a num background (Figure S1B). 

The MGZ E. coli strain (LacIq ∆lacZ(M15)lacY ::Tn10 mini-tet) is used for the TLS assay. 

 

Plasmid construction 
Single-adducted plasmids pSP-TT-CPD and pSP-TT(6-4) were constructed by ligation of an 

oligonucleotide containing either a single TT-CPD dimer or a TT-(6-4) photoproduct (5�’- G CAA GTT 

AAC ACG) into a �“gapped-duplex�” plasmid constructed in vitro as described elsewhere (Becherel and 

Fuchs, 1999; Burnouf et al., 1989). These plasmids contain a short sequence heterology opposite the 

lesion site to allow independent assessment of the replication product of the two strands (Fig 1A). 

Covalently closed circular constructs are isolated by centrifugation on CsCl/ethidium bromide gradients. 

All plasmids are pUC derivatives containing a ColE1 origin and ampR cassette for E. coli manipulation. 

The plasmids also contain the bidirectional ARSDblet as replication origin in S. pombe cells (Brun et al., 
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1995) and the ura4 cassette to allow selection of transformants. The ARSDblet and Ura4 cassette were 

amplified by PCR and inserted at the unique NdeI site of the pCUL+ vector serie. The UV lesion is 

located in the N-terminal region of the lacZ’ gene 300 nucleotides from the ARSDblet thus ensuring that 

the lesion is present in the leading strand during DNA replication. 

 

TLS assay 
S. pombe cell were grown in YES medium to OD600=0.5, then prepared for electroporation as 

described in (Suga and Hatakeyama, 2001). 100ng of single-lesion plasmid were electroporated into 

200ul freshly prepared competent cells (Fig 1B). Electroporated cells were then plated onto selective 

medium lacking uracil (LAH) to allow selection of cells that have received the plasmid. Plates were 

incubated at 30°C until colonies appeared (approximately 72h). Transformed cells were collected and 

the total DNA extracted as described in (Beach et al., 1982) and subjected to DpnI digestion. Plasmid 

DNA was then transformed into MGZ E. coli strain and plated onto Lac indicator plates (X-

Gal/IPTG/Ampicillin/Tetracyclin LB). After an incubation of 20h at 37°C, the proportion of total TLS is 

determined as the number of blue colonies over the total number of colonies. Each determination is the 

average of three independent experiments resulting from the examination of several thousands 

colonies for each strain. The standard error of the mean (SEM) is represented by the error-bars. 

To determine the percentage of mutagenic bypass, blue colonies are isolated and 

minipreparation of plasmid are performed and subjected to HpaI/XhoI double enzymatic digestion. 

Because of the presence of the HpaI site (gttaac) at the lesion site and of the unique XhoI site, double 

enzymatic digestion generates a 1500 bp fragment if the replication of the single-lesion plasmid has 

occurred in a TLS error-free manner. In case of mutagenic bypass at the lesion site, the HpaI site is 

absent and the double enzymatic digestion generates a unique fragment of 5700bp corresponding to 

the XhoI-linearized plasmid. The extent of error-free and mutagenic TLS is thus determined as a 

fraction of total TLS. The nature of the mutagenic TLS events is determined by sequence analysis 

using the following sequencing primer: 5�’gcggtgtgaaataccgcacag. 
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Figure legends : 
 

Figure 1: Outline of the TLS assay in S. pombe: 

A. Scheme of the pSP-TT plasmid construct. The shuttle plasmid contains the ColE1 origin, the ampR 

resistance cassette, the bidirectional S. pombe ARSDblet replication origin and the URA4 marker for 

propagation and selection in E. coli and S. pombe, respectively. The single TT lesion, either a 

cyclobutane (CPD) or 6-4 photoproduct, is located at the beginning of the lacZ’ reporter gene opposite 

a short sequence heterology. Replication of the lesion-containing strand (DAMAGED strand) by TLS 

yields a functional lacZ’ gene whatever nucleotides are inserted opposite the TT lesion while the NON-

DAMAGED strand carries a +1 frameshift that prevents lacZ expression.  

B. Flow chart of the experimental design. The covalently closed circular plasmid carrying the single 

lesion is introduced into S. pombe cells by transformation. Following a 72h period of replication in the 

yeast cells, the plasmid is extracted, the DpnI resistant plasmid replication products are transformed 

into E. coli cells and plated on ampicillin X-gal plates. The relative TLS efficiency (RTE) across a given 

lesion (TLS %) is defined as the proportion of blue colonies (LacZ+) divided by the total number of 

colonies multiplied by two (see results paragraph). The TLS events (blue colonies) are further analyzed 

by sequencing to determine the respective proportions of error-free and mutagenic TLS events. 

 

Figure 2: Validation of the TLS assay 

A. Kinetics of replication of a lesion free pSP plasmid in S. pombe. At various time points, total DNA 

was extracted from aliquots of the culture and subjected or not to DpnI digestion. We monitor the 

kinetics of appearance of plasmid DNA replicated in S. pombe cells by assessing the amount of 

colonies formed in E. coli. The plasmid replicated in S. pombe is represented by DpnI treated sample 

(black bar) and the total amount of plasmid extracted (no DpnI treatment: grey bar). At time point 46h, 

essentially all plasmids extracted from S. pombe are resistant to DpnI digestion, proving that they have 

been replicated in the yeast cells.  

