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Deletion of the gabra2 Gene Results in Hypersensitivity
to the Acute Effects of Ethanol but Does Not Alter
Ethanol Self Administration
Claire I. Dixon, Sophie E. Walker, Sarah L. King, David N. Stephens*

School of Psychology, University of Sussex, Brighton, United Kingdom

Abstract

Human genetic studies have suggested that polymorphisms of the GABRA2 gene encoding the GABAA a2-subunit are
associated with ethanol dependence. Variations in this gene also convey sensitivity to the subjective effects of ethanol,
indicating a role in mediating ethanol-related behaviours. We therefore investigated the consequences of deleting the a2-
subunit on the ataxic and rewarding properties of ethanol in mice. Ataxic and sedative effects of ethanol were explored in
GABAA a2-subunit wildtype (WT) and knockout (KO) mice using a Rotarod apparatus, wire hang and the duration of loss of
righting reflex. Following training, KO mice showed shorter latencies to fall than WT littermates under ethanol (2 g/kg i.p.) in
both Rotarod and wire hang tests. After administration of ethanol (3.5 g/kg i.p.), KO mice took longer to regain the righting
reflex than WT mice. To ensure the acute effects are not due to the gabra2 deletion affecting pharmacokinetics, blood
ethanol concentrations were measured at 20 minute intervals after acute administration (2 g/kg i.p.), and did not differ
between genotypes. To investigate ethanol’s rewarding properties, WT and KO mice were trained to lever press to receive
increasing concentrations of ethanol on an FR4 schedule of reinforcement. Both WT and KO mice self-administered ethanol
at similar rates, with no differences in the numbers of reinforcers earned. These data indicate a protective role for a2-
subunits, against the acute sedative and ataxic effects of ethanol. However, no change was observed in ethanol self
administration, suggesting the rewarding effects of ethanol remain unchanged.
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Introduction

Human genetic studies have suggested that polymorphisms of

the GABRA2 gene encoding the GABAA a2-subunit are

associated with ethanol dependence in European American, white

American, American plains Indian tribe and Russian populations

[1,2,3,4], though, unsurprisingly, this association is not evident in

all populations [5,6]. Although c-aminobutyric acid A (GABAA)

receptors have been suggested to represent a primary target for

ethanol, the direct effects of ethanol at postsynaptic receptors are

achieved only at high concentrations unlikely to be achieved by

social drinkers (see [7] for review). Lower concentrations of

ethanol can, however, can affect inhibitory GABAergic transmis-

sion by increasing release of GABA [8] and the release of

neuromodulators which are active at the GABAA receptor, most

notably neurosteroids [9].

Since Edenberg et al’s original report [2], related or identical

variants in GABRA2 genes have also been associated with other

addictive behaviours, including cocaine abuse [10], heroin abuse

[11] and polydrug abuse [12,13]. That related haplotypes were

associated with several forms of addiction make it unlikely that

possession of a risk haplotype simply confers increased or

decreased sensitivity to ethanol. Indeed the same variations are

also associated with childhood conduct disorder [14,15] and with

increased impulsivity [16], behavioural traits that may contribute

to the development of addictive behaviours. There is also

emerging evidence that the influence of GABRA2 haplotypes on

the development of addictions is due to an interaction with early

life stress [11]. Since facilitated GABAergic transmission via a2-

subunit containing receptors contributes to the anxiolytic action of

benzodiazepines [17,18] and barbiturates [19] and deletion of the

a2-subunit gives rise to an anxious phenotype [19], genetic

variations may contribute to the ability to cope with early life

stress, and thus lead to an increased likelihood of addiction.

Nevertheless, there is also evidence that the same haplotypic

variations in GABRA2 may alter the subjective effects of ethanol

ingestion as measured by self-assessment of ethanol-related

sensations [20] and mood [21], and studies using a2-subunit

mutant mice suggest that alcohol consumption is influenced by the

manipulation even at socially relevant concentrations of ethanol

[22]. These findings suggest a more direct relationship between

ethanol and a2-subunit containing GABAA receptors and may be

resolved by considering the role of intermediate neurotransmitters.

For example, inhibition of neurosteroid synthesis (which is

activated by ethanol) attenuates differences between risk and

protective haplotypes [23], suggesting that ethanol may indirectly

facilitate transmission at a2-subunit containing receptors by

increasing levels of neurosteroids.

