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Abstract

Major research on equity index dynamics has investigated only US indices (usually

the S&P 500) and has provided contradictory results. In this paper a clarification

and extension of that previous research is given. We find that European equity

indices have quite different dynamics from the S&P 500. Each of the European

indices considered may be satisfactorily modelled using either an affine model with

price and volatility jumps or a GARCH volatility process without jumps. The S&P

500 dynamics are much more difficult to capture in a jump-diffusion framework.
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1 Introduction

Accurate models of equity index dynamics are important for numerous applications in risk

and portfolio management, including: non-vanilla option pricing; option portfolio hedging;

hedging with futures; trading on equity and volatility risk premia; global equity portfolio

allocation; basis arbitrage of new structured products such as variance swaps; and indeed

any strategy for trading equity index-based products.

Motivated by some classic papers in the option pricing field – notably Heston (1993),

Bates (1996) and Duffie, Pan, and Singleton (2000) – state-of-the-art dynamic models

feature stochastic volatility with price and volatility jumps.1 Consequently these models

have become a main topic for empirical research on equity index dynamics. The most

influential articles (reviewed below) have only examined US equity indices and the vast

majority of these focus exclusively on the S&P 500. Even so, many of the findings are

contradictory. The only clear consensus to emerge is that the volatility of US equity

indices evolves stochastically over time, it mean-reverts and is negatively correlated with

the index returns, and there are sudden jumps in the price process that cannot be captured

by the price and volatility diffusion components.

The majority of stochastic volatility specifications will not admit even quasi-analytic

solutions for vanilla option prices. However, the square root model introduced by Heston

(1993) belongs to the general class of affine models for which Fourier transform methods

can provide tractable pricing solutions. Not surprisingly, therefore, most continuous-time

equity index dynamics research has focused on jump extensions of this model. Apart from

the Heston model, there are two other volatility specifications that have received particular

attention in the literature: (a) a mean-reverting variance process with a diffusion coefficient

proportional to variance raised to some exponent other than 1/2, and (b) a mean-reverting

diffusion for the log volatility. The most popular model of type (a) employs an exponent of

1 and a standard type (b) model is the log volatility diffusion introduced by Scott (1987).2

The literature on equity index dynamics has focused almost exclusively on the US.
1For interesting alternative ways to model option prices see e.g. Schönbucher (1999) or Skiadopoulos

and Hodges (2001).
2Both these alternatives are related to popular discrete-time generalized autoregressive conditionally

heteroscedastic (GARCH) models. A mean-reverting variance with diffusion coefficient proportional to
variance can be regarded as the continuous limit of the symmetric GARCH process introduced by Bollerslev
(1986). Similarly, the log volatility specification is a continuous-time counterpart of the discrete-time
exponential GARCH process introduced by Nelson (1991).
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All papers reviewed in the following base their findings on two-factor continuous time

models for the S&P 500 index, unless otherwise stated. Using data until the late 1990’s,

Andersen, Benzoni, and Lund (2002) tested the mean-reverting affine variance process of

Heston (1993) against the type (b) alternatives above. They found that both specifications

are adequate for modeling the S&P 500 dynamics and are structurally stable over time,

provided they are augmented with jumps in prices. Moreover, Eraker, Johannes, and

Polson (2003) conclude that jumps in both volatility and price processes are necessary

for the square root model, since variance can increase very rapidly - too rapidly to be

captured by a square root diffusion.

Type (a) alternatives to the Heston model are tested in another strand of literature.

Jones (2003) concludes that these alternatives provide more realistic dynamics, although

they still fall short of explaining some features of the spot and option data. Chacko and

Viceira (2003) find that the exponent on variance in the variance diffusion term is signif-

icantly different from 1/2 (as in the Heston model) and estimate its value to be slightly

less than 1. However, the significance of this difference vanishes with the inclusion of

jumps and thus the good performance of type (a) alternatives might be driven by model

misspecification due to the excluded possibility of jumps. Ait-Sahalia and Kimmel (2007)

also conclude that this exponent lies between 1/2 and 1. Christoffersen, Jacobs, and Mi-

mouni (2010) find that the GARCH diffusion stochastic volatility model also outperforms

the Heston model in an option pricing framework. Alternative specifications including

multi-factor volatility models are discussed in Chernov, Gallant, Ghysels, and Tauchen

(2003) or Fatone, Mariani, Recchioni, and Zirilli (2011).

For our analysis, we select three representatives of the European equity index market,

namely the Eurostoxx 50, DAX 30 and FTSE 100 indices. Eurostoxx 50 is a blue-chip

index built from 50 leading European companies from twelve different Eurozone countries.

DAX 30 consists of the 30 largest German enterprises as measured by order book volume

and market capitalization. The FTSE 100 includes the 100 most highly capitalized UK

companies which are traded at the London Stock Exchange. Finally, we use the S&P 500

as a benchmark.

For each index we test the specifications of twelve different continuous-time two factor

models. The mean-reverting variance diffusion component can follow either the affine
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process of Heston (1993), the scale-invariant GARCH process of Nelson (1990), or the log

volatility process of Scott (1987), and each may be augmented with price and volatility

jump extensions. To the best of our knowledge no other paper has tested all three classes

of diffusion and jump-diffusions against each other on a similar data set, and some of the

specifications that we consider have not been studied in the literature before.

An important contribution of our paper is to fill a gap in the literature by examining

the continuous time dynamics of European equity indices. Many indices in this sizable

market have very actively traded futures, exchange traded funds, options and structured

products such as volatility index futures, and therefore knowledge of their continuous-time

dynamics is an extremely relevant research topic. Nevertheless, until now, this topic has

been almost completely ignored in the literature, as the vast majority of empirical research

focuses exclusively on the S&P 500. Our first goal is to see whether the ambiguous results

that have been reported for US equity indices carry over to the European markets. In

particular, we investigate whether a departure from the affine model class is necessary for

European equity indices. For the S&P 500 index, some previous research favors non-affine

specifications, but - to the best of our knowledge - there is no attempt in the literature to

test similar specifications on the European equity market. Our research provides evidence

that affine models with sufficiently rich jump specifications perform well for European

equity indices and that similarly clear results are not apparent for the S&P500. Regard-

ing the two alternatives to the square-root model class, our empirical results imply the

superiority of GARCH alternatives which consistently outperform - especially for jump

extensions - models of with a log volatility process. This finding is consistent across all

indices we consider.

Our choice of models and indices allows us to address a range of additional questions

concerning the jump behavior of different equity indices. For instance, are jumps in

volatility significant in the US, but not in Europe? How important are jumps in non-

affine specifications? Does the FTSE 100 index behave like the S&P 500 index, or is it

more similar to the European indices? Regarding these research questions, we find that

volatility jumps are far more important to add to the square-root model class than to

alternative stochastic volatility models; especially the GARCH specifications can create

realistic volatility dynamics without resorting to the inclusion of jump processes. Indeed,
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for our European indices but not for the S&P 500 a simple GARCH stochastic volatility

process without jumps in either state variable already performs surprisingly well. By

contrast, within the affine model class the inclusion of jumps for both state variables

is essential for generating realistic dynamics. We also confirm that the three European

indices have similar dynamics and these are different from the S&P 500 dynamics. The

S&P 500 is definitely the most difficult index to model. Especially, modelling the skewness

of returns in this market poses a very difficult challenge.

This paper further adds to the existing literature in two significant ways. We present

very extensive simulation results for detecting model misspecifications which are required

in order to discriminate between alternative models. We select numerous statistics from

the observed equity index data and gauge the ability of alternative specifications to pro-

duce similar characteristics. Though computationally intensive, this approach provides

more detailed evidence on the features of the data that a model fails to capture, and

yields valuable insights regarding the adequacy of continuous time jump-diffusion mod-

els. Thus our results reach beyond the evidence currently presented in the literature.

