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We consider approaches to brain dynamics and function that have been claimed to be Dar-

winian. These include Edelman’s theory of neuronal group selection, Changeux’s theory

of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian

synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse, and Calvin’s replicat-

ing activity patterns. Except for the last two, the proposed mechanisms are selectionist but

not truly Darwinian, because no replicators with information transfer to copies and heredi-

tary variation can be identified in them. All of them fit, however, a generalized selectionist

framework conforming to the picture of Price’s covariance formulation, which deliberately

was not specific even to selection in biology, and therefore does not imply an algorithmic

picture of biological evolution. Bayesian models and reinforcement learning are formally

in agreement with selection dynamics. A classification of search algorithms is shown to

include Darwinian replicators (evolutionary units with multiplication, heredity, and variabil-

ity) as the most powerful mechanism for search in a sparsely occupied search space.

Examples are given of cases where parallel competitive search with information transfer

among the units is more efficient than search without information transfer between units.

Finally, we review our recent attempts to construct and analyze simple models of true

Darwinian evolutionary units in the brain in terms of connectivity and activity copying of

neuronal groups. Although none of the proposed neuronal replicators include miraculous

mechanisms, their identification remains a challenge but also a great promise.

Keywords: neural Darwinism, neuronal group selection, neuronal replicator hypothesis, Darwinian neurodynamics,

Izhikevich spiking networks, causal inference, price equation, hill-climbers

Edelman (1987) published a landmark book with Neural Darwin-

ism and The Theory of Neuronal Group Selection as its title and

subtitle, respectively. The view advocated in the book follows, in

general, arguably a long tradition, ranging from James (1890) up

to Edelman himself, operating with the idea that complex adap-

tations in the brain arise through some process similar to natural

selection (NS). The term“Darwinian”in the title cannot be misun-

derstood to indicate this fact. Interestingly, the subtitle by the term

“group selection” seems to refer to a special kind of NS phenome-

non, called group selection [the reader may consult the textbook

by Maynard Smith (1998) for many of the concepts in evolutionary

biology that we use in this paper]. The expectation one has is then

that the mapping between aspects of neurobiology and evolution-

ary biology has been clearly laid out. This is rather far from the

truth, however. This is immediately clear from two reviews of Edel-

man’s book: one by Crick (1989), then working in neuroscience

and another by Michod (1988, 1990), an eminent theoretical evo-

lutionary biologist. The appreciation by these authors of Edelman’s

work was almost diametrically opposite. Michod could not help

being baffled himself. In a response to Crick he wrote; “Fran-

cis Crick concludes that ‘I have not found it possible to make a

worthwhile analogy between the theory of NS and what happens

in the developing brain and indeed Edelman has not presented

one’ (p. 246). This came as a surprise to me, since I had reached a

completely opposite conclusion” (Michod, 1990, p. 12). Edelman,

Crick, and Michod cannot be right at the same time. But they can

all be wrong at the same time. The last statement is not meant to

be derogatory in any sense: we are dealing with subtle issues that

do matter a lot! It is easy to be led astray in this forest of con-

cepts, arguments, models, and interpretations. We are painfully

aware of the fact that the authors of the present paper are by no

means an exception. The aim of this paper is fourfold: (i) to show

how all three authors misunderstood Darwinian dynamics in the

neurobiological context; (ii) to show that at least two different

meanings of the term “selection” are confused and intermingled;

(iii) to propose that a truly Darwinian approach is feasible and

potentially rewarding; and (iv) to discuss to what extent selection

(especially of the Darwinian type) can happen at various levels of

neurobiological organization.

We believe that a precondition to success is to have some pro-

fessional training in the theory (at least) of both the neural and

cognitive sciences as well as of evolution. Out of this comes a diffi-

culty: neurobiologists are unlikely to follow detailed evolutionary

arguments and, conversely, evolutionary biologists may be put off
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by many a detail in the neurosciences. Since the readership of this

paper is expected to sit in the neurobiology/cognitive science cor-

ner, we thought that we should explain some of the evolutionary

items involved in sufficient detail. It is hard to define in advance

what “sufficient” here means: one can easily end up with a book

(and one should), but a paper has size limitations. If this analysis

were to stimulate a good number of thinkers in both fields, the

authors would be more than delighted.

SOME ISSUES WITH “NEURAL DARWINISM”

Edelman argued for the applicability of the concepts of selection

at the level of neuronal groups. Put simply, it is a group of neurons

that have a sufficiently tightly knit web of interactions internally

so that they can be regarded as a cohesive unit (“a set of more or

less tightly connected cells that fire predominantly together,” Edel-

man, 1987, p. 198), demonstrated by the fact that some groups

react to a given stimulus differentially, and groups that react better

get strengthened due to plasticity of the synapses in the group,

whereas others get weakened. There are two assumptions in the

original Edelman model: synaptic connections are given, to begin

with (the primary repertoire); and groups form and transform

through the modifications of their constituent synapses. Where

does selection come in?

As Crick (1989) noted: “What can be altered, however, is the

strength of a connection (or a set of connections) and this is taken

to be analogous to an increase in cell number in (for example) the

immune system. . . This idea is a legitimate use of the selectionist

paradigm. . . Thus a theory might well be called. . . ‘The theory of

synaptic selection (TSS)’. But this would describe almost all the-

ories of neural nets” (Crick, 1989, p. 241). We shall come back to

this issue because in the meantime TSS has advanced. Let us for

the time being assume that whereas a selectionist view of synapse

dynamics might be trivially valid, such a view at levels above the

synapse is highly questionable. Let us read Michod on the relation

between NS and neuronal group selection (NGS): “We can now

state the basic analogy between NS and NGS. In NS, differences in

the adaptation of organisms to an environment lead to differences

in their reproductive success, which, when coupled with rules of

genetic transmission, lead to a change in frequency of genotypes

in a population. In NGS, differences in receptive fields and con-

nectivity of neuronal groups lead to differences in their initial

responses to a stimulus, which, when coupled with rules of synap-

tic change, lead to a change in probabilities of further response

to the stimulus.” Note that reproductive success (fitness) is taken

to be analogous to the probability of responding to a stimulus. It

should be clear that Michod thinks that the analogy is sufficiently

tight, although neuronal groups (and normally their constituent

neurons) do not reproduce. How can then NGS be Darwinian, one

might ask? What is meant by selection here? We propose that sense

can be made in terms of a special formalism, frequently used in

evolutionary biology, that of the eminent Price (1970), who made

two seminal contributions to evolutionary biology. One of them

is the Price equation of selection.

If it is possible to describe a trait (e.g., activation of a neuronal

group) and the covariance between that trait and its probability

of it occurring again in the future, then Price’s equation applies.

It states that the change in some average trait z is proportional to

the covariance between that trait zi and its relative fitness wi in the

population and other transmission biases E (e.g., due to mutation,

or externally imposed instructed changes). . .

w∆z = cov (wi , zi) + E (wi∆zi) (1)

where w is average fitness in the population. It is the first term that

explains the tendency for traits that are positively correlated with

fitness to increase in frequency. Note that there is no reference to

reproduction here, except through implication by the term “fit-

ness” that is not necessarily reproductive fitness in general. This

is a subtle point of the utmost importance, without the under-

standing of which it is useless to read this paper further. The Price

equation (in various forms) has been tremendously successful in

evolutionary biology, one of Price’s friends: Hamilton (1975) used

it also for a reformulation of his theory of kin selection (one of the

goals of which is to explain the phenomenon of altruism in evolu-

tion). Approaches to multilevel selection (acting, for example, at

the level of organisms and groups at the same time) tend to rely

on this formulation also (Damuth and Heisler, 1988). Note that

Michod is a former student of Hamilton, and that he is also an

expert on the theory of kin selection. Although he does not refer

to Price in the context of NGS, he does express a view that is very

much in line with the Price equation of selection.

One might suspect, having gotten thus far, that there is some

“trouble” with the Price equation, and indeed that is the case, we

believe, and this unrecognized or not emphasized feature has gen-

erated more trouble, including the problems around NGS. Let us

first state, however, where we think the trouble is not. Crick (1990)

writes, responding to Michod: “It is very loose talk to call organ-

isms or populations ‘units of selection,’ especially as they behave in

rather different ways from bits of DNA or genes, which are genuine

units of selection. . .” This is an interesting case when the molecu-

lar biologist/neurobiologist Crick teaches something on evolution

to a professional evolutionary biologist. One should at least be

a bit skeptical at this point. If one looks at models of multilevel

selection, there is usually not much loose talk there, to begin with.

Second, Crick (without citation) echoes Dawkins’ (1976) view of

the selfish gene. We just mention in passing the existence of the

famous paper with the title:“Selfish DNA: the ultimate parasite”by

Orgel and Crick (1980, where the authors firmly tie their message

to the view of the Selfish Gene; Orgel and Crick, 1980). We shall

come back to the problems of levels of selection; suffice to say it

here that we are not really worried about this particular concern

of Crick, at least not in general.

Our concern lies with the algorithmic deficiency of the Price

equation. The trouble is that it is generally “dynamically insuffi-

cient”: one cannot solve it progressively across an arbitrary number

of generations because of lack of the knowledge of the higher-

order moments: one ought to be able either to follow the fate of

the distribution of types (as in standard population genetics), or

have a way of calculating the higher moments independent of the

generation. This is in sharp contrast to what a theoretical physi-

cist or biologist would normally understand under “dynamics.”

As Maynard Smith (2008) explains in an interview he does “not

understand” the Price equation because it is based on an aggre-

gate, statistical view of evolution; whereas he prefers mechanistic
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models. Moreover, in a review of Dennett’s, 1995 book “Darwin’s

Dangerous Idea,” Maynard Smith writes: “Dennett’s central thesis

is that evolution by NS is an algorithmic process. An algorithm

is defined in the OED as “a procedure or set of rules for calcu-

lation and problem-solving” (Maynard Smith, 1996). The rules

must be so simple and precise that it does not matter whether they

are carried out by a machine or an intelligent agent; the results

will be the same. He emphasizes three features of an algorithmic

process. First, “substrate neutrality”: arithmetic can be performed

with pencil and paper, a calculator made of gear wheels or tran-

sistors, or even, as was hilariously demonstrated at an open day

at one of the authors son’s school, jets of water. It is the logic

that matters, not the material substrate. Second, mindlessness:

each step in the process is so simple that it can be carried out

by an idiot or a cogwheel. Third, guaranteed results: whatever it is

that an algorithm does, it does every time (although, as Dennett

emphasizes, an algorithm can incorporate random processes, and

so can generate unpredictable results)”. Clearly, Price’s approach

does not give an algorithmic view of evolution. Price’s equation is

dynamically insufficient. It is a very high level (a computational

level) description of how frequencies of traits should change as

a function of covariance between traits and their probability of

transmission, and other transmission bias effects that alter traits.

It does not constrain the dynamical equations that should deter-

mine transmission from one generation to another, i.e., it is not

an algorithmic description.

In fact, Price’s aim was to have an entirely general, non-

algorithmic approach to selection. This has its pros and cons. In

a paper published well after his death, Price (1995) writes: “Two

different main concepts of selection are employed in science. . .

Historically and etymologically, the meaning select (from se-

aside + legere to gather or collect) was to pick out a subset from

a set according to a criterion of preference or excellence. This we

will call subset selection. . . Darwin introduced a new meaning

(as Wallace, 1916, pointed out to him), for offspring are not sub-

sets of parents but new entities, and Darwinian NS. . . does not

involve intelligent agents who pick out. . . These two concepts are

seemingly discordant. What is needed, in order to make possible

the development of a general selection theory, is to abstract the

characteristics that Darwinian NS and the traditional subset selec-

tion have in common, and then generalize” (Price, 1995, p. 390).

It is worth quoting Gardner (2008) who, in a primer on the Price

equation, writes: “The importance of the Price equation lies in its

scope of application. Although it has been introduced using bio-

logical terminology, the equation applies to any group of entities

that undergoes a transformation. But despite its vast generality,

it does have something interesting to say. It separates and neatly

packages the change due to selection versus transmission, giving

an explicit definition for each effect, and in doing so it provides

the basis for a general theory of selection. In a letter to a friend,

Price explained that his equation describes the selection of radio

stations with the turning of a dial as readily as it describes biologi-

cal evolution” (Gardner, 2008, p. R199). In short, the Price equation

was not intended to be specific to biological selection; hence it is no

miracle that it cannot substitute for replicator dynamics.

Before we move on we have to show how this generalized view

of selection exactly coincides with the view of how the neuronal

groups of Edelman are thought to increase or decrease in weight

(Figure 1).

A population P of beakers contains amounts wi of solution of

varying concentrations xi (dark = high concentration, light = low

concentration). In standard selection for higher concentration liq-

uid, low concentration liquids have a lower chance of transmission

to the next generation P′ (top two rows). In “Darwinian selec-

tion” two elements are added. The first is the capacity for property

change (or transmission bias), see row 3 in which the liquid is

“mutated” between generations. The second is strengthening in

which the offspring can exceed parents in number and mass, see

row 4 in which the darkest liquid has actually increased in quan-

tity. To quote Price (1995): “Selection on a set P in relation to

property x is the act or process of producing a corresponding set

P′ in a way such that the amounts wi
′ (or some function of them

such as the ratios wi
′/wi) are non-randomly related to the corre-

sponding xi values.” (p. 392). The right side of Figure 1 shows

P P’

(weakening + 

property change)

(strengthening)

(weakening)

(no change)

P P’

FIGURE 1 |The general selection model of price (left) and its application to neuronal groups (right).
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one interpretation of neuronal groups within the same general

selection framework in which the traits are the pattern of connec-

tivity of the neuronal group, and the amounts are the probability

of activation of that neuronal group. In the top row there is no

change in the neuronal group between populations P and P′. In

the second row the neuronal group is weakened, shown as lighter

synaptic connections between neurons, although the trait (con-

nectivity pattern) does not change. In the third row the neuronal

group is weakened (reduced probability of being activated) but is

also “mutated” or undergoes property change (transmission bias)

with the addition of two new synaptic connections in this case. In

the final row a neuronal group with the right connectivity but a

low probability of being activated gets strengthened. We conclude

that Edelman’s theory of NGS is firmly selectionist in this sense of

Price!