Animal experiments using manipulations of the a2-subunit

in vivo have also suggested a more direct GABA-ethanol interac-
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tion but currently yield somewhat contradictory results. Using a

knockout mouse model, deletion of the a2-subunit resulted in

decreased sedation in response to an acute ethanol challenge, as

measured by the loss of righting reflex [24], suggesting that the a2-

subunit conveys sensitivity to the sedative effects of ethanol

(though, curiously, it mediates stimulant effects of benzodiazepines

[25,26]). Mutations of the a2-subunit (S270I in transmembrane

region 2 (TM2), A291W in TM3 [27] and a2(S270H, L277A)

[22]) result in decreased ethanol potentiation of the GABA

response in Xenopus oocytes. Mice bearing the latter mutation show

reduced ethanol-induced locomotor activation and a correspond-

ing increase in sedative effects as measured by loss of righting

reflex [22]. Such results appear inconsistent with a decreased

ethanol potentiation of GABA responses and with the behavioural

data reported in knockout mice. Nevertheless these apparently

contradictory data do suggest a potential role for the GABAA a2-

subunit in several mechanisms that may contribute to the

development of dependence to ethanol, including acute subjective

responses to ethanol.

We therefore investigated the role of the GABAA a2-subunit in

ethanol related behaviours using a knockout mouse model. Acute

effects were investigated using tests of sedation, locomotor

activation and motor coordination, whilst motivation to consume

ethanol was tested using an operant oral self administration

procedure.

Methods

Ethics Statement
All experiments were carried out with a UK Home Office

project licence under the authority of the UK Animals (Scientific

Procedures) Act 1986 and in accordance with local guidelines.

Experiments were performed at the University of Sussex, which is

a designated facility according to the Act. Following the

experiments, except where stated otherwise, mice were killed by

CO2 inhalation which is an appropriate method under Schedule 1

of the UK Animals (Scientific Procedures) Act 1986.

Animals
Wildtype (WT) and knockout (KO) male mice were bred from

heterozygous pairings and maintained on a mixed 50% C57BL/6J

–50% 129SvEv background. a2-subunit KO mice were generated

as previously described [19]. Animals were housed in pairs under a

12 hr light/dark cycle (lights on at 7.00 AM) in a holding room

with controlled temperature (<21uC) and humidity (<50%).

Except where specified, animals had ad libitum access to standard

laboratory chow (Bekay Feeds, Hull, UK) and water within the

home cage. Mean body weight at the start of the experiment was

approximately 30 g.

Drugs
Ethanol (95%) was diluted in 0.9% saline to a concentration of

20% v/v and administered i.p. at varying volumes (maximum

20 ml/kg) to achieve the required dose.

Sedative and Ataxic Effects of Acute Administration
Rotarod. To assess motor coordination, WT and KO mice

(n = 10) were trained to remain on a rotating rod apparatus

(Rotarod; Ugo Basile, Comerio, Italy), revolving at 16 revolutions

per minute. Each animal had two 5 minute training sessions. The

following day, all animals were re-tested for their ability to

complete a 3 minute trial prior to drug administration. Animals

were injected with 2 g/kg ethanol and tested on the Rotarod at 20

minute intervals until two consecutive 3 minute trials were

completed without falling.

Statistical analysis. A two-way, repeated measures ANOVA, with

the between subject factor genotype and within subject factor

timepoint was used to evaluate potential genotype and ethanol

effects for the latency to fall, using SPSS statistics package. The

Greenhouse-Geisser correction was applied to correct for a

violation in the assumption of sphericity.

Wire hang. To assess motor strength, WT and KO mice

(n = 12) were trained to grip and hang onto a taut wire suspended

50 cm above the bench top. Training was considered complete

when each animal maintained grip on the wire for 60 seconds on

two occasions. The following day, all animals were injected with

2 g/kg ethanol and their ability to hang from the wire, as

measured by latency to fall, was recorded prior to and at 20, 40

and 60 minutes post-injection.

Statistical analysis. A two-way, repeated measures AN-

OVA with the between subject factor genotype and within subject

factor timepoint was used to evaluate potential genotype and

ethanol effects for the variable latency to fall. Data were log

transformed to correct for a violation of homogeneity of variance.

Loss of righting reflex. To assess the sedative effects of

ethanol, WT and KO mice (n = 12) were injected with 3.5 g/kg

ethanol. At intervals of one minute, mice were tested for their

ability to recover an upright posture within 10 seconds. The time

of loss of righting reflex and duration of loss were recorded.

Statistical analysis. Duration of loss of righting reflex was

compared between the genotypes using an independent samples

Student’s t-test.