Moreover, we employ a very large sample of stock index prices from 1987 to 2010 which

includes the recent banking crisis of 2008-9. This period represents the most prolonged

and excessively stressful equity markets ever experienced, so it is important that dynamic

model specification tests encompass such market regime.

We proceed as follows: Section 2 introduces the continuous-time models; Section 3

describes the data; Section 4 specifies the discrete-time counterparts for MCMC estima-

tion; Section 5 presents the estimation results; Section 6 provides the specification tests;

and Section 7 concludes.

2 Model Specification

We consider an equity index modeled by a jump-diffusion process that admits stochastic

volatility and random jumps. In particular, we assume that the log index value Yt ≡ logSt

evolves according to

dYt = µdt+
√
Vt− dW

y
t + dJyt ,
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where µ is the constant drift of the process andW y
t denotes a standard Brownian motion.3

We allow the stock price variance Vt to evolve stochastically over time and sample paths

for the stock price index can exhibit sudden jumps specified by the pure jump process Jyt .

We study three different classes for the variance process, each having a mean-reverting

property which prohibits variance to move too far from a long-term equilibrium value. Fur-

thermore, we make the standard assumption that the correlation ρ between the Brownian

motions driving the spot price and the variance process is constant, but need not be zero.

This flexibility is important to model the well-known leverage effect.4

In the first class we model the variance Vt with a square root process as in Heston

(1993) and following Duffie, Pan, and Singleton (2000) we extend this to accommodate

jumps in variance as well as jumps in prices. Hence the general specification is

dVt = κ (θ − Vt) dt+ σ
√
Vt− dW v

t + dJvt , (S)

where κ is the speed of mean reversion, θ determines the long-term variance level, σ is the

volatility-of-variance parameter, W v
t is a Brownian motion (which has a correlation of ρ

with W y
t ) and Jvt specifies the jump in the variance process.

Our second class is the continuous-time GARCH model of Nelson augmented with a

non-zero price-variance correlation and the possibility of a jump component. Thus the

general specification is

dVt = κ (θ − Vt) dt+ σ Vt− dW v
t + dJvt , (G)

where the parameters κ, θ, σ and ρ have the same interpretation as in (S).

The third class specifies the evolution of the log of volatility as a Gaussian Ornstein-

Uhlenbeck process, as in Scott (1987), but also augmented with the possibility of jumps.
3We use the shorthand notation Vt− for the left limit Vt− = lims↑t Vs. Furthermore, we could have

included a variance risk premium into the drift term of the equity index, however for jump-diffusion models
Eraker (2004) and Andersen, Benzoni, and Lund (2002) find no significant dependence of the drift of the
process on its variance. Therefore, to keep the model as parsimonious as possible, we drop such any
dependence on the variance from the drift specification.

4New evidence regarding the origin of the leverage effect for the DAX is presented in Masset and
Wallmeier (2010).
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Denoting vt ≡ log
√
Vt, we have

dvt = κ (θ − vt) dt+ σ dW v
t + dJvt , (L)

where the parameters κ, θ, σ and ρ have a similar interpretation to above, but in relation

to the log volatility rather than the variance.

Each classes contains of four different models depending on the assumptions on the

jump distributions:5

1. Pure diffusion models where dJyt = 0 and dJvt = 0 for all t. We use the acronyms

(S-SV), (G-SV) and (L-SV) respectively;

2. We include jumps in the log price process only, setting dJvt = 0 for all t. Jump

arrivals are driven by a Poisson process with intensity parameter λy. We assume the

sizes of the jumps are normally distributed, independent over time and also indepen-

dent of the Poisson process.6 Hence dJyt = ξyt dN
y
t , where N

y
t is a Poisson process

and ξyt is a normally distributed variable with mean µy and standard deviation σy.

Here we use the acronyms (S-SVYJ), (G-SVYJ) and (L-SVYJ);7

3. These models have jumps in prices and volatility that occur simultaneously, so the

same Poisson process Nt drives both jumps. We assume that their sizes are cor-

related, i.e. dJyt = ξyt dNt with normal jump size (ξyt ∼ N (µy + ρJ ξ
v
t , σv)) and

dJvt = ξvt dNt with exponentially distributed jump size (ξvt ∼ exp (µv)). Note that

the parameter ρJ determines whether the jump size in volatility influences the jump

size in price. We refer to these models as (S-SVCJ), (G-SVCJ) and (L-SVCJ);

4. Finally, we allow independent jumps in both processes, i.e. dJvt = ξvt dN
v
t where

ξvt ∼ exp (µv) and dJyt = ξyt dN
y
t where ξyt ∼ N (µy, σv). The acronyms for these

models are (S-SVĲ), (G-SVĲ) and (L-SVĲ).8

Jump distributions for the volatility process are chosen so that they produce only upward

jumps. This has the attractive feature that variance cannot jump to a negative value
5Our jump specifications coincide with those studied in Eraker, Johannes, and Polson (2003) for the

square root variance process.
6Although other distributions are possible for the jump in prices, the vast majority of research focuses

on the normal distribution.
7Note that (S-SVYJ) is identical to the option pricing model derived in Bates (1996).
8In an earlier draft of this paper we have also included results on a model with jumps in variance only.

However, this model had similar performance as the simple (SV) model, and we omit results for brevity.
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Eurostoxx 50 DAX 30 FTSE 100 S&P 500

mean 0.020 0.025 0.021 0.026
standard deviation 1.318 1.466 1.146 1.198
skewness -0.196 -0.301 -0.543 -1.397
kurtosis 9.388 9.446 13.637 33.574
largest negative return -8.262 -13.706 -13.029 -22.900
largest positive return 10.438 10.797 9.384 10.957

Table 1: Descriptive Statistics of Equity Log Percentage Returns.
This table reports descriptive statistics for the four equity indices (Eurostoxx 50, DAX 30, FTSE
100 and S&P 500) used in this study. The statistics are calculated on daily percentage log returns
and the sample period is from January 1987 until April 2010.

and the process stays positive throughout. For the log volatility model positivity of the

process is not an issue and a jump distribution with support on the whole real axis could

be chosen to model negative as well as positive jumps. Since sudden negative jumps in

volatility appear to be of little empirical relevance, we use the exponential distribution for

all models. This also facilitates the comparison of the models as they depend on the same

distributional assumptions for jumps.

3 Data

We choose to estimate model parameters using daily return data from 1 January 1987 until

1 April 2010. This sample includes several interesting periods such as the global equity

crash of 1987, the outbreak of two Gulf wars (1990-91 and 2003), the Asian currency

crisis (1997), the LCTM bailout (1998), the dot-com bubble during the late 1990’s and its

subsequent bursting, the 9/11 terrorist attacks (2001) and most importantly the recent

credit and banking crisis (2008-2009). By estimating the models over a large sample

including several crises we hope to distinguish well between alternative dynamics for the

indices.

For all indices in this study we collect end-of day quotes and compute percentage log

returns (from henceforth just called returns). Visual inspection reveals that all indices

posses similar characteristics, with common volatile periods mainly before and after the

dot-com bubble and towards the end of the sample when the credit and banking crises

affected economies all over the world. Descriptive statistics for the indices are reported in
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Table 1. Whereas all index returns exhibit strong deviations from normality, statistics are

most extreme for the S&P 500 with the highest (absolute) skewness, the highest kurtosis

and the largest outliers.

