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ABSTRACT

We measure the two-point angular correlation function of a sample of 4289 223 galaxies

with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric

redshift, absolute magnitude and colour down to Mr − 5 log h = −14 mag. Photometric

redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial

neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA)

spectroscopic sample as our training set. These photometric redshifts are then used to determine

absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and

absolute magnitude distributions using Monte Carlo resampling. These redshift distributions

are used in Limber’s equation to obtain spatial correlation function parameters from power-

law fits to the angular correlation function. We confirm an increase in clustering strength

for sub-L∗ red galaxies compared with ∼L∗ red galaxies at small scales in all redshift bins,

whereas for the blue population the correlation length is almost independent of luminosity for

∼L∗ galaxies and fainter. A linear relation between relative bias and log luminosity is found

⋆E-mail: L.Christodoulou@sussex.ac.uk
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to hold down to luminosities L ∼ 0.03L∗. We find that the redshift dependence of the bias of

the L∗ population can be described by the passive evolution model of Tegmark & Peebles. A

visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that

about 10 per cent are spurious, with a higher contamination rate towards very faint absolute

magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our

clustering analysis.

Key words: techniques: photometric – surveys – galaxies: distances and redshifts – galaxies:

statistics – large-scale structure of Universe.

1 IN T RO D U C T I O N

Measurement of galaxy clustering is an important cosmological tool

to aid our understanding of the formation and evolution of galaxies

at different epochs. The dependence of galaxy clustering on prop-

erties such as morphology, colour, luminosity or spectral type has

been established over many decades. Elliptical galaxies or galax-

ies with red colours, which both trace an old stellar population, are

known to be more clustered than spiral galaxies (e.g. Davis & Geller

1976; Dressler 1980; Postman & Geller 1984; Loveday et al. 1995;

Guzzo et al. 1997; Goto et al. 2003). Recent large galaxy surveys

have allowed the investigation of galaxy clustering as a function

of both colour and luminosity (Norberg et al. 2002; Budavári et al.

2003; Zehavi et al. 2005; Wang et al. 2007; McCracken et al. 2008;

Zehavi et al. 2011). Among the red population, a strong luminosity

dependence has been observed whereby luminous galaxies are more

clustered because they reside in denser environments.

The galaxy luminosity function shows an increasing faint-end

density to at least as faint as Mr − 5 log h = −12 mag (Blanton

et al. 2005a; Loveday et al. 2012); thus intrinsically faint galaxies

represent the majority of the galaxies in the Universe. These galaxies

with luminosity L ≪ L∗ have low stellar mass and are mostly dwarf

galaxies with ongoing star formation. However, because most wide-

field spectroscopic surveys can only probe luminous galaxies over

large volumes, this population is often under-represented. Previous

clustering analyses have revealed that intrinsically faint galaxies

have different properties from luminous ones. A striking difference

appears between galaxy colours in this regime: while faint blue

galaxies seem to cluster on a scale almost independent of luminosity,

the faint red population is shown to be very sensitive to luminosity

(Norberg et al. 2001, 2002; Zehavi et al. 2002; Hogg et al. 2003;

Zehavi et al. 2005; Swanson et al. 2008a; Zehavi et al. 2011; Ross,

Tojeiro & Percival 2011b). As found by Zehavi et al. (2005), this

trend is naturally explained by the halo occupation distribution

framework. In this picture, the faint red population corresponds to

red satellite galaxies, which are located in high-mass haloes with red

central galaxies and are therefore strongly clustered. Recently, Ross

et al. (2011b) compiled from the literature bias measurements for

red galaxies over a wide range of luminosities for both spectroscopic

and photometric data. They showed that the bias measurements of

the faint red population are strongly affected by non-linear effects

and thus on the physical scales over which they are measured. They

conclude that red galaxies with Mr > −19 mag are biased similarly

to or less than red galaxies of intermediate luminosity.

In this work, we make use of photometric redshifts to probe the

regime of intrinsically faint galaxies. Our sample is composed of

Sloan Digital Sky Survey (SDSS) galaxies with r-band Petrosian

magnitude rpetro < 19.4. As we have an ideal training set for this

sample, thanks to the Galaxy And Mass Assembly (GAMA) survey

(Driver et al. 2011), we use the artificial neural network package

ANNz (Collister & Lahav 2004) to predict photometric redshifts. We

then calculate the angular two-point correlation function as a func-

tion of absolute magnitude and colour. The correlation length of

each sample is computed through the inversion of Limber’s equa-

tion, using Monte Carlo resampling for modelling the underlying

redshift distribution. Recently, Zehavi et al. (2011) presented the

clustering properties of the DR7 spectroscopic sample from SDSS.

They extracted a sample of ∼700 000 galaxies with redshifts to r ≤

17.6 mag, covering an area of 8000 deg2. Their study of the lumi-

nosity and colour dependence uses power-law fits to the projected

correlation function. Our study is complementary to theirs, since

we are using calibrated photo-z values of fainter galaxies from the

same SDSS imaging catalogue. We use similar luminosity bins to

Zehavi et al., with the addition of a fainter luminosity bin −17 <

Mr − 5 log h < −14.

Small-scale (r < 0.1 h−1 Mpc) galaxy clustering provides addi-

tional tests of the fundamental problem of how galaxies trace dark

matter. Previous studies have used SDSS data and the projected cor-

relation function to study the clustering of galaxies at the smallest

scales possible (Masjedi et al. 2006), using extensive modelling to

account for the fibre constraint in SDSS spectroscopic data. The in-

terpretation of these results offers unique tests of how galaxies trace

dark matter and the inner structure of dark matter haloes (Watson

et al. 2012). Motivated by these studies, we present measurements

of the angular correlation function down to scales of θ ≈ 0.◦005. We

work solely with the angular correlation function and pay particular

attention to systematics errors and the quality of the data.

On the other hand, on sufficiently large scales (r > 60 h−1 Mpc),

it is expected that the galaxy density field evolves linearly following

the evolution of the dark matter density field (Tegmark et al. 2006).

However, it is less clear whether this assumption holds on smaller

scales, where complicated physics of galaxy formation and evo-

lution dominate. In the absence of sufficient spectroscopic data to

study the evolution of clustering comprehensively, Ross, Percival

& Brunner (2010) used SDSS photometric redshifts to extract a

volume-limited sample with Mr < −21.2 and zphot < 0.4. Their

analysis revealed significant deviations from the passive evolution

model of Tegmark & Peebles (1998). Here we perform a similar

analysis, again using photometric redshifts, for the L∗ population.

This paper is organized as follows. In Section 2, we introduce

the statistical quantities used to calculate the clustering of galaxies,

with an emphasis on the angular correlation function. In Section 3

we present our data for this study and the method for estimating

the clustering errors. In Section 4 we describe the procedure that

we followed in order to obtain the photometric redshifts. We then

investigate the clustering of our photometric sample, containing a

large number of intrinsically faint galaxies, in Section 5. In Section 6

we present bias measurements as functions of colour, luminosity and

redshift. Our findings are summarized in Section 7. In Appendix A

we show how we extracted our initial catalogue from the SDSS DR7

C© 2012 The Authors, MNRAS 425, 1527–1548
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data base and finally in Appendix B we describe in some detail the

tests performed to assess systematic errors.

Throughout we assume a standard flat �CDM cosmology, with

�m = 0.30, �� = 0.70 and H0 = 100 h km s−1 Mpc−1.

2 T H E T WO - P O I N T A N G U L A R C O R R E L AT I O N

F U N C T I O N

2.1 Definition

The simplest way to measure galaxy clustering on the sky is via the

two-point correlation function, w(θ ), which gives the excess prob-

ability of finding two galaxies at an angular separation θ compared

with a random Poisson distribution (Peebles 1980, Section 31):

dP = n̄2[1 + w(θ )] d�1 d�2, (1)

where dP is the joint probability of finding galaxies in solid angles

d�1 and d�2 separated by θ , and n̄ is the mean number of objects

per solid angle. If w(θ ) = 0, then the galaxies are unclustered

and randomly distributed at this separation. We consider various

estimators for w(θ ) in Section 2.3.

2.2 Power-law approximation

Over small angular separations, the two-point correlation function

can be approximated by a power law:

w(θ ) = Awθ1−γ , (2)

where Aw is the amplitude. The amplitude of the correlation function

of a galaxy population is reduced as we go to higher redshifts,

because equal angular separations trace larger spatial separations for

more distant objects. By contrast, the slope 1 − γ of the correlation

function is observed to vary little from sample to sample, with γ ≈

1.8. It is mostly sensitive to galaxy colours (see Section 5).

2.3 Estimator

In practice, the calculation of w(θ ) is done through the normal-

ized counts of galaxy–galaxy pairs DD(θ ) from the data, random–

random pairs RR(θ ) from an unclustered random catalogue that

follows the survey angular selection function and galaxy–random

pairs DR(θ ). Various expressions have been used to calculate w(θ ).

In this work we adopt the estimator introduced by Landy & Szalay

(1993), which is widely used in the literature:

w(θ ) =
DD(θ ) − 2DR(θ ) + RR(θ )

RR(θ )
. (3)

Landy & Szalay (1993) showed that this estimator has a small

variance, close to Poisson, and allows one to measure correlation

functions with minimal uncertainty and bias. The counts DD(θ ),

DR(θ ) and RR(θ ) have to be normalized to allow for different total

numbers of galaxies ng and random points nr:

DD(θ ) =
Ngg(θ )

ng(ng − 1)/2
,

DR(θ ) =
Ngr(θ )

ngnr

,

RR(θ ) =
Nrr(θ )

nr(nr − 1)/2
.

We use approximately ten times as many random points as galax-

ies in order that the results do not depend on a particular realization

of random distribution. We also tried an alternative estimator pro-

posed by Hamilton (1993), which revealed no significant changes

in the correlation function measurements.

Estimates of the angular correlation function are affected by an

integral constraint of the form

1

�2

∫ ∫

w(θ12) d�1 d�2 = 0, (4)

where the integral is over all pairs of elements of solid angle �

within the survey area. The constraint requires that w(θ ) goes neg-

ative at large separations to balance the positive clustering signal

at smaller separations. However, for wide-field surveys like SDSS

the integral constraint has a negligible effect on w(θ ), even on large

scales. We find that the additive correction for the integral constraint

is at least two orders of magnitude smaller than the value of w(θ ) at

θ = 9.4◦. Thus the integral constraint does not bias our clustering

measurements.

2.4 Spatial correlation function

We are interested in the spatial clustering and the physical sepa-

rations at which galaxies are clustered, in order to compare data

against theory. To this end, we need to calculate the spatial correla-

tion function from our angular correlation function, which is simply

its projection on the sky. The spatial correlation function, ξ (r), can

be also expressed as a power law:

ξ (r) =

(

r

r0

)−γ

, (5)

where r0 is the correlation length. It corresponds to the proper sep-

aration at which the probability of finding two galaxies is twice that

of a random distribution, ξ (r0) = 1. Limber (1953) demonstrated

that the power-law approximation for ξ (r) in equation (5) leads to

the power law defined in equation (2), with the index γ being the

same in both cases. Phillipps et al. (1978) expressed the amplitude

of the correlation function, Aw , as a function of the proper corre-

lation length r0 and the selection function of the survey, whereas

later studies propose similar equations where the selection function

is implicitly included in the redshift distribution.