What is then the approach that is more mechanistic, suggestive

of an algorithm that could come as a remedy? We suggest it is the

units of evolution approach. There are several alternative formula-

tions (itself a nice area of study); here we opt for Maynard Smith’s

formulation that seems to us the most promising for our present

purposes. JMS (Maynard Smith, 1986) defined a unit of evolution

as any entity that has the following properties. The first property

is multiplication; the entity produces copies of itself that can make

further copies of themselves: one entity produces two, two entities

produce four, four entities produce eight, in a process known as

autocatalytic growth. Most living things are capable of autocat-

alytic growth, but there are some exceptions, for example, sterile

worker ants and mules do not multiply and so whilst being alive,

they are not units of evolution (Szathmary, 2000; Gánti, 2003; Sza-

thmáry, 2006). The second requirement is inheritance, i.e., there

must be multiple possible kinds of entity, each kind propagating

itself (like begets like). Some things are capable of autocatalytic

growth and yet do not have inheritance, for example fire can grow

exponentially for it is the macroscopic phenomenon arising from

an autocatalytic reaction, yet fire does not accumulate adapta-

tions by NS. The third requirement is that there must be variation

(more accurately: variability): i.e., heredity is not completely exact.

If among the hereditary properties we find some that affect the

fecundity and/or survival of the units, then in a population of

such units of evolution, NS can take place. There is a loose algo-

rithmic prescription here because the definition explicitly refers to

operations, such as multiplication, information transmission,vari-

ation, fitness mapping, etc. We can conclude that neuronal groups

are not units of evolution in this sense. It then follows that the picture

portrayed by Edelman cannot be properly named neural Darwin-

ism! This being so despite the fact that it fits Price’s view of general

selection, but not specifically Darwinian natural selection. We shall

see that this difference causes harsh algorithmic differences in the

efficiency of search processes.

Now that we see what is likely to have been behind the disagree-

ments, we would like to consider another aspect in this section: the

problem of transmission bias (property change). In biological evo-

lution this can be caused by, for example, environmental change,

mutation, or recombination (whenever heredity is not exact). And

this can create a problem. Adaptations arise when the covariance

term in Eq. 1 is significant relative to the transmission bias. One

of Crick’s criticisms can again be interpreted in this framework:

“I do not consider that in selection the basic repertoire must be

completely unchanging, though Edelman’s account suggests that

he believes this is usually true at the synaptic level. I do feel that in

Edelman’s simulation of the somatosensory cortex (Neural Dar-

winism, p. 188 onward) the change between an initial confused

mass of connections and the final state (showing somewhat dis-

tinct neuronal groups) is too extreme to be usefully described as

the selection of groups, though it does demonstrate the selection of

synapses”(Crick, 1990, p. 13). He also proposes:“If some terminol-

ogy is needed in relation to the (hypothetical) neuronal groups,

why not simply talk about ‘group formation’?” (Crick, 1989, p.

247). First, we concede that indeed there is a problem here with

the relative weight of the covariance and transmission bias in terms

of the Price formulation. There are two possible answers. One is

that as soon as the groups solidify, there is good selection sensu

Price in the population of groups. But the more exciting answer is

that such group formation is not unknown in evolutionary biol-

ogy either. One of us has spent by now decades analyzing what

is called the major transitions in evolution (Maynard Smith and

Szathmáry, 1995). One of the crucial features of major transi-

tions is the emergence of higher-level units from lower level ones,

or – to borrow Crick’s phrase – formation of higher units (such

as protocells from naked genes or eukaryotic cells from separate

microbial lineages). The exciting question is this one: could it be

that the formation of Edelman’s groups is somehow analogous to

a major transition in evolutionary biology? Surely, it cannot be

closely analogous because neuronal groups do not reproduce. But

if we take a Pricean view, the answer may turn out to be differ-

ent. We shall return to this question, we just wet the appetite of

the reader now by stating that in fact there is a Pricean approach

to major transitions! Indeed, the recent formation of a secondary

repertoire of neuronal groups arising from formation and selec-

tion of connectivity patterns between neuronal groups appears to

be an example of such a transition. However, we note that whether

we are referring to the primary repertoire of assemblies, or the

secondary repertoire of super assemblies (Perin et al., 2011), there

is no replication of these forms at either level in NGS.

A VIEW OF THE THEORY OF SYNAPTIC SELECTION

Although admittedly not in the focus of either Edelman or Crick,

it is worthwhile to have a look at synaptic changes to have a clearer

view on whether they are subject to selection or evolution, and in

what sense. As we have seen, there is a view that selectionism at the

level of the synapse is always trivial, but the different expositions

have important differences. In this section we briefly look at some

of the important alternatives; there is an excellent survey of this

and related matters in Weiss (1994).

Changeux (1985), Changeux et al. (1973) in his TSS primarily

focuses on how the connectivity of the networks becomes estab-

lished during epigenesis within the constraints set by genetics,

based on functional criteria. There is structural transformation of

the networks during this maturation. There is a period of struc-

tural redundancy, where the number of connections and even

neurons is greater than in the mature system (Figure 2). Synapses

can exist in stable, labile, and degenerate form. Selective stabi-

lization of functional connections prunes the redundancy to a

considerable degree.

The question is again to what extent this is selection or a truly

Darwinian process. One can readily object that as it is portrayed
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GROWTH

TRANSIENT

REDUNDANCY

SELECTIVE 

STABILISATION

FIGURE 2 | Growth and stabilization of synapses, adapted from

Changeux (1985).

the process is a one-shot game. An extended period of redundancy

formation is followed by an extended period of functional prun-

ing. Since Darwinian evolution unfolds through many generations

of populations of units, the original view offered by Changeux is

selectionist, but not Darwinian. Again, the whole picture can be

conveniently cast in terms of the Price formulation, however.

If it were not a one-shot game, and there were several rounds

of synapse formation and selective stabilization, one could legiti-

mately raise the issue of whether one is dealing with generations of

evolutionary units in some sense. But this is exactly the picture that

seems to be emerging under the modern view of structural plas-

ticity of the adult brain (Chklovskii et al., 2004; Butz et al., 2009;

Holtmaat and Sovoboda, 2009). We shall see in a later section that

this view has some algorithmic benefits, but for the time being

we consider a formulation of synaptic Darwinism that is a more

rigorous attempt to build a mapping between some concepts of

neuroscience and evolutionary theory. Adams (1998) proposes

(consonant with several colleagues in this field) that synaptic

strengthening (LTP) is analogous to replication, synaptic weak-

ening (LTD) is analogous to death (disappearance of the copy of

a gene), the input array to a neuron corresponds to the genotype,

the specification of the output vector by the input vector is anal-

ogous to genotype–phenotype mapping, and a (modified) Hebb

rule corresponds to the survival of the fittest (selection; Adams,

1998). There is some confusion, though, in an otherwise clear

picture, since Adams proposes that something like an organism

corresponds to the kind of bundling one obtains when “all neu-

rons within an array receive the same neuromodulatory signal”

(p. 434). Here one is uncertain whether the input vector as the

“neuronal genotype” is that of these bundled group of axons, or

whether he means the input vector of one neuron, or whether it is

a matter of context which understanding applies.

We elaborate a bit on the suggestion that Darwin and Hebb

shake hands in a modified Hebb rule. We have shown (Fernando

and Szathmáry, 2010) that the Oja rule (a modified Hebb rule)

is practically isomorphic to an Eigen equation describing repli-

cation, mutation, and selection a population of macromolecules.

The Eigen (1971) equation reads:

dxi

dt
= AiQixi +

N
∑

j �=i

mij xj −
xi

c

N
∑

j=1

N
∑

k=1

mij xj , (2)

where xi is the concentration of sequence i (of RNA for exam-

ple), mij is the mutation rate from sequence j to i, Ai is the gross

replication rate of sequence i and Qi is its copying fidelity, N is

the total number of different sequences, and formally mij = AiQi.

The negative term introduces the selection constraint which keeps

total concentration constant at the value of c (which can be taken as

unity without loss of generality). The relation between the Oja rule

and the Eigen equation is tricky. The Oja rule corresponds to a very

peculiar configuration of parameters in the Eigen equation. For

example, in contrast to the molecular case, here the off-diagonal

elements (the mutation rates) are not by orders of magnitude

smaller than the diagonal ones (the fitnesses). Moreover, muta-

tional coupling between two replicators is strictly the product of

the individual fitness values! In short, Eigen’s equation can simu-

late Hebbian dynamics with the appropriate parameter values, but

the reverse is not generally true: Oja’s rule could not, for example,

simulate the classical molecular quasispecies of Eigen in general.
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This hints at the more general possibility that although formal

evolutionary dynamics could hold widely in brain dynamics, it

is severely constrained in parameter space so that the outcome

is behaviorally useful. A remarkable outcome of the cited deriva-

tion is that although there was no consideration of “mutation” in

the original setting, there are large effective mutation rates in the

corresponding Eigen equation: this coupling ensures correlation

detection between the units (synapses or molecules). (Coupling

must be represented somehow: in the Eigen equation the only way

to couple two different replicators is through mutation. Hence if

a molecular or biological population with such strange mutation

terms were to exist, it would detect correlation between individual

fitnesses.)

The formalistic appearance of synaptic weight change to muta-

tion might with some justification be regarded as gimmickry, i.e.,

merely an unhelpful metaphor for anything that happens to change

through time. So what could be analogous in the case of synapses to

genetic mutations? We believe the obvious analog to genetic muta-

tion is structural synaptic change, i.e., the formation of topologies

that did not previously exist. Whereas the Eigen equation is a

description of molecular dynamics, it is a deterministic dynamical

system with continuous variables in which the full state space of

the system has been defined at the onset, i.e., the vector of chemi-

cal concentrations. It is worth emphasizing that nothing replicates

when one numerically solves the Eigen equation. There are no real

units of evolution when one solves the Eigen equation, instead the

Eigen equation is a model of the concentration changes that could

be implemented by units of evolution. It is a model of processes

that occur when replicators exist. Real mutation allows the pro-

duction of entities that did not previously exist, i.e., it allows more

than mere subset selection. For example this is the case where the

state space being explored is so large that it can only be sparse sam-

pled, e.g., as in a 100 nucleotide sequence, and it is also the case

when new neuronal connectivity patterns are formed by structural

mutation.

In Hebbian dynamics there are also continuous variables, but

in the simplest case there is only growth and no replication of

individuals. As Adams put it, “the synaptic equivalent of repli-

cation is straightforward. . . It corresponds to strengthening. If a

synapse becomes biquantal, it has replicated” (Adams, 1998, p.

421). Yet this is different from replication in evolution where the

two copies normally separate from each other. This aspect will

turn out to be crucially important later when we consider search

mechanisms.

Adams draws pictures of real replication and mutation of

synapses (Figure 3) also. Clearly, these figures anticipate com-

ponent processes of the now fashionable structural plasticity

(Chklovskii et al., 2004). It is this picture that is closely analo-

gous to the dynamics of replicators in evolution. In principle this

allows for some very interesting, truly Darwinian dynamics.

The last item in this section is the concept of a “hedonistic

synapse” by Seung (2003). This hypothetical mechanism was con-

sidered in the context of reinforcement learning. The learning rule

is as follows: (1) the probability of release is increased if reward

follows release and is decreased if reward follows failure, (2) the

probability of release is decreased if punishment follows release

and is increased if punishment follows failure. Seung writes: “ran-

domness is harnessed by the brain for learning, in analogy to the

way genetic mutation is utilized by Darwinian evolution”(p. 1063)

and that“dynamics of learning executes a random walk in the para-

meter space, which is biased in a direction that increases reward.

A picturesque term for such behavior is “hill-climbing,” which

comes from visualizing the average reward as the height of a land-

scape over the parameter space. The formal term is “stochastic

gradient ascent”” (p. 1066). This passage is of crucial importance

for our discussion of search algorithms in this paper. The analogy

seems to be crystal-clear, especially since it can be used to recall the

notion of an “adaptive landscape” by Wright (1932), arguably the

most important metaphor in evolution (Maynard Smith, 1988).

We shall see later that Seung’s synapse may be hedonistic, but not

Darwinian.

SELECTION IN GROUPS OF NEURONS

We have already touched upon the functioning of the dynamics of

neuronal groups as portrayed by Edelman (1987). We shall come

back to one key element of NGS at the end of this section.

