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Using isospin relations, we predict the standard model correlation between S�0KS
� ðsin2�Þ�0KS

and

A�0KS
, the mixing-induced and direct CP asymmetries of B0 ! �0KS. The calculation uses flavor SUð3Þ

only to fix the isospin-3=2 amplitude through the B� ! ���0 branching ratio, and thus has a small

irreducible theoretical error. It can reach percent level precision thanks to expected future lattice-QCD

progress for the calculation of the relevant SUð3Þ-breaking form-factor ratio, and serves as a benchmark

for new-physics searches. We obtain an interesting picture in the A�0KS
–S�0KS

plane, where the current

experimental data show a discrepancy with the standard model, and comment on the direct CP

asymmetries of B0 ! ��Kþ and Bþ ! �0Kþ. A modified electroweak penguin with a large new

CP-violating phase can explain the discrepancy and allows us to accommodate also the corresponding

data for other b ! s penguin-dominated decays.

DOI: 10.1103/PhysRevD.78.111501 PACS numbers: 13.25.Hw, 11.30.Er

Intriguing experimental results for observables of non-
leptonic b ! s decays [1] have been receiving consider-
able attention for several years, where the ‘‘B ! �K
puzzle’’ is an important example (see, e.g., [2–7]). The
challenge is to disentangle possible signals of new physics
(NP) from uncertainties that are related to strong interac-
tions. In this context, a particularly interesting probe is
offered by the time-dependent CP asymmetry in B0 !
�0KS,

�ð �B0ðtÞ ! �0KSÞ � �ðB0ðtÞ ! �0KSÞ
�ð �B0ðtÞ ! �0KSÞ þ �ðB0ðtÞ ! �0KSÞ
¼ A�0KS

cosð�MdtÞ þ S�0KS
sinð�MdtÞ; (1)

where S�0KS
arises from interference between mixing and

decay, and A�0KS
is the ‘‘direct’’ CP asymmetry. In the

standard model (SM), we have—up to doubly Cabibbo-
suppressed terms—in the following expressions [8]:

A�0KS
� 0; S�0KS

� ðsin2�Þ�0KS
� sin2�; (2)

where � is one of the angles in the standard unitarity
triangle of the Cabibbo-Kobayashi-Maskawa matrix. The
current world average is [1]

ðsin2�Þ�0KS
¼ 0:58� 0:17; (3)

which should be compared with the ‘‘reference’’ value
following from B0 ! J=cKS and similar modes

ðsin2�ÞJ=cKS
¼ 0:681� 0:025: (4)

The search for NP signals in the CP asymmetries of
B0 ! �0KS requires a reliable SM prediction of S�0KS

and/

or A�0KS
. In this paper, we show that S�0KS

can be calcu-

lated in the SM as a function of A�0KS
, with projected

irreducible theoretical errors at the percent level. The
starting point is the isospin relation [9]

ffiffiffi

2
p

AðB0 ! �0K0Þ þ AðB0 ! ��KþÞ
¼ �½ðT̂ þ ĈÞei� þ P̂ew� � 3A3=2; (5)

a similar relation holds for the CP-conjugate amplitudes,

with A3=2 ! �A3=2 and � ! ��. Here, T̂, Ĉ and P̂ew are,

respectively, the color-allowed tree, color-suppressed tree,
and electroweak penguin (EWP) contributions [10]. The
subscript of A3=2 reminds us that the �K final state has

isospin I ¼ 3=2, so that the individual QCD penguin con-
tributions cancel in (5). S�0KS

can be written as

S�0KS
¼ 2j �A00A00j

j �A00j2 þ jA00j2
sinð2�� 2��0KS

Þ; (6)

with A00 � AðB0 ! �0K0Þ and �A00 � Að �B0 ! �0 �K0Þ
[11]. If A3=2 and �A3=2 are known, 2��0KS

¼ argð �A00A
�
00Þ

can be fixed through (5), as shown in Fig. 1. In order to
determine A3=2, we first rewrite the lower line of (5) as

3A3=2 ¼ �ðT̂ þ ĈÞðei� � qei!Þ: (7)

In the SM, the ratio qei! � �P̂ew=ðT̂ þ ĈÞ is given by

qei! ¼ �3

2�2Rb

C9ð�Þ þ C10ð�Þ
C1ð�Þ þ C2ð�Þ Rq ¼ 0:66� 0:41

Rb

Rq;

(8)

where � � jVusj ¼ 0:22, Rb ¼ 0:41� 0:04 / jVub=Vcbj
is a unitarity triangle side (value follows from [12]), and
the Cs are Wilson coefficients. If we assume exact SUð3Þ
flavor symmetry and neglect penguin contractions, we
have Rq ¼ 1 [11,13], while we shall use Rq ¼ 1� 0:3

for the numerical analysis (results are robust with respect
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to the strong phase !). Since qei! factorizes at leading
order in the 1=mb expansion, Rq can be well predicted

using factorization techniques and future input from lattice
QCD.