B. S. pombe transformation efficiency with control, TT-CPD and TT(6-4) plasmids in the parental 

numWT strain.  

C. TLS assay in the parental numWT strain with lesion-free control plasmid (CONTROL) and plasmids 

carrying a single TT-CPD or TT(6-4) lesion. The relative amounts of white and blue colonies are 

determined in E. coli following replication in S. pombe during 72h. The proportions expressed are % is 

indicated on top of each bar. Error bars result from at least three independent experiments. As 

expected, with the lesion-free control plasmid both strands yield a similar number of plasmid progeny. 

We have no explanation for the slight bias (55:45) that is observed. With the lesion containing 
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constructs, the proportion of blue colonies dramatically decreases, reflecting the replication blocking 

potential of the lesions (see text). 

 

Figure 3: Genetic control of the error-free TLS pathways across TT-CPD in S. pombe. The relative TLS 

efficiency is monitored in various strains carrying mutations in genes coding for DNA polymerases 

specialized in TLS or in genes affecting the ubiquitination status of PCNA or combination mutants.  For 

sake of clarity, the strains are grouped with respect to the status of PCNA ubiquitination. Error bars 

result from at least three independent experiments. For TT-CPD essentially all TLS events (>99%) are 

error-free in the parental strain. For all tested strains, the efficiencies of transformation lie within a 

range comprised between 5 to 10.105 colonies/µg of DNA. 

 

Figure 4: Genetic control of TLS pathways across TT(6-4) in S. pombe. the relative TLS efficiency is 

monitored in various strains as described in figure 3. Error bars result from at least three independent 

experiments. For all tested strains, the efficiencies of transformation lie within a range comprised 

between 5 to 10.105 colonies/µg of DNA. 

A. Error-free TLS pathway across TT(6-4).  

B. Mutagenic TLS pathway across TT(6-4). 

 

Figure 5: The �“hanging tool-belt�” model: recruitment of multiple TLS polymerases by PCNA poly-

ubiquitination in S. pombe. The major TLS pathways across TT-CPD (panel A) or TT(6-4) (panel B) 

lesions in S. pombe are error-free and involve distinct sets of TLS polymerases: Polη and Polκ for TT-

CPD, Polη, Rev1 and Polζ for TT(6-4). These pathways strictly depend upon ubiquitination at residue 

K164 of PCNA via the Rad6/Rad18 complex. Moreover, these TLS pathways require a functional 

Rad8Rad5/Ubc13-Mms2 complex that is known to attach K63-linked polyubiquitin chains to mono-

ubiquitinated PCNA. We propose that in addition to the known interactions of these polymerases with 

PCNA (or among themselves), their interaction with the K63-linked polyubiquitin chain of PCNA 

facilitates their assembly into multi-polymerase complexes involved in TLS. In S. pombe, Polη and 

Polκ possess one UBZ domain, while Rev1 contains three UBM domains. Several minor TLS pathways 

are also inferred from careful analysis of the genetics data.  

 
Legend Figure S1:  
A. Fivefold serial dilutions of S. pombe strains were spotted on YES agar medium. Plates were then 

exposed to the indicated doses of UV light before being incubated at 30°C for 72h. The numWT strain 

in which essential genes swi10, uve1 and mlh1 of the NER, UVR and MMR pathways respectively were 

knocked-out displays an extreme sensitivity to low doses of UV. 
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B. The num genetic background does not affect the PCNA ubiquitination profile. PCNA is detected as it 

as been previously described (Frampton et al., 2006). The PCNA ubiquitination profile is identical in 

WT, pcn1-K164R, ∆rhp18, ∆rad8, ∆ubc13 and ∆mms2 strains in a wild-type or num genetic 

backgrounds in normal condition or in presence of 10mM HU. We concluded that the num genetic 

background does not modify the PCNA ubiquitination profile. 
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Table I : S. pombe  strains used in this study 