Now we turn to a complementary approach offered by

Changeux (1985), the Theory of Selective Stabilization of Pre-

representations (TSSP), which builds on TSS. TSSP elaborates on

the question how somatic selection contributes to the functioning

of the adult brain (Changeux et al., 1984; Heidmann et al., 1984),

i.e., after transient redundancy has been functionally pruned. The

first postulate of TSSP is that there are mental object (represen-

tations) in the brain, which is a physical state produced by an

replication mutation (divergent) mutation (convergent)

FIGURE 3 | Synaptic mutation replication (left) and synaptic mutations (right), adapted from Adams (1998).
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assembly (group) of neurons. Pre-representations are generated

before and during interaction with the environment, and they

come in very large numbers due to the spontaneous but correlated

activity of neurons. Learning is the transformation, by selective

stabilization, of some labile pre-representations into stored repre-

sentations. Primary percepts must resonate (in space or time) with

pre-representations in order to become selected. To quite him:

“These pre-representations exist before the interaction with the

outside world. They arise from the recombination of pre-existing

sets of neurons or neuronal assemblies, and their diversity is thus

great. On the other hand, they are labile and transient. Only a few of

them are stored. This storage results from a selection!” (Changeux,

1985, p. 139). No explanation is given of how a beneficial prop-

erty of one group would be transmitted when it is “recombined”

with another group. The reticular formation is proposed to be

responsible for the selection, by re-entry of signals from cortex

to thalamus and back to cortex, which is a means of establishing

resonance between stored mental objects and percepts.

Changeux assumes the formation of pre-representations occurs

spontaneously from a large number of neurons such that the num-

ber of possible combinations is astronomical, and that this may

be sufficient to explain the diversity of mental representations,

images, and concepts. But how can such a large space of represen-

tations be searched rapidly and efficiently? Changeux addresses

this by suggesting that heuristics act on the search through pre-

representations, notably, he allows recombination between neu-

ronal assemblies, writing “this recombining activity would repre-

sent a ‘generator of hypotheses,’ a mechanism of diversification

essential for the geneses of pre-representations and subsequent

selection of new concepts.” (Changeux, 1985, p167). However, no

mechanism for recombination of functions is presented.

Changeux and Dehaene (1989) offer a unified account of TSS

and TSSP and their possible contributions to cognitive func-

tions. “The interaction with the outside world would not enrich

the landscape, but rather would select pre-existing energy min-

ima or pre-representations and enlarge them at the expense of

other valleys.” (p. 89). In an elegant model of temporal sequence

learning, Dehaene et al. (1987) show that “In the absence of sen-

sory inputs, starting from any initial condition, sequences are

spontaneously produced. Initially these pre-representations are

quasirandom, although they partially reveal internal connectivity,

but very small sensory weights (inferior to noise level) suffice to

influence these productions.” (p. 2731). “The learnable sequences

must thus belong both to the pre-representations and to the sen-

sory percepts received” (pp. 2730–2731). Noise plays a role in the

dynamics of the system.

Later models incorporate stabilization of the configurations

in a global workspace by internal reward and attention signals

(Dehaene et al., 1998). In a model of the Stroop task, a global

workspace is envisaged as having a repertoire of discrete activation

patterns, only one of which can be active at once, and which

can persist independent of inputs with some stability. This is

meant to model persistent activity of neurons in prefrontal cortex.

These patterns constitute the selected entity (pre-representation),

which “if negatively evaluated, or if attention fails, may be sponta-

neously and randomly replaced.” Reward allows restructuring of

the weights in the workspace. The improvement in performance

depends on the global workspace having sufficient variation in

patterns at the onset of the effortful task, perhaps with additional

random variability, e.g., Dehaene and Changeux (1997) write that

“in the absence of specific inputs, prefrontal clusters activate with

a fringe of variability, implementing a ‘generator of diversity’.”

The underlying search algorithm is nothing more sophisticated

than a random walk through pre-representation space, biased by

reward! It truly stretches one’s imagination how such a process

could be sufficient for language learning, for example, which is

much more complex than the Stoop task but not effortful in the

sense of Changeux and Dehaene.

A final note on a common element of the similar theories of

Changeux and Edelman is in order. Sporns and Edelman (1993)

present a tentative solution the Bernstein problem in the devel-

opment of motor control. Besides the already discussed selective

component processes of NGS, they state: “The ‘motor cortex’

generates patterns of activity corresponding to primary gestural

motions through a combination of spontaneous activity (triggered

by a component of Gaussian noise) and by responses to sensory

inputs from vision and kinesthetic signals from the arm.” Thus

noise is again a source of the requisite variety (p. 971).

So, again, “how much” Darwinism is there in these theories?

Changeux and Dehaene (1989) insist:“the thesis we wish to defend

in the following is the opposite; namely, that the production and

storage of mental representations, including their chaining into

meaningful propositions and the development of reasoning, can

also be interpreted, by analogy, in variation–selection (Darwin-

ian) terms within psychological time-scales.” We actually agree

with that, but the trouble is that algorithmically the search mecha-

nisms they present are very different from that of any evolutionary

algorithm proper, and seem to correspond to stochastic gradient

ascent, as explained by Seung (2003) for his hedonistic synapses,

even if there is a population of stochastic hill-climbers. Something

is crucially missing!

COMBINATORIAL CHEMISTRY VERSUS IN VITRO SELECTION

OF FUNCTIONAL MACROMOLECULES

The reader might think that this is a digression. Not so, there

are some crucial lessons to be learnt from this example. The pro-

duction of functional molecules is critical for life and also for an

increasing proportion of industry. It is also important that genes

represent what in cognitive science has been called a“physical sym-

bol system” (Fodor and Pylyshyn, 1988; Nilsson, 2007; Fernando,

2011a). Today, the genetic code is an arguably symbolic mapping

between nucleotide triplets and amino acids (see Maynard Smith,

2000 for a characteristically lucid account of the concept of infor-

mation in biology; Maynard Smith, 2000). Moreover, enzymes

“know” how to transform a substrate into a product, much like

a linguistic rule “knows” how to act on some linguistic construc-

tions to produce others. How can such functionality arise? We

must understand both, how the combinatorial explosion of pos-

sibilities (sequences) is generated, and how selection for adaptive

sequences is implemented.

Combinatorial chemistry is one of the possible approaches. The

aim is to generate-and-test a complete library of molecules up to

a certain length. The different molecules must be tested for func-

tionality, be identified as distinct sequences, and then amplified for
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lab or commercial production. It is easy to see that this approach is

limited by combinatorial explosion. Whereas complete libraries of

oligopeptides can be produced, this is impossible for polypeptides

(proteins). The snag is that enzymes tend to be polymers. For pro-

teins, there are 20100 possible polypeptide sequences of length 100,

which equal 10130, a hyper-astronomically large number. In any

realistic system an extremely tiny fraction of these molecules can

be synthesized. The discrete space of possible sequences is heavily

under-occupied, or – to use a phrase that should ring a bell for

neuroscientists – sparsely populated. In order to look for func-

tional sequences one needs an effective search mechanism. That

search mechanism is in vitro genetics and selection. Ultimately, it

is applied replicator dynamics. This technology yielded spectacu-

lar results. We just mention the case of ribozymes, catalytic RNA

molecules that are very rare in contemporary biochemistry but

may have been dominating in the “RNA world” before the advent

of the genetic code (c.f. Maynard Smith and Szathmáry, 1995). An

impressive list of such ribozymes has been generated by in vitro

evolution (Ellington et al., 2009).

Of course, the mapping of RNA sequence to a functional

3D molecule is highly degenerate, meaning that many different

sequences can perform the same function. But what does this mean

in terms of the probability of finding a given function in a library

of random RNA molecules? The number of random sequences in a

compositionally unbiased pool of RNA molecules, 100 nucleotides

long, required for a 50% probability of finding at least one func-

tional molecule is, in the case of the isoleucine aptamer on the

order 109, and in case of the hammerhead ribozyme on the order

of 1010 (Knight et al., 2005). This is now regarded as an inflated

estimate, due to the existence of essential but not conserved parts

(Majerfeld et al., 2010); thus the required numbers are at least an

order of magnitude larger. Note that these are simple function-

alities: the first case is just binding rather than catalysis, and the

second case is an “easy” reaction to catalyze for RNA molecules.

Simulation studies demonstrate that when mutation and selection

are combined, a very efficient search for molecular functionality

is possible: typically, 10,000 RNA molecules going through about

a 100 generations of mutation and selection are sufficient to find,

and often fix, the target (Stich and Manrubia, 2011).

The reason for us presenting the molecular selection/evolution

case is as follows. Given the unlimited information potential of

the secondary repertoire, configurations from which can only be

sparsely sampled as in RNA sequence space, the advantages of Dar-

winian search are likely to also apply. Molecular technologies show

that parallel search for molecular functionalities is efficient with

replication with mutation and selection if the search space is vast,

and occupation of sequence space is sparse. We shall return to the

algorithmic advantages of this paradigm later.

SYNAPSES, GROUPS, AND MULTILEVEL SELECTION

We have already raised the issue whether the developmental origin

and consolidation of neuronal groups might be analogous in some

sense to the major transitions in evolution. Based on the forego-

ing analysis this cannot apply in the Darwinian sense since while

synapses can grow and reproduce in the sense of Adams (1998),

neuronal groups do not reproduce. Yet, the problem is more tricky

than this, because – as we have seen – selection does apply to

neuronal groups in terms of the Price equation, and the Price

equation has been used to describe aspects of multilevel selection

(Heisler and Damuth, 1987; Damuth and Heisler, 1988), includ-

ing those of the major transitions in evolution (Okasha, 2006).

In concrete terms, if one defines a Price equation at the level

of the groups, the effect of intra-group selection can be substi-

tuted for the transmission bias (see Marshall, 2011 for a technical

overview), which makes sense because selection within groups

effectively means group identity can be changed due to internal

dynamics.

As Damuth and Heisler (1988) write: “A multilevel selection

situation is one in which we wish to consider simultaneously selec-

tion occurring among entities at two or more different levels in a

nested biological hierarchy (such as organisms within groups)”

(p. 408). “There are two perspectives in this two-level situation

from which we may ask questions about selection. First, we may

be interested in the relative fitnesses of the individuals and in

how their group membership may affect these fitnesses and thus

the evolution of individual characters in the whole population of

individuals. Second, we may be interested in the changing pro-

portions of different types of groups as a result of their different

propensities to go extinct or to found new groups (i.e., the result of

different group fitnesses); of interest is the evolution of group char-

acters in the population of groups. In this case, we have identified

a different kind of fitness than in the first, a group-level fitness that

is not simply the mean of the fitnesses of the group’s members. Of

course, individual fitnesses and group fitnesses may be correlated

in some way, depending on the biology. But in the second case we

are asking a fundamentally different question that requires a focus

on different properties – a question explicitly about differential

success of groups rather than individuals” (p. 409). It is now cus-

tomary to call these two perspectives multilevel selection I (MLS1)

and multilevel selection II (MLS2) in the biological literature. In

the view of Okasha (2006) major transitions can be mirrored by

the degree to which these two perspectives apply: in the beginning

there is MLS1, and in the end there is MLS2. In between he pro-

poses to have intermediates stages where “collective fitness is not

defined as average particle fitness but is proportional to average

particle fitness” (p. 238).

It is tempting to apply this picture to the synapses → neu-

ronal group transition, but one should appreciate subtle, tacit

assumptions of the evolutionary models. Typically it is assumed

that in MLS1 the groups are transient, that there is no popula-

tion structure within groups, and that each generation of new

groups is formed according to some probabilistic distribution.

However, in the brain the process does not begin with synapses

reproducing before the group is formed, since the topology and

strength of synaptic connections defines the group. Synapses, even

if labile, are existing connections not only topologically, but also

topographically.

In sum, one can formally state that there is a major transition

when neuronal groups emerge and consolidate in brain dynamics,

and that there are two levels of selection, but only if one adopts a

generalized (as opposed to strictly Darwinian) Pricean view of the

selection, since neither neurons nor neuronal groups replicate. It

is also worth saying that a formal analysis of synapses and groups

in terms the Price equation, based on dynamical simulations of the
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(emerging) networks has never been performed. We might learn

something by such an exercise.

DARWINIAN AND BAYESIAN DYNAMICS

Many have drawn analogies between learning and evolution.

Bayesian inference has proven a very successful model to char-

acterize aspects of brain function at the computational level, as

have Darwinian dynamics accounts for evolution of organisms at

the algorithmic level. It is natural to seek a relationship between the

two. A few people (Zhang, 1999; Harper, 2009; Shalizi, 2009) have

realized the connection in formal terms. Here we follow Harper’s

(2009) brief and lucid account. Let H 1, H 2 . . ., Hn be a collection

of hypotheses; then according to Bayes’ theorem:

P (Hi |E) =
P (E |Hi) P (Hi)

P (E)
for i = 1, 2, . . . n, (3)

where the process iteratively adjusts the probability of the hypothe-

ses in line with the evidence from each new observation E. There

is a prior distribution [P(H 1), . . ., P(Hn)], the probability of

the event given a hypothesis is given by P(E |Hi), P(E) serves

as normalization, and the posterior distribution is [P(H 1|E),

. . ., P(Hn|E)]. Compare this with the discrete-time replicator

equation:

x ′
i =

xi fi (x)

f (x)
, for i = 1, 2, . . . , n, (4)

where xi is the relative frequency of type in the population, prime

means next generation, and fi is its per capita fitness that in gen-

eral may depend on the population state vector x. (Note that

this is a difference to Eq. 3 where the probability of a hypothesis

does not depend on any other hypothesis). It is fairly straight-

forward to appreciate the isomorphism between the two models.