4 Econometric Specification

Estimation of the structural parameters and the latent state variables in the jump-diffusion

models described above is a non-trivial econometric problem that may be addressed using

Bayesian estimation procedures, and in particular we use a Markov-Chain-Monte-Carlo

(MCMC) sampler for all models under consideration. MCMC methods for discrete-time

stochastic volatility models were introduced by Jacquier, Polson, and Rossi (1994) and

have been subsequently applied in other contexts. For example, Eraker, Johannes, and

Polson (2003) use a MCMC sampler to estimate parameters of affine continuous-time

jump-diffusion models for US equity indices and Li, Wells, and Yu (2008) extend their

methodology to Levy jump models.9

Regarding the time discretization of the continuous-time process, our algorithm is

closely related to the ideas developed in Eraker, Johannes, and Polson (2003) to which we

refer for further details. Using a first-order Euler scheme, the log value Yt of the equity

index for all models under consideration can be written as

Yt+1 = Yt + µ∆ +
√

∆Vt ε
y
t+1 + ξyt+1N

y
t+1, (1)

where εyt is a standard normal variate and ∆ denotes the discretization step. Changes in

the Poisson process are discretized by a sequence of independent Bernoulli variates Ny
t ,

where the event Ny
t = 1 occurs with probability λy.10 The approximation of the volatility

processes is analogous, for instance in the log model we obtain:

vt+1 = vt + κ (θ − vt) ∆ + σ
√

∆ εvt+1 + ξvt+1N
v
t+1 (2)

9Other estimation methodologies applied to affine and non-affine models include the efficient method
of moments developed in Gallant and Tauchen (1996), which has been applied to continuous-time finance
models in Andersen, Benzoni, and Lund (2002) and Chernov, Gallant, Ghysels, and Tauchen (2003).

10This is a slight abuse of notation because Ny
t was the Poisson process in the continuous-time pro-

cess and represents the change in this process in the discrete-time version. To avoid introducing further
variables, we follow the literature and use this slightly inconsistent notation.
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where the jump part in the process is again approximated by a Bernoulli variate Nv
t , and

εvt is a second standard normal variable with Corr(εyt , εvt ) = ρ. Throughout the remainder

of this study we work with daily return data and set ∆ ≡ 1. Simulation experiments

in Eraker, Johannes, and Polson (2003) confirm that at this observation frequency the

discretization bias is negligible.

In Bayesian statistics, inference about unknown parameters and latent state variables

is based on the distribution of all unknown quantities given the observed data Y = {Yt}1:T ,
which is referred to as the posterior density. For instance for the log volatility models the

posterior can be written as

p (v, ξy,Ny, ξv,Nv,Θ |Y ) ∝ p (Y ,v | ξy,Ny, ξv,Nv,Θ) × p (ξy |Ny, ξv,Θ)

× p (ξv |Nv,Θ) × p (Nv |Θ) × p (Ny |Θ) × p (Θ) ,

where Θ = {µ, κ, θ, σ, ρ, λy, µy, σy, λv, µv} is the unknown parameter vector, p (Θ) is the

prior density that reflects any beliefs of the researcher regarding the unknown structural

parameters and latent state variables are collected in vectors where the same notation

applies as for Y , for example ξy = {ξyt }1:T . Eraker, Johannes, and Polson (2003) point

out that the likelihood function can be unbounded in a jump-diffusion framework and

this complicates likelihood-based inference without prior information. On the other hand

including subjective prior information yields results that are not universally applicable,

and for this reason we choose priors that are identical or very similar to the uninformative

priors in Eraker, Johannes, and Polson (2003).

The dimension of the posterior density is several times the sample size and this com-

plicates the direct analytical use of the posterior. We therefore apply the Gibbs sampler

to reduce the dimensionality of the problem and to obtain information about the poste-

rior density by simulation. Although this requires the derivation of complete conditional

distributions this practice has become mainstream in the Bayesian literature. Using stan-

dard conjugate priors for most of the structural parameters these distributions are easy

to derive. The only parameters that lead to non-standard densities are σ and ρ. For

these two parameters, we use the re-parametrization suggested in Jacquier, Polson, and

Rossi (2004) as it circumvents the implementation of Metropolis steps. In the sampling of
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the complete conditional distributions for the latent state variables, the only complicated

step arises for the variance vector. Since it is not possible to draw v or V as a block we

cycle through the variance vector one by one using the ARMS Metropolis algorithm of

Gilks, Best, and Tan (1995). Li, Wells, and Yu (2008) report that ARMS has superior

updating performance compared with the simpler random walk Metropolis algorithm used

in Eraker, Johannes, and Polson (2003). To mitigate the effect of starting values and to

insure that the chain has converged, we discard the first 30,000 runs of the sampler (which

are commonly referred to as the ‘burn-in’) and summarize the posterior with the ensuing

100,000 draws.11

5 Estimation Results

This section provides our estimation results. We first present MCMC estimates for the

European indices and subsequently compare them with the S&P 500.

5.1 European Stock Indices

Results for the FTSE 100, DAX 30 and Eurostoxx 50 are presented in Tables 2, 3 and 4.

We begin with the interpretation of the estimated parameters in the square root models.

For all indices, our estimates for κ deviate only marginally from each other with values

between 0.016 and 0.02. Given the standard error of 0.003 in all models there is no

significant difference between the mean-reversion speeds of the indices. The other two

variance parameters θ and σ show more substantial differences: in line with the observed

standard deviation of the returns (Table 1) θ̂ is smallest for FTSE 100 (1.165), followed

by Eurostoxx 50 (1.502) and DAX 30 (1.869), estimates that imply long-term volatility

levels of 17% to 22%.12 A similar comment applies to σ̂ (0.14 for FTSE 100, 0.181 for

Eurostoxx 50 and 0.205 for DAX 30) and hence Eurostoxx 50 and DAX 30 have the most

erratic variance paths. The correlations between log price and variance innovations are

very similar in all three indices with values around -50%. The estimated drift µ̂ is similar

to the mean reported in Table 1.13

11Models with independent jumps in returns and variance converge more slowly so we use 300,000 draws
after burn-in for these.

12This is to be expected as the more diverse the index the lower its volatility, ceteris paribus.
13To obtain the expected return of the process for the jump models, µ has to be adjusted by the

estimated contribution of the jump part and thus this parameter is not directly comparable across models.
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SV SVYJ SVCJ SVĲ

FTSE 100 - Square Root Models

µ 0.025 (0.011) 0.025 (0.011) 0.033 (0.011) 0.031 (0.011)
κ 0.016 (0.003) 0.014 (0.002) 0.029 (0.003) 0.026 (0.003)
θ 1.165 (0.12) 1.130 (0.124) 0.621 (0.059) 0.631 (0.058)
σ 0.140 (0.009) 0.125 (0.008) 0.097 (0.009) 0.096 (0.008)
ρ -0.511 (0.045) -0.549 (0.047) -0.545 (0.056) -0.567 (0.055)
λy 0.003 (0.001) 0.006 (0.002) 0.001 (0.001)
µy -1.749 (1.721) 0.517 (0.84) -10.662 (3.48)
ρJ -0.762 (0.2)
σy 4.825 (1.443) 1.746 (0.373) 2.307 (1.635)
λv 0.006 (0.002)
ηv 2.778 (0.731) 2.723 (0.73)

FTSE 100 - GARCH Models

µ 0.028 (0.01) 0.037 (0.012) 0.029 (0.01) 0.035 (0.012)
κ 0.009 (0.003) 0.008 (0.003) 0.012 (0.003) 0.013 (0.003)
θ 1.342 (0.342) 1.348 (0.367) 0.859 (0.179) 0.802 (0.167)
σ 0.147 (0.01) 0.144 (0.01) 0.124 (0.009) 0.123 (0.011)
ρ -0.542 (0.047) -0.573 (0.047) -0.618 (0.047) -0.622 (0.048)
λy 0.023 (0.018) 0.004 (0.002) 0.013 (0.013)
µy -0.536 (0.37) 0.973 (1.306) -1.284 (1.548)
ρJ -2.239 (0.699)
σy 1.133 (0.307) 1.972 (0.619) 2.203 (1.726)
λv 0.003 (0.001)
ηv 1.394 (0.637) 2.812 (1.396)