Locomotor activity. After 20 minute habituation sessions to

the locomotor runways for 2 days, WT and KO mice (n = 8) were

injected i.p. with 0, 1, 2 or 3 g/kg and immediately placed in

circular runways to record locomotor activity for 5 minutes.

Ethanol doses were administered in a counterbalanced design, at 2

day intervals.

Statistical Analysis. Habituation data were analysed using a

two-way, repeated measures ANOVA comparing genotype and

habitation day. To determine ethanol effects on locomotor

activity, a two-way, repeated measures ANOVA with the between

subject factor genotype and within subject factor dose was used to

evaluate potential genotype and ethanol effects on locomotor

activity.

Motivation to Obtain Ethanol
Operant self administration. WT and KO mice (n = 8)

were food restricted to reduce body weights to 90% of free-feeding

weight, and trained to press a lever for 10% sucrose in mouse

operant chambers (Med Associates, Georgia, VT, USA) con-

structed of clear Perspex (18618615 cm), and contained in sound

and light attenuating cubicles. Each operant chamber possessed a

single house light located on the wall opposite the levers. The front

wall was fitted with a liquid dipper, located between 2

ultrasensitive mouse levers. Following an initial 15 hour training

session, which included the dark phase, the response requirement

to obtain 10% sucrose reinforcer was increased over consecutive

days (range 2–7) from FR1 to FR2 to FR4 in daily one hour

sessions. Motivation to consume ethanol was investigated using the

sucrose fading technique [28]: over the following sessions the

sucrose concentration was decreased and the ethanol concentra-

tion was increased as follows; 10% sucrose +3% ethanol; 10%

sucrose +5% ethanol, 7% sucrose +5% ethanol, 10% sucrose

+10% ethanol. The mice remained at each stage until reaching a

criterion of at least 30 reinforcers per session on 3 consecutive

days.

Alpha2 GABAA Receptor and Ethanol
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Statistical analysis. Sessions to criteria at each sucrose/

ethanol concentration were analysed using a Mann-Whitney U

test. A two-way, repeated measures ANOVA, with the between

subject factor genotype and within subject factor ethanol/sucrose

concentration was used to evaluate potential genotype and

reinforcer effects for the number of lever presses and number of

reinforcers obtained. The Greenhouse-Geisser correction was

applied to correct for a violation in the assumption of sphericity.

Blood Ethanol Concentration
WT and KO mice (n = 4 per time point) were administered

ethanol (2 g/kg, i.p.) acutely. At 15, 45 and 120 minutes following

administration, mice were sacrificed by cervical dislocation and

trunk blood collected into heparinised capillary tubes. Blood

samples were centrifuged for 10 minutes and supernatant frozen at

280uC. Samples were analysed in triplicate using an Analox

automatic ethanol analyser (AM1, Analox Instruments, London,

UK) and the mean value taken for statistical analysis.

Statistical analysis. A two-way, repeated measures AN-

OVA, with the between subject factors genotype and sampling

time was used to evaluate potential genotype and timepoint effects

for the variable ethanol level.

Results

Sedative and Ataxic Effects of Acute Administration
Rotarod. Prior to receiving an ethanol injection, all animals

were able to complete a 3 minute trial on the Rotarod apparatus.

After administration of ethanol, both genotypes improved their

performance over the course of the experiment (Main effect of

time; F(6,108) = 26.702, p,0.001, e= 0.604; Fig. 1A). However,

KO mice were more impaired in their performance (main effect of

genotype, F(1,18) = 13.775, p,0.01) and were slower to recover the

ability to remain on the Rotarod for 180 seconds (genotype by

time interaction, F(6,108) = 3.703, p,0.05, e= 0.604).

Wire hang. Prior to ethanol administration, both genotypes

demonstrated a similar degree of motor strength and remained on

the wire for a comparable amount of time. (t(22) = 20.007,

p = 0.995; Fig. 1B). However, after 2 g/kg ethanol, KO mice

showed a marked decrease in the time spent on the wire compared

to WT (genotype by time interaction, F(2,44) = 3.133, p = 0.05) but

both genotypes recovered within a similar time frame.

Loss of righting reflex. After administration of 3.5 g/kg

ethanol, KO mice showed increased sedation compared to WT

(t(22) = 24.4, p,0.001), as measured by a longer duration of the

loss of righting reflex (Fig. 1C).