Both describe at a purely computational (not algorithmic) level

what happens during Bayesian reasoning and NS, and both equa-

tions have the same form. The following correspondences apply:

prior distribution ←→ population state now, new evidence ←→

fitness landscape, normalization ←→ mean fitness, posterior

distribution ←→ population state in the next generation. This

isomorphism is not vacuously formalistic. There is a continuous-

time analog of the replicator Eq. 4, of which the Eigen Eq. 2 is

a concrete case. It can be shown that the Kullback–Leibler infor-

mation divergence between the current population vector and the

vector corresponding to the evolutionarily stable state (ESS) is a

local Lyapunov function of the continuous-time replicator equa-

tion; the potential information plays a similar role for discrete-time

dynamics in that the difference in potential information between

two successive states decreases in the neighborhood of the ESS

along iteration of the dynamic. Moreover, the solutions of the

replicator Eq. 4 can be expressed in terms of exponential families

(Harper, 2009), which is important because exponential families

play an analogous role in the computational approach to Bayesian

inference.

Recalling that we said that Darwinian NS that takes place when

there are units of evolution is an algorithm that can do computa-

tions described by the Eigen equation, one feels stimulated to raise

the idea: if the brain is computationally a Bayesian device, than

it might be doing Bayesian computation by using a Darwinian

algorithm (a “Darwin machine”; Calvin, 1987) containing units of

evolution. Given that it is also having to search in a high dimen-

sional space, perhaps the same benefits of a Darwinian algorithm

will accrue? The isomorphisms do not give direct proof of this,

because of the following reason. Whereas Eq. 3 is a Bayesian cal-

culation, Eq. 4 is not an evolutionary calculation, it is a model of a

population doing, potentially, an evolutionary calculation.

Our recently proposed neuronal replicator hypothesis (NRH)

states that there are units of evolution in the brain (Fernando et al.,

2008, 2010). If the NRH holds any water, the brain must harbor

real replicators, not variables for the frequencies of replicators. In

other words, there must be information transfer between units

of evolution. This is crucially lacking in Edelman’s proposal of

Neural Darwinism. It is molecules and organisms that can evolve,

not population counts thereof. Of course, based on the foregoing

it must be true that replicating populations can perform Bayesian

calculations with appropriate parameters and fitness landscapes.

Is any advantage gained from this insight? The answer seems to

be yes. Kwok et al. (2005) show the advantages of an evolutionary

particle filter algorithm to alleviate the sample impoverishment

problem; Muruzábal and Cotta (2007) present an evolutionary

programming solution to the search for Bayesian network graph

structures; Myers et al. (1999) report a similar study (see Figure 4);

Strens (2003) shows the usefulness of evolutionary Markov-Chain

Monte Carlo (MCMC) sampling and optimization; and Huda

et al. (2009) report on a constraint-based evolutionary algorithm

approach to expectation minimization that does not get trapped

so often in local optima. Thus it seems that not only can evolu-

tionary algorithms do Bayesian inference, for complex problems

they are likely to be better at it. In fact, Darwinian algorithms

have yet to be fully investigated within the new field of rational

process models that study how optimal Bayesian calculations can

be algorithmically approximated in practice (Sanborn et al., 2010).

A burning question is how Bayesian calculations can be per-

formed in the brain. George and Hawkins (2009) present a fairly

detailed, but tentative account in terms of cortical microcircuits.

Recent work by Nessler et al. (2009) shows that Bayesian compu-

tations can be implemented in spiking neural networks with first

order spike-time-dependent plasticity (STDP). Another possibil-

ity is the implementation of Deep Belief Networks which carry out

approximate hierarchical Bayesian inference (Hinton et al., 2006).

The research program for NRH is to do the same for evolutionary

computation, and to determine whether Bayesian inference may

be carried out in a related way.

DARWINIAN DYNAMICS AND OPTIMIZATION

One could object to using NS in the neurobiological context that

it is an imperfect search algorithm since there is no guarantee that

the optimal solution can be found; the population might get stuck

on a local instead of a global peak. This is true but by itself irrel-

evant. No search algorithm is perfect in this sense. The question

is whether we on average gain something important in compari-

son with other search algorithms. “It is true that the optimization

approach starts from the idea, already familiar to Darwin, Wallace,

and Weismann. . . that adaptation is a pervasive feature of living

organisms, and that it is to be explained by NS. It is not our aim

to add to this claim that adaptation is perfect. Rather, the aim is
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FIGURE 4 | Crossover operation for Bayesian networks. Adapted from Myers et al. (1999).

to understand specific examples of adaptation, in terms of selective

forces and the historical and developmental constraints operat-

ing. This requires that we have an explicit model, in each specific

case, that tells us what to expect from a given assumption. . . We

distinguish between general models and specific models, though

in reality they form part of a continuum. General models have

a heuristic function; they give qualitative insights into the range

and forms of solution for some common biological problem. The

parameters used may be difficult to measure biologically, because

the main aim is to make the analysis and conclusions as simple

and direct as possible” (Parker and Maynard Smith, 1990, p. 27).

Evolution by NS is an optimum-seeking process, but this does

not guarantee that it will always find it. There are constraints on

adaptation (which can be genetic, developmental, etc.) but the

living world is full of spectacular adaptations nevertheless. And

in many cases the solution is at, or very close to, the engineer-

ing optimum. For example, many enzymes are optimally adapted

in the sense that the rate of catalysis is now constrained by the

diffusion rates of substrates and products, so in practical terms

those enzymes cannot be faster than they are. It is the same for

senses (photon detection by the eye), or the boosted efficiency of

photosynthesis by quantum entanglement. True, performance just

has to be “good enough,” but good enough means relative to the

distribution in the population, but as selection acts, the average

is increasing, so the level of “good enough” is raising as well, as

standard population genetics demonstrates (e.g., Maynard Smith,

1998). It is in this sense that we believe the applicability of evo-

lutionary models of brain function warrant serious scrutiny, even

if for the time being their exploration is at the rather “general”

level.

A non-trivial aspect of neuronal groups is degeneracy (Edel-

man, 1987): structurally different networks can do the same

calculations. Usually degeneracy is not a feature of minimalist

models but it is certainly important for dynamics. Changeux and

Dehaene (1989) called attention to this in their landmark paper:

“In the course of the proposed epigenesis, diversification of neu-

rons belonging to the same category occurs. Each one acquires its

individuality or singularity by the precise pattern of connections

it establishes (and neurotransmitters it synthesizes). . . A major

consequence of the theory is that the distribution of these sin-

gular qualities may also vary significantly from one individual to

the next. Moreover, it can be mathematically demonstrated that

the same afferent message may stabilize different connective orga-

nizations, which nevertheless results in the same input–output

relationships. . . The variability referred to in the theory, therefore

may account for the phenotypic variance observed between dif-

ferent isogenic individuals. At the same time, however, it offers

a neural implementation for the often-mentioned paradox that

there exists a non-unique mapping of a given function to the

underlying neural organization.” (Changeux and Dehaene, 1989,

p. 81).

The important point for NRH is that degeneracy plays a crucial

role in the evolvability of replicators (Toussaint, 2003; Wagner,

2007; Parter et al., 2008). Evolvability has several different def-

initions; for our purposes here the most applicable approach is

the measure of how fast a population can respond to directional

selection. It is known that genetic recombination is a key evolv-

ability component in this regard (Maynard Smith, 1998). It has

been found that neutral networks also play a role in evolvabil-

ity. Neutral networks are a web of connections in genotype space

among degenerate replicators having the same fitness in a partic-

ular context. By definition two replicators at different nodes of

such a network are selectively neutral, but their evolvability may

be very different: one may be far, but the other may be close to a

“promising” region of the fitness landscape; their offspring might

then have very different fitnesses. Parter et al. (2008) show that

under certain conditions variation becomes facilitated : random

genetic changes can be unexpectedly more frequent in directions of

phenotypic usefulness. This occurs when different environments

present selective goals composed of the same subgoals, but in dif-

ferent combinations. Evolving replicator populations can “learn”

about the deep structure of the landscape so that their varia-

tion ceases to be entirely “random” in the classical neo-Darwinian

sense. This occurs if there is non-trivial neutrality as described by

Toussaint (2003) and demonstrated for gene regulatory networks

(Izquierdo and Fernando, 2008). We propose that this feature will
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turn out to be critical for neuronal replicators if they exist. This

is closely related to how hierarchical Bayesian models find deep

structure in data (Kemp and Tenenbaum, 2008; Tenenbaum et al.,

2011).

Finally, an important aspect is the effect of population structure

on the dynamics of evolution (c.f. Maynard Smith and Szathmáry,

1995; Szathmáry, 2011). Previously we (Fernando and Szathmáry,

2009) have noted that neuronal evolutionary dynamics could turn

out to be the best field of application of evolutionary graph theory

(Lieberman et al., 2005). It has been shown that some topologies

speed up, whereas others retard adaptive evolution. Figure 5 shows

an example of favorable topologies (selection amplifiers). The

brain could well influence the replacement topologies by gating,

thereby realizing the most rewarding topologies.

REINFORCEMENT LEARNING

Thorndike (1911) formulated the “law of effect” stating that bene-

ficial outcomes increase and negative outcomes decrease the occur-

rence of a particular type of behavior. It has been noted (Maynard

Smith, 1986) that there is a similarity between the dynamics of

genetic selection and the operant conditioning paradigm of Skin-

ner (1976). Börgers and Sarin (1997) pioneered a formal link

between replicator dynamics and reinforcement learning. It could

be shown that in the continuous-time limit the dynamics can

be approximated by a deterministic replicator equation, formally

describing the dynamics of a reinforcement learner.

The most exciting latest development is due to Loewenstein

(2011) who shows that if reinforcement follows a synaptic rule

FIGURE 5 | A selection amplifier topology from Lieberman et al. (2005).

Vertices that change often, due to replacement from the neighbors, are

colored in orange. In the present context each vertex can be a neuron or

neuronal group that can inherit its state from its upstream neighbors and

pass on its state to the downstream neighbors. Neuronal evolution would

be evolution on graphs.

that establishes a covariance between reward and neural activity,

the dynamics follows a replicator equation, irrespective of the fine

details of the model. Let pi(t ) be the probability of choosing alter-

native i at time t. A simple expression of the dynamics of the

probabilities postulates:

dpi

dt
= ηpi (E [R|A = i] − E [R]) , (5)

where η is the learning rate A denotes the action, R is reward, and

E[R] is the average return; and the form is that of a continuous-

time replicator equation. Probabilities depend on the synaptic

weight vector W(t ), i.e.,

pi (t ) = pi (W (t )) . (6)

The learning rule in discrete-time is:

∆pi (t + 1) = pi (W (t + 1)) − pi (W (t )) , (7)

and the change in synaptic strength in a trial is:

∆W = ϕR (N − E [N ]) (8)

where ϕ is the plasticity rate and N is any measure of neural activ-

ity. The expectation value for this change can be shown to obey:

E [∆W] = ϕCov [R, N ] , (9)

which is the covariance rule (the form of the synaptic weight

change in Eq. 8 can take different forms, while the covariance

rule still holds). Using the average velocity approximation the

stochastic dynamics can be replaced by a deterministic one:

dW

dt
= ϕCov [R, N ] .

Now we can differentiate Eq. 6 with respect to time, and after

several operations we obtain exactly Eq. 5, with a calculable learn-

ing rate! This is by definition a selectionist view in terms of Price,

and arguably there are units of selection at the synapse level, but no

units of evolution, since “mutation” in a sense of an evolutionary

algorithm does not play a role in this elegant formulation. There

is selection from a given stock, exactly as in many other models we

have seen so far, but there is no generation and testing of novelty.

NGS does provide a mechanism for the generation and testing of

novelty, i.e., the formation of the secondary repertoire and stochas-

tic search at the level of one neuronal group itself. Such dynamics

can be seen during the formation and destruction of polychronous

groups (Izhikevich, 2006; Izhikevich and Hoppensteadt, 2009) and

can be modulated by dopamine based value systems (Izhikevich,

2007).

A relevant comparison is that of evolutionary computa-

tion with temporal-difference based reinforcement learning algo-

rithms. Neural Darwinism has been formulated as a neuronal

implementation of temporal-difference reinforcement learning

based on neuromodulation of STDP by dopamine reward
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(Izhikevich, 2007). Neuronal groups are considered to be poly-

chronous groups, where re-entry is merely recurrence in a recur-

rent neural network from which such groups emerge (Izhikevich

et al., 2004). An elaboration of Izhikevich’s paper by Chorley

and Seth considers extra re-entrant connections between basal

ganglia and cortex, showing that further TD-characteristics of

the dopaminergic signals in real brains can be captured with

this model.

We have made the comparison between temporal-difference

learning and evolutionary computation extensively elsewhere

(Fernando et al., 2008, 2010; Fernando and Szathmáry, 2009, 2010)

and we find that there are often advantages in adding units of evo-

lution to temporal-difference learning systems in terms of allowing

improved function approximation and search in the space of pos-

sible representations of a state–action function (Fernando et al.,

2010). We would also expect that adding units of evolution to

neuronal models of TD-learning should improve the adaptive

potential of such systems.

COMPARING HILL-CLIMBING AND EVOLUTIONARY SEARCH

We have argued informally above that in some cases Darwinian

NS is superior compared to other stochastic search algorithms that

satisfy the Price equation but do not contain units of evolution.

Examples of search algorithms are reviewed in the table below.