FTSE 100 - Log Volatility Models

µ 0.030 (0.01) 0.040 (0.014) 0.036 (0.011) 0.037 (0.012)
κ 0.015 (0.003) 0.014 (0.002) 0.015 (0.002) 0.015 (0.002)
exp(θ) 0.880 (0.057) 0.865 (0.06) 0.718 (0.062) 0.696 (0.067)
σ 0.073 (0.005) 0.072 (0.005) 0.059 (0.005) 0.060 (0.005)
ρ -0.534 (0.05) -0.570 (0.048) -0.596 (0.057) -0.629 (0.061)
λy 0.030 (0.027) 0.013 (0.007) 0.021 (0.02)
µy -0.500 (0.382) 0.140 (0.513) -0.202 (0.862)
ρJ -4.728 (0.932)
σy 1.087 (0.339) 1.437 (0.335) 1.273 (0.41)
λv 0.016 (0.009)
ηv 0.253 (0.073) 0.247 (0.082)

Table 2: MCMC Estimates for the FTSE 100.
This table reports the estimates of the structural parameters for all models introduced in Section
2 based on the mean of the posterior distributions. Standard deviations of the posterior are given
in parenthesis. The parameter estimates correspond to daily log returns of the equity index values.
One can easily obtain annual decimals by scaling some of the parameters. For example, assuming
252 trading days a year, in the square-root model class κ and λ have to be scaled by 252, σ by
2.52,

√
252θ/100 provides the mean volatility and

√
252ηv/100 the mean jump in volatility. Similar

scaling applies to the other model classes.
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SV SVYJ SVCJ SVĲ

DAX 30 - Square Root Models

µ 0.044 (0.013) 0.046 (0.013) 0.051 (0.013) 0.055 (0.014)
κ 0.020 (0.003) 0.015 (0.003) 0.022 (0.003) 0.022 (0.003)
θ 1.869 (0.173) 1.799 (0.189) 1.038 (0.105) 0.960 (0.108)
σ 0.205 (0.012) 0.174 (0.012) 0.132 (0.011) 0.121 (0.011)
ρ -0.505 (0.037) -0.543 (0.041) -0.581 (0.05) -0.594 (0.052)
λy 0.007 (0.003) 0.006 (0.002) 0.010 (0.007)
µy -1.962 (1.542) -1.923 (1.564) -1.103 (0.753)
ρJ -0.211 (0.271)
σy 3.586 (0.955) 3.590 (0.622) 2.853 (0.824)
λv 0.006 (0.002)
ηv 3.805 (1.155) 4.096 (1.333)

DAX 30 - GARCH Models

µ 0.053 (0.013) 0.059 (0.013) 0.054 (0.013) 0.059 (0.014)
κ 0.011 (0.003) 0.008 (0.002) 0.013 (0.003) 0.014 (0.003)
θ 2.115 (0.421) 2.028 (0.447) 1.133 (0.238) 0.949 (0.201)
σ 0.178 (0.011) 0.150 (0.01) 0.132 (0.01) 0.127 (0.01)
ρ -0.507 (0.04) -0.559 (0.041) -0.623 (0.047) -0.672 (0.044)
λy 0.011 (0.006) 0.008 (0.003) 0.014 (0.008)
µy -1.090 (0.652) -0.117 (0.975) -1.242 (0.649)
ρJ -1.342 (0.766)
σy 2.776 (0.696) 2.833 (0.661) 2.234 (0.727)
λv 0.009 (0.004)
ηv 1.514 (0.643) 1.492 (0.482)

DAX 30 - Log Volatility Models

µ 0.048 (0.013) 0.053 (0.013) 0.055 (0.013) 0.059 (0.015)
κ 0.021 (0.003) 0.015 (0.003) 0.014 (0.002) 0.015 (0.002)
exp(θ) 1.111 (0.065) 1.091 (0.075) 0.897 (0.086) 0.813 (0.106)
σ 0.091 (0.006) 0.077 (0.005) 0.065 (0.005) 0.066 (0.006)
ρ -0.493 (0.043) -0.568 (0.045) -0.604 (0.05) -0.633 (0.054)
λy 0.013 (0.006) 0.012 (0.006) 0.020 (0.013)
µy -0.981 (0.537) -1.047 (0.833) -0.983 (0.507)
ρJ -1.983 (2.329)
σy 2.540 (0.641) 2.790 (0.645) 1.962 (0.724)
λv 0.024 (0.016)
ηv 0.251 (0.077) 0.223 (0.09)

Table 3: MCMC Estimates for the DAX 30.
This table reports the estimates of the structural parameters for all models introduced in Section
2 based on the mean of the posterior distributions. Standard deviations of the posterior are given
in parenthesis. The parameter estimates correspond to daily log returns of the equity index values.
One can easily obtain annual decimals by scaling some of the parameters. For example, assuming
252 trading days a year, in the square-root model class κ and λ have to be scaled by 252, σ by
2.52,

√
252θ/100 provides the mean volatility and

√
252ηv/100 the mean jump in volatility. Similar

scaling applies to the other model classes.
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SV SVYJ SVCJ SVĲ

Eurostoxx 50 - Square Root Models

µ 0.039 (0.011) 0.044 (0.011) 0.049 (0.011) 0.054 (0.011)
κ 0.017 (0.003) 0.014 (0.002) 0.023 (0.003) 0.024 (0.003)
θ 1.502 (0.157) 1.473 (0.17) 0.741 (0.089) 0.700 (0.081)
σ 0.181 (0.009) 0.160 (0.01) 0.118 (0.01) 0.113 (0.01)
ρ -0.481 (0.036) -0.527 (0.039) -0.533 (0.049) -0.560 (0.051)
λy 0.008 (0.006) 0.007 (0.002) 0.012 (0.006)
µy -2.717 (1.815) -2.263 (1.028) -1.228 (0.656)
ρJ -0.127 (0.253)
σy 2.014 (0.548) 2.372 (0.568) 1.924 (0.421)
λv 0.006 (0.002)
ηv 2.945 (0.661) 3.486 (0.849)

Eurostoxx 50 - GARCH Models

µ 0.046 (0.011) 0.057 (0.011) 0.050 (0.011) 0.055 (0.011)
κ 0.009 (0.003) 0.007 (0.002) 0.010 (0.003) 0.012 (0.004)
θ 1.832 (0.456) 1.824 (0.496) 1.107 (0.356) 0.871 (0.265)
σ 0.186 (0.011) 0.161 (0.01) 0.150 (0.01) 0.143 (0.011)
ρ -0.509 (0.04) -0.572 (0.038) -0.584 (0.045) -0.649 (0.048)
λy 0.017 (0.008) 0.009 (0.004) 0.017 (0.007)
µy -1.263 (0.49) -1.548 (1.087) -1.142 (0.41)
ρJ -1.346 (1.419)
σy 1.682 (0.318) 1.769 (0.477) 1.613 (0.279)
λv 0.008 (0.004)
ηv 0.881 (0.422) 1.302 (0.529)