Strain Disruption Origin 
PR109 wild type none P. Russell 
SC323 pcn1-K164R pcn1-K164R::kanMX6 this study  
SC248 ∆rhp18 rhp18::hph this study 
SC210 ∆rad8 rad8::hph this study 
SC196 ∆ubc13 ubc13::kanMX6 Frampton, 
2006 
SC277 ∆mms2 mms2::kanMX6 Frampton, 
2006 
SC215 ∆dinB dinB::kanMX6 this study 
SC217 ∆rev1 rev1::kanMX6 this study 
SC216 ∆rev3 rev3::kanMX6 this study 
SC260 ∆rad30 rad30:: kanMX6 – nmt eso1 Kai, 2003 
SC206 ∆uve1 uve1::leu2 P. Russell 
SC220 ∆swi10 swi10::hph this study 
SC224 ∆swi10 ∆uve1 swi10::hph uve1::leu2 this study 
SC229 ∆swi10 ∆uve1 ∆mlh1 swi10::hph uve1::leu2 mlh1::kanMX6 this study 
SC256 ∆swi10 ∆uve1 ∆mlh1 ∆rhp18 swi10::hph uve1::leu2 mlh1::kanMX6 rhp18::hph this study 
SC336 ∆swi10 ∆uve1 ∆mlh1 pcn1-K164R swi10::hph uve1::leu2 mlh1::kanMX6 this study 
 pcn1-K164R::kanMX6 
SC241 ∆swi10 ∆uve1 ∆mlh1 ∆rad8 swi10::hph uve1::leu2 mlh1::kanMX6 rad8::hph this study 
SC266 ∆swi10 ∆uve1 ∆mlh1 ∆ubc13 swi10::hph uve1::leu2 mlh1::kanMX6 ubc13::kanMX6 this study 
SC286 ∆swi10 ∆uve1 ∆mlh1 ∆mms2 swi10::hph uve1::leu2 mlh1::kanMX6 mms2::kanMX6 this study 
SC272 ∆swi10 ∆uve1 ∆mlh1 ∆rad30 swi10::hph uve1::leu2 mlh1::kanMX6 rad30::kanMX6 this study 
SC251 ∆swi10 ∆uve1 ∆mlh1 ∆dinB swi10::hph uve1::leu2 mlh1::kanMX6 dinB::kanMX6 this study 
SC252 ∆swi10 ∆uve1 ∆mlh1 ∆rev1 swi10::hph uve1::leu2 mlh1::kanMX6 rev1::kanMX6 this study 
SC254 ∆swi10 ∆uve1 ∆mlh1 ∆rev3 swi10::hph uve1::leu2 mlh1::kanMX6 ubc13::kanMX6 this study 
SC370 ∆swi10 ∆uve1 ∆mlh1∆pol4 swi10::hph uve1::leu2 mlh1::kanMX6 pol4::kanMX6 this study 
SC295 ∆swi10 ∆uve1 ∆mlh1 ∆rad30 ∆dinB swi10::hph uve1::leu2 mlh1::kanMX6 rad30::kanMX6 this study 
 dinB::kanMX6 
SC359 ∆swi10 ∆uve1 ∆mlh1 ∆rad8 ∆rad30 swi10::hph uve1::leu2 mlh1::kanMX6 rad8::kanMX6 this study 
 rad30::kanMX6 
SC362 ∆swi10 ∆uve1 ∆mlh1 ∆rad8 ∆rev1 swi10::hph uve1::leu2 mlh1::kanMX6 rad8::kanMX6 this study 
 rev1::kanMX6 
SC363 ∆swi10 ∆uve1 ∆mlh1 ∆rad8 ∆rev3 swi10::hph uve1::leu2 mlh1::kanMX6 rad8::kanMX6 this study 
 rev3::kanMX6 
SC360 ∆swi10 ∆uve1 ∆mlh1 ∆rad30  ∆rhp18 swi10::hph uve1::leu2 mlh1::kanMX6 rad30::kanMX6 this study 
  rhp18::hph 
SC378 ∆swi10 ∆uve1 ∆mlh1 ∆rad30 ∆dinB swi10::hph uve1::leu2 mlh1::kanMX6 rad30::kanMX6 this study 
 ∆rev1 dinB::kanMX6 rev1::kanMX6  
SC381 ∆swi10 ∆uve1 ∆mlh1 ∆rad30 ∆dinB swi10::hph uve1::leu2 mlh1::kanMX6 rad30::kanMX6 this study 
 ∆rev3 dinB::kanMX6 rev3::kanMX6 
SC383 ∆swi10 ∆uve1 ∆mlh1 ∆rad30 ∆dinB swi10::hph uve1::leu2 mlh1::kanMX6 rad30::kanMX6 this study 
 ∆rev1 ∆rev3 dinB::kanMX6 rev1::kanMX6 rev3::kanMX6 
 
All strains are derivatives of the ura-D18, leu1-32 genotype 
 
 



 

Table II : Mutagenesis spectrum in response to TT(6-4) bypass 

 
Strain Number of Error-free Mutagenic Sequence 
 colonies analyzed Colonies Colonies 5’ 3’ 
 
num parental 33 24 9 TT to TC (6) 
    TT to CC (3) 
 
num rad30- 20 10 10 TT to TC (5) 
    TT to CC (3) 
    TT to CC+ (2) 
 
num dinB- 31 25 6 TT to TC (3) 
    TT to CC (3) 
 
num rev1- 27 10 17 TT to TC (11) 
    TT to CC (6) 
 
num rev3- 47 23 24 TT to TC (4) 
    TT to CC (19) 
    TT to CC+ (1) 
 
num rad8- 49 25 24 TT to TC (12) 
    TT to CC (12)  
 

num ubc13- 47 28 19 TT to TC (2) 
    TT to CC (16) 
    TT to AC (1) 
 
num mms2- 23 13 10 TT to TC (5) 
    TT to CC (4) 
    TT to AC (1) 
 
num K164R  17 16 1 TT to CC (1) 
 
 
num rhp18- 27 23 4 TT to TC (1) 
    TT to CC (3) 
 
(+) additional mutations in the vicinity of the lesion 
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