The left hand column of Table 1 shows the simplest class of

search algorithm, solitary search. In solitary search at most two

candidate units are maintained at one time. Hill-climbing is an

example of a solitary search algorithm in which a variant of the

unit (candidate solution) is produced and tested at each “genera-

tion.” If the offspring solution’s quality exceeds that of its parent,

then the offspring replaces the parent. If it does not, then the off-

spring is destroyed and the parent produces another correlated

offspring. Such an algorithm can get stuck on local optima and

does not require replicators for its implementation. For example,

it can be implemented by a robot on a mountainous landscape for

example. A robot behaving according to stochastic hill-climbing

does the same, except that it stays in the new position with a certain

probability even if it is slightly lower than the previous position.

By this method stochastic hill-climbing can sometimes avoid get-

ting stuck on local optima, but it can also occasionally lose the

peak. Simulated annealing is a variant of stochastic hill-climbing

in which the probability of accepting a worse solution is reduced

over time. Solitary stochastic search has been used by evolutionary

biologists such as Fisher to model idealized populations, i.e., where

only one mutant exists at any one time in the population (Fisher,

1930). However, a real Darwinian population is a much more

complex entity, and cannot be completely modeled by stochastic

hill-climbing. Here we should mention Van Belle’s (1997) criticism

of Neural Darwinism which makes a subtle point about stochastic

search. He points out that replication (units of evolution) permits

unmutated parental solutions to persist whilst mutated offspring

solutions are generated and tested. If the variant is maladapted,

the original is not lost. He claims that such replicators are missing

in Neural Darwinism. He demonstrates through a variant of Edel-

man’s Darwin I simulation that if neuronal groups change without

the capacity to revert to their previous form that they cannot even

be properly described as undertaking hill-climbing because they

cannot revert to the state they were in before taking the unsuccess-

ful exploration step. However, Boltzmann networks (Duda et al.,

2001) and other stochastic search processes such as Izhikevich’s

(2007) dopamine stabilized reinforcement learning networks and

Seung’s (2003) stochastic synapses show that even without explicit

memory of previous configurations that optimization is possible.

Therefore Van Belle has gone too far in saying that “The individu-

als of neural Darwinism do not replicate, thus robbing the process

of the capacity to explore new solutions over time and ultimately

reducing it to random search” because even without replicators,

adaptation by stochastic search is clearly possible.

Now consider column two of Table 1. What happens if more

robots are available on the hillside for finding the global optimum,

or more neuronal groups or synapses are available to explore the

space of neural representations? What is an efficient way to use

these resources? The simplest algorithm for these robots to fol-

low would be that each one behaves completely independently of

the others and does not communicate with the others at all. Each

of them behave exactly like the solitary robot obeying whichever

solitary strategy (hill-climbing, stochastic hill-climbing, etc.) it was

using before. This is achieved by simply having multiple instances

of the (stochastic) hill-climbing machinery. Multiple-restart hill-

climbing is a serial implementation of this same process. It may be

clear to the reader that such an algorithm is likely to be wasteful.

If a robot becomes stuck on a local optimum then there would be

no way of reusing this robot. Its resources are wasted. One could

expect only a linear speed up in the time taken to find a global

optimum (the highest peak). It is not surprising that no popular

algorithm falls into this wasteful class.

Consider now the third column of Table 1. To continue the

robot analogy of search on a fitness landscape, we not only have

Table 1 | A classification of search (generate-and-test) algorithms of the Pricean and true Darwinian types.

Solitary search Parallel search Parallel search with competition (price) Parallel search with competition and information

transmission (JMS)

Stochastic hill-climbing

(Prügel-Bennett, 2004)

Independent

hill-climbers

Competitive learning (Song et al., 2000) Genetic natural selection (Fisher, 1930)

Simulated annealing

(Duda et al., 2001)

Reinforcement learning (Sutton and Barto, 1998) Adaptive immune system (Flajnik and Kasahara, 2010)

Boltzmann learning

(Duda et al., 2001)

Synaptic selectionism (Changeux, 1985) Genetic algorithms (Holland, 1975)

Neural Darwinism (Edelmanism; Edelman, 1987) Didactic receptive fields (Young et al., 2007)

Neuronal Replicators (Fernando et al., 2008)
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multiple robots available, but there is competition between robots

for search resources (the machinery required to do a generate-

and-test step of producing a variant and assessing its quality).

In the case of robots a step is moving a robot to a new posi-

tion and reading the altitude there. Such an assessment step is

often the bottleneck in time and processing cost in a real opti-

mization process. If such steps were biased so that the currently

higher quality solutions did proportionally more of the search,

then there would be a biased search dominated by higher quality

solutions doing most of the exploration. This is known as com-

petitive learning because candidate solutions compete with each

other for reward and exploration opportunities. This is an exam-

ple of parallel search with resource competition, shown in column

3 of Table 1. It requires no NS as defined by JMS, i.e., it requires no

explicit multiplication of information. No robot communicates its

position to other robots. Several algorithms fall into the above cat-

egory. Reinforcement learning algorithms are examples of parallel

search with competition (Sutton and Barto, 1998), see the dis-

cussion above about the Pricean interpretation of reinforcement

learning. Changeux’s synaptic selectionism also falls into this class

(Changeux et al., 1973; Changeux, 1985).

Do such systems of parallel search with competition between

synaptic slots exhibit NS? Not according to the definition of JMS

because there is no replicator; there is no copying of solutions

from one robot to another robot, there is no information that is

transmitted between synapses. Resources are simply redistributed

between synapses (i.e., synapses are strengthened or weakened in

the same way that the stationary robots increase or decrease their

exploitation of their current location). Notice, there is no trans-

mission of information between robots (e.g., by recruitment) in

this kind of search. Similarly there is no information transfer

between synapses in synaptic selectionism. Synaptic selection-

ism is selection in the Price sense, but not in the JMS sense.

Edelman’s TNGS falls into this category also. In a recent for-

mulation of Edelman’s theory of NGS, Izhikevich et al. (2004)

shows that there is no mechanism by which functional variations

in synaptic connectivity patterns can be inherited (transmitted)

between neuronal groups. Neural Darwinism is a class of paral-

lel search with competition but no information transfer between

solutions, and is thus fundamentally different from Darwinian NS

as defined by JMS.

This leads us to the final column in Table 1. Here is a radically

different way of utilizing multiple slots that extends the algorith-

mic capacity of the competitive learning algorithms above. In this

case we allow not only the competition of slots for generate-and-

test cycles, but we allow slots to pass information (traits/responses)

between each other. Returning to the robot analogy, those robots

at the higher altitudes can recruit robots from lower altitudes to

come and join them. This is equivalent to replication of robot loca-

tions. The currently best location can be copied to other slots.

There is transmission of information between slots. Note, repli-

cation is always of information (patterns), i.e., reconfiguration by

matter of other matter. This means that the currently higher qual-

ity slots have not only a greater chance of being varied and tested,

but that they can copy their traits to other slots that do not have

such good quality traits. This permits the redistribution of infor-

mation between material slots. Crucially, such a system of parallel

search, competition, and information transmission between slots

does satisfy JMS’ definition of NS. The configuration of a unit of

evolution (slot) can reconfigure other material slots. According to

this definition, several other algorithms fall into the same class as

NS, e.g., particle swarm optimization (Poli et al., 2007) because

they contain replicators.

ALGORITHMIC ADVANTAGES OF UNITS OF EVOLUTION

Are there algorithmic advantages of the full JMS-type NS com-

pared to independent stochastic hill-climbers or competitive sto-

chastic hill-climbers without information transmission that satis-

fies only Price’s formulation of NS? We can ask: for what kinds of

search problem is a population of replicators undergoing NS with

mutation (but no crossover) superior to a population of inde-

pendent hill-climbers or stochastic hill-climbers competing for

resources?

Note, we are not claiming that Edelman’s Neural Darwinism is

exactly equivalent to competitive learning or to independent sto-

chastic hill-climbing It cannot be because Hebbian learning and

STDP impose many instructed transmission biases that are under-

determined by the transmission bias term in the Price equation at

the level of the neuronal group (and in fact, Hebb, and STDP have

been interpreted above as Pricean evolution at the synaptic level

thus). The claim is that it does not fall into the far right column of

Table 1, but is of the same class as competitive learning algorithms

that lack replicators.

So to answer first the question of when JMS-type NS is supe-

rior to independent stochastic hill-climbing, a shock to the genetic

algorithm community came when it was shown that a hill-climber

actually outperforms a genetic algorithm on the Royal Road Func-

tion (Mitchell et al., 1994). This was in apparent contradiction to

the building-block hypothesis which had purported to explain

how genetic algorithms worked (Holland, 1975). But later it was

shown that a genetic algorithm (even without crossover) could

outperform a hill-climber in a problem which contained a local

optimum (Jansen et al., 2001). This was thought to be due to the

ability for a population to act almost like an ameba at a local

optimum, reaching down into a valley and searching the local

solutions more effectively. The most recent explanation for the

adaptive power of a Darwinian population is that the popula-

tion is an ideal data structure for representing a Bayesian prior

distribution of beliefs about the fitness landscape (Zhang, 1999).

Another possible explanation is that replication allows multiple

search points to be recruited to the region of the search space that

is currently the best. The entire population (of robots) can acquire

the response characteristics (locations) of the currently best unit

(robot). Once all the robots have reached the currently best peak,

they can all do further exploration to find even higher peaks. In

many real-world problems there is never a global optimum; rather

further mountain ranges remain to be explored after a plateau

has been reached. For example, there is no end to science. Not

every system that satisfies Price’s definition of selection can have

these special properties of being able to redistribute a variant to all

search points, i.e., for a solution to reach fixation in a population.

Here we carefully compare the simplest NS algorithm with

independent hill-climbers on a real-world problem. Whilst we

do not claim to be able to fully explain why NS works better
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than a population of independent hill-climbers balanced for the

number of solution evaluations (no-one has yet fully explained

this) we show that in a representative real-world problem, it does

significantly outperform the independent hill-climbers.

Intuition and empirical evidence (Mitchell et al., 1994; McIl-

hagga et al., 1996a,b; Keane and Nair, 2005; De Jong, 2006;

Harman and McMinn, 2007), suggest that selectionist, popula-

tion based search (even without crossover) will often outperform

hill-climbing in multimodal spaces (those with multiple peaks

and local optima). However, in relatively well-behaved search

spaces, for example with many smooth peaks which are easily

accessible from most parts of the space, a random multi-start hill-

climber may well give comparable or better performance (Mitchell

et al., 1994; Harman and McMinn, 2007). But as the complex-

ity of the space increases, the advantages of evolutionary search

should become more apparent. We explored this hypothesis by

comparing mutation-only genetic algorithms with a number of

hill-climbing algorithms on a non-trivial evolutionary robotics

(ER) problem. The particular ER task has been chosen because it

provides a challenging high dimensional search space with the fol-

lowing properties: noisy fitness evaluations, a highly neutral space

with very few widely separated regions of high fitness, and vari-

able dimensionality (Smith et al., 2002a). These properties put it

among the most difficult class of search problems. Finally, because

it is a noisy real-world sensorimotor behavior-generating task, the

search space is likely to share some key properties with those of

natural brain-based behavior tasks. We should make it clear we

do not believe this is how neural networks actually develop. The

aim of this demonstration is to add to the molecular example an

example of a problem which contains a realistic behavioral fitness

landscape.

The task used in the studies is illustrated in Figure 6. Starting

from an arbitrary position and orientation in a black-walled arena,

a robot equipped with a forward facing camera must navigate

under extremely variable lighting conditions to one shape (a white

triangle) while ignoring the second shape (a white rectangle). The

robot must successfully complete the task over a series of trials in

which the relative position and size of the shapes varies. Both the

robot control network and the robot sensor input morphology, i.e.,

the number and positions of the camera pixels used as input and

how they were connected into the network, were under evolution-

ary control as shown in Figure 6. Evolution took place in a special

validated simulation of the robot and its environment which made

use of Jakobi’s (1998) minimal simulation methodology whereby

computationally very efficient simulations are built by modeling

only those aspects of the robot–environment interaction deemed

important to the desired behavior and masking everything else

with carefully structured noise (so that evolution could not come

to rely on any of those aspects). These ultra-fast, ultra-lean sim-

ulations allow very accurate transfer of behavior from simulation

to reality by requiring highly robust solutions that are able to cope

with a wide range of noisy conditions. The one used in this work

has been validated several times and transfer from simulation to

reality is extremely good. The trade-off in using such fast simula-

tions is that the search space is made more difficult because of the

very noisy nature of the evaluations.

The robot nervous system consists of a GasNet. This form of

non-standard neural network has been used as it has previously

been shown to be more evolvable (in terms of evaluations required

to find a good solution) and to produce search spaces with a high

degree of neutrality (Husbands et al., 1998, 2010; Philippides et al.,

2005). Hence the problem provides a very challenging but not

impossibly difficult search space.

Details of the GasNet, the encoding used, and the fitness func-

tion are found in the Appendix. Table 2 summarizes the results

of the comparison of search methods on the ER problem. The

FIGURE 6 | (Left): the gantry robot. A CCD camera head moves at the end

of a gantry arm. In the study referred to in the text 2D movement was used,

equivalent to a wheeled robot with a fixed forward pointing camera. A

validated simulation was used: controllers developed in the simulation work at

least as well on the real robot. (Right): the simulated arena and robot. The

bottom right view shows the robot position in the arena with the triangle and

rectangle. Fitness is evaluated on how close the robot approaches the

triangle. The top right view shows what the robot “sees,” along with the pixel

positions selected by evolution for visual input. The bottom left view shows

how the genetically set pixels are connected into the control network whose

gas levels are illustrated. The top left view shows current activity of nodes in

the GasNet.
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Table 2 | Summary statistic for comparison of the search methods on

the ER problem.