Now, writing the angular correlation function as w(θ ) =Awθ1 −γ ,

Limber’s equation becomes (Peebles 1980, Section 52, 56)

Aw = C

∫ zmax

zmin
r

γ

0 g(z)(dN/dz)2 dz
[

∫ zmax

zmin
(dN/dz) dz

]2
, (6)

where dN/dz is the redshift distribution,1 which is zero everywhere

outside the limits zmin and zmax, and

C = π1/2 Ŵ[(γ − 1)/2]

Ŵ(γ /2)
,

with Ŵ the gamma function. The quantity g(z) is defined as

g(z) =

(

dz

dx

)

x1−γ F (x),

where F(x) is related to the curvature factor k in the Robertson–

Walker metric by

F (x) = 1 − kx2.

We assume zero curvature, and so F(x) ≡ 1.

1 We use the expressions dN/dz and N(z) interchangeably for the redshift

distribution.
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When using equation (6), we need to determine the redshift dis-

tribution of the sample with precision. We address this issue in

Section 4.3. Another subtle complication that arises from the use of

equation (6) is that galaxy clustering is assumed to be independent

of galaxy properties such as colour and luminosity (Peebles 1980,

section 51). Therefore it is particularly important to use samples

with fixed colour and luminosity, rather than mixed populations, to

study galaxy clustering using Limber’s approximation. We address

this issue in Section 4.2, where we define the colour and luminosity

bins for the clustering analysis.

3 DATA

To carry out this analysis, we take advantage of the Galaxy And

Mass Assembly (GAMA) survey (Driver et al. 2011). This spec-

troscopic sample, at low to intermediate redshifts, forms an ideal

training set for predicting photometric redshifts of faint galaxies.

The galaxies considered for the calculation of the correlation func-

tions are drawn from the seventh data release of the Sloan Digital

Sky Survey photometric sample (SDSS DR7: Abazajian et al. 2009).

We briefly outline the properties of these samples below.

3.1 SDSS DR7 photometric sample

At the time of writing, the Sloan Digital Sky Survey (SDSS) is the

largest local galaxy survey ever undertaken. The completed SDSS

maps almost one quarter of the sky, with optical photometry in u,

g, r, i and z bands and spectra for ∼106 galaxies. The main goal of

the survey is to provide data for large-scale structure studies of the

local Universe. A series of papers describes the survey: technical

information about the data products and the pipeline can be found

in York et al. (2000) and in Stoughton et al. (2002). Details about

the photometric system can be found in Fukugita et al. (1996).

The SDSS imaging survey was completed with the seventh data

release (Abazajian et al. 2009), which we use in this paper. The

main programme of SDSS is concentrated in the Northern Galactic

cap with three 2.5◦ stripes in the Southern Galactic cap. SDSS DR7

contains about 5.5 × 106 galaxies with rpetro < 19.4 over 7646 deg2

of sky.

The images are obtained with a 2.5-m telescope located at Apache

Point Observatory, New Mexico. Various flux measures are avail-

able for galaxies in the SDSS data base (Stoughton et al. 2002), in-

cluding Petrosian fluxes, model fluxes (corresponding to whichever

of a de Vaucouleurs or exponential profile provides a better fit to

the observed galaxy profile), and aperture fluxes. In this paper we

use model magnitudes to calculate galaxy colours and Petrosian

magnitudes to split galaxies into absolute magnitude ranges. After

Schlegel, Finkbeiner & Davis (1998), we correct the magnitudes

with dust attenuation corrections provided for each object and each

filter in the SDSS data base.

The star–galaxy classification adopted by the SDSS photometric

pipeline is based on the difference between an object’s point-spread

function (PSF) magnitude (calculated assuming a PSF profile, as

for a stellar source) and its model magnitude. An object is then

classified as a galaxy if it satisfies the criterion (Stoughton et al.

2002)

mpsf,tot − mmodel,tot > 0.145, (7)

where mpsf,tot and mmodel,tot magnitudes are obtained from the sum

of the fluxes over ugriz photometric bands. This cut works at the

95 per cent confidence level for galaxies with r < 21. In Sec-

tion 3.2 we discuss a different star–galaxy classification, following

the GAMA survey, which is the one we adopt for this work (see also

Appendix A).

A photometric redshift study can be vulnerable to contamination

due not only to stars misclassified as galaxies but also to contami-

nation arising from over-deblended sources (Scranton et al. 2002),

usually coming from local spiral galaxies. This imposes limits on

the angular scale over which we can probe the correlation function.

In order to test for this systematic in our sample, in Appendix B4

we visually inspect random samples of data and then model the

contamination as a function of angular separation.

3.2 GAMA sample

The Galaxy And Mass Assembly (GAMA) project2 is a combi-

nation of several ground- and space-based surveys with the aim

of improving our understanding of galaxy formation and evolution

(Driver et al. 2011). GAMA uses the AAOmega spectrograph of

the Anglo-Australian Telescope (AAT) for spectroscopy (Saunders

et al. 2004; Sharp et al. 2006). Its targets are selected from the SDSS

photometric sample. Target selection is described in detail by Baldry

et al. (2010). The main restriction is that the source is detected as

an extended object: rpsf − rmodel > 0.25. As shown in Appendix A,

this criterion is also adopted for our sample extraction from SDSS.

This criterion is more restrictive, in the sense that fewer stars will be

misclassified as galaxies, than the star–galaxy classification adopted

by the SDSS photometric pipeline (previous section), but similar to

that used for the SDSS main galaxy spectroscopic sample (Strauss

et al. 2002).

The GAMA survey is almost 99 per cent spectroscopically com-

plete over its 144 deg2 area to rpetro = 19.4 mag (Driver et al.

2011). GAMA phase 1 (comprising 3 years of observations) in-

cludes 95 592 reliable spectroscopic galaxy redshifts to this magni-

tude limit, extending to redshift z ≈ 0.5. Of these redshifts, 76 360

have been newly acquired by the GAMA team. The rest come from

previous surveys: SDSS (Abazajian et al. 2009), 2dFGRS (Colless

et al. 2001; Cole et al. 2005), 6dFGS (Jones et al. 2004), MGC

(Driver et al. 2005) and 2SLAQ (Cannon et al. 2006). The over-

all GAMA redshift distribution is shown in fig. 13 of Driver et al.

(2011).

For a consistent training of ANNz it is necessary to match all the

GAMA objects with SDSS DR7 übercal photometry (Padmanabhan

et al. 2008) and perform identical colour cuts. Once we apply the

colour cuts (Section 3.3) necessary for the optimization of ANNz

performance and low- and high-redshift cuts (0.002 < z < 0.5),

93 584 redshifts remain. They are used to train our photometric

redshift neural net algorithm, as described in Section 4.

3.3 Colour cuts

Before we build our final sample from ANNz, we remove galaxies

with outlier u − g, g − r, r − i, i − z colours in both the SDSS

imaging sample and the training set, because photometric redshift

estimates are based primarily on these colours. The complete colour

and magnitude cuts are given in Table 1. Fewer than 1 per cent of

galaxies are affected by the colour cuts. These colour cuts could

in principle affect the mask that we use for correlation-function

calculations. To estimate the extent of this effect, we study the

distribution on the sky of the colour outliers as well as their angular

correlation function. This exercise reveals that colour outliers have

a spurious correlation an order of magnitude larger on all angular

2 http://www.gama-survey.org
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Table 1. Colour and apparent mag-

nitude cuts for the optimization of

ANNz. All magnitudes are SDSS model

magnitudes.

12.0 < rpetro < 19.4

−2 < u − g < 7

−2 < g − r < 5

−2 < r − i < 5

−2 < i − z < 5

scales than the correlation function of our final sample. However,

since the number of these objects is almost three orders of magnitude

lower than the total, they would have a negligible effect on w(θ )

measurements if included.

3.4 Final sample

Our aim is to obtain a galaxy sample with photometric properties as

close as possible to our training set. To this end, we have selected

galaxies from the SDSS DR7 photometric sample with the query

used to select GAMA targets (Appendix A). We select galaxies that

have ‘clean’ photometry according to the instructions given on the

SDSS website.3 Our sample is hence limited by rpetro < 19.4 and

satisfies the criterion for star–galaxy separation rpsf − rmodel > 0.25.

In our analysis, we choose to calculate the correlation function for

galaxies located in the SDSS northern cap, corresponding to 92 per

cent of SDSS DR7 galaxies. As such, the geometry of the survey is

simplified to a contiguous area. Our final sample, after the colour

cuts given in Table 1, comprises 4890 965 galaxies.

To evaluate the number of data–random and random–random

pairs in equation (3), we need to build a mask for our sample. The

mask precisely defines the sky coverage of the sample. We use

the file lss_combmask.dr72.ply in the NYU Value Added Cata-

logue4 (Blanton et al. 2005b), mapping SDSS stripes, as our mask.

This file contains the coordinates of the fields observed by SDSS

expressed in spherical polygons, excluding areas around bright stars

because galaxies in these regions can be affected by photometric

errors. It is also suitably formatted for use with the MANGLE soft-

ware (Hamilton 1993; Hamilton & Tegmark 2004; Swanson et al.

2008b), a tool for manipulating survey masks and obtaining ran-

dom points with the exact geometry of the mask. Once masking is

applied, 4511 011 galaxies remain in our sample.

The upper panel of Fig. 1 shows the boundaries of the final mask

for SDSS DR7 that we use for creating random catalogues. Our

random catalogues consist of ∼107 objects, approximately ten times

larger than the number of galaxies in each luminosity and colour

bin. Consistency checks have shown that our clustering results are

not sensitive to any particular realization of the random catalogue.

In Appendix B1 we check the accuracy of the survey mask, as

well as the photometric uniformity of the sample, by studying the

angular clustering of our sample as a function of r-band apparent

magnitude.

3.5 Pixelization scheme and jack-knife resampling

In order to speed up the computation of the correlation function,

we pixelize our data according to the SDSSPix5 scheme. The basic

3 http://www.sdss.org/dr7/products/catalogs/flags.html
4 http://sdss.physics.nyu.edu/vagc/
5 http://dls.physics.ucdavis.edu/~scranton/SDSSPix/

Figure 1. The upper panel shows the jack-knife regions used for the er-

ror estimation of our correlation-function measurements. After modifying

the SDSSPix scheme there are 80 jack-knife regions, which contain ap-

proximately equal numbers of random points. The lower panel reports the

normalized area of each pixel, based on a random catalogue. The deviations

from uniformity show that differences in the areas of the JK regions are

limited to ±30 per cent at most.

concept consists of assigning galaxies located in a portion of the sky

to a pixel. After this step, we only need to take into account galaxies

in the same pixel and in the neighbouring pixels to calculate the

correlation function up to the scale of a pixel. SDSSPix divides the

sky along SDSS η and λ spherical coordinates (as defined in section

3.2.2 of Stoughton et al. 2002) into equal spherical areas. Different

resolutions are available according to the angular scale of interest.

We choose the resolution called basic resolution (resolution = 1).

This divides the sky into 468 pixels of size ∼9.4 × 9.4 deg2. Then,

for galaxies in a given pixel, that pixel and its 8 direct neighbouring

pixels include all neighbouring galaxies with separations up to 9.◦4,

the largest angular separation we consider (see Section 5).