Eurostoxx 50 - Log Volatility Models

µ 0.043 (0.011) 0.054 (0.011) 0.056 (0.012) 0.054 (0.011)
κ 0.019 (0.003) 0.014 (0.002) 0.014 (0.002) 0.014 (0.002)
exp(θ) 0.957 (0.062) 0.940 (0.073) 0.731 (0.086) 0.686 (0.107)
σ 0.094 (0.006) 0.080 (0.005) 0.072 (0.006) 0.071 (0.006)
ρ -0.490 (0.042) -0.576 (0.043) -0.566 (0.051) -0.624 (0.049)
λy 0.018 (0.007) 0.019 (0.008) 0.019 (0.009)
µy -1.172 (0.412) -0.680 (0.521) -1.143 (0.49)
ρJ -4.709 (1.698)
σy 1.637 (0.285) 1.312 (0.313) 1.658 (0.29)
λv 0.030 (0.02)
ηv 0.191 (0.046) 0.167 (0.057)

Table 4: MCMC Estimates for the Eurostoxx 50.
This table reports the estimates of the structural parameters for all models introduced in Section
2 based on the mean of the posterior distributions. Standard deviations of the posterior are given
in parenthesis. The parameter estimates correspond to daily log returns of the equity index values.
One can easily obtain annual decimals by scaling some of the parameters. For example, assuming
252 trading days a year, in the square-root model class κ and λ have to be scaled by 252, σ by
2.52,

√
252θ/100 provides the mean volatility and

√
252ηv/100 the mean jump in volatility. Similar

scaling applies to the other model classes.
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As expected, adding price jumps to the Heston model (S-SVYJ) mainly affects our

parameter estimates for the vol-of variance parameter as the inclusion of jumps reduces

the need of the variance process to create large sudden movements. The characteristics of

the jump part in the (S-SVYJ) are specific to each index. The lowest jump frequencies are

estimated for the FTSE 100 where λ̂y = 0.003 gives about 0.75 jumps per year. Jumps

in the DAX 30 and Eurostoxx 50 are more than twice as likely with λ̂y = 0.007 and

λ̂y = 0.008. The occurrence of jumps in the FTSE 100 index are not only less likely, they

also have the smallest impact with an average jump size of -1.749%. The DAX 30 and

Eurostoxx 50 have only slightly larger jump sizes (-1.962% and -2.717% respectively), but

these estimates are statistically indistinguishable. The standard deviation of the jumps in

the FTSE 100 is the highest among all indices, at about 5% yet the DAX 30 and Eurostoxx

50 have a lower jump standard deviation with 3.6% and 2.0% respectively. Although there

is some variability in the point estimates of the jump size distribution across the indices,

the fact that jumps are extremely rare events makes it very difficult to distinguish between

the effect of jumps on the European indices. When models allow both state variables to

jump, our estimates imply a variance jump between 2.7 (FTSE) and 4.1 (DAX). The

differences are however, similar to the observation for the price jumps, not significant.

Interestingly, the estimate for the jump correlation is only significant in the FTSE 100.

The parameter estimates for the GARCH models are reported in the middle section of

Tables 2, 4 and 3. The estimate for σ in the pure diffusion model (G-SV) for all indices is

similar to the parameter in the square-root models, but note this is not directly comparable

with the parameter in (S-SV). Yet the other parameter estimates also deviate from their

square root counterparts: ρ̂ is more negative; κ̂ for most models is only about half the

size of the estimate in (S-SV); and θ̂ also exhibits higher point estimates compared with

the square-root specification. These differences are highly consistent across all the three

indices and four different models, yet statistical significance is difficult to obtain as most

parameters exhibit high standard errors.

There is also a striking difference between the jump parameter estimates in GARCH

models, compared with the equivalent parameter estimates when jumps augment a square

root model: in GARCH models the jump occurrence is more frequent and their impact is

much lower. Jump sizes are on average smaller with point estimates around zero (and also
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Figure 1: Volatility for European GARCH models.
This figure depicts the estimated yearly volatility (in %, left axis) of FTSE 100 (abbreviated FTSE),
DAX 30 (abbreviated DAX) and Eurostoxx 50 (abbreviated ES) around the market crash of 1987
and the recent credit and banking crisis of 2008-2009; the volatility is derived from a GARCH
diffusion model augmented with price and variance jumps (denoted G-SVCJ).

small standard deviations of around 2%), but they occur far more frequently than in the

(S) specifications, although the significance of these differences is again low. A possible

explanation for the more frequent but smaller jumps in GARCH specifications is as follows:

because the variance diffusion in GARCH specifications can change more rapidly than in

the square-root diffusion there is less pressure on the jump part to produce large positive

and negative returns. With one exception, jumps in variance are also of considerably

smaller magnitude than they are in the square root process with values typically between

one and two.

Figure 1 depicts the evolution of volatility in the (G-SVCJ) models for all three indices

around the time of the crash of 1987 (left) and credit and banking crisis (right). The 1987

crash appears to come more as a complete surprise, as volatility in all indices jumps from

levels around 15% to almost 60% in the space of a few days. The more recent crisis also

leads to jumps in volatilities but the increase in variance is less sudden. It is interesting to

note that the estimated variance paths for the three indices (indeed all four indices) stay

extremely close during these crash events. It is well known that returns of equity indices

become more highly correlated during volatile periods, and our results suggest that their

volatilites might also be driven by a common factor.
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The log volatility model parameter estimates are more difficult to compare with the

other two classes as some of the parameters refer to the log volatility rather than the

variance. The estimates for κ and ρ are similar to those for the square root process.

Consistent with our findings from the GARCH models, price jumps occur more often than

in the (S) class, yet their impact is rather small.14 The estimate for σ in the GARCH

diffusion is almost exactly half the size of its log volatility counterpart. This is theoretically

not surprising, as an application of Ito’s Lemma for jump-diffusion models to (L) yields:

dVt = 2Vt
[
κ(θ − log

√
Vt) + σ2

]
dt+ 2σ Vt− dW v

t + Vt− [exp(2 ξvt )− 1] dNv
t .

The diffusion part is hence expected to be similar, and the only difference between the

GARCH and the log-volatility diffusion models springs from the drift specification. An-

other fundamental difference is that the importance of jumps in the GARCH model fades

away with increasing volatility because jumps are independent of the variance level. In

log-volatility models, jumps are relative to the level of the volatility.

Table 5 compares the in-sample fit of the competing models. Here we report the DIC

(deviance information criterion) developed as a generalization of the Akaike information

criterion (AIC), which provides our first indication of the relative performance of alter-

native specifications. Note that a smaller DIC value is preferred.15 As a caveat, in this

context Bayesian fit statistics are not as developed as they are in frequentist economet-

rics. Hence we provide more detailed results on model selection in Section 6. The DIC fit

statistics for DAX 30, FTSE 100 and Eurostoxx 50 are presented in Table 5. The GARCH

model with correlated jumps in price and variance outperforms all other model specifica-

tions, for all three indices. Whatever the diffusion specification, it is important to include

jumps, and contemporaneous price and volatility jumps provide the best fit. As noted

before, we shed more light to this question in subsequent sections. Note that (G-SVYJ)

outperforms (S-SVCJ) for the FTSE 100 so whether a jump in volatility is needed is not

clear at this stage.
14For example, the FTSE 100 (L-SVYJ) estimates imply jumps with mean -0.5% and slightly more

than 1% standard deviation. Jumps in volatility are of similar magnitudes in (L-SVCJ) for all indices and
these estimates change only marginally under the (L-SVĲ) only.