Search alg Mean fitness Min fitness Max fitness STD fitness

DEA 1.00 1.00 1.00 0.0

SEA 0.821 0.666 1.00 0.267

RSHC 0.133 0.028 0.28 0.045

Greedy RSHC 0.1466 0.037 0.291 0.033

Neutral RSHC 0.149 0.066 0.208 0.030

Neut-50 RSHC 0.148 0.103 0.207 0.026

Kimura RSHC 0.0331 0.0034 0.087 0.025

PS_SHC 0.382 0.281 0.512 0.071

Mean, minimum, and average fitness were calculated from the final fitnesses

achieved on each run of the various methods. Each method was run sufficient

times to require 8 million fitness evaluations.

maximum fitness for the task is 1.0. The average fitness for a ran-

domly generated solution (from which all methods start) is 0.0213

(from a random sample of 100,000). The statistics were gathered

over sufficient runs of each method to require 8 million fitness

evaluations, making the statistics particularly watertight.

DEA and SEA are population based (mutation-only) evolution-

ary algorithms, RSHC, and its variants are random start stochastic

hill-climbing algorithms, PS_SHC consists of a population of

independent stochastic hill-climbers in which selection is oper-

ating in order to allocate search resources. It is exactly the same

as the DEA algorithm except there is no replication. All the algo-

rithms make use of the same set of mutation operators to generate

new solutions (offspring). The search algorithms and mutation

operators are fully described in the Appendix.

Many variations of all these algorithms were explored (by vary-

ing all algorithm parameters, e.g., mutation rates, maximum num-

ber of iterations, populations sizes etc.) but the results were not

significantly different so only the main representative algorithms

are shown here. The distributed population based evolutionary

algorithm, DEA, found a solution with a perfect score on every

run made (85 runs were needed to ensure the required 8 Million

fitness evaluations). On many runs the evolutionary algorithm

found perfect solutions in less than 200 generations (20,000 fit-

ness evaluations). Although significantly worse than DEA, SEA

was able to find perfect solutions on 55% of runs and reason-

ably good solutions on all runs. Each random start hill-climbing

method required many restarts (often more than 10,000) to secure

the 8 Million fitness evaluations needed for comparison. Still none

of them were able to find a good solution. PS_SHC produced bet-

ter solutions than the RSHC methods and in most runs rapidly

moved to areas of moderate fitness but was never able to climb

to high fitnesses. For further details of the statistical analysis of

results see the Appendix.

As the evolutionary algorithms did not use crossover, and all

methods used the same mutation functions to produce offspring

(new candidate solutions), the advantage of the evolutionary algo-

rithms must lie in their use of selection and replication within a

population. This allows partial information on several promising

search directions to be held at the same time. Selection allows

an automatic allocation of search resources that favors the most

promising directions, as represented by the fittest individuals in the

population. This accounts for PS_SHC’s superior performance in

comparison with the RSHC methods, in particular its rapid move-

ment to moderate fitness areas of the search space. However, it is

the combination of selection and replication that generates real

search power. Selection pushes search resources toward the cur-

rently most promising search directions and replication, biased

toward fitter individuals, magnifies this effect by spreading higher

fitness fronts throughout the population. Such processes are par-

ticularly effective in the DEA where distributed parallel search is

always going on at many fronts simultaneously. The geographical

distribution, in which local neighborhoods overlap, allows infor-

mation on promising search directions to rapidly diffuse around

the grid on which the population operate, without the need for

global control. Such processes are often at play in biological media,

which are by nature spatially distributed, and could plausibly oper-

ate in neural substrates. The population based distributed nature

of the evolutionary search was also instrumental in coping with

the high degree of noise in the fitness evaluation. The population

is able to “smooth out” the noisy evaluation signal and progress to

the higher fitness regions (Arnold and Beyer, 2003; Jin and Branke,

2005). Hill-climbing, with its use of a solitary solution at any one

time, could not cope with the noisy, unreliable feedback from the

evaluation function (even though it involved averaging over sev-

eral trials) and could never rise above the low-fitness foothills and

neutral plains that occupy most of the search space.

PROPOSED NEURONAL UNITS OF EVOLUTION

Having seen two examples (the molecular and the neural) of the

relative efficiency of true evolutionary search, we are ready to pose

the question: do units of evolution in the brain exist after all? The

answer is that for the time being we do not know. Since neurons

do not reproduce, any realization of true Darwinian dynamics

beyond the synapse level must be subtle and easy to miss unless

sought after with the right paradigm in mind. Here we review

two candidate mechanisms for neuronal replication: one replicates

local connectivity patterns, the other propagates activity patterns.

These models are not for “fitting curves” at this stage; rather, they

are meant to stimulate the development of specific models and

then experimental tests. They have the status of “toy models” in

that they are idealized and very simple.

Previously we have proposed a tentative outline of a means by

which a higher-order unit of neuronal evolution above the synap-

tic level may be able to replicate. The method allows a pattern of

synaptic connections to be copied from one such unit to another

as shown in Figure 7 (Fernando et al., 2008). Several variants of

the mechanism are possible, however the principle remains the

same; a copy is made by one neuronal (offspring) region under-

taking causal inference of the underlying connectivity of another

(parental) neuronal region based on the spike trains the parent

emits to the offspring region.

In the brain there are many topographic maps. These are path-

ways of parallel connections that preserve adjacency relationships

and they can act to establish a one-to-one (or at least a few-to-few)

transformation between neurons in distinct regions of the brain.

In addition there is a kind of synaptic plasticity called STDP, the

same kind of plasticity that Young et al. (2007) used to explain the
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FIGURE 7 | Outline of a mechanism for copying patterns of synaptic connections between neuronal groups. The pattern of connectivity from the lower

layer is copied to the upper layer. See text.

copying of receptive fields. It works rather like Hebbian learning.

Hebb (1949) said that neurons that fire together wire together,

which means that the synapse connecting neuron A to neuron B

gets stronger if A and B fire at the same time. However, recently it

has been discovered that there is an asymmetric form of Hebbian

learning (STDP) where if the pre-synaptic neuron A fires before

the post-synaptic neuron B, the synapse is strengthened, but if

pre-synaptic neuron A fires after post-synaptic neuron B then

the synapse is weakened. Thus STDP in an unsupervised man-

ner, i.e., without an explicit external teacher, reinforces potential

causal relationships. It is able to guess which synapses were causally

implicated in a pattern of activation.

If a neuronal circuit exists in layer A in Figure 7, and is exter-

nally stimulated randomly to make its neurons spike, then due to

the topographic map from layer A to layer B, neurons in layer B

will experience similar spike pattern statistics as in layer A (due to

the topographic map). If there is STDP in layer B between weakly

connected neurons then this layer becomes a kind of causal infer-

ence machine that observes the spike input from layer A and tries

to produce a circuit with the same connectivity, or at least that

is capable of generating the same pattern of correlations. One

problem with this mechanism is that there are many possible pat-

terns of connectivity that generate the same spike statistics when

a circuit is randomly externally stimulated to spike. As the cir-

cuit size gets larger, due to the many possible paths that activity

can take through a circuit within a layer, the number of possible

equivalent circuits grows. This can be prevented by limiting the

amount of horizontal spread of activity permissible within a layer

(Hasselmo, 2006). Our early models used simple error-correction

neurons that undertook heterosynaptic depression to eliminate

false-positive and false-negative inferences, and using these we

found it was possible to evolve networks of 20–30 neurons in size

to obtain a particular desired pattern of connectivity. The network

with connectivity closest to the desired connectivity was allowed

to replicate itself to other circuits. Recently we have shown that

error-correction neurons are not needed if sub-threshold depo-

larization is used such that coincident spikes from the parent layer

and the offspring layer are required to activate an offspring layer
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neuron, Section “Details of a Modified Model for Copying of Pat-

terns of Synaptic Connectivity” in Appendix. Furthermore, use

of heterosynaptic competition rules and first order STDP rules

(Nessler et al., 2009) allows causal disambiguation (Gopnik and

Schulz, 2004). Recently there has been evidence for this kind of

copying in neuronal cultures and in the hippocampus of rats nav-

igating routes in a maze (Isaac et al., 2009; Johnson et al., 2010).

Further work is required to identify the fidelity of this copying

operation in neuronal cultures and slices to determine the size of

networks that may be copied by intra-brain causal inference.

Previously William Calvin had proposed that patterns of activ-

ity can replicate over hexagonal arrays that extend over the cor-

tex; however there is no evidence for the donut of activation

that is needed around each pyramidal cell for this mechanism

to properly work, and indeed no model has been produced to

demonstrate Calvin’s sketch (Calvin, 1987, 1996; Fernando and

Szathmáry, 2009, 2010). This was remedied in our recent paper

which proposed an even simpler method of activity replication

using bistable neurons, inhibitory gating, and topographic maps

(Fernando et al., 2010). This work combines Hebbian learn-

ing with the replication operation to allow learning of linkage

disequilibrium in a way that would not be possible in genetic

evolution. Aunger (2002) has also argued for true neuronal repli-

cation although has produced no model. Finally, John Holland

in his development of Learning Classifier Systems had in mind

a cognitive implementation, but had proposed no model of such

an implementation (Holland, 1975; Holland and Reitman, 1977;

Holland et al., 1986) although recent work in learning classifier

systems has done so (Fernando, 2011a,b). Our latest work shows

that paths taken by activity through a neuronal network can be

interpreted as units of evolution that overlap and that exhibit

mutation and crossover by activity dependent structural plasticity

(Fernando et al., 2011). Such units of evolution are serial Dar-

winian entities rather than parallel ones in the sense that their

phenotypes can only be expressed in series and not in parallel.

In all other respects they share the characteristics of units of

evolution.

CONCLUSION

Some circumstantial evidence for neuronal replicators exists. For

example it has been shown that neuronal response characteristics

can replicate. This involves the copying of a functional pattern of

input connections from one neuron to another neuron and is a

lower-boundary case of replication of synaptic connectivity pat-

terns in small neuronal circuits (Young et al., 2007). Further work

is required to examine to what extent more complex response

characteristics can be copied. There is evidence that connectivity

patterns can be entrained by stimuli (Johnson et al., 2010) and

that this can also occur during behavior (Isaac et al., 2009). These

mechanisms could be extended for copying of patterns of synap-

tic connectivity, and undertaking such experiments in neuronal

slices and cultures could test the NRH. Our proposal for the evo-

lution of neuronal paths is supported by increasing evidence for

activity dependent structural plasticity (Chklovskii et al., 2004).

In summary we have distinguished between selectionist and truly

Darwinian theories, and have proposed a truly Darwinian theory

of Darwinian Neurodynamics. The suggestion that true Darwinian

evolution can happen in the brain during, say, complex thinking,or

the development of language in children, is ultimately an empiri-

cal issue. Three possible outcomes are possible: (i) nothing beyond

the synapse level undergoes Darwinian evolution in the brain; (ii)

units of evolution will be identified that are very different from

our “toy model” suggestions in this paper (and elsewhere); and

(iii) some of the units correspond, with more complex details, to

our suggested neuronal replicators. The potential significance of

the last two options cannot be overrated.
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APPENDIX

DETAILS OF COMPARISON OF EVOLUTIONARY SEARCH AND

HILL-CLIMBING METHODS ON A GasNet EVOLUTIONARY ROBOTICS

TASK

GasNets

GasNets make use of an analog of volume signaling, whereby neu-

rotransmitters freely diffuse into a relatively large volume around

a nerve cell, potentially affecting many other neurons irrespective

of whether or not they are electrically connected. By analogy with

biological neuronal networks, GasNets incorporate two distinct

signaling mechanisms, one “electrical” and one “chemical.” The

underlying “electrical” network is a discrete-time step, recurrent

neural network with a variable number of nodes. These nodes are

connected by either excitatory or inhibitory links. In addition to

this underlying network in which positive and negative “signals”

flow between units, an abstract process loosely analogous to the

diffusion of gaseous modulators is at play. Some units can emit

virtual “gases” which diffuse and are capable of modulating the

behavior of other units by changing their transfer functions. The

networks occupy a 2D space; the diffusion processes mean that the

relative positioning of nodes is crucial to the functioning of the

network. A GasNet is illustrated in Figure A1.

The network architecture (including number of nodes and

how/if they are connected) and all properties of the nodes and

connections and gas diffusion parameters are set by the search

algorithm, along with which camera pixels are used as input.

Because of the noise and variation, and limited sensory capabilities

(generally only very few pixels are used), this task is challenging,

requiring robust, general solutions. The coevolution of network

and sensor morphology and the fact that the network does not

have a prespecified architecture makes this far from a simple “net-

work tuning” type problem. The search space has other interesting

properties that are often found in biological systems, particularly

Neuron 1

Neuron 2

Neuron 4

Neuron 3

Neuron 5

Neuron 6

A GasNet. Neuron 3 is emitting gas, and modulating
neuron 2 despite there being no synaptic connection.

FIGURE A1 | A basic GasNet showing excitatory (solid) and inhibitory

(dashed) “electrical” connections and a diffusing virtual gas creating a

“chemical” gradient.

that of degeneracy, in the sense discussed by Edelman and Gally

(2001). Analysis of GasNet solutions often reveals high levels of

degeneracy, with functionally equivalent sub-networks occurring

in many different forms, some involving gas and some not (Smith

et al., 2002b). Their genotype to phenotype mapping (where the

phenotype is robot behavior) is also highly degenerate with many

different ways of achieving the same outcome (e.g., moving node

positions, changing gas diffusion parameters, adding new con-

nections, or deleting existing ones can all have the same effect).