Locomotor activity. No genotype differences were noted

during habituation to the locomotor apparatus (genotype by dose

interaction, F(1,14) = 0.598, p = 0.452; main effect of genotype,

F(1,14) = 0.268, p = 0.613; data not shown). Locomotor activity at

five minutes after ethanol administration was lower in KO mice

compared to WT (genotype by dose interaction, F(3,39) = 3.075,

p,0.05; Fig 1D).

Motivation to Obtain Ethanol
Operant self-administration. The acquisition of self ad-

ministration of sucrose and ethanol solutions did not differ

between genotypes. Both genotypes performed a similar number

of sessions to criterion at each concentration (10%0%: U = 31.5,

p = 0.648; 10%3%: U = 28.0, p = 1.00; 10%5%: U = 22.5,

p = 0.448; 7%5%: U = 27.5, p = 0.951; 10%10%: U = 28.0,

p = 1.00; Fig. 2A). When allowed to lever press to gain access to

increasing concentrations of ethanol in a sucrose solution, KO

mice did not differ from WT in either the number of active lever

presses (genotype by reinforcer interaction, F(4,52) = 0.721,

p = 0.486, e= 0.462; main effect of genotype, F(1,13) = 0.019,

p = 0.893; Fig. 2B) or the number of reinforcers earned (genotype

by reinforcer interaction, F(4,52) = 0.486, p = 0.604, e= 0.456; main

effect of genotype, F(1,13) = 0.034, p = 0.858; Fig. 2C) in 30

minutes. The genotypes performed to a similar level at all

concentrations, both reducing their number of reinforcers as the

ethanol concentration increased (Main effect of concentration,

F(4,52) = 12.357, p,0.001, e= 0.456).

Blood Ethanol Concentration
A significant main effect of post-administration sampling time

(F(2,15) = 26.18, p,0.001; Fig. 3) indicates that amount of ethanol

in the blood decreases over time. Both main effect of genotype

(F(1,15) = 0.191, p = 0.668) and genotype by sampling time inter-

action (F(2,15) = 0.005, p = 0.995) were non-significant, indicating

that the rate of ethanol metabolism is similar in both genotypes.

Discussion

The current data suggest a role for the GABAA a2-subunit in

mediating the sedative and ataxic effects of acute ethanol

administration. Deletion of this subunit resulted in a decreased

ability to maintain walking on a Rotarod apparatus under ethanol

treatment, decreased motor strength as measured in the wire hang

test, and a greater duration of the loss of righting reflex. In

response to an acute ethanol challenge, KO animals showed lower

locomotor activity compared to WT at the highest dose, further

suggesting increased sedation in the KO. It should be noted that

locomotor activity was measured for five minutes immediately

following ethanol injection, to capture the period during which

ethanol is activating. Thus, the doses administered to induce

locomotor activity may seem high in comparison to other

publications that emphasise the sedative effects of the drug. Since

metabolism was unaffected, the effects observed indicate an

increased sensitivity to the sedative and ataxic effects of ethanol. In

spite of the observed acute difference, no change in the motivation

to consume an ethanol solution was observed, suggesting this

increased sensitivity does not extend to the rewarding properties of

ethanol.

GABAA receptors are expressed throughout the CNS, with

different receptor subtypes providing heterogeneous expression

throughout distinct brain regions. Whilst the exact neural basis for

the sedative and ataxic affects of ethanol is currently unknown, the

a2-subunit is expressed within brain areas involved in motor

output, namely the striatum, cerebellum [29,30] and within the

dorsal and ventral horns of the spinal cord [31,32], making these

the most likely loci to mediate acute sedative/ataxic effects.

There are several mechanisms by which a manipulation of

GABAergic inhibition may affect responses to ethanol. Ethanol

can activate postsynaptic receptors directly at high concentrations

but whether this effect occurs at concentrations likely to be

achieved socially is controversial [7]. Thus loss of GABAA a2-

subunits is unlikely to change ethanol responses in the current

experiments which result in relatively low blood alcohol

concentrations, but currently cannot be ruled out as a possibility.

These lower concentrations, however, can induce release of

neurosteroids, which are known to act at GABAA receptors. The

actions of neurosteroids have been shown to be only modestly

influenced by the a-subunit composition of the receptor, with an

alteration of the c-subunit having the most effect [33].