15DIC adjusts for the complexity (the effective number of parameters) of the model and thus allows one
to compare nested and non-nested models.
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SV SVYJ SVCJ SVĲ

FTSE 100

Square root model 15369 15117 14964 15124
GARCH model 15212 14740 14009 15009
Log volatility model 15323 14772 14365 15090

DAX 30

Square root model 18223 17856 17371 18133
GARCH model 18211 17712 16930 17850
Log volatility model 18343 17710 17231 18130

Eurostoxx 50

Square root model 16514 16252 15755 16472
GARCH model 16419 15854 15298 16187
Log volatility model 16585 15885 15560 16553

Table 5: Model Fit for FTSE 100, DAX 30 and Eurostoxx 50.
Entries in this table are the estimates of the DIC in-sample fit statistic for the volatility specification
indicated by the row and the jump augmentation specified by the column. Lower values of the
DIC statistic indicate a superior fit by the model. As usual results are presented in three separate
groups, according to the equity index being modeled. Results may be compared within a group
but not across groups; e.g. considering the square root model without jumps, the DIC for FTSE
(15,369) is lower than the DIC for DAX (18,223) but this does not indicate that the model fits to
FTSE better than the DAX. However, the DIC for the GARCH model with correlated jumps when
estimated on the FTSE is 14,009; this indicates that the GARCH model with correlated jumps fits
the FTSE better than the square root model without jumps.
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5.2 S&P 500

In this section we briefly discuss our results for the S&P 500. As this index has been subject

to intensive empirical research we only provide a short outline of our empirical results

and use these mainly tho benchmark our findings in the subsequent chapter. Andersen,

Benzoni, and Lund (2002), Eraker, Johannes, and Polson (2003), Eraker (2004) or Li,

Wells, and Yu (2008) provide estimations of some of the proposed model specifications.

Our parameter estimates in Table 6 are in line with previous research for the square

root model class, although point estimates differ due to our extended sample covering the

recent crisis. Without jumps θ̂ = 1.254 implies an annual long-term volatility level of 17.8%

which is slightly higher than the estimate found by Eraker, Johannes, and Polson (2003)

and Andersen, Benzoni, and Lund (2002) so the addition of data from 2000 to 2010 has a

clear impact. This is also true of the other parameter estimates. In particular σ̂ = 0.171

exceeds the values in Eraker, Johannes, and Polson (2003) (0.1434), Eraker (2004) (0.108)

and Andersen, Benzoni, and Lund (2002) (0.0771). Furthermore, it is well known that

the correlation between returns and variance is more pronounced during periods of crisis

and ρ̂ = −0.598 (compared with -0.3974, -0.373 and -0.3799 in the three previous studies)

confirms this. However the mean reversion estimate κ̂ = 0.019 is similar to those found

in previous research. Also our estimates for the jump parameters are comparable with

the results in Eraker, Johannes, and Polson (2003) but those in Eraker (2004) imply

fewer jumps with greater impact (although our estimates are not significantly different).

Compared to the existing literature, we obtain a considerably larger variance jump size

in the (S-SVĲ) model (our estimate is 7.114, Eraker, Johannes, and Polson (2003) find

1.798), where our estimate would cause very large but rare volatility jumps. Yet again, the

standard deviation of this estimate is too high for differences to be statistically significant.

For the S&P 500 index, the overall best performing model in each class is the (SVCJ)

(see Table 7) . Price jumps lead to an improvement in the fit but the independent jump

models tend to overfit the data and these underperform all other jump models. Among

the three volatility specifications we find, consistent with our findings for the European

indices, that GARCH models perform best, with substantially lower DIC values. Note

that the DIC values for (G-SVYJ) are even better than those for (S-SVCJ). Therefore,

when the restriction that the model be affine is dropped a more parsimonious specification
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SV SVYJ SVCJ SVĲ

S&P 500 - Square Root Models

µ 0.025 (0.01) 0.028 (0.01) 0.031 (0.01) 0.034 (0.01)
κ 0.019 (0.003) 0.014 (0.002) 0.020 (0.003) 0.022 (0.004)
θ 1.254 (0.128) 1.243 (0.145) 0.850 (0.1) 0.856 (0.092)
σ 0.171 (0.01) 0.146 (0.009) 0.135 (0.01) 0.136 (0.009)
ρ -0.598 (0.035) -0.666 (0.032) -0.676 (0.034) -0.674 (0.034)
λy 0.005 (0.002) 0.006 (0.002) 0.009 (0.005)
µy -3.215 (1.299) -1.810 (0.964) -1.822 (0.79)
ρJ -1.656 (0.673)
σy 4.004 (1.069) 2.040 (0.81) 1.864 (0.575)
λv 0.002 (0.001)
ηv 1.621 (0.554) 7.114 (5.413)

S&P 500 - GARCH Models

µ 0.034 (0.01) 0.043 (0.01) 0.038 (0.01) 0.039 (0.01)
κ 0.008 (0.003) 0.006 (0.002) 0.008 (0.003) 0.010 (0.004)
θ 1.692 (0.47) 1.769 (0.513) 1.114 (0.389) 1.004 (0.387)
σ 0.181 (0.011) 0.165 (0.01) 0.153 (0.01) 0.163 (0.011)
ρ -0.627 (0.035) -0.690 (0.032) -0.721 (0.035) -0.755 (0.042)
λy 0.014 (0.008) 0.009 (0.004) 0.013 (0.007)
µy -1.405 (0.642) -0.591 (0.776) -1.490 (0.635)
ρJ -3.197 (0.767)
σy 1.702 (0.443) 1.402 (0.322) 1.619 (0.39)
λv 0.011 (0.007)
ηv 0.707 (0.255) 0.692 (0.407)

S&P 500 - Log Volatility Models

µ 0.036 (0.01) 0.043 (0.01) 0.044 (0.01) 0.044 (0.01)
κ 0.019 (0.003) 0.015 (0.002) 0.015 (0.002) 0.015 (0.002)
exp(θ) 0.859 (0.055) 0.848 (0.063) 0.698 (0.07) 0.688 (0.093)
σ 0.091 (0.006) 0.084 (0.005) 0.074 (0.006) 0.077 (0.006)
ρ -0.592 (0.04) -0.680 (0.038) -0.700 (0.037) -0.718 (0.04)
λy 0.017 (0.009) 0.015 (0.007) 0.018 (0.011)
µy -1.264 (0.522) -1.158 (0.656) -1.231 (0.539)
ρJ -2.357 (1.598)
σy 1.562 (0.358) 1.465 (0.294) 1.484 (0.285)
λv 0.026 (0.022)
ηv 0.229 (0.058) 0.166 (0.081)

Table 6: MCMC Estimates for the S&P 500.
This table reports the estimates of the structural parameters for all models introduced in Section
2 based on the mean of the posterior distributions. Standard deviations of the posterior are given
in parenthesis. The parameter estimates correspond to daily log returns of the equity index values.
One can easily obtain annual decimals by scaling some of the parameters. For example, assuming
252 trading days a year, in the square-root model class κ and λ have to be scaled by 252, σ by
2.52,

√
252θ/100 provides the mean volatility and

√
252ηv/100 the mean jump in volatility. Similar

scaling applies to the other model classes.
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SV SVYJ SVCJ SVĲ

Square root model 14738 14126 13799 14565
GARCH model 14590 13790 12928 14197
Log volatility model 14901 13939 13518 14697

Table 7: Model Fit for the S&P 500.
Entries in this table are the estimates of the DIC in-sample fit statistic for the volatility specification
indicated by the row and the jump augmentation specified by the column. Lower values of the
DIC statistic indicate a superior fit by the model.

without volatility jumps might suffice.

6 Specification Tests and Model Comparison

This section provides specification tests for all competing model classes. First we provide

an analysis of the residual errors and present extensive simulation results afterward.