SUð3Þ flavor symmetry allows us furthermore to fix

jT̂ þ Ĉj through the b ! d decay Bþ ! �þ�0 [14]

jT̂ þ Ĉj ¼ RTþCjVus=Vudj
ffiffiffi

2
p jAðBþ ! �þ�0Þj; (9)

where the tiny EWP contributions to Bþ ! �þ�0 were
neglected, but could be included using isospin [11,15]. We
stress that (9) does not rely on further dynamical assump-
tions. For the SUð3Þ-breaking parameter RTþC � fK=f�,
we use the value 1:22� 0:2, where the error is quite
conservative, as discussed below.

Relations (7)–(9) allow us to determine A3=2 and �A3=2,

thereby fixing the two isospin triangles in Fig. 1. Since the
triangles can be flipped around the A3=2 and �A3=2 sides, we

encounter a fourfold ambiguity (not shown). Using (6),
S�0KS

is determined as well. The corresponding prediction

is shown in Fig. 2, where we keep A�0KS
as a free parame-

ter. For the implementation of this construction, we express
the curves in Fig. 2 in parametric form [2] as functions of a
strong phase �c, defined through

rce
i�c ¼ ðT̂ þ ĈÞ=P̂; (10)

where P̂ is the B0 ! ��Kþ penguin amplitude [10]. We
find that no solutions exist for certain ranges of �c, sepa-
rating the full [0	, 360	] range into two regions. They
contain �c ¼ 0	 or 180	 and correspond to the left and
right panels of Fig. 2, respectively. As one circles the
trajectory in either panel by changing �c, each value of
this strong phase in the respective interval is attained twice.
In order to illustrate this feature, we show—for central
values of the input data/parameters—points corresponding
to various choices of �c. The bands show the 1� variations
obtained by adding in quadrature the errors due to all input
data/parameters. Moreover, we assume � ¼ 65	 � 10	
[16,17]. This angle will be determined with excellent
accuracy thanks to CP violation measurements in pure
tree B decays at the LHCb experiment (CERN).
In order to resolve the fourfold ambiguity in Fig. 2, we

need further information on rc, �c: i) rc can be determined

if we fix jT̂ þ Ĉj through BRðBþ ! �þ�0Þ [see (9)] and

jP̂j through BRðBþ ! �þK0Þ / jP̂j2 þ . . . , where the
dots represent negligible doubly Cabibbo-suppressed
terms that are already strongly constrained by data [18].
In the left panel of Fig. 3, the corresponding rc constraint is
shown at the ‘‘charged’’ circle. ii) Using the SUð3Þ flavor
symmetry and other plausible dynamical assumptions [2],
a fit to all available B ! �� data yields the �� curves.
Since BaBar and Belle do not fully agree on the measure-
ment of the direct CP asymmetry in B0 ! �þ�� [1], we
show in the right panel of Fig. 3 the corresponding allowed
regions separately. We observe that the data imply �c �
ð0–30Þ	, in agreement with the heavy-quark expansion
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FIG. 2 (color online). The SM constraints in the A�0KS
–S�0KS

plane, as explained in the text. Left panel: contains �c � 0	 (consistent
with QCD), with �c ¼ �60	 (small circle),�30	 (large circle), 0	 (star), 30	 (large square), 60	 (small square). Right panel: contains
�c � 180	 (not consistent with QCD), with �c ¼ 120	 (small circle), 150	 (large circle), 180	 (star), 210	 (large square), 240	 (small
square). The shaded horizontal bands represent the value of ðsin2�ÞJ=cKS

in (4).

FIG. 1. The isospin relations (5) in the complex plane. The
magnitudes of the amplitudes, jAijj � jAðB ! Ki�jÞj and

j �Aijj � j �AðB ! Ki�jÞj, can be obtained from the corresponding

branching ratios and direct CP asymmetries listed in Table I,
while A3=2 and �A3=2 are fixed through (8) and (9).
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analyses in [4,19,20], differing in their treatment of non-
perturbative charm-penguin contributions. Consequently,
we can exclude the solutions shown in the right panel of
Fig. 2, and are left with the twofold solution in the left
panel. However, the lower band corresponds to rc values of
the ‘‘neutral’’ region in the left panel of Fig. 3 that are far
off the right of the displayed region, drastically inconsis-
tent both with the B ! �� data and with the heavy-quark
limit.