We also use this pixelization scheme to define the jack-knife (JK)

regions for the error analysis. In order to minimize the variation

in the number of objects in each JK region, some neighbouring

pixels that contain the survey boundary are merged in order that

they contain a more nearly equal number of random points. This

modification of the SDSSPix pixelization yields 80 JK regions,

as shown in the upper panel of Fig. 1. The lower panel of Fig. 1

presents the relative variation in area of each region, as measured by

the relative number of randoms each one contains. Hereafter, errors

in w(θ ) are determined from 80 JK resamplings, by calculating

w(θ ), omitting each region in turn. We have checked that our results

are not significantly affected by using either 104 or 40 jack-knife

regions. The elements of the covariance matrix, C, are given by

Cij =
N − 1

N

N
∑

k=1

[

log
(

wk
i

)

− log(w̄i)
] [

log
(

wk
j

)

− log(w̄j )
]

, (8)

where wk
i is the angular correlation function of the kth JK resampling

on scale θ i, w̄i the mean angular correlation function and N the

total number of JK resamplings. In practice, w̄i is identical to the

angular correlation function measurement from the whole survey
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area. The N − 1 factor in the numerator of equation (8) accounts

for correlations inherent in the JK procedure (Miller 1974).

The jack-knife procedure is a method of calculating uncertainties

in a quantity that that we measure from the data itself. In wide-field

galaxy surveys, more often than not large superstructures appear

to influence clustering measurements significantly. The best-known

example is the SDSS Great Wall (Gott et al. 2005). The presence

of such structures makes it tempting to present the results with and

without the JK region that encloses them, as done in the clustering

studies of Zehavi et al. (2005, 2011). Better still, Norberg et al.

(2011) devise a more objective method to remove outlier JK regions

consistently from the distribution of all JK measurements that one

has at hand. We follow that method in the present analysis, and find

that, for all samples considered, the number of JK regions that are

outliers and therefore removed is mostly two or three and no more

than five.

4 PH OTO M E T R I C R E D S H I F T S

For the clustering measurements presented in this paper, all distance

information comes from photometric redshifts (photo-z). Photo-z

values are the basis for estimating the redshift distributions to be

used in equation (6) and in estimating distance moduli to calculate

absolute magnitudes and colours. For this study we have a truly

representative subset of SDSS galaxies down to r < 19.4 and we

therefore use the artificial neural network package ANNz developed

by Collister & Lahav (2004) to obtain photo-z estimates.

It is important that the training set and the final galaxy sample

from SDSS are built using the same selection criteria. The input

parameters are the following: übercalibrated, extinction-corrected

model magnitudes in ugriz bands, the radii enclosing 50 per cent

and 90 per cent of the Petrosian r-band flux of the galaxy, and

their respective uncertainties. The architecture of the network is

7:11:11:1, with seven input parameters described above, two hidden

layers with 11 nodes each and a single output, the photo-z. We use

a committee of 5 networks to predict the photo-z values and their

uncertainties (see Section 4.1).

4.1 Photometric redshift errors

Before we proceed with the photo-z derived quantities that we use

in this study, we investigate the possible biases and errors that ANNz

introduces, using the known redshifts from GAMA. Following stan-

dard practice we split our data into three distinct sets: the training

set, the validation set and the test set. Half of the objects constitute

the test set and the other half the training and validation sets. This

investigation is insensitive to the exact numbers in these three sets.

The training and validation sets are used for training the network,

whereas the test set is treated as unknown. Given predicted photo-z

values zphot, we can quantify the redshift error for each galaxy in

the test set as

δz ≡ zspec − zphot, (9)

the primary quantity of interest as far as true redshift errors are

concerned. It can depend on apparent magnitude, colour, the output

zphot and the intrinsic scatter zerr of ANNz committees, as well as

the position of an object on the sky if the survey suffers from any

photometric non-uniformity. We investigate some of these potential

sources of error below. The dispersion σ z of δz is given by the

equation

σ 2
z =

〈

(δz)2
〉

− 〈(δz)〉2 , (10)

Figure 2. Density/scatter plot of redshift error (spectroscopic minus pho-

tometric redshift) against predicted photo-z from this work (top panel) and

SDSS (middle and bottom panels). The colour coding is such that the dens-

est area (black contour) is five times denser than the white contour. Points

are drawn whenever the density of points is less than 10 per cent of the

maximum (black contour). The red squares and error bars represent the

mean redshift errors and their standard deviations in photo-z bins of width

�zphot = 0.05. Horizontal red lines show the zero-error benchmark. The

improvement in photometric redshift estimates in this work, due primarily

to use of the representative GAMA training set, is clear.

and is found to be σ z = 0.039. The standard deviation for the redshift

range 0 < zphot < 0.4, within which we choose to work, is σ z =

0.035.

In Fig. 2 we compare our photo-z estimates with the publicly

available photo-z from the SDSS website (Oyaizu et al. 2008, tables

photoz1 and photoz2). For this comparison we plot the redshift

error as a function of photo-z. We then calculate the mean and

standard deviation of δz for photo-z bins of width �zphot = 0.05. The

number of catastrophic outliers (galaxies with |zphot − zspec| > 3σz)

for the GAMA calibrated photo-z is 1 per cent or lower for all

photo-z bins. We work in fixed photo-z bins, because all our derived

quantities are based on the photo-z estimates. This way, any biases

with estimated photo-z are readily apparent. Our results based on

the GAMA training set outperform the SDSS results: for the redshift

range 0.01 < zphot < 0.4, we obtain essentially unbiased redshift

estimates, given the observed scatter. The scatter, in turn, increases

with redshift. We note, however, that the photoz2 catalogue from

SDSS DR7 has been improved with the addition of p(z) estimates,

which are designed to perform much better in recovering the total

redshift probability distribution function of all galaxies (Cunha et al.

2009). Since it is still not clear how to relate a redshift pdf directly to

absolute magnitude and colour for a given galaxy, our approach for

the study of luminosity- and colour-dependent clustering is easier

to interpret.

In Appendix B2, we quantify the photo-z error and possible con-

tamination between redshift bins by cross-correlating photo-z bins

that are more than 2σ z apart. We find, as expected, that the residual

cross-correlation of the different photo-z bins is negligible com-

pared with their auto-correlation.

The distribution of photo-z errors is in general non-Gaussian,

albeit less pronounced in the case of a complete training set. Photo-z

errors also propagate asymmetrically in absolute magnitude: for a
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Table 2. The change in the total number of galaxies as a result of

the cuts applied in various stages of the analysis.

Cut description Number of galaxies left

None 4914 434

Colour cuts (Table 1) 4890 965

Masking 4511 011

z
(ANNZ)
err < 0.05 & 0.002 < zphot < 0.4 4289 223

given redshift error, the error induced in absolute magnitude is larger

at low z and smaller at high z, and thus a photo-z analysis is more

tolerant to redshift errors for objects at high z. For that reason, it is

common practice to scale the redshift error by the quantity 1/(1 +

zphot). Taking into account this redshift stretch, σ 0 can be defined as

σ 2
0 =

〈

(

δz

1 + zphot

)2
〉

−

〈(

δz

1 + zphot

)〉2

, (11)

giving σ 0 = 0.032.

We exclude from our analysis galaxies with zphot < 0.002 or

zphot > 0.4. ANNz provides a photo-z error calculated from the

photometric errors. Using our test set, we find that this error un-

derestimates the true photo-z error (given from equation 9). We

therefore apply a cut on the output parameter zerr of ANNz at zerr <

0.05. These cuts eliminate ∼4 per cent of the galaxies. Cross-

checks show that the correlation function measurements do not

change if we use a less strict cut, but the chosen cut does improve

the N(z) estimates. The final number of galaxies after this cut is

4289 223. We summarize the changes in the number of galaxies

in our sample in Table 2. We use Petrosian magnitudes to divide

galaxies by luminosity and model magnitudes to calculate galaxy

colours.

The photo-z work presented here is similar, but not identical,

to that of Parkinson (2012). The latter is appropriate for even

fainter SDSS magnitudes as it uses, in its training and valida-

tion, all GAMA galaxies with rpetro < 19.8 and fainter zCOS-

MOS galaxies (Lilly et al. 2007) matched to SDSS DR7 imag-

ing. Minor differences in the two photo-z pipelines, such as the

inclusion of different light-profile measurements, do not signifi-

cantly affect the estimated photo-z, which presents a similar scat-

ter around the underlying spectroscopic distribution. Our photo-z

values agree with those of Parkinson (2012) within the estimated

errors.

4.2 Division by redshift, absolute magnitude and colour

Galaxy magnitudes are k + e corrected to zphot = 0.1, using

KCORRECT version 4.1.4 (Blanton & Roweis 2007) and the passive

evolution parameter Q = 1.62 of Blanton et al. (2003). In this sim-

ple model, the evolution-corrected absolute magnitude is given by

Mcorr = M − Q(z − z0), where z0 = 0.1 is the reference redshift.

We note that Loveday et al. (2012) using GAMA found Q = 0.7,

which would change evolution-corrected magnitudes by ≈0.3 mag

at z = 0.4. Approximately equal deviations in absolute magnitude

will be induced in our high-z blue galaxy samples, if we use a

colour-dependent Q (e.g. Loveday et al. 2012). Assuming a global

value for Q, however, allows for a more direct comparison with the

SDSS-based clustering studies of Zehavi et al. (2005, 2011). Galaxy

colours, derived from SDSS model magnitudes, are referred to as
0.1(g − r), while absolute magnitudes are derived using the r-band

Petrosian magnitude (to match the GAMA redshift survey selec-

tion). Fig. 3 shows that the r-band absolute magnitude extends to

Figure 3. r-band absolute magnitude against photo-z for our photometric

sample. Solid red lines show the boundaries of our samples in photo-z and

absolute magnitude and dashed lines the further split in absolute magnitude

bins. Only 1 per cent of galaxies are shown.

Mr − 5 log h = −16 mag with a few galaxies reaching as faint as

Mr − 5 log h = −14 mag.

We split our galaxy sample into photo-z as well as luminosity bins.

Our samples are shown in Fig. 3. Initially we define four photo-z

bins in the redshift range 0 < zphot < 0.4 and then we further split

each photo-z-defined sample into six absolute magnitude bins in the

range −24 < Mr − 5 log h < −14. Thus our photo-z catalogue offers

the opportunity for a clustering analysis over the luminosity range

0.03L∗ � L � 8L∗, spanning almost three orders of magnitude in

L/L∗.

In Fig. 3 some of these redshift–magnitude bins extending be-

yond the survey flux limit are only partially occupied by galaxies in

terms of photometric redshifts and photo-z-derived absolute mag-

nitudes. The true redshift and absolute magnitude distributions for

each bin are recovered by Monte Carlo resampling, as discussed in

Section 4.3.

Fig. 4 shows colour–magnitude diagrams for our sample split

into photo-z bins. The colour bimodality is evident at 0.1(g − r) ≃

0.8 for all photo-z bins. We have adopted the tilted colour cuts

defined by Loveday et al. (2012):

Mr − 5 log h = 5 − 33.3 ×0.1 (g − r)model, (12)

which is a slightly modified version of the colour cut used by Zehavi

et al. (2011), also shown in Fig. 4.

In Fig. 5 we plot the photo-z error against photo-z for galaxies

subdivided into subsamples, where we again have used photometric

redshifts to estimate galaxy luminosities and colours. There are no

obvious systematic biases of zspec − zphot for any of the subsamples,

although we do note that the most luminous (faintest) bin contains

very few blue (red) galaxies.