6.1 Residual Error Analysis

The estimated residuals εyt and εvt (as in equations (1) and (2)) should follow standard

normal distributions,16 so any systematic deviation from normality indicates model mis-

specification. We test for normality by applying a standard Bayesian procedure. In every

(after-burnin) run of the Markov chain we calculate the skewness and the kurtosis of the

residual vector for log returns and variances (or log volatilities). These estimates allow

one to obtain a distribution for the skewness and kurtosis of the log return and variance

(or log volatility) equation errors, for every model and every index. We report the mean

of these distributions as point estimates for the skewness and kurtosis and the 1 and 99

percent posterior intervals to obtain a probabilistic statement of the range of values for

residual skewness and kurtosis generated by each model. Misspecified models will produce

skewness and kurtosis statistics significantly different from 0 and 3 respectively. Results

for the residuals of the log return equation for all indices are reported in Table 8.17

Considering the results for the European indices, none of the models with price jumps
16Whereas this distributional assumption holds exactly in the discretized model, it holds only approxi-

mately for the continuous-time processes.
17The corresponding statistics for the variance vector carry little useful information to distinguish

between the competing models and thus we only report and interpret results for the log return residuals.
The results are available from the authors on request.
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SV SVYJ SVCJ SVĲ

Skew Kurt Skew Kurt Skew Kurt Skew Kurt

FTSE 100

Square root models mean -0.170 3.293 -0.148 3.072 -0.120 3.027 -0.114 3.083
1% percentile -0.219 3.121 -0.196 2.961 -0.161 2.928 -0.156 2.947
99% percentile -0.123 3.525 -0.098 3.198 -0.070 3.172 -0.072 3.225

GARCH models mean -0.156 3.121 -0.124 3.028 -0.139 3.016 -0.124 2.996
1% percentile -0.203 2.991 -0.183 2.892 -0.185 2.907 -0.182 2.865
99% percentile -0.109 3.276 -0.062 3.188 -0.088 3.153 -0.055 3.139

Log volatility models mean -0.155 3.136 -0.120 3.033 -0.110 2.973 -0.112 2.979
1% percentile -0.203 3.007 -0.190 2.892 -0.163 2.858 -0.177 2.854
99% percentile -0.107 3.299 -0.054 3.196 -0.052 3.120 -0.046 3.127

DAX 30

Square root models mean -0.190 3.452 -0.115 3.109 -0.103 3.078 -0.097 3.038
1% percentile -0.241 3.252 -0.168 2.975 -0.149 2.971 -0.149 2.923
99% percentile -0.141 3.709 -0.059 3.263 -0.059 3.202 -0.044 3.178

GARCH models mean -0.168 3.254 -0.111 3.035 -0.116 3.034 -0.104 3.022
1% percentile -0.221 3.085 -0.166 2.912 -0.164 2.929 -0.158 2.909
99% percentile -0.116 3.480 -0.056 3.178 -0.068 3.158 -0.050 3.164

Log volatility models mean -0.167 3.245 -0.113 3.036 -0.101 3.004 -0.100 3.014
1% percentile -0.222 3.081 -0.168 2.915 -0.152 2.897 -0.156 2.898
99% percentile -0.114 3.463 -0.056 3.178 -0.048 3.135 -0.041 3.160

Eurostoxx 50

Square root models mean -0.202 3.446 -0.111 3.129 -0.102 3.100 -0.085 3.053
1% percentile -0.253 3.253 -0.167 2.992 -0.156 2.977 -0.142 2.927
99% percentile -0.152 3.696 -0.055 3.284 -0.052 3.236 -0.028 3.197

GARCH models mean -0.193 3.289 -0.103 3.045 -0.111 3.049 -0.099 3.030
1% percentile -0.247 3.114 -0.158 2.919 -0.164 2.933 -0.155 2.911
99% percentile -0.140 3.526 -0.047 3.187 -0.059 3.184 -0.043 3.164

Log volatility models mean -0.192 3.292 -0.102 3.047 -0.084 3.018 -0.098 3.027
1% percentile -0.248 3.117 -0.159 2.923 -0.142 2.899 -0.153 2.905
99% percentile -0.138 3.525 -0.047 3.193 -0.026 3.148 -0.042 3.176

S&P 500

Square root models mean -0.250 4.018 -0.089 3.239 -0.080 3.187 -0.080 3.253
1% percentile -0.313 3.697 -0.140 3.118 -0.127 3.082 -0.136 3.111
99% percentile -0.190 4.437 -0.038 3.382 -0.030 3.308 -0.026 3.444

GARCH models mean -0.203 3.544 -0.099 3.262 -0.085 3.170 -0.102 3.254
1% percentile -0.258 3.357 -0.157 3.120 -0.135 3.070 -0.157 3.111
99% percentile -0.150 3.789 -0.042 3.472 -0.034 3.283 -0.046 3.455

Log volatility models mean -0.189 3.539 -0.092 3.284 -0.070 3.196 -0.078 3.214
1% percentile -0.249 3.350 -0.152 3.136 -0.125 3.086 -0.138 3.096
99% percentile -0.132 3.787 -0.033 3.495 -0.013 3.329 -0.020 3.367

Table 8: Specification Tests.
Entries in the table summarize the distribution of skewness and kurtosis in the residuals εyt (see
equation (1)). If the model is well-specified, the skewness should be insignificantly different from
zero, and the kurtosis should be insignificantly different from 3. The point estimates of these
statistics are provided by the mean of the distribution, and the 1% and 99% percentiles indicate
how variable the skewness and kurtosis estimates were about this point estimate.
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produce kurtosis statistics that are significantly different from 3 at the 1% level. Lower

kurtosis levels are found in GARCH and log volatility specifications. These results confirm

that the square root process requires a jump in variance as well as price, whereas the

other two volatility specifications are fine with just a price jump. The results regarding

the skewness are however less encouraging. Given there is negative skewness even at the

0.01 percentile for all indices, we conclude that all models produce a significantly longer

left tail than they should.

There is a stronger misspecification in all the models for the S&P 500 index, especially

for models without jumps, and especially in the square root class. The kurtosis is signifi-

cantly greater than three in all models, so the residual vector also contains more extreme

outliers than the normal distribution can produce. The skewness is also still significantly

different from zero for all models. Therefore, the dynamics of the European equity indices

are easier to capture with the proposed models.

In order to quantify whether our results are robust to changing the sampling frequency

of the data, we also re-estimated all models for all indices on weekly return observations.18

The conclusions drawn from this set of estimations is similar to the ones presented here.

In particular, the skewness of the residuals still poses a severe challenge for the models.

For brevity we do not detail the empirical results here, but they are available from the

authors upon request.

6.2 Simulation Study

If a model is a realistic description of the evolution of an equity index then repeated

simulations should produce trajectories with characteristics similar to those of the observed

time series. So in this sub-section we test whether the competing models could have

produced the observed data. For instance, the DAX 30 sample kurtosis is 9.4 and if

a model can capture this feature we would expect each simulated paths to exhibit a

similar level of kurtosis. That is, 9.4 should not be located in the far tails of the model’s

kurtosis distribution. This idea is formalized by the concept of posterior predictive p-values

introduced by Rubin (1984).

Consider the distribution of a statistic S under model M after observing the data Y .
18We thank an anonymous referee for suggesting this.
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This distribution for the statistic S is given by

p (S |Y ,M) =
∫
p (S |Θ,M) p (Θ |Y ,M) dΘ, (3)

where Θ is a general notation for the parameter vector of the model. The predictive p-

value locates the observed S(Y ) in this distribution and high (close to one) or low (close

to zero) p-values indicate that the model is not capable of producing the magnitudes of S

that were observed in the actual data.

Note that the calculation of predictive p-values is easy to implement once a MCMC

sampler has been derived, since we can approximate the integral with the outcome of the

MCMC runs and simulations of the data-generating process. Furthermore, this approach

also takes into account the uncertainty in the estimated parameters and hence accounts

for estimation risk.