Consequently, we are left with the thin horizontal part of
the upper band in the left panel of Fig. 2, which we show
enlarged in Fig. 4. Using the experimental value for A�0KS

,

we obtain the SM prediction

S�0KS
¼ 0:99þ0:01

�0:08jexp
þ0:000

�0:001
jRTþC

þ0:00

�0:11
jRq

þ0:00

�0:07
j�;
(11)

which is about 2 standard deviations away from the ex-
perimental result in (3). It should be noted that (11) de-
pends on the input data collected in Table I.
In Fig. 4, we show the future theory error benchmark for

the SM constraint in the A�0KS
–S�0KS

plane. Both Rq (8)

and RTþC (9) factorize at leading order in the 1=mb ex-
pansion, and can be well predicted using input from lattice
QCD. It should be stressed that ‘‘charming penguins’’ do
not enter these ratios. As a working tool, we use the
approach of Beneke, Buchalla, Neubert, and Sachrajda
(BBNS)[4,19], but similar conclusions can be reached
using Ref. [20] (where also derivatives of form factors
would be needed). The key parameter is Rq, which domi-

nates the current theoretical error (11). Its uncertainty is
governed by the SUð3Þ-breaking form-factor ratio 	�K �
FB!Kð0Þ=FB!�ð0Þ. If we assume 	�K ¼ 1:2ð1� 0:03Þ,
i.e., a 20% determination of the SUð3Þ-breaking correc-
tions, as an optimistic—but achievable—goal for lattice

QCD, we obtain the BBNS result Rq ¼
ð0:908þ0:052

�0:043Þeið0þ1
�1

Þ	 , to be compared with the present value

Rq ¼ ð1:02þ0:27
�0:22Þeið0þ1

�1
Þ	 [21]. Similarly, we find RTþC ¼

1:23þ0:02
�0:03, where the increase of precision is very mild as

the form-factor dependence essentially cancels out.
Setting, moreover, the uncertainties of the experimental
inputs to zero, while keeping central values fixed, we
obtain a prediction of S�0KS

with errors at the percent level,

as shown in Fig. 4. Consequently, the irreducible theory
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FIG. 3 (color online). The constraints on rce
i�c that follow from the current data, as discussed in the text. Left panel: B ! �K and

B ! �� constraints (the symbols to label �c correspond to those in Fig. 2). Right panel: B ! �� constraints for the BaBaR and Belle
data for A�þ�� and the HFAG average. The solid and dotted lines refer to 1� and 90% C.L. ranges, respectively.
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FIG. 4 (color online). The correlation in the A�0KS
–S�0KS

plane
for a future benchmark scenario (narrow band) in comparison
with the current situation (wider band), as explained in the text.

TABLE I. World averages of experimental data after ICHEP08
used in the numerical analyses (see also [1]).

Mode BR [10�6] ACP SCP

�B0 ! �þK� 19:4� 0:6 �0:098� 0:012 –
�B0 ! �0 �K0 9:8� 0:6 �0:01� 0:10 0:58� 0:17
Bþ ! �þ�0 5:59� 0:41 � 0 –

B0 ! �þ�� 5:16� 0:22 0:38� 0:06 �0:65� 0:07
B0 ! �0�0 1:55� 0:19 0:43� 0:25 –
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error of our proposed method for predicting S�0KS
in the

SM is much smaller than in calculations using only the
1=mb expansion, and makes it promising for a future eþe�
super-B factory (for a review, see, e.g., Ref. [22]).

Before turning to the interpretation of the current ex-
perimental data in terms of NP, let us briefly comment on
the difference of direct CP asymmetries A�0Kþ � A��Kþ ,
which recently received quite some attention as a possible
sign of NP [23]. Figure 5 shows the SM correlation be-
tween this difference and the CP asymmetry A�0KS

, keep-

ing A��Kþ fixed. It depends on CP-averaged B ! �K
branching ratios and �, and becomes equivalent to the
sum rule for rate differences [24] when neglecting higher
orders in subleading amplitudes. We see that current data