Furthermore, changes in neurosteroid levels do not appear to

alter the acute motor effects of ethanol [34], suggesting that a

neurosteroid-dependent mechanism is unlikely to explain the

Alpha2 GABAA Receptor and Ethanol
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acute differences observed in the current study. Increased GABA

release also occurs in response to ethanol administration and is

induced, at least in part, by a presynaptic GABAA receptor

mechanism [35,36]. The a2-subunit has been found presynap-

tically in hippocampal mossy fibre neurons [37] and thus may

serve to modulate GABA release. Since presynaptic GABA

receptors attenuate ethanol-induced GABA release [36], it might

be speculated that a deletion of the a2-subunit would result in

increased GABA release in response to an ethanol challenge,

causing an enhanced acute response. However, it is important to

note that evidence of presynaptically expressed a2-subunits in

brain regions other than hippocampus, and a direct link with

ethanol effects remains to be demonstrated.

In spite of acute differences to the sedative and ataxic effects,

motivation to drink as measured by operant self-administration of

an oral ethanol solution remained unchanged in KO mice. The

increased sensitivity to the motor effects of ethanol in the KO did

not appear to affect the ability to obtain the solution since both

genotypes self administered at a similar rate for all concentrations

and neither genotype indicated an inability to perform due to

inebriation. Importantly, the absence of a change in ethanol self-

administration is consistent with previously published data using

KO mice, which showed no differences in ethanol drinking

Figure 1. Increased ataxia and sedation after acute ethanol administration in GABAA a2-subunit KO mice. (A) Latency (secs) to fall from
the Rotarod apparatus. WT mice are able to remain on the Rotarod apparatus for longer than KO after 2 g/kg ethanol (n = 10; genotype by time
interaction, F(6,108) = 3.703, p,0.05, e= 0.604) (B) Latency (secs) to fall from the wire hang apparatus. WT mice are able to retain a grip on the hanging
wire longer than KO mice after 2 g/kg ethanol. (n = 12; genotype by time interaction, F(2,44) = 3.133, p = 0.05) (C) Loss of righting reflex. KO animals
show a longer duration of sedation after 3.5 g/kg ethanol (n = 12; t(22) = 24.4, p,0.001) (D) Locomotor dose response. KO animals show reduced
locomotion at 5 mins after 3 g/kg ethanol when compared to WT animals (n = 8; genotype by dose interaction, F(3,39) = 3.075, p,0.05).
doi:10.1371/journal.pone.0047135.g001
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preference as measured by a two-bottle choice paradigm [24].

However, a point mutation of the a2-subunit gave rise to varying

effects on ethanol drinking depending on the precise test

conditions, with the mutant drinking more alcohol during short-

term daily access and less alcohol during continuous access [22].

Whilst these findings imply an involvement of the a2-subunit in

ethanol drinking, they are difficult to interpret without further

investigations of factors such as taste reactivity, withdrawal or

motivational effects. Given the regional distribution of the a2-

subunit, it is perhaps not surprising that motivated drinking, as

measured by operant self-administration, is unaffected by its

deletion. In contrast to psychostimulants, lesions of the striatum

(where the a2-subunit is heavily expressed) do not affect

motivation to consume ethanol [38,39]. Instead, it has been

suggested that the ventral pallidum may be more important in

maintaining ethanol drinking, consistent with a role of the GABAA

a1-subunit [40,41] which is more abundant within this region.

The lack of an effect of a gabra2 deletion on drinking behaviour

seems at first sight to be in disagreement with the human literature

suggesting that polymorphisms of the a2-subunit are involved in

ethanol dependence [1,2]. Both risk and protective haplotypes

have been identified, but it is currently unknown if and how these

haplotypes translate into expression differences and if they would

be in any way analogous to the constitutive mouse knockout. One

factor that should be considered is how variations in the a2-

subunit may interact with other intrinsic or environmental

influences. Recent evidence suggests that the a2-subunit plays a

role in ethanol dependence only in those who have been subjected

to childhood trauma [11]. Since our mice received no develop-

mental stress, it is perhaps unlikely that they would reveal a role of

a2-subunit containing receptors in motivation to drink ethanol.

An important consideration of any experiment using a

constitutive knockout model is that compensatory changes may

take place in response to the deletion, potentially causing changes

in receptor function that will have occurred throughout the brain

and during development and may be responsible for the resulting

changes in phenotype. Certainly, in the case of deletion of the

gabra1 gene resulting in loss of the a1-subunit, there is evidence for

increased expression of a2- and a3-subunits, and decreased

expression of c2-subunits, as well as alterations in receptor

clustering and distribution [42,43] and in various other genes

involved in neural plasticity [44]. Using quantitative PCR analysis,

we found no evidence for altered expression of other GABAA

receptor subunits in the KO [10], indicating a lack of compen-

sation in subunit expression at the transcription level in the adult

mouse. Nevertheless we cannot exclude changes either at the

protein level, or patterns of insertion of receptors into the

membrane, or to other neurotransmitter systems.