The relatively good photo-z notwithstanding, our analysis does

not eliminate completely the main systematic error of neural-

network-derived photo-z values, which is the overestimation of

low redshifts and the underestimation of high redshifts (see e.g.

fig. 7 of Collister et al. 2007). As a result, a number of faint galax-

ies have their redshift overestimated and hence appear brighter

in our sample. We note that there is a discrepancy between

the fraction of faint red objects in the luminosity bin −19 <

Mr − 5 log h < −17 between this work and that of Zehavi et al.

(2011), which is most probably caused by this systematic shift (see
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Figure 4. r-band absolute magnitude against 0.1(g − r) colour (both k-

corrected and passively evolved to z = 0.1) for galaxies split into photo-

z bins. Solid red lines show the colour cut for red and blue populations

suggested by Loveday et al. (2012) and used in this work, dashed red lines

the colour cut used by Zehavi et al. (2011).

Table 3). It is possible to cure this by Monte Carlo resampling

the photo-z values with their respective errors and then re-derive

the absolute magnitudes and colours, but we do not pursue this

here.

4.3 Photometric redshift distribution(s)

Despite the fact that ANNz gives fairly accurate and unbiased photo-z

values for calculations in broad absolute magnitude bins or photo-z

bins, in order to translate the two-dimensional clustering signal to

the three-dimensional one using equation (6) the underlying true

dN/dz is needed. In this work we loosely follow the approach given

in Parkinson (2012) (see also Driver et al. 2011). The GAMA spec-

troscopic sample is highly representative and allows us to calculate

the true redshift errors as a function of photo-z for all objects in

GAMA with rpetro < 19.4. Then, under the assumption of a Gaus-

sian photometric error distribution in each photo-z bin, we perform

a Monte Carlo resampling of the ANNz predictions for photo-z val-

ues. This is equivalent to replacing each photo-z derived from ANNz

with the quantity zMC drawn from a Gaussian distribution, using a

photo-z-dependent standard deviation, σ (z
(bin)
phot ) = δz

(bin)
phot :

zMC = G[μ = zphot, σ = σphot(1 + zphot)]. (13)

Note that convolving the imprecise photo-z with additional scat-

ter improves the N(z) redshift distribution: in other words the

photo-z process deconvolves the N(z) and makes it artificially

narrow.

All our sample selections in Fig. 6 have been made using the

photo-z derived absolute magnitude Mr − 5 log h. We then use the

accurate spectroscopic information from GAMA to assess how well

Monte Carlo resampling compares with the underlying true dN/dz.

Since the GAMA area is much smaller than the SDSS area, we

do not wish to recover the exact spectroscopic redshift distribution,

merely to match a smoothed version thereof. Our test shows that

MC resampling performs rather well in recovering the true dN/dz.

This method performs even better with a larger number of objects,

which indicates that results are still dominated by statistical errors

and therefore there is room for improvement in future when larger

Figure 5. Redshift error against photo-z for our luminosity- and colour-

selected GAMA subsamples. The mean redshift error and standard deviation

in bins of photo-z are shown by the coloured squares and error bars, while

the root-mean-square standard deviation, σ rms, is listed in each panel. The

faint red sample has been omitted due to the small number of galaxies that

it contains.

spectroscopic training sets become available. Nevertheless, as an

incorrect redshift distribution can cause a systematic error in r0, in

Appendix B3 we test the sensitivity of our results to the assumed

dN/dz and compare results using the Monte Carlo recovered dN/dz

with those from the weighting method proposed by Cunha et al.

(2009).

Fig. 7 shows, for all samples split by photo-z and photo-z-derived

absolute magnitude, the photo-z-derived, true underlying and Monte

Carlo inferred absolute magnitude distributions (as dashed, thin and

thick solid lines respectively). We note that the photo-z-derived ab-

solute magnitude estimates in Fig. 7 are obtained from the resam-

pled redshifts and not by resampling the absolute magnitudes per se.
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Table 3. Clustering properties of luminosity-selected samples. Column 1 lists the photo-z-based absolute magnitude ranges, column 2 the median

absolute magnitude and the associated 16th and 84th percentiles from the Monte Carlo resampling (Fig. 7) and column 3 the number of galaxies

in each sample. Columns 4, 5 and 6 list respectively the slope γ , the correlation length r0 and the reduced χ2 χ2
ν of the power-law fit as defined

in Section 2.4. Columns 7, 8 and 9 show the same information but for power-law fits using only the diagonal elements of the covariance matrix.

All power-law fits are approximately over the comoving scales 0.1 < r < 20 h−1 Mpc. Finally, column 10 presents the relative bias at 5 h−1 Mpc

measured using equation (14).

Sample Magnitude(MC) Ngal γ r0 χ2
ν γ (d) r

(d)
0 χ (d)2

ν b/b∗

Mr − 5 log h Mr − 5 log h [h−1 Mpc] [h−1 Mpc] [h−1 Mpc]

All colours 0.3 < zphot < 0.4

[−24, −22) −22.0−0.2
+0.2 13257 2.01 ± 0.15 14.08 ± 2.09 3.41 2.02 ± 0.09 13.68 ± 1.22 2.6 2.13 ± 0.30

[−22, −21) −21.2−0.3
+0.3 339834 1.94 ± 0.11 8.23 ± 1.54 28.08 1.91 ± 0.09 8.46 ± 1.06 13.0 1.22 ± 0.22

[−21, −20) −20.8−0.2
+0.2 158860 1.75 ± 0.06 6.96 ± 0.56 3.76 1.78 ± 0.05 6.80 ± 0.33 1.8 1.00 ± 0.01

All colours 0.2 < zphot < 0.3

[−24, −22) −22.0−0.3
+0.3 12294 2.02 ± 0.11 13.29 ± 2.01 2.37 2.01 ± 0.07 13.17 ± 1.13 1.7 2.02 ± 0.32

[−22, −21) −21.2−0.4
+0.3 284969 1.92 ± 0.09 7.92 ± 1.13 10.91 1.90 ± 0.06 8.12 ± 0.70 5.5 1.17 ± 0.17

[−21, −20) −20.4−0.3
+0.4 930539 1.75 ± 0.05 6.94 ± 0.76 7.96 1.77 ± 0.05 6.74 ± 0.36 3.3 1.00 ± 0.03

[−20, −19) −19.8−0.3
+0.3 122870 1.75 ± 0.08 5.84 ± 0.57 2.44 1.76 ± 0.06 5.84 ± 0.29 1.5 0.86 ± 0.10

All colours 0.1 < zphot < 0.2

[−24, −22) −22.0−0.4
+0.3 4311 1.96 ± 0.09 12.58 ± 1.35 0.59 1.95 ± 0.08 12.57 ± 1.13 0.4 2.10 ± 0.35

[−22, −21) −21.2−0.4
+0.5 106728 1.92 ± 0.05 7.31 ± 0.60 3.56 1.92 ± 0.04 7.40 ± 0.32 1.7 1.22 ± 0.18

[−21, −20) −20.3−0.5
+0.5 604181 1.75 ± 0.05 6.03 ± 0.77 7.16 1.78 ± 0.06 5.85 ± 0.43 3.9 1.00 ± 0.05

[−20, −19) −19.5−0.4
+0.5 916563 1.63 ± 0.11 6.36 ± 2.42 42.40 1.71 ± 0.10 5.81 ± 0.75 11.7 1.03 ± 0.30

[−19, −17) −18.6−0.4
+0.6 211336 1.55 ± 0.08 5.17 ± 0.83 4.41 1.58 ± 0.07 4.89 ± 0.34 1.6 0.87 ± 0.16

All colours 0.0 < zphot < 0.1

[−22, −21) −21.1−0.7
+0.8 19218 1.89 ± 0.13 8.21 ± 2.32 6.36 1.88 ± 0.07 8.09 ± 0.80 1.6 1.15 ± 0.43

[−21, −20) −20.3−0.7
+0.9 122787 1.68 ± 0.09 7.31 ± 1.40 9.00 1.75 ± 0.05 6.84 ± 0.50 2.1 0.99 ± 0.23

[−20, −19) −19.4−0.6
+0.8 155147 1.60 ± 0.08 6.23 ± 1.06 9.08 1.65 ± 0.08 6.10 ± 0.64 4.5 0.86 ± 0.20

[−19, −17) −18.1−0.8
+1.0 271389 1.54 ± 0.06 4.33 ± 0.58 6.20 1.58 ± 0.09 3.97 ± 0.24 2.9 0.65 ± 0.18

[−17, −14) −16.6−0.9
+1.4 14659 2.03 ± 0.25 4.28 ± 1.56 5.82 2.00 ± 0.28 4.41 ± 1.03 2.1 0.62 ± 0.25

Figure 6. Estimates of the underlying redshift distribution for the lumi-

nosity samples used in the clustering analysis. Thin solid lines show the

photo-z distribution, which is the basis for the selection, dotted lines the

true spectroscopic redshift distribution from GAMA and thick solid lines

the average distribution inferred from 100 Monte Carlo resamplings of the

photo-z distribution using equation (13).

We then k + e correct every Monte Carlo absolute magnitude real-

ization using the procedure described in Section 4.2. As expected,

the true underlying distribution extends well beyond the photo-z

inferred luminosity bins, but is yet again rather well described by

the Monte Carlo inferred distribution.

It is crucial that we have a good understanding of the true un-

derlying absolute magnitude for all our samples. For galaxy clus-

tering studies with spectroscopic redshifts it is desirable to work

with volume-limited samples. Using photometric redshifts, how-

ever, one can form only approximately volume-limited samples,

since photo-z uncertainties will propagate into absolute magnitude

estimates. Essentially, any top-hat absolute magnitude distribution,

as selected using photo-z, corresponds to a wider true absolute

magnitude distribution, as shown in Fig. 7. This is rather simi-

lar to selecting galaxies from a photometric redshift bin and then

convolving the initial top-hat distribution with the photo-z error

distribution in order to obtain the true N(z). However, using the

w(θ ) statistic and an accurate dN/dz for that particular galaxy sam-

ple, we can extract its respective spatial clustering signal, which

would then correspond to the zMC derived absolute magnitude.

Direct comparisons with other studies can then be made, mod-

ulo the extent of the overlap between the two absolute magnitude

distributions.

C© 2012 The Authors, MNRAS 425, 1527–1548

Monthly Notices of the Royal Astronomical Society C© 2012 RAS



1536 L. Christodoulou et al.

Figure 7. The r-band absolute magnitude distribution for GAMA galaxies

with rpetro < 19.4 split into photo-z and photo-z-derived absolute magnitude

slices. Magnitude distributions shown by dashed lines are derived from the

raw photo-z, those shown by thin lines from the underlying spectroscopic

redshifts and those shown by thick lines from the Monte Carlo derived mag-

nitudes. The latter reproduce the true underlying spec-z inferred magnitude

distribution rather well; however for a few samples there is a discrepancy be-

tween the spec-z-derived and Monte Carlo derived distributions. All Monte

Carlo absolute magnitude estimates are K-corrected and passively evolved

following the procedure described in Section 4.2.

5 R E S U LT S F O R T H E T WO - P O I N T

C O R R E L AT I O N F U N C T I O N

5.1 Luminosity and redshift dependence

We first calculate the angular correlation function w(θ ) for our

samples selected on absolute magnitude and photometric redshift

over angular scales from 0.005–9.4◦ in 15 equally spaced bins in

log(θ ).6 In a flux-limited survey like SDSS, intrinsically bright

galaxies dominate at high redshifts and intrinsically faint objects

dominate at low redshifts (see Fig. 4). For that reason, we calculate

w(θ ) for the 17 well-populated samples given in Table 3. Errors are

estimated using the jack-knife technique, with the covariance matrix

given by equation (8). Even if the validity of a given error method

based on data alone is still widely debated, it is commonly accepted

that the jack-knife method is adequate for angular clustering studies

(see e.g. Cabré et al. 2007), while for three-dimensional clustering

measurements Norberg et al. (2009) have shown that the jack-knife

method suffers from some limitations, in particular on small scales.