This is especially true considering variable length genotypes are

used to efficiently sculpt solutions in a search space of variable

dimensions. These properties partly explain the robustness and

adaptability of GasNets in noisy environments as well as their

evolvability (there are many paths to the same phenotypical out-

come with reduced probabilities of lethal mutations; Philippides

et al., 2005). See Husbands et al. (2010) for a detailed discus-

sion of the properties of the networks and their resultant search

spaces.

Network encoding

Networks were encoded on a variable sized genotype coding for

a variable number of nodes. A genotype consisted of an array of

integer variables, each lying in the range (0, 100). For continu-

ous variables, the phenotype value is obtained by normalizing the

genotype value to lie in the range (0.0, 1.0) and multiplying by the

relevant variable range. For nominal values, such as whether or

not the node has a visual input, the phenotype value = genotype

value MOD N nom, where N nom is the number of possible nominal

values, and MOD is the binary modular division operator. Each

node in the network has 21 variables associated with it. These

define the node’s position on a 2D plane; how the node connects

to other nodes on the plane with either excitatory (weight = +1)

or inhibitory (weight = −1) connections; whether or not the node

has visual input, and if it does the coordinates of the camera pixel

it takes input from, along with a threshold below which input

is ignored; whether or not the node has a recurrent connection;

whether and under what circumstances the node can emit a gas

and if so which gas it emits; and a series of variables describing the

gas emission dynamics (maximum range, rate of emission, and

decay etc). All variables were under evolutionary control. Four

of the nodes are assigned as motor nodes (forward and backward

nodes for the left and right motor, with motor speeds proportional

to the output of the relevant forward node minus the output of

the relevant backward node). See Husbands et al. (1998, 2010) for

further details.

Formally:

<genotype>::(<gene>)∗

<gene>::<x><y><Rp><TH1p><TH2p><Rn><TH1n>

<TH2n><visin><visr>

<visθ><visthr><rec><TE><CE><s><Re><index0><bias>

Fitness function

Sixteen evaluations were carried out on an individual network,

with scores fi calculated on the fraction of the initial robot-triangle

distance that the robot moves toward the triangle by the end of

the evaluation; a maximum score of 1.0 is obtained by getting the
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robot center to within 10.0 cm of the triangle at any time dur-

ing the evaluation (this requires the outside of the robot to get

very close to the target). The controller only receives visual input;

reliably getting to the triangle over a series of trials with differ-

ent starting conditions, different relative positions of the triangle

and rectangle, and under very noisy lighting, can only be achieved

by visual identification of the triangle. The evaluated scores are

ranked, and the fitness F is the weighted sum of the N = 16 scores,

with weight proportional to the inverse ranking i (ranking is from

1 to N, with N as the lowest score):

F =

∑N
i=1 ifi

∑N
i=1 i

=
2

N (N + 1)

N
∑

i=1

ifi

Note the higher weighting on the poorer scores provides pres-

sure to do well on all evaluations; a solution scoring 50% on every

evaluation has fitness nearly four times that of one scoring 100%

on half of the evaluations and zero on the other half.

Mutation operators

The basic search operators available to all the search methods used

in the study are the following mutation operators:

Gaussian mutation. Each integer in the genotype string had a

x% probability of mutation in a Gaussian distribution around

its current value with a variance of 10% of the range of the gene

values. x is a control parameter for the algorithm and was typically

set at 10.

Random uniform mutation. Each integer in the genotype string

had a y% probability of mutation in a uniform distribution across

the full range of the gene. y is a control parameter for the algo-

rithm and was typically set at 2. The combination of Gaussian

mutation at a relatively high rate and random uniform mutation

at a relatively low rate is found to be very effective combination.

Neuron addition operator. An addition operator, with a z%

chance per genotype of adding one neuron to the network by

inserting a block of random gene values describing each of the

new node’s properties. z is a control parameter for the algorithm

and was typically set at 4.

Neuron deletion operator. A deletion operator, also with a z%

chance per genotype of deleting one randomly chosen neuron from

the network by removing the entire block of genes associated with

it. The addition and deletion operators allowed exploration of a

variable dimension space. The default starting number of nodes

in a network was 10 which could then shrink (to a minimum of

six) or grow (without limit) as the search proceeded. The search

was always operating in a space of more than 100 dimensions

and those good solutions that were found typically had 200–300

dimensions.

Each of the search algorithms generated new candidate solu-

tions (offspring) by applying all the operators according to the

probability distributions described.

Search methods

RSHC is a basic random start hill-climber. N random mutations

of the current solution are created and the fittest of these is chosen

as the new solution, unless no better solution is found. This is

repeated until P cycles have run without any improvement in

fitness. At that point the hill-climber starts again from a newly gen-

erated random point (a new “run” for generating the performance

statistics). Various values of N and P were explored with very little

difference in performance found as long as N > 50 and P > 100.

The values in the table were generated for N = 100, P = 1000.

Greedy RSHC is similar to RSHC but with N = 1. Mutations

are continually generated until a better solution is found. In this

case P = 5000.

Neutral RSHC is the same as Greedy RSHC except that neutral

moves are taken. If the fitness of the mutated copy is the same or

better than the current solution, it is accepted as the new current

solution. This allows neutral net crawling (Barnett, 2001). Because

of the noisy nature of the fitness evaluation, statistical neutrality

is used (fitnesses within a statistically defined band around the

current fitness are accepted as “equal” fitness; Smith et al., 2003).

Neutral-50 RSHC is the same as Neutral RSHC except that there

is now only a 50% chance of accepting a neutral move in the search

space.

Kimura RSHC is a random start hill-climber that uses a prob-

ability of accepting a move based on a Kimura distribution:

P(a) = 1 − e2S/1 − e2NKS, where P(a) is the probability of accept-

ing a new solution as the next point to move to, S = (F o − F p)/F p,

F o = fitness of offspring, F p = fitness of parent, N = effective pop-

ulation size, K is a control parameter. Many different values for

N and K were investigated, but there was no significant dif-

ference between them. The results in the table are for N = 100

and K = 1.

DEA is a geographically distributed mutation-only evolution-

ary algorithm with local selection and replacement. This parallel

asynchronous algorithm uses a population size of 100 arranged on

a 10 × 10 grid. Parents are chosen through rank-based roulette-

wheel selection on the pool consisting of the eight nearest neigh-

bors to a randomly chosen grid-point. A mutated copy of the

parent is placed back in the pool using inverse rank-based roulette-

wheel selection (De Jong, 2006). The algorithm is run until a per-

fect score (1.0) is achieved for 10 consecutive pseudo-generation or

until 3000 pseudo-generation have passed. A pseudo-generation

occurs every N mutation (offspring) events, where N is the

population size. See Husbands et al. (1998) for full details.

SEA is a simple, generational genetic algorithm in which the

entire population (except the fittest member) is replaced on each

generation. Roulette-wheel selection is used to pick a parent which

produces a mutated offspring for the next generation. A popula-

tion size of 100 was used. The algorithm is run until a perfect

score (1.0) is achieved for 10 consecutive generations or until 3000

generations have passed.

PS_SHC consists of a population of independent stochastic

hill-climbers in which selection is operating in order to allocate

search resources. It is exactly the same as the DEA algorithm except

there is no replication and if an individual is selected (according

to fitness) to be mutated (a single search move), and its offspring

is fitter, the offspring replaces the parent (rather than another
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member of the population). This means there is no diffusion of

genetic material around the population grid. Variations of this

algorithm allowing neutral moves and (with a low probability)

replacement of parents with lower fitness offspring were also tried.

These variants did not produce significantly different results.

Statistical analysis of results

A statistical analysis of the comparative study summarized in

Table 2 was carried out. A Kruskal–Wallis test performed on

the whole data set revealed highly significant differences between

the distributions (p < 10−18). Pair-wise Wilcoxon rank-sum tests,

adjusted for multiple comparisons using the Dunn–Sidak proce-

dure for controlling type-1 statistical errors (Hollander and Wolfe,

1999), were used to further probe the differences between the

distributions. As can easily be seen from the table, DEA was signif-

icantly better than all other algorithms including SEA (p ≪ 10−6

in all cases), SEA was significantly better than all the hill-climbing

algorithms (p < 10−6) and PS_SHC was significantly better than

all other hill-climbers (p < 10−6) but significantly worse than both

the evolutionary search algorithms. There was no significant dif-

ferences between the RSHC methods except the one using the

Kimura distribution which is significantly worse. The main dif-

ference between the random start hill-climbing methods was the

length of typical individual hill climbs before a new random restart

is triggered (due to lack of progress). Simple RSHC had the shortest

individual climbs (typically 500 moves), while the neutral methods

had the longest (typically 5,000 moves).

DETAILS OF A MODIFIED MODEL FOR COPYING OF PATTERNS OF

SYNAPTIC CONNECTIVITY

We demonstrate a novel mechanism for copying of topology that

does not require explicit error-correction neurons. A causal net-

work (Bayes net) is learned on the basis of spikes received from

another causal network. Each node in the causal network consists

of a group of neurons (unconnected within a group). Neurons are

fully connected between groups. Each node is constituted by n = 5

stochastic neurons that are activated on the basis of a linear sum

of weighted synaptic inputs put through a sigmoid (logistic) func-

tion. Directed synaptic connections between neurons will come to

describe causal interdependencies between events. The probability

that a neuron fires pfire is given by Eq. A1.

pi =
1

1 + e−bias+
∑

wji sj
(A1)

where sj is the state of an afferent neuron j (i.e., 0 or 1) and wji is

the synaptic weight from pre-synaptic neuron j to post-synaptic

neuron i. The state of neurons is updated every millisecond based

on this calculation. A neuron cannot fire for a refractory period of

10 ms after it has fired already.

Inputs to the network arise from perceptual processes or from

other brain regions. Each distinct event type (shown in Figure A2)

may activate a specific set of neurons in the causal network (top)

via an input neuron (bottom), as assumed in previous models of

STDP based Bayesian learning (Nessler et al., 2009). Each set of

causal network neurons initially has weak connections to all other

sets of causal network neurons, but has no connections to neurons

within the same set. Why do we assume that many causal network

neurons are used to represent one event? This allows the network

to deal with low fidelity transmission from the input neuron (bot-

tom) to each causal network neuron (top) because the probability

that at least one causal network neuron fires when the input neu-

ron fires will be 1 − (1 − p)n, where n is the number of neurons

in the set of neurons that represents an event. The weak connec-

tions between sets of causal network neurons can be interpreted as

representing the initial prior expectation of a causal relationship

between events. To be specific, in the simulation this expectation is

as follows; if a pre-synaptic neuron fires then there is a probability

of 0.0009 that a post-synaptic neuron will fire. Activity can pass

between neurons with delays ranging from 0 to 4 ms, as shown in

Figure 1. That is, between any two neurons that represent two dif-

ferent events, a connection exists that links these events by a delay

of either 0, 1, 2, 3, or 4 ms. The range of delays between sets is set

up so that all possible delays exist between two sets of neurons.

This range of delays is intended to match the characteristic delays

between neurons in the CA3 region of the Hippocampus (Miles,

1990). The connectivity in Figure 1 is entirely plausible. It only

assumes that there exist connections from the hippocampus to the

cortex such that there is at least a disjoint set of neurons receiving

inputs from hippocampal neurons that represent distinct events,

and that there exists a range of delays between cortical neurons

within the same region.

In the simulation shown, the part of the neuronal network

that entrains to form the causal network consists of 15 neurons

arranged into three sets of five. Each set receives inputs from a

separate input neuron from the input layer. Neurons from each

set are connected all-to-all to neurons in the other two sets. Each

neuron in a set sends connections with delays 0, 1, 2, 3, and 4 ms

to the five neurons in each other set. This means that all possible

configurations of delay from 0 to 4 ms in a three-node network are

represented in the initial network.

A neuron in the causal network must be depolarized simul-

taneously by intrinsic causal network neurons and by extrin-

sic input neurons for it to have a high probability of firing a

spike. As shown in Figure 1, external “perceptual” input from

the input neuron to its set of causal network neurons is sub-

threshold (5.25) which means that if the input neuron fires,

there is only a low probability (0.014) that any causal network

neuron within its set fires. Only when extrinsic spikes reach a

causal network neuron at the same time as intrinsic spikes from

another causal network neuron is the probability of the post-

synaptic neuron firing increased to at least 0.15. This is an order

of magnitude greater than with unsynchronized reception of

intrinsic and extrinsic spikes. This principle of dependence on

two sources of activation for firing is also to be found in more

detailed neuronal models that simulate intrinsic synaptic con-

nections within a population as fast inhibitory (GABA) and fast

excitatory (AMPA) connections, but between-population connec-

tions as modulatory (NMDA) synapses (Friston, 2000). These later

synapses are voltage-dependent such that they have no effect on

the intrinsic dynamics in the second population unless there is

already a substantial degree of depolarization. Whilst those mod-

els are intended to show attentional top-down modulation of

bottom-up driving connections (Friston and Buchel, 2000), here
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FIGURE A2 | Overall structure of a two-cause causal network (above) and

its inputs that represent two event types (below). The bias of causal

network neurons is set to 9.5. As shown on the graph below, this means that

external input alone (at fixed synaptic weight 5.25) causes a neuron in the

causal network to fire with probability only 0.014. However, if external input is

simultaneous with internal delay line input from another causal network

neuron, then the neuron will fire with probability 0.15 (given the initial internal

delay line synaptic weight of 2.5). If a causal delay line has been potentiated to

its maximum (ACh depressed) weight of 4.0, then simultaneous external and

internal inputs to a neuron will cause it to fire with probability 0.43. However,

internal delay line activation alone (without simultaneous external input) is

insufficient to make a neuron fire with any greater than probability 0.004 (even

at the maximum internal ACh depressed weight of 4.0). This arrangement

insures that simultaneous input from external events and internal delay lines

is an order of magnitude more likely to cause a neuron to fire than

unsynchronized inputs from either source alone. This non-linearity is essential

in training of the causal network because it means that only connections that

mirror the delays between received events are potentially strengthened.

we are concerned with how intrinsic connections (within a cortical

region) are entrained by extrinsic inputs from the hippocampus

(Nadel and Moscovitch, 1997; Nadel et al., 2000, 2007). We do

not consider neuromodulation explicitly, although the addition

of neuromodulation may well be expected to improve causal

inference performance.
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Next we describe the rules that determine synaptic weight

change in the causal network. Three plasticity rules were mod-

eled; first order STDP, first order long-term depression (LTD), and

a (Rescorla–Wagner type) heterosynaptic competition rule. The

use of first order rules was first considered by Nessler et al. (2009)

and we are grateful to the group of Wolfgang Maass for suggesting

the use of such rules.