(cross) can be accommodated in the SMwithin the error on
A�0KS

, although hadronic amplitudes then deviate from the

1=mb pattern (see also Ref. [7]). It would be desirable to
reduce this uncertainty in the future.
Let us now consider a NP scenario, which allows us to

resolve the discrepancy between (3) and (11). Following
[2], we assume that NP manifests itself effectively in the
data as a modified EWP with a CP-violating NP phase �,
i.e., q ! qei� in (7). Here, q can differ from the SM value
in (8). Since �c is rather small, the impact of this type of
NP on A�0KS

and A�0Kþ is suppressed. In Fig. 6, we show

constraints on qei� from two 
2 fits, using only the B !
�K data or both the B ! �K and B ! �� data. The latter
have a strong impact on the allowed region of qei� [2,7],
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FIG. 5. The SM correlation between A�0Kþ � A��Kþ and
A�0KS

for central values of inputs, with hadronic parameters

fixed as for Fig. 2 (solid), or following from the sum rule for rate
differences [24] (dashed). The dependence on �c is as in Fig. 2
and is constrained to SM values (upper curve in Fig. 2(a)).
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FIG. 6 (color online). Constraints on qei�. Left panel: 
2 fit, using only the B ! �K data. Right panel: 
2 fit, using both the
B ! �K and B ! �� data. The inner and outer regions correspond to 1� and 90% C.L., respectively, while the stars denote the
minima of the fits. The 90% C.L. regions with 10 times more data lie inside the dotted lines (see also the text).
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FIG. 7 (color online). Mixing-induced CP asymmetries for a
set of penguin-dominated B0 decays as functions of q sinð�Þ,
with q cosð�Þ fixed to 0.6. The vertical bars depict the experi-
mental 1� ranges [1]. The 1� range (vertical band) and best-fit
values (dashed line) for q sin� from Fig. 6 are also shown.
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yielding two almost degenerate minima, q ¼ 1:3� 0:4,
� ¼ ð63þ10

�9 Þ	 and q ¼ 0:8þ0:2
�0:3, � ¼ ð45þ18

�28Þ	. We also

show the 90%C.L. regions (dashed curves) that correspond
to a future scenario, assuming the benchmark value of Rq

used in Fig. 4 and ten times more data, with central values
fixed to the present 
2 minimum. In the 
2 fits we allow all
ratios of SUð3Þ-related amplitudes to fluctuate flatly
around fK=f� within 30% in magnitude and 30	 in phase.

The possibility of resolving the discrepancy between (3)
and (11) through a modified EWP is intriguing. We next
illustrate that the observed pattern of the mixing-induced
CP asymmetries in other penguin-dominated b ! s de-
cays [1] can also be accommodated in the same NP sce-
nario. In Fig. 7, we show the results of a BBNS calculation
of the S parameters for four channels of this kind: we
assume that all electroweak Wilson coefficients are re-
scaled by the same factor qei�, and use as input the
preferred data set ‘‘G’’ of [21]. The value of qei� is then
varied along a contour that runs vertically through the

preferred region in Fig. 6. Unlike the SM, the modified
EWP scenario allows us to accommodate the data well (see
also, e.g., [7,25]).
The same is true for a more specific scenario where the

effective FCNC couplings of the Z boson at the weak scale
are suitably modified. Since S�0KS

receives a tiny, negative

shift from sin2�, in agreement with the data, we do not
show this in Fig. 7.
In conclusion, we have demonstrated that the SM corre-

lation in the A�0KS
–S�0KS

plane can be predicted reliably in

the SM, with small irreducible theoretical errors, and have
shown that the resolution of the present discrepancy with
the data can be achieved through a modified EWP sector,
with a large CP-violating NP phase.
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jVubVusjT 0, Ĉ � jVubVusjT 0 and P̂ � jVcbVcsjðP 0
t �

P 0
cÞ, while the quantities q, !, rc and �c agree with [2].

[11] A. J. Buras and R. Fleischer, Eur. Phys. J. C 11, 93 (1999).
[12] T. Mannel, seminar given at CERN, May 8th, 2008.
[13] M. Neubert and J. L. Rosner, Phys. Rev. Lett. 81, 5076

(1998).
[14] M. Gronau et al., Phys. Rev. Lett. 73, 21 (1994).
[15] M. Gronau et al., Phys. Rev. D 60, 034021 (1999); 69,

119901(E) (2004).
[16] M. Bona et al. (UTfit Collaboration), J. High Energy Phys.

07 (2005) 028; updates: http://utfit.roma1.infn.it/.
[17] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1

(2005); updates: http://ckmfitter.in2p3.fr/.
[18] R. Fleischer, Eur. Phys. J. C 52, 267 (2007).
[19] M. Beneke et al., Phys. Rev. Lett. 83, 1914 (1999).
[20] C.W. Bauer et al., Phys. Rev. D 70, 054015 (2004); 74,

034010 (2006); A. R. Williamson and J. Zupan, Phys. Rev.
D 74, 014003 (2006).
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