Our angular correlation function measurements are broad and

probe both highly non-linear and quasi-linear scales. Fig. 8 presents

galaxy angular correlation functions for six photo-z-selected abso-

lute magnitude bins. We show the angular scale (lower x-axis) used

for the correlation function estimation and the corresponding co-

moving scale estimated at the mean redshift of the sample (upper

x-axis).

Over the range of angular scales fitted, chosen to correspond to

approximately 0.1–20 h−1 Mpc comoving separation according to

the mean redshift of each sample, the angular correlation function

6 Initially our analysis was performed down to θ = 0.001◦. However, as

shown in Section 5.3 and Appendix B4, the data are not reliable enough on

such small scales.

can be reasonably well approximated by a power law (equation 2).

We perform power-law fits with both the full covariance matrix and

the diagonal elements only. The power-law fits for our L∗ sample

are shown in Fig. 8. Dotted lines in Fig. 8 show the extension of

the power laws beyond the scales over which they were fitted. The

resulting correlation lengths r0, slopes γ and quality of the fits as

given by the reduced χ2, χ2
ν , for all samples are listed in Table 3.

The luminosity dependence of galaxy clustering is present in all

photo-z shells: the shape and amplitude of the angular correlation

function differ for galaxies with different luminosity. The amplitude

of the angular correlation function decreases as we go from bright

to faint galaxies for all photo-z bins. The slope of the correlation

function also decreases with decreasing luminosity, very much in

line with the change in the fraction of red and blue galaxies. As

observed in Section 5.2, red (blue) galaxies dominate the brightest

(faintest) luminosity bins, with red galaxies preferentially having a

steeper correlation function slope than blue galaxies.

For each sample, we estimate the correlation length r0 via equa-

tion (6) using the Monte Carlo inferred redshift distribution de-

scribed in Section 4.3. The redshift distribution dN/dz is calculated

separately for each sample, as shown in Fig. 6. In Appendix B3 we

investigate the effects of the assumed dN/dz on the recovered corre-

lation length r0 and show that the adopted dN/dz recovery method

compares favourably with the true underlying dN/dz, as obtained

from the smoothed dN/dzspec.

For our luminosity bins in the redshift range 0 < z < 0.1, the cor-

relation length is found to decrease as we go to fainter absolute mag-

nitudes, from 8.21 ± 2.32 h−1 Mpc (−22 < Mr − 5 log h < −21)

to 4.28 ± 1.56 h−1 Mpc (−19 < Mr − 5 log h < −17). This is

very much in line with the recent results of Zehavi et al. (2011).

Moreover, we do not observe strong evolution with redshift for sam-

ples of fixed luminosity. All r0 and γ measurements are shown in

Fig. 9.

There are two main sources of error in the r0 estimates: (i) the

correlated uncertainties in the power-law parameters γ and Aw ,

which propagate through equation (6) to r0; (ii) statistical and sys-

tematic uncertainties in the modelling of the underlying redshift

distribution. The w(θ ) uncertainties and the induced error in r0 and

γ are obtained using the standard deviation from the distribution of

JK resampling estimates (Section 3.5). As in the case of the covari-

ance matrix, these uncertainties are multiplied by a factor of N −

1 (Norberg et al. 2009). The dN/dz uncertainties are investigated

in great detail in Appendix B3, where we show that the Monte

Carlo inferred dN/dz performs best while still returning a residual

systematic uncertainty of ±0.2 h−1 Mpc in r0 that depends on the

sample considered. We find that both sources of uncertainty have a

comparable contribution to the errors. In Table 3 we quote the total

error in the correlation length after adding the two (independent)

errors in quadrature.

5.2 Luminosity, redshift and colour dependence

We repeat the clustering analysis, splitting the samples into red

and blue colours using equation (12). For each new sample we

re-estimate the underlying redshift distribution used in the inver-

sion of Limber’s equation. The corresponding 50th, 16th and 84th

percentiles of the underlying absolute magnitude distributions are

given in Tables 4 and 5. We also repeat the procedure outlined in

Section 5.2 for the error estimation.

In Fig. 10 we present the angular correlation functions in

each luminosity and photo-z bin, for red and blue galaxies. The

power-law fits over approximately fixed comoving scales and their
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Figure 8. Two-point angular correlation functions w(θ ) of our samples split into photo-z bins and six photo-z-inferred absolute magnitude bins, as indicated

in each panel, with jack-knife errors. The solid lines show power-law fits estimated using the full covariance matrix for the L∗ sample. Dotted lines show the

extension of the power-law fits on scales <0.1 h−1 Mpc and >20 h−1 Mpc.

corresponding errors as well as the quality of the fits and the cor-

relation length are estimated as in Section 5.1 and summarized in

Tables 4 and 5. As noted earlier, the power-law fits describe the

clustering measurements quite well in a qualitative sense, although

certainly not well enough in a quantitative sense, with most samples

typically presenting too large a reduced χ2 (see Tables 4 and 5).

For all absolute magnitude ranges, the red population displays a

steeper correlation function slope than the blue one. Blue galaxies

have a much shallower slope, which gradually decreases with lumi-

nosity until a sudden increase in the slope for the faintest luminosity

range probed (Table 5).

The correlation length of red galaxies for all redshift bins presents

a minimum value around M∗, with increasing values both faintwards

and brightwards (Table 4). We note, however, that this result comes

with large uncertainties. For red galaxies, the correlation lengths of

the brightest and faintest bin are comparable and faint red objects

are more strongly clustered than red objects with intermediate lu-

minosities. For the blue population, r0 behaves more regularly (like

the overall population), gradually decreasing with luminosity and

redshift. Blue galaxies generally have smaller uncertainties as well.

Our measurement of the correlation length for the faintest lumi-

nosity bin (r0 = 4.17 ± 1.41 h−1 Mpc) indicates that these galaxies

are clustered similarly to blue galaxies of intermediate luminosity.

The robustness of this result and some caveats are discussed in

Section 5.3.

Due to the complicated way that the slope and the correlation

length, as well as their respective uncertainties, change between

colour-selected samples, we chose to study the clustering of these

samples more quantitatively using the relative bias, i.e. their clus-

tering with respect to the L∗ sample. Our relative bias results for all

samples, selected by photometric redshift, absolute luminosity and

colour, are presented in Section 6.1.
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Figure 9. Left: power-law slope, γ , as a function of absolute magnitude and redshift. Right: real-space correlation length, r0, as a function of absolute

magnitude and redshift. Absolute magnitude ranges for which r0 and γ measurements are valid are given in Table 3.

Table 4. Clustering properties of luminosity-selected red galaxies. Columns are the same as in Table 3.

Sample Magnitude(MC) Ngal γ r0 χ2
ν γ (d) r

(d)
0 χ (d)2

ν b/b∗

Mr − 5 log h Mr − 5 log h [h−1 Mpc] [h−1 Mpc] [h−1 Mpc]

Red 0.3 < zphot < 0.4

[−24, −22) −22.0−0.2
+0.2 13095 2.02 ± 0.15 13.91 ± 2.22 3.01 2.03 ± 0.11 13.65 ± 1.86 2.4 1.78 ± 0.26

[−22, −21) −21.2−0.3
+0.3 287622 1.98 ± 0.10 8.40 ± 1.64 24.60 1.94 ± 0.10 8.71 ± 1.17 13.7 1.06 ± 0.20

[−21, −20) −20.7−0.2
+0.2 79073 1.86 ± 0.05 8.19 ± 0.54 1.33 1.88 ± 0.05 8.08 ± 0.40 1.2 1.00 ± 0.01

Red 0.2 < zphot < 0.3

[−24, −22) −22.0−0.3
+0.3 12200 2.02 ± 0.11 13.33 ± 1.95 1.89 2.01 ± 0.07 13.24 ± 1.11 1.8 1.73 ± 0.41

[−22, −21) −21.2−0.4
+0.3 242452 1.95 ± 0.10 8.26 ± 1.31 11.23 1.92 ± 0.06 8.41 ± 0.72 6.0 1.05 ± 0.25

[−21, −20) −20.5−0.3
+0.4 597678 1.81 ± 0.06 8.01 ± 1.20 17.10 1.84 ± 0.06 7.69 ± 0.52 6.5 0.98 ± 0.04

[−20, −19) −19.8−0.3
+0.3 44588 1.95 ± 0.09 8.53 ± 1.30 5.59 1.91 ± 0.08 8.57 ± 0.43 2.8 1.07 ± 0.21

Red 0.1 < zphot < 0.2

[−24, −22) −22.0−0.4
+0.3 4271 1.96 ± 0.08 12.61 ± 1.26 0.47 1.95 ± 0.08 12.57 ± 1.13 0.4 1.87 ± 0.48

[−22, −21) −21.2−0.4
+0.5 93975 1.94 ± 0.05 7.56 ± 0.71 2.52 1.93 ± 0.04 7.65 ± 0.36 1.6 1.13 ± 0.28

[−21, −20) −20.3−0.5
+0.5 393344 1.78 ± 0.11 7.07 ± 1.81 17.30 1.84 ± 0.08 6.68 ± 0.64 6.3 1.03 ± 0.10

[−20, −19) −19.5−0.4
+0.5 344815 1.71 ± 0.20 9.69 ± 5.98 82.81 1.85 ± 0.12 8.19 ± 1.26 16.9 1.33 ± 0.66

[−19, −17) −18.7−0.4
+0.5 12942 1.86 ± 0.18 17.86 ± 4.26 9.69 1.84 ± 0.14 17.72 ± 2.88 4.6 2.46 ± 0.83

Red 0.0 < zphot < 0.1

[−22, −21) −21.1−0.7
+0.9 18631 1.90 ± 0.14 8.20 ± 2.62 5.97 1.88 ± 0.07 8.14 ± 0.78 1.7 0.96 ± 0.47

[−21, −20) −20.4−0.7
+0.9 83541 1.71 ± 0.11 8.82 ± 2.34 10.98 1.79 ± 0.07 7.90 ± 0.76 3.2 0.97 ± 0.29

[−20, −19) −19.5−0.6
+0.8 45541 1.77 ± 0.16 10.41 ± 3.89 19.29 1.85 ± 0.14 10.39 ± 1.66 8.1 1.15 ± 0.46

[−19, −17) −18.7−0.5
+0.7 6690 1.88 ± 0.13 11.59 ± 2.82 2.65 1.90 ± 0.09 11.77 ± 1.32 1.0 1.43 ± 0.51

5.3 Clustering of faint blue galaxies

One of the aims of this paper is to study the clustering of intrinsically

faint galaxies for which only photometric redshifts are available in

sufficient numbers to calculate w(θ ) reliably. The GAMA depth

and the extensive SDSS sky coverage allow us to measure the auto-

correlation function of the faintest optically selected galaxies, i.e.

those with photo-z estimated absolute magnitudes in the −17 <

Mr − 5 log h < −14 range and zphot < 0.08. This faint sample con-

tains a total of 14 659 galaxies, which are mostly star-forming (as

evident by their colours). From the subset with spectroscopic red-

shifts, the 68th-central percentile of the actual absolute magnitude

distribution covers the range −18 < Mr − 5 log h < −12.7. How-

ever, as shown in Appendix B4, this sample suffers from an overall

50 per cent contamination, with most spurious objects arising from

local, over-deblended spiral galaxies.