For the calculation of the integral above, we can further condition on so-called auxiliary

statistics. In the repeated experiments these statistics are kept constant. In our case we

only fix the sample size such that it coincides with the sample size of the observed time

series and start the simulations at the long-term volatility level implied by the model. We

use 100,000 simulated paths for each of the 48 (model, index) pairs.

The selection of relevant statistics S is crucial to the problem at hand, as their careful

choice will affect whether inconsistencies in the models are detected. The statistics that we

deem important for modeling equity indices and that can potentially help to distinguish

between models are:

– The sample statistics from Table 1 except the unconditional mean, i.e. standard

deviation (stdev), skewness (skew) and kurtosis (kurt), and the minimum (min) and

maximum (max) of the returns;

– Further statistics linked to extreme behaviour, i.e. the average over the 10 largest

positive jumps (avgmax10) and the average over the 10 largest negative jumps (avg-

min10);

– Indications of outlier clustering: we record the highest and lowest sum of absolute

returns (absmax20 and absmin20) observed in a period of 20 trading days;

– Percentiles of the estimated unconditional distribution of the index returns, perc-
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NUM where NUM indicates the percent.

Results for the European indices in Tables 9 and 10 are encouraging. We start by in-

terpreting the results for the FTSE. The Heston (S-SV) model is clearly misspecified, as

shown by many of the statistics. In particular neither the skewness nor the kurtosis can

be replicated (confirming our results from the previous section). The only moment that

can be reproduced by the simulations is the standard deviation (with a p-value of 0.818),

hence although simulations imply lower standard deviation values on average, we cannot

reject the model using this statistic. The pure SV model does not capture large jumps in

price: it is not surprising that the high negative jumps are impossible for the (S-SV) to

generate, yet it also fails to produce jumps of considerable positive size. The inclusion of

return jumps (S-SVYJ) into the Heston model improve the p-values for most statistics, but

the model is still rejected. Jumps in variance are required for the FTSE in the square-root

model class, where none of the statistics indicate significant model misspecification at the

5% level. Note that also the skewness of the returns is well captured by these models,

although the residual error analysis pointed towards some weaknesses of the proposed

models to capture this feature.

The GARCH model simulations convey a very different picture. Even the pure diffu-

sion model can handle large returns much better than its square root counterpart. The

model creates realistic values for high jumps and both positive and negative jumps are

frequent enough. Extending the (G-SV) model by jumps in state variables has surprisingly

little effect on the results. The p-values for all statistics stay extremely close to each other

with no discernible improvement from the inclusion of price jumps. The most difficult

characteristic to capture is the skewness, but this is the only characteristic where the

GARCH models without jumps in the variance remain unsuccessful. As for the square-

root model, we find that the SVCJ cannot be rejected, but this time even at a significance

level of 10%.

The pure diffusion log model fails to capture many of the characteristics of the original

data. The inclusion of jumps into the price process proves the most fruitful improvement,

but compared with the GARCH specification, its performance is rather weak. Especially

the inclusion of jumps in the volatility process can now even deteriorate the simulation
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results.

The results for the other two European indices follow very similar patterns. Both

indices require jumps in both state variables for the square-root model class, which cannot

be rejected for both indices at the 5% level. For the Eurostoxx, the simple (G-SV) model

however outperforms the complex (S-SVCJ) model, which confirms earlier findings that

the GARCH model class can capture many of the features of the European indices even

without resorting to complex jump specifications. For the DAX, the (G-SV) also performs

extremely well and only the absmin20 statistic has a low p-value of 0.028. Log volatility

models are – for both indices – no improvement over the square-root model class.

The lower half of Table 10 provides the simulation results for the S&P 500 index. In

terms of the relative performance of the various models there is little difference to the

European indices. In absolute terms, however, the results are very interesting, because all

of the proposed models can be rejected at high significance levels. The more pronounced

skewness is the major source of misspecification where all models have p-values of less

than 2%. Other characteristics are well captured in the (G) models which confirms their

overall superiority over all other model classes considered in this paper.

It is instructive to inspect the tail behaviour of the models in more detail. In Figure

2 we depict the left tails of the empirical densities for all four equity indices and compare

them with the densities generated by the point estimates reported in Tables 2, 4, 3 and 6.19

For expositional clarity, we focus on (S-SV), (S-SVCJ), (G-SV) and (G-SVCJ). The figure

confirms that the extreme behaviour of all four equity indices is very poorly represented

by the Heston model dynamics. The density of this model converges far more quickly

towards zero in the left tail compared with the other models shown here.

7 Summary and Conclusion

We have used daily log returns on four major European and US equity indices between 1987

and 2010 to study the adequacy of twelve different continuous-time jump-diffusion models

for capturing the dynamics of the data-generating process. Our model choice includes the

popular square root diffusion model and related specifications where both state variables

(returns and variance) are augmented by possibly simultaneous jumps. In addition, we
19We thank an anonymous referee for suggesting this.
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Figure 2: Unconditional Densities (left tail).
This figure depicts the tails of the kernel density fitted to observations on daily log returns over
the entire sample from January 1987 to April 2010 (solid line, labelled empirical). It compares
this tail with the tails of the densities generated by (S-SV), (S-SVCJ), (G-SV) and (G-SVCJ). The
model densities are obtained by Monte-Carlo simulation.

study the same jump extensions for the GARCH diffusion and the log volatility model.

Relative performance was assessed according to in-sample fit, residual error analysis and

an extensive simulation of posterior predictive p-values. These last results in particular

provide vital information on whether the models can produce dynamics that are similar

to the observed time-series observations.

In contrast to Andersen, Benzoni, and Lund (2002) and Eraker, Johannes, and Polson

(2003) we find that for the S&P 500 square root models even with jumps in returns and/or

variances are severely misspecified, and this finding is supported by all diagnostic tools

we use. One of our main concerns is that a large negative skewness cannot be captured

by these models. Log volatility diffusion models improve on the square root model, but
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specifications with jumps in price and/or volatility appear to be overspecified and show no

overall improvement over the square root model class. Pure in-sample fit statistics point

towards the inclusion of simultaneous price and variance jumps, yet both the analysis of

residuals and our simulation study indicate that the simple GARCH diffusion without

jumps performs just as well!

The dynamics of European indices are easier to capture than those for the S&P 500.

Even square root models perform quite well for European indices, provided they have

jumps in both state variables: they create a realistic number of large negative and positive

jumps, with realistic size, and the unconditional distribution generated by the model

closely resembles empirical observations. GARCH models improve on the square root

class both in-sample and in simulation experiments, even without resorting to a jump

component in the variance. The use of this specification is therefore advantageous in

applications that require no (quasi) closed-form of the transition densities.

Our results have important implications for option pricing applications using European

equity indices. Since option pricing models are often difficult to distinguish on pure in-

sample fit statistics, studying the dynamic behaviour of the underlying process provides

valuable information regarding which option pricing models are empirically relevant. Our

results also motivate further empirical research using both data from both the underlying

equity index and its options. Since the direct use of option data in models without analytic

solutions to European vanilla options is extremely time-consuming, at least over a long

sample period such as ours, it might be fruitful to add the term structure of volatility

indices (i.e. VIX for the S&P 500 or VDAX for the DAX) into the estimation procedure.

The construction methodology of all major volatility indices allows one to derive closed-

form solutions even for some non-affine specifications. Although the use of the VIX for

estimation purposes is not new, adding the whole term structure rather than a single index

might stabilize the estimation of risk premia (and especially the volatility risk premia).

This way, using a similar MCMC procedure as in this paper, future research could provide

more insights into the structure of risk premia and the ability of the proposed models to

explain both the underlying price process and the dynamics of index derivatives.
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