Such compensatory changes may be important when compar-

ing data from other mutant mouse models. Differing mutations of

the a2-subunit have resulted in both increased sedation in

response to an ethanol challenge (S270H, L277A mutant [22])

and decreased sedation (H101R mutant [45]). The difference

between these studies and the current data may be explained by a

difficulty in identifying the mechanism by which ethanol is

affecting GABAA transmission. Whether it is a direct mechanism

or secondary effects via other neuromodulators, such as neuro-

steroids, manipulating different amino acid residues within the

Figure 2. Self administration of sucrose/ethanol solution remains unchanged in GABAA a2-subunit KO mice. (A) Sessions to criteria.
The genotypes did not differ in their acquisition of self administration, performing a similar number of sessions to criteria at each concentration of
ethanol (n = 8; 10%0%: U = 31.5, p = 0.648; 10%3%: U = 28.0, p = 1.00; 10%5%: U = 22.5, p = 0.448; 7%5%: U = 27.5, p = 0.951; 10%10%: U = 28.0,
p = 1.00) (B) Number of active lever presses. Both genotypes perform a comparable number of lever presses to obtain increasing concentrations of
ethanol in a sucrose/ethanol solution (genotype by reinforcer interaction, F(4,52) = 0.721, p = 0.486, e= 0.462) (C) Number of reinforcers earned. Both
WT and KO mice earned a similar number of reinforcers at each concentration of ethanol (genotype by reinforcer interaction, F(4,52) = 0.486, p = 0.604,
e= 0.456), indicating that motivation to obtain ethanol is unchanged after a deletion of the GABAA a2-subunit.
doi:10.1371/journal.pone.0047135.g002

Figure 3. Blood ethanol concentration. Following an acute ethanol
challenge (2 g/kg, i.p.), no genotype differences were observed in blood
ethanol concentration (n = 4; genotype by sampling time interaction
F(2,15) = 0.005, p = 0.995).
doi:10.1371/journal.pone.0047135.g003
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subunit may produce a variation in the receptor responses.

However, it is noteworthy that a point mutation in a2-subunits

(serine 270 to histidine and leucine 277 to alanine mutations)

resulting in reduction of sensitivity to ethanol’s ability to facilitate

GABA-induced current, when expressed in mice also enhanced

ethanol’s effects on the loss of the righting reflex, without

influencing ethanol consumption [22]. Since point mutations

may be less likely to give rise to compensatory changes (but see

[17]) than deletions, such a result would be consistent with the

behavioural effects we observed being due to loss of a2-subunit

function, and not to compensatory effects.

It is important to note that previous experiments using gabra2

KO mice have shown a decrease in sensitivity to the acute effects

of ethanol as shown by a reduced loss of righting reflex [24], the

direct opposite response to the one reported here. The discrepancy

between this experiment and the current data are not attributable

to differences in generation of the knockout, as in both cases the

mice were derived from the same original line [19,24]. Further-

more, the two knockout colonies have both been maintained on

the same background strain (50% C57BL/6J, 50% 126SvEv)

which minimises the possibility of differences in epistatic interac-

tions with genes from the background strain influencing the

behaviour. At present, we can only suggest that differences may

reflect consequences of genetic drift within two independently-

maintained colonies.

In conclusion, the current data demonstrate that deletion of the

gabra2 gene encoding the GABAA a2-subunit results in an

increased sensitivity to the acute sedative and ataxic effects of

ethanol administration, without changing the motivation to

consume ethanol. In conclusion, these observations imply a

protective role of the a2-subunit against the acute motor effects

of high dose ethanol but the exact mechanism remains unclear.

Whilst genetic variations of the GABRA2 gene in humans have

previously implicated this subunit in ethanol abuse, current data

suggest that this is unlikely to be due to GABAergic manipulations

directly changing motivational behaviour. Considering the com-

plexity of the literature regarding the potential role of the GABAA

a2-subunit in responses to ethanol, it may be important to

consider the participation of intermediate messenger systems. In

the case of a role for variations in a2-subunit containing receptors

as risk factors for addiction, additional factors, such as stress, and

how they interact with GABAergic inhibition may be important in

producing addiction-related phenotypes.
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