The upper panel of Fig. 11 shows the correlation functions

of all galaxies in our sample with zphot < 0.08 split into finer
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Table 5. Clustering properties of luminosity-selected blue galaxies. Columns are the same as in Table 3.

Sample Magnitude(MC) Ngal γ r0 χ2
ν γ (d) r

(d)
0 χ (d)2

ν b/b∗

Mr − 5 log h Mr − 5 log h [h−1 Mpc] [h−1 Mpc] [h−1 Mpc]

Blue 0.3 < zphot < 0.4

[−22, −21) −21.2−0.3
+0.3 52212 1.71 ± 0.07 6.88 ± 0.47 0.78 1.72 ± 0.07 6.87 ± 0.38 0.6 1.14 ± 0.12

[−21, −20) −20.8−0.2
+0.3 79787 1.75 ± 0.06 5.86 ± 0.49 1.52 1.75 ± 0.10 5.83 ± 0.44 1.3 1.00 ± 0.01

Blue 0.2 < zphot < 0.3

[−22, −21) −21.2−0.3
+0.3 42517 1.74 ± 0.11 6.42 ± 0.81 3.05 1.75 ± 0.12 6.46 ± 0.57 1.5 1.17 ± 0.14

[−21, −20) −20.4−0.4
+0.4 332861 1.63 ± 0.06 5.35 ± 0.48 4.08 1.66 ± 0.05 5.23 ± 0.23 2.6 0.99 ± 0.01

[−20, −19) −19.8−0.3
+0.3 78282 1.72 ± 0.09 5.08 ± 0.47 1.69 1.72 ± 0.09 4.88 ± 0.34 1.2 0.95 ± 0.11

Blue 0.1 < zphot < 0.2

[−22, −21) −21.1−0.4
+0.4 12753 1.85 ± 0.13 5.70 ± 0.83 0.86 1.85 ± 0.16 5.67 ± 0.64 0.6 1.22 ± 0.17

[−21, −20) −20.3−0.5
+0.5 210837 1.67 ± 0.07 4.43 ± 0.32 3.54 1.70 ± 0.06 4.44 ± 0.25 2.6 0.98 ± 0.35

[−20, −19) −19.4−0.5
+0.5 571748 1.57 ± 0.08 4.75 ± 0.73 11.72 1.62 ± 0.09 4.45 ± 0.42 6.9 1.04 ± 0.14

[−19, −17) −18.6−0.4
+0.6 198394 1.53 ± 0.06 4.50 ± 0.49 2.26 1.56 ± 0.06 4.31 ± 0.23 1.2 1.00 ± 0.10

Blue 0.0 < zphot < 0.1

[−21, −20) −20.3−0.7
+0.9 39246 1.61 ± 0.14 4.84 ± 0.82 6.52 1.65 ± 0.13 4.66 ± 0.31 3.2 0.97 ± 0.10

[−20, −19) −19.3−0.7
+0.9 109606 1.53 ± 0.06 4.63 ± 0.45 2.42 1.57 ± 0.07 4.45 ± 0.40 2.4 0.94 ± 0.21

[−19, −17) −18.1−0.8
+1.0 264699 1.54 ± 0.08 4.16 ± 0.63 7.29 1.58 ± 0.11 3.85 ± 0.30 4.4 0.86 ± 0.22

[−17, −14) −16.6−0.9
+1.3 14305 2.02 ± 0.23 4.17 ± 1.41 5.05 1.99 ± 0.28 4.34 ± 1.00 2.1 0.82 ± 0.33

luminosity bins than used previously. There exists a seemingly arti-

ficial steepening of w(θ ) on scales θ < 0.◦1 for galaxies with Mr −

5 log h > −17. In the bottom panel of Fig. 11, we further split

the −17.9 < Mr − 5 log h < −14 range into two finer luminosity

bins and again we find that for fainter samples source contamina-

tion affects larger angular scales. We study this contamination and

quantify it as a function of scale in Appendix B4.

Having established the angular scales over which we trust our

w(θ ) measurements, we proceed to the clustering analysis. Using

only the diagonal elements of the covariance matrix,7 we note that

a power law describes the clustering signal rather well, even though

there is a hint of an increase in the clustering strength at ∼1 h−1 Mpc.

It is possible that this increase is due to blue galaxies that are

satellites in small dark matter haloes. These haloes should not be

dense enough to stop star formation and thus we observe only blue

galaxies in this luminosity range (Eminian 2008). A recent detailed

study of the star-formation history of Hα-selected faint blue galaxies

in GAMA can be found in Brough et al. (2011).

In conclusion, the angular clustering for the faintest sample has

a spurious amplitude at small angular scales, unless one takes into

account the sample contamination. We do this in Appendix B4,

where we visually inspect ∼10 per cent of the objects in this sam-

ple and find that a significant fraction of them are spurious, mainly

due to poorly deblended sources. We quantify the effect of this

contamination in Appendix B4 for all luminosity bins. This inves-

tigation reveals that the angular clustering results on scales �0.◦1

are not trustworthy enough to be considered reliable. We note that

the power-law fits are performed on larger scales, which we show

are unaffected by this contamination. However, much more detailed

investigation of the data is required to confirm robustly the observed

increase in the slope of the correlation function. Finally, we note

7 Use of diagonal covariance elements only is appropriate for this faint

sample, as it covers a rather small volume for which JK resampling is

unable to provide an accurate description of the full covariance matrix.

that we have repeated the analysis presented in this section for ob-

jects selected from the most recent SDSS release, DR8 (Aihara et al.

2011), and we observe no differences in the results. The contami-

nation from over-deblended spiral galaxies is still present in DR8

for the low-luminosity bin.

5.4 Quality of fits and the halo occupation distribution

formalism

The power-law fits presented in Table 3 are not all satisfactory in

a quantitative sense. The angular correlation function is only well-

described to first order by a power law. The rather high reduced χ2

values for some samples are due either to underestimated errors or

to the power-law model being inadequate in describing the angular

correlation function over a large range of scales. From the test

of Section 3.5, we conclude that the JK method gives consistent

errors irrespective of the way we define the jack-knife regions and

therefore it is most likely that the large reduced χ2 values are due to

a limitation in the power-law model rather than in the error estimates

themselves.

A more sophisticated model, like the halo occupation distribution

(HOD) model (for a review see Cooray & Sheth 2002), would pro-

vide a more physically motivated description of the full correlation

function shape, as a function of both colour and luminosity (Zehavi

et al. 2004, 2005, 2011; Zheng et al. 2005). The HOD framework,

as shown by Zehavi et al. (2005), explains the increase of clustering

in the faint red population. Bright red galaxies are central galaxies

in massive haloes, whereas faint red galaxies are satellite galaxies

in massive haloes. Our measurements suggest that both bright and

faint red galaxies are more strongly clustered than red galaxies with

intermediate luminosity. We also observe a bump in the angular cor-

relation function of red galaxies at separations ∼1 h−1 Mpc, which

signals the transition (change in slope) between the one-halo and

two-halo terms in the correlation function. In contrast, such a change

in slope is not evident for the blue population, hence they have a

C© 2012 The Authors, MNRAS 425, 1527–1548

Monthly Notices of the Royal Astronomical Society C© 2012 RAS



1540 L. Christodoulou et al.

Figure 10. Two-point angular correlation functions w(θ ) split by absolute magnitude and colour, with red circles (blue squares) showing the red (blue) sample.

Colour gradients indicate the transition from bright (darker shade) to faint (lighter shade) luminosities. Lines are as in Fig. 8. The faintest (brightest) sample

does not contain enough red (blue) galaxies to estimate w(θ ) robustly.

smaller χ2
ν . This is also in agreement with HOD predictions, which

predict a simple power law for blue galaxies with luminosities Mr −

5 log h < −21 (Zehavi et al. 2005). A complete HOD modelling of

these angular clustering results with photometric redshifts is beyond

the scope of the present work, as this would require photo-z dedi-

cated HOD tools to be developed as the standard threshold samples

cannot be defined.

6 BIA S M EASU REMENTS

6.1 Relative bias and comparison with previous studies

In this paper we parametrize the real-space correlation function with

a power law and infer ξ (r) from angular clustering measurements

via a Limber inversion. To ease comparison with samples using a

similar, but not identical, selection, we follow Norberg et al. (2002)

and define the relative bias of a class of galaxies i with respect to

our L∗ (−21 < Mr − 5 log h < −20) sample as

bi

b∗
(r) =

√

(r i
0)γi

r
γ

0

rγ−γi . (14)

Equation (14) preserves any scale dependence for samples with dif-

ferent slopes and we choose here to estimate the relative bias at

r = 5 h−1 Mpc. The advantage of using this definition of relative

bias instead of the raw correlation length for comparison with other

studies is twofold. First, the former uses the slope as well as the

correlation length, which as we know from equation (6) is strongly

correlated. Secondly, if the sample selections are just slightly differ-

ent, the relative bias is a much more robust way of comparing them

as it measures deviations from a series of appropriate reference sam-

ples. In this study this is particularly important, as photo-z-inferred

properties are not straightforwardly related to the underlying ones,

as shown in Section 4.3. Our results are shown in Fig. 12.
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Figure 11. Angular correlation functions for the low-redshift galaxies in our

sample split into luminosity bins. The finer luminosity binning allows one

to track the scales on which contamination effects (studied and quantified

in Appendix B4) are significant. Error bars have been omitted for clarity.

Figure 12. The relative bias, defined in equation (14), at separations r =

5 h−1 Mpc, of all the absolute-magnitude-selected samples used in this study.

Data points show the mean and errors of b/b∗ obtained from the distribution

of 80 jack-knife measurements (Section 3.5) appropriately scaled to account

for jack-knife correlations. Cyan and magenta lines show our fits over the

redshift ranges 0.2 < zphot < 0.3 and 0.1 < zphot < 0.2 respectively. The

solid black line shows the fit of Norberg et al. (2001) and the dotted line the

fit of Zehavi et al. (2011).

Previous studies from both 2dFGRS (Norberg et al. 2001, 2002)

and SDSS (Zehavi et al. 2002, 2005, 2011) have established that

the relative bias, b/b∗, as a function of relative luminosity, L/L∗, is

well described by an affine relation. We compare our results with

these studies in Fig. 12. For all luminosity bins given in Table 3 we

Table 6. Fitted values of a0 and a1 in the bias–luminosity relation

(equation 15) in three photo-z ranges. Column 1 lists the redshift-

bin limits, columns 2, 3 and 4 the fitted values and the quality of

fit (reduced χ2) and column 5 lists �χ2 between our best-fitting

values and the fit by Norberg et al. (2001).