The first plasticity rule is a subtle modification of STDP (Song

and Abbott, 2001; Izhikevich, 2007). The modification made to

STDP here is that the weight change is obtained by multiplying

the current weight by the standard STDP term, i.e., the absolute

extent of weight change is related to the current weight by a first

order dependence such that the weight experiences exponential

autocatalytic growth and decay in a manner identical to that

observed in asexual biological replicators (Adams, 1998; Zachar

and Szathmáry, 2010). This is until a maximum weight threshold

is reached which can be interpreted as a equivalent to a carry-

ing capacity in a population dynamic model. We are intentionally

choosing to see the change in synaptic as a kind of unit of evo-

lution or replicator (Fernando and Szathmáry, 2009, 2010). An

alternative is to use a sub-exponential (e.g., parabolic) growth

rule dw/dt = kwp where p < 1 that does not result in survival of

the fittest but survival of everybody, a modification which may

allow preservation of synaptic diversity (Szathmary, 2000; Szath-

máry, 2006). For the time being we use a simple exponential model

with p = 1.

The second plasticity rule we simulate is a pair of first order

long-term depression (LTD) rules that can work with neuronal

network models that are sufficiently realistic to include explicit

delays between a spike leaving the body of a neuron and reaching

the synapse. Firstly, if the pre-synaptic neuron fires and if when the

spike reaches the synapse the post-synaptic neuron does not fire,

then the synaptic weight experiences first order depression, i.e.,

the weight is reduced by a fixed proportion of its current value.

This embodies the intuitive notion that if event A occurs but event

B does not occur when it should have occurred if event A were to

have caused it, then event A is naturally less likely to have caused

event B with that particular delay. Note that if the STDP rule were

used alone then there would be no weight change because the

STDP rule produces maximum weight change for spikes that co-

occur close together in time, but not where only one spike occurs.

Secondly when a post-synaptic neuron fires, those synapses that

precisely at that time are not being reached by spikes from their

respective pre-synaptic neurons have their weights depressed by a

fixed proportion of their current values. This embodies the intu-

itive causal notion that if effect B occurs and yet putative cause

A did not occur at the right time before B, then cause A is less

likely to have caused effect B. In both cases the synapse experi-

ences exponential decay. Both rules refine the STDP rule in the

sophistication of causal assumptions they embody. Both causal

assumptions seem entirely natural and intuitive at the cognitive

level. Note again that if STDP were simulated as for example in

Izhikevich (2007) then weight change would only occur when both

pre- and post-synaptic neurons fired, in other words, changes to

causal assumptions could only be made when both potential cause

and effect were observed, but not when only one or the other was

observed. It is LTD of the type described above that occurs when

only one of the events occurs and it is essential for explaining the

phenomenon of backward blocking (Gopnik and Schulz, 2004;

Gopnik et al., 2004).

The third plasticity rule is a competitive rule that redistrib-

utes synaptic weights if two synapses are simultaneously active.

This implements synaptic competition between simultaneously

active synapses for weight resources, and it implements screening

off behavior. If two pre-synaptic neurons activate a post-synaptic

neuron simultaneously, they compete for synaptic resources, in a

manner analogous to ecological competition dynamics between

two species competing for the same food resource (Hofbauer and

Sigmund, 1998). This rule embodies the natural causal assump-

tion that if two potential causes occur together that they should

compete for explanatory weight. In a sense, this is the synaptic

implementation of Occum’s razor which prevents the needless

multiplication of causal entities. Competition between simultane-

ously co-occurring events for causal influence,but in the two-cause

condition there is no competition between events.

Finally, we assume that during the training phase there is a

high level of ACh based neuromodulation that reduces the effec-

tive synaptic transmission between weights between neurons in

the causal network. This is modeled simply by multiplying the

weights in the causal network by a factor < 1, such that the max-

imum permissible weight is 4, which translates to the probability

of 0.004 that a post-synaptic neuron fires given a pre-synaptic

neuron has fired. This limit means that it is typically necessary

for a post-synaptic causal network neuron to receive simultaneous

activation from the input neuron, and from a causal network neu-

ron in order for it to have a high probability of firing, i.e., there

is a kind of associative control based on sub-threshold depolar-

ization (Bush et al., 2010). In the simulation we implement an

upper weight bound which suddenly cuts off further exponential

growth, although a more realistic assumption may have been to

implement resource limitation resulting in a sigmoidal synaptic

growth function.

The details of the implementation are as follows. Initial synap-

tic weights within the causal network are all initialized at 2.5 mV

which gives a very low probability that the post-synaptic neu-

ron will fire if one pre-synaptic neuron fires, see Figure 1. The

input weights to the causal network are fixed at 5.25 that cor-

responds to a probability of 0.014 that a post-synaptic neuron

will fire if it receives input only from one external input neu-

ron. However, if external input is simultaneous with internal

delay line input from another causal network neuron, then the

neuron will fire with probability 0.15 (given the initial internal

delay line synaptic weight of 2.5). Synaptic weights are main-

tained in the range (0:wmax) where wmax = 4 mV during ACh

depression, and 20 mV without ACh depression. If a causal delay

line has been potentiated to its maximum (ACh depressed)

weight of 4.0, then simultaneous external and internal inputs

to a neuron will cause it to fire with probability 0.43. How-

ever, internal delay line activation alone (without simultaneous

external input) is insufficient to make a neuron fire with any

greater than probability 0.004 (even at the maximum internal ACh

depressed weight of 4.0). The bias of causal network neurons is

set to 9.5 mV that gives them a low probability of spontaneous

firing.
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First order STDP

The STDP rule works as follows: τ is the time difference in mil-

liseconds between pre- and post-synaptic spiking. The standard

STDP rule is to allow the weight of a synapse to change according

to the standard implementation of additive STDP shown in Eq.

A1 below (Song et al., 2000; Izhikevich and Desai, 2003).

STDP (τ) = A+

(

1 −
1

τ+

)τ

for τ > 0

STDP (τ) = A−

(

1 −
1

τ−

)−τ

for τ ≤ 0

(A2)

The parameters A+ and A− effectively correspond to the max-

imum possible change in the synaptic weight per spike pair, while

τ+ and τ− denote the time constants of exponential decay for

potentiation and depression increments respectively. Typically τ+

and τ− = 20 ms, and A+ = 1.0 and A− = 1.5. If a pre-synaptic

spike reaches the post-synaptic neuron (taking into account

conduction delays) before the post-synaptic neuron fires, then

STDP(τ) is positive. If a pre-synaptic spike reaches a post-synaptic

neuron after it fires, then STDP(τ) is negative. This STDP rule is

based on data from cultures of hippocampal pyramidal neurons

(Bi and Poo, 1998). However, more complex activity dependent

plasticity dynamics have been observed (Buchanan and Mellor,

2010).

The above rule is approximated by a simplified version of

the STDP rule where for all values of −10 > τ < = 0, i.e., where

the pre-synaptic neuron fires after the post-synaptic neuron, the

weight is depressed by 0.8 multiplied by the current weight, i.e.,

the weight is decreased by 20% of its existing value. If 10 > τ > 0

then the existing weight is multiplied by 1.2, i.e., is increased by

20% of its current value.

First order LTD

Two types of first order short-term depression are simulated. The

first reduces the synaptic weight by 2% of its current weight

if the pre-synaptic neuron fires and post-synaptic neuron does

not fire. The second reduces the synaptic weight by 0.2% if

the post-synaptic neuron fires and the pre-synaptic neuron does

not fire.

Heterosynaptic competition rule

If two pre-synaptic neurons i and j simultaneously activate a post-

synaptic neuron p then the new weight wjp = wjp − 0.6wip and

wip = wip − 0.6wjp. That is, the existing weight is decreased by a

first order term that is proportional to the weights of the other

simultaneously active synapses to that post-synaptic neuron p.

Results

If the output of one neuronal network that is activated randomly

by background neuronal noise can be observed by another net-

work at another location in the brain, then it can be copied. Using

our new mechanism, not only can the structure be copied, but the

delays can also be copied. We show that this observing network,

which we will call the “offspring” network, can undertake causal

inference on the first network, which we will call the “parental”
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FIGURE A3 | Successful copying of common-cause, common-effect, and causal chain networks with all delay combinations from 1 to 4 ms. The

“parental” network is stimulated randomly and the resulting spikes are passed to the “offspring” network by a topographic map.
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network. If we can successfully demonstrate the capacity for one

neuronal network to copy the temporal and causal relationships

that exist between other neurons elsewhere in the brain, then we

have identified a novel potential substrate of neuronal information

storage and transmission at the level above that of the synapse, i.e.,

the neuronal group.

The idea of copying of neuronal topology has been proposed

before, however the authors were not able to demonstrate effec-

tive copying in the case where transmission between neurons

involves non-uniform delays. Also even with uniform delays,

error-correction neurons were needed to prevent false-positive

and false-negative causal inferences (Fernando et al., 2008). The

mechanisms described here are able to entrain networks to learn

specific delays without the need for error-correction neurons. This

represents a significant step in the development of the neuronal

replicator hypothesis which proposes that units of evolution exist

in the brain and can copy themselves from one brain region to

another (Fernando et al., 2008).

The ability of one causal network to infer the connectiv-

ity of another causal network was demonstrated by randomly

sparsely stimulating the parental causal network which is assumed

to consist of only three neurons equivalent to the input neu-

rons used in the previous experiments. Sparse stimulation means

any uniform external stimulate rate of the parental network that

does not impose significant correlation artifacts between neu-

ronal firings, e.g., 10 Hz. Figure A3 shows the successful copy-

ing of common-cause, common-effect, and causal chain net-

works with all possible combinations of integer delays from

1 to 4 ms.

The same synaptic plasticity rules can be used to infer recurrent

network structures, see Figure A4. One-cycles and two-cycles of

delays up to 4 ms are not detected by the causal inference mecha-

nism due to the refractory period of 10 ms. However, three-cycles

of 4 ms are inferred correctly because by the time activation passes

back to the initially stimulated neuron that neuron can again be

activated.

A motif thought to be of some significance is the feedforward

“loop” (Sporns and Kotter, 2004). Again, due to the refractory

period there are regions in delay space for the feedforward “loop”

that are not correctly causally inferred, see Figure A5, however, in

most cases it is possible to copy the “loop.”Altogether these results

show that it is possible for the plasticity mechanisms described to

not only infer acyclic graphs but cycling graphs with delays.

The demonstration given here that causal inference between

one brain region and another that can occur by one network

observing the intrinsic dynamics that occurs during sparse stimu-

FIGURE A4 | One-, two-, and three-neuron cycles. Only if the cycle has a

period greater than the refractory period of the neurons within it can the

cycle be inferred. For example three-cycles with 4 ms delays can be inferred

when the refractory period is 10 ms.

lation suggests a new role for spontaneous activity in the brain

(Mazzoni et al., 2007), i.e., allowing the replication of synap-

tic connectivity patterns within a neuronal group to other brain

regions.
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FIGURE A5 | Feedforward loops (FFLs) with a sample of delays. Some regions in delay space cannot be properly inferred. Light red circles mark synapse

sets that were not strengthened when they should have been, i.e., false-negatives.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 24 | 28

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Selectionist and evolutionary approaches to brain function: a critical appraisal
	Selectionist and evolutionary approaches to brain function: a critical appraisal
	Some issues with "neural Darwinism"
	A view of the Theory of Synaptic Selection
	Selection in groups of neurons
	Combinatorial chemistry versus in vitro selection of functional macromolecules
	Synapses, groups, and multilevel selection
	Darwinian and Bayesian dynamics
	Darwinian dynamics and optimization
	Reinforcement learning
	Comparing Hill-Climbing and Evolutionary Search
	Algorithmic advantages of units of evolution
	Proposed Neuronal Units of Evolution
	Conclusion
	Acknowledgments
	References
	Appendix
	Details of Comparison of Evolutionary Search and Hill-Climbing Methods on a GasNet Evolutionary Robotics Task
	GasNets
	Network encoding
	Fitness function
	Mutation operators
	Gaussian mutation
	Random uniform mutation
	Neuron addition operator
	Neuron deletion operator

	Search methods
	Statistical analysis of results

	Details of a Modified Model for Copying of Patterns of Synaptic Connectivity
	First order STDP
	First order LTD
	Heterosynaptic competition rule
	Results