Redshift range a0 a1 χ2
ν �χ2

All colours

0.2 < zphot < 0.3 0.71 ± 0.04 0.25 ± 0.02 1.10 2.32

0.1 < zphot < 0.2 0.82 ± 0.06 0.24 ± 0.03 0.14 1.79

0.0 < zphot < 0.1 0.65 ± 0.05 0.27 ± 0.06 0.12 1.18

Red

0.2 < zphot < 0.3 0.92 ± 0.17 0.12 ± 0.07 0.36 0.29

0.1 < zphot < 0.2 1.28 ± 0.43 0.03 ± 0.17 2.33 1.76

Blue

0.2 < zphot < 0.3 0.84 ± 0.08 0.15 ± 0.06 0.29 0.77

0.1 < zphot < 0.2 0.98 ± 0.07 0.08 ± 0.06 0.23 4.22

0.0 < zphot < 0.1 0.86 ± 0.02 0.08 ± 0.02 0.07 0.02

fit the equation

b/b∗ = a0 + a1L/L∗, (15)

where a0 and a1 are free parameters. Our best-fitting values for

samples selected on luminosity, colour and photo-z, using the corre-

sponding L∗ for each sample, are given in Table 6. The high-redshift

bin only provides three data points and thus we do not include it

in this exercise (black squares in Fig. 12). In this table, we also

compare with the bias relation of Norberg et al. (2001), who found

(a0, a1) = (0.85, 0.15). The �χ2 between our best fit and that of

Norberg et al. is 1.2–2.3, which makes the fits statistically compat-

ible, as the 68 per cent confidence interval for 2 degrees of freedom

corresponds to �χ2 = 2.31 (Press et al. 1992). Zehavi et al. (2011)

measured the bias relative to dark matter, and in Fig. 12 we rescale

their relation with respect to L∗. They also observed a steeper rise

in relative bias at high luminosities. Including a power of (L/L∗) in

our fit, we also obtain a steeper slope whilst χ2 remains unchanged,

despite the additional degree of freedom.

For samples selected by colour as well as luminosity, it is more

difficult to fit equation (15) into each redshift bin. For most photo-

z bins we have four or fewer data points. Moreover, using finer

luminosity bins would worsen the statistical errors in N(z) and

N(Mr) and thus make any fit more difficult to interpret. Fig. 13

shows that the blue population follows a similar trend to the full

sample but the relative bias changes more smoothly as a function

of luminosity. Table 6 gives the values of a0 and a1 for the colour-

selected samples. We fit the same linear relation for red galaxies

as well, despite the fact that a quadratic function would seem more

appropriate. χ2 values for the linear fit are also shown in Table 6

and, from a purely statistical point of view, a linear relation between

b/b∗ and L/L∗ is still acceptable. Fig. 13 shows that the statistical

uncertainty for the two faint red samples is quite large. This is due

to the small number of objects in the −19 < Mr − 5 log h < −17

sample and the poor quality of fit for the −20 < Mr − 5 log h < −19

sample.

6.2 The evolution of absolute bias for L∗ galaxies

In Section 6.1 we calculated the relative galaxy bias using the L∗

sample (−21 < Mr − 5 log h < −20) as our reference sample. In

this section we calculate the absolute bias of the L∗ population de-

fined as the mean ratio of the observed galaxy correlation function,
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Figure 13. The relative bias, defined in equation (14), at separations r =

5 h−1 Mpc, of all the samples used in this study split by colour (equation 12).

Data points show the mean and errors of b/b∗ obtained from the distribution

of 80 jack-knife measurements (Section 3.5) appropriately scaled to account

for jack-knife correlations. Colour coding is as in Fig. 10.

parametrized with a power law, over the non-linear dark matter

theoretical correlation function

b∗(r) =

√

ξGG(r)

ξDM(r)
=

√

(r∗
0 )γ

∗

rγ ∗
ξDM(r)

, (16)

where 5 h−1 Mpc < r < 20 h−1 Mpc. The theoretical power spec-

trum P(k) was obtained using CAMB (Lewis, Challinor & Lasenby

2000) and the halo-correction recipe of Smith et al. (2003). We

then Fourier-transform the non-linear P(k) to obtain the real-space

ξDM(r) using the FFTLog package provided by Hamilton (2000).

Since we have correlation-function measurements of the L∗ pop-

ulation for a range of redshifts, we can answer the question of

whether the evolution of the bias can be described by the passive

evolution model introduced by Tegmark & Peebles (1998):

[b(z1) − 1]D(z1) = [b(z2) − 1]D(z2), (17)

where D is the growth of structure (Peebles 1980), which we calcu-

late accurately using the growl package by Hamilton (2001), which

includes corrections to D(z) due to the presence of the cosmological

constant. The model described by equation (17) assumes that the

galaxy density field linearly traces the dark matter density field and

all clustering evolution comes from the growth of structure in the

linear regime, i.e. no merging. It is believed that L∗ galaxies have

undergone very little merging since z ≈ 1 (Conselice, Yang & Bluck

2009; Lotz et al. 2011).

In the upper panel of Fig. 14, we plot the correlation length as a

function of redshift. r0 is observed to change very little since z ≈

0.32. The lowest redshift point has larger errors due to the limited

volume sampled. For comparisons with theory, it is more lucid to

use the bias instead of the correlation length. In the lower panel

of Fig. 14 we plot the evolution of the absolute bias, as defined

in equation (16), along with the theoretical prediction of Tegmark

& Peebles (1998) for passive clustering evolution (dashed line). In

Figure 14. The evolution of clustering of L∗ galaxies in the local Universe:

the upper panel shows the correlation length r0, while the lower panel shows

the bias bL∗ (z) as a function of redshift. The dashed line in the lower panel

shows the linear theory prediction from equation (17). Across the redshift

range 0.07 < z < 0.32, the bias of L∗ galaxies agrees rather well with the

linear theory model.

practice, we fix the high-z value of b(z) and then solve equation (17)

over the redshift range 0.07 < z < 0.32. We find that the evolution

of clustering of L∗ galaxies is consistent with the model of Tegmark

& Peebles (1998).

This agreement between the clustering of L∗ galaxies and the

passive evolution model was not observed by Ross et al. (2010),

who used SDSS photo-z values. The sample selection, modelling of

w(θ ) and bias between this study and that of Ross et al. (2010) are

very different, as we use GAMA-calibrated photo-z and model the

correlation function with a power law, whereas they used SDSS-

calibrated photo-z down to r < 21 and use halo modelling for the

correlation function. Ideally one would expect that the two stud-

ies should give consistent results, but it might be that the afore-

mentioned differences in the theoretical modelling and the sample

selection influence the results significantly.

7 D I S C U S S I O N A N D C O N C L U S I O N S

Despite their inherent limitations, photometric redshifts offer the

opportunity to study the clustering of various galaxy populations

using large numbers of objects over a wide range of angular scales

with improved statistics, with the caveat that their systematic uncer-

tainties are significantly more complex to deal with. In this section

we summarize and discuss the main implications of our results.

Using GAMA spectroscopic redshifts as a training set, we have

compiled a photometric redshift catalogue for the SDSS DR7 imag-

ing catalogue with rpetro < 19.4. We carried out extensive tests to

check the robustness of the photo-z estimates and use them for

calculating r-band absolute luminosities. We split our sample of

4289 223 galaxies into samples selected on photometric redshift,

colour and luminosity and estimate their two-point angular corre-

lation functions. Redshift distributions for the Limber inversion are

calculated using Monte Carlo resampling, which we show to be

very reliable.
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Our clustering results are in agreement with other clustering stud-

ies such as those of Norberg et al. (2002) and Zehavi et al. (2011),

who used spectroscopic redshifts. We extend the analysis to faint

galaxies where photo-z values allow us to obtain representative

numbers for clustering statistics. We find that the correlation length

decreases almost monotonically towards fainter absolute magni-

tudes and that the linear relation between b/b∗ and L/L∗ holds down

to luminosities L ∼ 0.03L∗. For the L∗ population, we observe a bias

evolution consistent with the passive evolution model proposed by

Tegmark & Peebles (1998).

As shown by others (Norberg et al. 2002; Hogg et al. 2003; Zehavi

et al. 2005; Swanson et al. 2008a; Zehavi et al. 2011) and confirmed

here, the colour dependence is more intriguing because faint red

galaxies exhibit a larger correlation length than red galaxies at in-

termediate luminosities. This trend is explained by HOD models, as

shown by Zehavi et al. (2005). Clustering for blue galaxies depends

much more weakly on luminosity. We find that at faint magnitudes

the SDSS imaging catalogue is badly contaminated by shreds of

over-deblended spiral galaxies, which makes interpretation of the

clustering measurements difficult. We determine an angular scale

beyond which our results are not affected by this contamination, and

test this by modelling the scale dependence of the contamination as

well as studying its luminosity dependence.

The use of photometric redshifts is likely to dominate galaxy

clustering studies in the future. A number of assumptions made

in this work might need to be reviewed when we have even bet-

ter imaging data and training sets. In particular, for cosmology,

the non-Gaussianity of photo-z and robust reconstruction of red-

shift distributions will become a very pressing issue. For galaxy

evolution studies, it is essential to study the mapping between a

photo-z-derived luminosity range and the true underlying one, as

HOD modelling of the galaxy two-point correlation function relies

heavily on the luminosity range considered. In this paper, we report

only qualitative agreement and leave any HOD study using these

photometric-redshift-inferred clustering results for future work.
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A P P E N D I X A : SD S S SQ L QU E RY

The SQL query used to extract our sample from the SDSS DR7

database.

SELECT

objid, g.ra, g.dec, flags, petror50_r,

petror50Err_r, petror90_r, petror90Err_r,

petroMag_r - extinction_r as petroMagCor_r,

petroMagErr_r,

modelMag_u - extinction_u as modelMagCor_u,

modelMag_g - extinction_g as modelMagCor_g,

modelMag_r - extinction_r as modelMagCor_r,

modelMag_i - extinction_i as modelMagCor_i,

modelMag_z - extinction_z as modelMagCor_z,

modelMagErr_u, modelMagErr_g, modelMagErr_r,

modelMagErr_i,

modelMagErr_z

FROM galaxy g

JOIN Frame f on g.fieldID = f.fieldID

WHERE

zoom = 0 and stripe between 9 and 44

and psfmag_r - modelmag_r> 0.25 and

petromag_r - extinction_r< 19.4

AND ((flags_r & 0x10000000) != 0)

AND ((flags_r & 0x8100000c00a0) = 0)

PSF_FLUX_INTERP, SATURATED,

AND (((flags_r & 0x400000000000) = 0) or

(psfmagerr_r<= 0.2))

AND (((flags_r & 0x100000000000) = 0) or

(flags_r & 0x1000) = 0)

APPENDI X B: TESTS FOR SYSTEMATI CS

Clustering studies using photometric redshifts are subject to sys-

tematic errors, which become more pressing as the statistical errors

are significantly decreased. In this Appendix we study the most

relevant sources of systematic errors that might affect our results.

A similar study, for a brighter sample of galaxies at higher redshifts

(0.4 < z < 0.7), was recently presented by Ross et al. (2011a).

Here we present tests that we believe are more likely to affect

the results shown in this paper. We start in Appendix B1 with a

scaling test, which mostly tests the reliability of the whole sample

for clustering studies. In Appendix B2 we quantify the possible sys-

tematics in the clustering signal due to spurious cross-correlations

of different photometric redshift bins. In Appendix B3 we test for

possible systematics in the spatial correlation function introduced

by the redshift distributions used in Limber’s equation. Lastly, in

Appendix B4 we examine the robustness of the correlation function

of the faintest luminosity bin.

B1 Scaling test

With a photometric sample of this size it is prudent to perform a

scaling test in order to uncover any dependence of clustering on

apparent magnitude. In order to do this we split our sample into

apparent magnitude bins and then calculate the angular correlation

function. The apparent magnitude ranges are given in Table B1. The

angular correlation functions are shown in Fig. B1. For all apparent

magnitude bins the slope is approximately equal but the amplitude

varies as expected, shifting from high to low values as we go fainter.

We then use equation (6) to calculate the correlation length for each

magnitude range. We fit over scales of 0.01 < θ < 2◦ (0.02 < θ <

1.2◦ for the 12 < r < 16 sample). The correlation length for each

magnitude bin is found to be equal within the error bars and in
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Table B1. Clustering properties in apparent magnitude bins defined by r-

band Petrosian magnitude. Column 1 lists the magnitude range, column 2

the number of galaxies, columns 3 and 4 give the values of γ and r0, defined

in equation (5). Column 5 lists the quality of the power-law fits. Errors were

calculated using the full covariance matrix, but we do not include the N(z)

uncertainty.

r bin (mag) Ng γ r0 χ2
ν

12.0 < r < 16.0 79543 1.81 ± 0.03 5.01 ± 0.48 1.01

16.0 < r < 17.0 201805 1.72 ± 0.02 5.76 ± 0.31 3.1

17.0 < r < 18.0 671315 1.73 ± 0.01 5.62 ± 0.20 3.38

18.0 < r < 18.5 768620 1.74 ± 0.01 5.58 ± 0.17 2.28

18.5 < r < 19.0 1336411 1.73 ± 0.01 5.50 ± 0.12 2.55

19.0 < r < 19.4 1720930 1.71 ± 0.01 5.20 ± 0.12 3.48

Figure B1. Angular correlation functions of the r-band apparent magnitude

bins defined in Table B1.

agreement with the earlier study of Budavári et al. (2003). Thus, for

all well-populated apparent magnitude bins we recover the fiducial

power law (Peebles 1980)

ξ (r) ≃

(

r

5 h−1 Mpc

)−1.7

. (B1)

B2 Cross-correlation of photometric redshift cells

A crucial consistency check, necessary for the validation of our re-

sults, is the study of the induced cross-correlations between redshift

shells defined by photo-z values from our sample. Since we have

established that σ z ≈ 0.04, we start from zphoto = 0 and use five

continuous slices with �z = 0.08 in order to allow all galaxies with

photo-z error of �2σ to be included in the correct redshift bin. We

then cross-correlate slices that are more than one �z apart.

If a Gaussian with σ = 0.04 provides a good approximation

of the error σ z, then we can estimate what fraction of galaxies

should lie outside the width of each photo-z slice. A galaxy that

is outside its redshift slice with width �z = 0.08 will have an er-

ror greater than 2σ . For a Gaussian distribution, ∼5 per cent of

all galaxies should lie outside their redshift boundaries. Therefore

their residual contribution to the cross-correlation should be

∼10 per cent of their auto-correlation.8 In Fig. B2 we present three

auto-correlation functions and their respective cross-correlations.

The cross-correlation functions from Fig. B2 are not entirely con-

sistent with zero, but on all scales the residual signal is of the ex-

pected order of magnitude. Fig. B2 demonstrates that ANNz does not

produce spurious correlations between physically disjoint galaxies.

B3 Testing dN/dz

Here we test the accuracy of our recovered dN/dz distribution by

studying angular clustering in the GAMA area. Since we have pre-

cise knowledge of the spectroscopic redshift distributions in the

GAMA area, we use these angular clustering measurements to test

the robustness of our spatial clustering results using different meth-

ods of recovering dN/dz. The methods that we test against the given

GAMA spectroscopic redshift distributions are (i) Monte Carlo

resampling of the photo-z distributions assuming Gaussian errors

(equation 13), which has been used for all the results in this paper,

and (ii) the weighting method of Cunha et al. (2009) (also known

as nearest neighbour method).

The latter method can be summed up in three distinct steps. First,

one estimates the distance in apparent magnitude space to the 200th

nearest neighbour of each object in the spectroscopic set, using a

Euclidean metric. The exact ordinal number of the neighbouring

object should not change the result significantly. For the GAMA

number density, N = 200 is the best trade-off between smoothing

out the large-scale structure and at the same time preserving the

locality of the photometric information. Secondly, one calculates

the number of objects in the photometric set that are within the

hypervolume defined by this distance and then one calculates the

weight of each object in the spectroscopic set at point mi according

to the equation

wi =
1

Nphot,tot

N (mi)phot

N (mi)spec

, (B2)

where N(mi)spec = 200. In the third step, the already known spec-

troscopic distribution is weighted to match the distribution of the

photometric sample. The weighting is done by summing the weights

wi of each object in the spectroscopic sample for all redshift ranges:

N (z)wei =

Nspec,tot
∑

i=1

wiN (z1 < zi < z2)spec. (B3)

Cunha et al. (2009) show that this method is superior to other

methods using photo-z in recovering the true dN/dz, but they do not

include Monte Carlo resampling in their comparisons.

The comparison of the different methods is depicted in Fig. B3,

where all the clustering measurements are confined to the GAMA

area. The errors for the angular clustering measurements are as-

sumed to be Poisson, which is just a lower bound, and the errors

in the redshift distributions are obtained from the scatter of Monte

Carlo simulations. This test is performed for the same luminosity

bins as in Section 4.2, apart from the brightest and faintest bins,

which have a very small number of galaxies and hence large statis-

tical errors in w(θ ).

8 We assume that the two auto-correlations are equal and the number of

galaxies in each sample is equal as well. For a detailed treatment of these

effects see Benjamin et al. (2010).
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Figure B2. Auto-correlation (diamonds and circles) and cross-correlation (squares) functions for photo-z bins. The cross-correlation signals have negligible

magnitude compared with the auto-correlations, and for angular separations ≥0.01◦ are consistent with zero. The errors are calculated using JK resampling as

explained in Section 3.5.

The (a priori required) agreement between the r0 measurements

from the different methods of recovering dN/dz is not perfect.

The r0 measurements are not significantly affected by the differ-

ences between the redshift distributions of Fig. 6. In conclusion,

Fig. B3, for the three intermediate and well-populated luminos-

ity bins, implies that the reconstruction of the underlying red-

shift distribution does not introduce any systematic errors in the r0

measurements.

This comparison does have its limitations. Samples with small

numbers of objects are sensitive to number variations due to the

different selections of the two surveys (mainly the more conservative

star–galaxy separation that we use in this paper). Moreover, it is
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Figure B3. Upper panel: slope residual of correlation-function measure-

ments in the GAMA area, using the measurement of the GAMA sample

with spectroscopic redshifts as a reference (�γ = γ (SDSS) − γ (GAMA)).

Lower panel: comparison of the effect of the various redshift distributions

(as shown in Fig. 6) on r0 measurements, again using the GAMA sample

as a reference (�r0 = r0(i) − r0(GAMA)). Following the discussion in

Section 5.1, the error bars show the combined effect of the power-law fit

uncertainties (assumed to be Poisson), which are independent of the under-

lying dN/dz, and the scatter in r0 due to 100 Monte Carlo resamplings of

each dN/dz (only (dN/dz)spec is known precisely).

very difficult to obtain realistic error bars for samples with a small

number of galaxies and for which the survey’s angular extent is

comparable with the angular scales used for the w(θ ) measurements.

The difficulty in obtaining the exact angular clustering signal is

seen in the upper panel of Fig. B3, which shows the residuals of

the measured slopes for the GAMA and SDSS samples. In spite of

these, Monte Carlo resampling seems to recover the true r0 slightly

better than the weighting method.

B4 Correlation function for faint galaxies

The correlation function of the faintest sample [−17, −14) exhibits

an infeasibly large clustering amplitude at small scales (Fig. B4).

This increase in the clustering signal is not hinted at in the −19 <

Mr − 5 log h < −17 luminosity bin, and so here we investigate

whether there is some sort of contamination in the faintest sample.

We randomly select ∼10 per cent of objects in the faintest lumi-

nosity bin and visually inspect them to see whether they are genuine

galaxies. The fraction of spurious objects is shown in the left panel

of Fig. B5 and we observe that it is significant at the very faint end,

where the actual number of galaxies is low (red line in the same

figure), and ∼40 per cent at the bright end of that luminosity bin.

From our visual inspection, most spurious objects are local, over-

deblended spiral galaxies; the remainder are merging systems or

just sky noise. Evidently, as we go fainter the contamination level

is increasing and this presents a serious drawback for clustering

studies and a serious limitation for large surveys.

The right panel of Fig. B5 shows the fraction of spurious objects in

the other five absolute magnitude bins. We visually inspected ∼100

objects from each of those bins and found that the contamination

level is much lower, with a slight increase toward the bright and faint

Figure B4. Two-point correlation function of the faintest luminosity bin

(−17 < Mr − 5 log h < −14). Black circles show the total correlation

function, blue squares show the correlation function of the ∼10 per cent

subset of objects visually inspected, green stars show the correlation function

of the ‘clean’ part of the inspected subset, red diamonds show the total

correlation function corrected to account for spurious pairs on scales �0.◦1

and, finally, cyan triangles show the w(θ ) measurement using only GAMA

spectroscopic data. Errors bars for the total sample are calculated using the

JK method. Open symbols represent angular scales at which the signal is

significantly contaminated and so cannot be trusted.

Figure B5. Left panel: black symbols show the fraction of spurious objects

for the faintest luminosity bin as a function of absolute luminosity. These

fractions are estimated by visually inspecting ∼10 per cent of the total

number of objects in that bin. Red symbols show the overall distribution of

objects as a function of absolute magnitude. Right panel: fraction of spurious

objects as a function of absolute luminosity, obtained by visually inspecting

a small subset (∼100) of all objects in each luminosity bin. In both panels

the error bars are obtained assuming Poisson statistics.

ends. Our detailed study of the correlation function of the faintest

bin shows that it is not affected by contamination on the scales of

primary interest (θ � 0.◦1), something that we expect to hold true

for all other luminosity bins, as they have a significantly smaller

fraction of spurious objects.

The contamination in the −17 < Mr − 5 log h < −14 luminosity

bin affects the two-point correlation function differently at different

angular scales. We address this issue by counting the number of pairs

of genuine galaxies in the visually inspected subset. The results are

shown in Fig. B4, where we also include the angular correlation
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function from the corresponding sample from GAMA.9 Due to the

fact that the subset has a weakened signal at very small scales, we

can only draw conclusions for angular scales >0.◦1. From Fig. B4

we see that at these scales the contamination does not significantly

affect the correlation function and its fit parameters γ and r0. For this

reason, we present our results limited to angular scales θ � 0.1◦.

9 GAMA objects have been visually inspected and are therefore more reli-

able than objects in the SDSS imaging catalogue. On the other hand, GAMA

has a smaller area, which increases the statistical errors. For this sample,

considering Poisson errors only, the statistical errors in w(θ ) would be at

least three times larger than the ones obtained from the SDSS sample.

We also repeated our analysis after masking out areas of sky

covered by RC3 galaxies (de Vaucouleurs et al. 1991; Corwin, Buta

& de Vaucouleurs 1994) to test whether we could decrease the

contamination level. We did not observe any qualitative differences

in the power-law parameters estimated and, more importantly, the

amplitude of w(θ ) at small scales did not reduce, indicating that the

RC3 catalogue does not capture all over-deblended galaxies in the

SDSS galaxy catalogue.

Finally, it is important to note (and caution) that source contam-

ination due to over-deblending only became apparent when inter-

preting the bottom right panels of Figs 8 and 10). Had we completely

trusted the results of the scaling test (Appendix B1) or used only

the data point near L∗ in Fig. B5 (since that population dominates),

we would have significantly underestimated the number of spurious

objects.
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